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Palaiseau, France.

Tel : (+33) 1 69 33 58 05

Email : weisz@lms.polytechnique.fr

1. Statement

The authors state that the submission is original and is not being submitted for

publication elsewhere.

Preprint submitted to Applied Mathematical Modelling September 3, 2017

Cover Letter



Highlights:

Residual stress on the run out table accounting for

multiphase transitions and transformation induced

plasticity

Daniel Weisz Patrault : corresponding author
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1. Highlights

• Numerical strategy to simulate a non-linear and multiphysics problem: the

cooling of a steel strip on the run out table.

• Heat conduction strongly coupled with metallurgical transformations and

an elastic-plastic calculation of residual stress evolution.

• Thermal expansion, density mismatch between phases and transformation

induced plasticity modeled as eigenstrain.

• Significant decrease of the initial residual stress profile, but the asymmetry

is responsible for bending moments

• Flatness defects such as longbow and crossbow are detected.
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Residual stress on the run out table accounting for multiphase
transitions and transformation induced plasticity

Daniel Weisz-Patrault*, Thomas Koedinger
LMS, École Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France

Abstract

The development of harder and thinner new steel grades necessitates reasonably fast numerical

simulations of forming processes in order to optimize industrial conditions through parametric

studies. This paper focuses on the evolution of residual stresses of thin strips during cooling on

the run out table. Since the problem involves multiphysics and non-linear processes, compre-

hensive and fully coupled numerical approaches may be difficult to use to design or optimize

industrial conditions because of extensive computation times. Therefore, a simplified numer-

ical simulation has been developed and consists in solving first the thermal problem coupled

with multiphase transitions and then the mechanical problem accounting for thermal expan-

sion, metallurgical deformation and transformation induced plasticity. Residual stress profiles

through the strip thickness are also computed in order to evaluate classic flatness defects such

as crossbow and longbow. A post-processing is also included in order to quantify out of plane

displacements that would take place if the strip were cut off the production line. It consists

in computing at finite strain the relaxation of residual stresses when the tension applied by

the coiler is released. The proposed numerical strategy has been tested on common industrial

conditions.

Keywords: Run out table, Residual stress, Eigenstrain, Multiphysics

1. Introduction

Both the constant development of new steel grades and higher quality requirements of flat

rolled products (e.g., strip thickness, strip flatness) necessitate a deep understanding of the

whole chain of forming processes. Indeed, residual stresses are generated at each stage of

the production line and are responsible for flatness defects. Heterogeneous plastic deforma-

tions taking place for instance during the rolling process and phase transitions occurring during

Preprint submitted to Applied Mathematical Modelling September 5, 2017

*Manuscript - For Review
Click here to view linked References

http://eeslive.elsevier.com/apm/viewRCResults.aspx?pdf=1&docID=34289&rev=0&fileID=628790&msid={677A3038-8B6B-4618-A3E4-AE0DA578643A}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

cooling on the run out table and during the coiling process (see figure 1) are the most significant

contributions to the residual stress formation. Therefore, numerical simulations are needed to

understand and quantify all mechanisms involved in the different processes. Thus, significant

efforts have been made for the simulation of the rolling process [1, 2], the run out table [3–5]

and the coiling process [6–8].

This paper focuses on the evolution of residual stresses during cooling on the run out table

(after hot rolling) that is a very non linear and multiphysics process. A cooling pattern is

imposed to the strip on the run out table in order to obtain a specific cooling path and phase

transitions and thus a targeted microstructure may be obtained [9]. Several papers [10–15]

deal with the mathematical modeling of this coupled thermal/metallurgical problem. Indeed,

phase transitions are responsible for a source term in the heat conduction problem because of

the enthalpy change. Most previously cited papers consider one or two-dimensional unsteady

heat conduction problem solved by mixed Finite Differences for the time variable and Finite

Elements for space variables. On the other hand phase transitions are computed by using the

well-known Avrami’s equation proposed in [16].

Figure 1: Chain of hot forming processes

Classic couplings between heat conduction, phase transition and mechanics are presented

in figure 2. Thus, most estimations of residual stresses [17, 18, 3–5] relies on highly coupled

computations even though some couplings are neglected, for instance the effect of strain and

2
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stress on thermal and phase transition problems (dotted lines in figure 2). Despite the fact

that the cited works present different degrees of details, the most common numerical strategy

consists in developing a user material (UMAT) in the Finite Element software Abaqus [19]

in order to solve simultaneously the heat conduction problem, phase transitions (via Avrami’s

equation) and the mechanical problem. However, the complete and fully coupled problem is

very non-linear and the applicability may be limited because of very long computation times.

For instance [4] can simulate a 6 meters long strip although the run out table is 130 meters long.

The present paper aims at developing a numerical strategy sufficiently fast to enable para-

metric studies in order to quantify in what extend industrial conditions can be adjusted to op-

timize flatness defects. The proposed approach relies on the very common assumption in this

situation that the mechanical problem has no influence on the thermal problem and phase tran-

sitions (dotted lines in figure 2). Indeed, the problem is driven by temperature changes. Phase

transitions due to mechanical deformations are negligible as well as self-heating. However,

displacements obtained from the mechanical problem can be significant and affect the ther-

mal/metallurgical problem, principally when instabilities occur if mechanical computations are

done at finite strain. In this contribution, computations are done under infinitesimal strain as-

sumption and then the effect of geometry changes (on the thermal/metallurgical problem) is

neglected. Thus, two numerical calculations can be conducted successively, first the coupled

thermal/metallurgical problem and then the mechanical problem. This approach enables us to

use different numerical schemes and different geometrical descriptions for each one of the two

problems.

Figure 2: Couplings

3
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The global numerical scheme is divided into three different numerical items. First the cou-

pled thermal/metallurgical problem is solved by using TACSI proposed in [20–22]. Thus,

temperature and phase proportion fields are extracted at each time step. Thermal expansion,

density mismatch between phases and transformation induced plasticity are combined in the

form of an eigenstrain increment that is computed by using the free software SCILAB [23].

This eigenstrain being incompatible in general (i.e., it cannot be written as the gradient of a

displacement field) an elastic strain should be introduced so that the total strain is compatible.

This mechanical problem is solved by using the Finite Element software CAST3M [24].

The paper is constructed as follows. The global numerical strategy is detailed in section 2.

Calculation of the eigenstrain increment is then broached in section 3. In particular transfor-

mation induced plasticity is discussed. The mechanical problem of a strip subjected to the

eigenstrain increment is then addressed in section 4. Material parameters are extracted from

the literature as a function of temperature and representative run out table conditions are se-

lected in section 5.1. Numerical computations are presented and analyzed in section 5.2. A

post-processing is also included in section 6 in order to quantify the flatness defect that would

take place if the strip were cut off the production line. It consists in computing at finite strain

the relaxation of residual stress when the tension applied by the coiler is released. Conclusive

remarks are proposed in section 7.

2. Numerical strategy

The global numerical scheme proposed in this paper is summarized in figure 3. The general

problem of the strip cooling down on the run out table is divided into three numerical tasks.

1) The first task consists in solving the coupled heat conduction problem with phase transitions

by using TACSI proposed in [20–22]. This program is based on the unsteady heat equation

with source terms due to enthalpy changes (phase transitions) given by:

div (λ(T )∇T ) − ρ(T )cp
∂T
∂t

= −

Np∑
p=2

∆Hp(T )Ẋp (1)

where T denotes the temperature, λ(T ) the thermal conductivity, ρ(T ) the density of the

multiphase mixture, cp the thermal capacity, ∆Hp(T ) the enthalpy change during phase

transformation, Xp the phase proportion of p-th phase and Np the number of considered

4
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phases. Time dependent boundary conditions are imposed through various Heat Transfer

Coefficients that describe the known process conditions (water cooling, wet and dry zones).

TACSI relies on solving (1) in 1D along the strip thickness. That is to say that a material

particle (described by a segment along the strip thickness) is cooled down by moving to

the run out table. Explicit Finite Differences are used and the coupling procedure consists

in alternating at each time step the heat conduction solver and the phase transition solver.

Phase transitions are most of the time described by Avrami’s equation that relies on statis-

tical treatments and assumptions (e.g., pre-existence of germ nuclei of the product phase

with a certain probability of growth) and predicts the overall transformation kinetics for

diffusive transformations under isothermal assumption. For non-isothermal conditions, the

so-called isokinetic assumption has been extended in [25] leading to a modified equation.

This approach is accurate but relies on experimental identifications that should be done for

each tested grade. Physical approaches on the other hand, do not require a full experimental

fitting procedure for each grade. Nucleation and growth models have been been proposed

as reviewed for instance in [26]. The phase transition model included in TACSI relies on

such a physical modeling. The nucleation and growth are modeled by thermodynamical and

kinetics approaches. For details the reader is refereed to [20].

At each time step a coupling with phase transitions is computed and the temperature and

phase proportion fields are computed at three positions through the strip thickness (upper

and lower surface and mid-plane). Moreover, a steady state is assumed on the run out

table, that is to say that the global temperature field does not vary along the strip length

even though each material particle undergoes very rapid thermal and structural evolutions.

Since neither the geometrical strip profile (obtained during the rolling process) nor the cool-

ing conditions on the run out table are perfectly constant, no steady state is never strictly

reached. However, temperature and phase proportion fields evolve much slower than the

strip speed. Therefore, one can assume that by selecting several points along the strip width

at one particular position along the strip length, one can construct temperature and phase

proportion fields for a strip portion as long as the the run out table. This simplified approach

enables us to compute effectively the whole temperature and phase proportion fields just by

computing the evolution uni-dimensional material particles (at different position along the

strip width) moving to the run out table.

5
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2) The second task consists in computing for each time step the eigenstrain increment (denoted

by ∆ε∗k where k refers to the time increment) accounting for thermal expansion, phase trans-

formations and transformation induced plasticity. To that end a numerical code has been

written by using the free software SCILAB [23].

3) The third task consists in solving at each time step the elastic-plastic problem of the strip

undergoing the eigenstrain increment ∆ε∗k by using the Finite Element software CAST3M

[24]. Indeed, the eigenstrain is not the gradient of a displacement field and an elastic strain

should be introduced so that the total strain is compatible. A global plastic strain is also

considered in the total strain because the eigenstrain increment can be sufficient to generated

macroscopic plasticity. Moreover an initial residual stress profile (obtained at the end of

the rolling process) is considered and the traction applied by the coiler is also taken into

account. Finite Element computations are done under infinitesimal strain assumption by

using quadrangular shell elements in order to obtain short computation times.

It should be noted that the mechanical problem depends on the loading path both because

of the fact that the eigenstrain increment depends on the stress state of the previous time step

and because of the elastic-plastic behavior. Thus, one cannot compute directly the mechanical

problem from the temperature and phase proportion fields obtained on the run out table. Strain

and stress history should be considered by applying progressively the temperature and phase

proportion fields responsible for the eigenstrain as shown in figure 4. As a result, several FE

computations are performed alternatively with computations of the eigenstrain increments.

6
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Figure 3: Numerical scheme

Figure 4: History of mechanical states

3. Eigenstrain and transformation induced plasticity

During cooling on the run out table significant temperature and structural changes take place

under mechanical loads (applied tension by the coiler and initial residual stresses). Thus, the

strip undergoes thermal expansion, phase transformation and transformation induced plasticity.

Indeed, when phase transformations occur under applied mechanical loads that can be much

lower than the yield stress, significant plastic strains are observed. This phenomenon called

7
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transformation induced plasticity or sometimes super-plasticity received particular attention.

The Leblond’s model proposed in [27–30] is one of the most fruitful model for industrial im-

plementation. Indeed, because of its solid theoretical basis and the fact that the overall trans-

formation induced plastic strain increment is given by simple explicit formulas, the Leblond’s

model has been intensively used for various engineering applications and especially for run out

table simulations. For instance [4] used a slightly improved version of the Leblond’s model

proposed in [31]. Within the framework of run out table simulations, a simple formulation for

transformation induced plasticity has also been proposed in [32]. However, there is no theoret-

ical derivation from previous mechanical knowledge and the proposed formula is an Arrhenius

equation to be fitted with experimental data. This approach has been used for instance in [17].

Most transformation induced plasticity models are dedicated to simple two-phases mix-

tures. However, multiphase transitions occur in steel during cooling. Residual austenite may

be transformed into ferrite, pearlite, bainite and martensite depending on the local temperature

kinetics. An attempt to extend the Leblond’s model to multiphase transitions has been pro-

posed in [33] but formulas are adapted without theoretical developments as originally made

in the Leblond’s model. In this paper transformation induced plasticity and classic plasticity

related to temperature and stress variations are computed following the recent theoretical work

[34] that extends properly the original Leblond’s model. Multiphase transitions are taken into

account and several assumptions in the original work are relaxed.

Main results useful for this paper are recalled for sake of clarity. It should be noted that

expressions are particularized for this study, that is to say during cooling only and for the

following phase transitions austenite to ferrite, austenite to pearlite, austenite to bainite and

austenite to martensite. For more general equations, the reader is refereed to [34]. At each time

step k, the elastic-plastic problem consists in solving the following equation:

div (σk) = 0 Equilibrium

σk = λ(Tk)tr
(
εe

k

)
I + 2µ(Tk)εe

k Isotropic behavior

εk = 1
2

(
∇uk + ∇uT

k

)
Compatibility

εk = εe
k + εp

k + εk−1 + ∆ε∗k Total strain tensor

(2)

Tk is the temperature field at the k-th increment and λ(Tk) and µ(Tk) are the temperature de-

pendent Lamé’s coefficients of the multiphase mixture. In this paper, a simple mixture rule is

8
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chosen:

λ(Tk) =

Np∑
p=1

Xp,kλp(Tk) and µ(Tk) =

Np∑
p=1

Xp,kµp(Tk) (3)

Where λp and µp are the Lamé’s coefficients of phase p and Xp,k denote the phase proportion

of phase p and Np is the number of considered phases (p = 1: austenite, p = 2: ferrite,

p = 3: pearlite, p = 4: bainite and p = 5: martensite). Moreover, u denotes the displacement

vector, σk is the Cauchy stress tensor, εk and εk−1 denote the total strain at the k-th and (k−1)-th

increments respectively and εe and εp denote the unknown elastic and plastic strain respectively.

It should be noted that the initial residual stress profile can be either set with an initial stress

field σ0 in CAST3M or by imposing that ε0 corresponds to the elastic counter part of the initial

residual stress profile.

In addition, ∆ε∗k denotes the eigenstrain increment introduced because of thermal expan-

sion, phase transitions and transformation induced plasticity associated with increment of tem-

perature ∆Tk and increment of phase proportion ∆Xp,k. The eigenstrain increment ∆ε∗k can be

decomposed as follows:

∆ε∗k = ∆εthm
k + ∆εtp

k + ∆εcp
T,k + ∆εcp

σ,k (4)

Where ∆εthm
k denotes the thermo-metallurgical strain tensor, which corresponds to volume vari-

ations due to thermal dilatation and density mismatch between phases, ∆εtp
k is the transforma-

tion induced plasticity tensor and ∆εcp
σ,k and ∆εcp

T,k are the classic plasticity tensors induced

by equivalent stress and temperature variations respectively. The contribution of ∆εcp
σ,k is ne-

glected.

After [34], the hydrostatic thermo-metallurgical strain increment is shown to be:

∆εthm =

Np∑
p=2

1
3

(
ρ1(Tk)
ρp(Tk)

− 1
)
∆Xp,k +

α1 +

Np∑
p=2

Xp,k(αp − α1)

 ∆Tk (5)

Where ρp is the density of phase p and αp is the thermal expansion coefficient of phase p.

Consider X̃k the total product phase proportion:

X̃k = 1 − X1,k =

Np∑
p=2

Xp,k (6)

and ∆σY the following quantity:

∆σY =

√(
σY

1

)2
−

(
σ

eq
1

)2
(7)

9
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where σY
p is the yield stress, σeq

p the von Mises equivalent stress and εeq
p the von Mises equiva-

lent plastic strain in phase p. Consider the following material parameters:
ζ =

(3λ1 + 2µ1)2µ1

λ1 + 2µ1

ξp =
2µ1(9λ1 + 14µ1)

λ1(9µ1 + 6µp) + 2µ1(7µ1 + 8µp)

(8)

The transformation plastic strain increment reads if σeq
1 < σY

1 :

∆εtp =

Np∑
p=2

sp,k

σY
p

σY
p − σ

eq
p

µpξp
∆Xp,k +



0 if
∆σY

ζ
∣∣∣̃εthm

∣∣∣ > 1

−
3
∣∣∣̃εthm

∣∣∣ s1,k

σY
1 (εeq

1 )
ln

 ∆σY

ζ
∣∣∣̃εthm

∣∣∣
 Np∑

p=2
∆Xp,k>0

∆Xp,k if X̃k ≤
∆σY

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

−
3
∣∣∣̃εthm

∣∣∣ s1,k

σY
1 (εeq

1 )
ln

(
X̃k

) Np∑
p=2

∆Xp,k>0

∆Xp,k if X̃k >
∆σY

ζ
∣∣∣̃εthm

∣∣∣
(9)

Where sp,k is the deviatoric stress tensor of phase p. And if σeq
1 = σY

1 :

∆εtp =

Np∑
p=2

sp,k

σY
p

σY
p − σ

eq
p

µpξp
∆Xp,k +


0 if X̃k < X̃min

−
3
∣∣∣̃εthm

∣∣∣ s1,k

σY
1

ln
(
X̃k

) Np∑
p=2

∆Xp,k>0

∆Xp,k if X̃k ≥ X̃min
(10)

with the initial value:

εtp
ini =

2ε̃thm

1 − X̃min

X̃min ln
(
X̃min

)
(11)

where X̃min (set to 0.03 in this paper) is the minimal phase proportion that can be produced

from pure austenite and where ε̃thm is the hydrostatic eigenstrain generated in all product phases

because of temperature variation and phase transitions:

ε̃thm =

Np∑
p=2

Xp,k

1 − X1

(
1
3

(
ρ1(Tk)
ρp(Tk)

− 1
)

+
ρ1(Tk)
ρp(Tk)

(αp − α1)(Tk − Tini)
)
> 0 (12)

It should be mentioned that ε̃thm given by (12) is related to the microstructure and should not be

mixed up with the homogenized hydrostatic strain εthm given by (5). The classic plastic strain

10



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

rate due to thermal variations reads if σeq
1 < σY

1 :

∆εcp
T =



0 if
∆σY

ζ
∣∣∣̃εthm

∣∣∣ > 1

−3α̃s1,k

σY
1 (εeq

1 )
X̃k ln

 ∆σY

ζ
∣∣∣̃εthm

∣∣∣
 ∆Tk if X̃k ≤

∆σY

ζ
∣∣∣̃εthm

∣∣∣ ≤ 1

−3α̃s1,k

σY
1 (εeq

1 )
X̃k ln

(
X̃k

)
∆Tk if X̃k >

∆σY

ζ
∣∣∣̃εthm

∣∣∣
(13)

And if σeq
1 = σY

1 :

∆εcp
T =

−3α̃s1,k

σY
1

X̃k ln
(
X̃k

)
∆Tk (14)

where α̃ represents the homogenized difference between thermal expansion coefficient in the

product phases and in the austenite:

α̃ =

Np∑
p=2

Xp,k

1 − X1

(
αp − α1

)
< 0 (15)

4. Elastic-plastic problem with imposed eigenstrain

4.1. Generalized stess and strain

Equation (2) is solved at each time step under infinitesimal strain assumption, by using

the Finite Element free software CAST3M. Quadrangular linear shell element ‘COQ4’is used

in order to obtain short computation times. Consider Cartesian coordinates (x1, x2, x3) corre-

sponding respectively to the direction of strip length, strip width and strip thickness. There

are 5 generalized kinematic unknowns (degrees of freedom) for this element: three translations

U1,U2,U3 and two rotations ϕ1, ϕ2. Moreover the mechanical state relies on 8 generalized

stress components. Thus the in-plane stress resultants N, bending moments M and shear resul-

tants Q are defined as follows:

∀(i, j) ∈ {1, 2}2 ,



Ni j =

∫ h
2

− h
2

σi jdx3

Mi j =

∫ h
2

− h
2

x3σi jdx3

Qi =

∫ h
2

− h
2

σi3dx3

(16)

where h is the strip thickness that depends on x2 because of the strip geometrical profile. From

the computed quantities Ni j,Mi j,Qi using the FE computation, one should compute an estima-

11
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tion of three dimensional Cauchy stresses in order to compute the imposed eigenstrain incre-

ment ∆ε∗ for the next time step (as detailed in section 3). By assuming a linear dependence on

the thickness direction x3 for σi j and homogenous σi3 (for (i, j) ∈ {1, 2}2) one obtains:

∀(i, j) ∈ {1, 2}2 ,


σi j =

12Mi j

h3 x3 +
Ni j

h

σi3 =
Qi

h

and σ33 = 0 (17)

The generalized eigenstrain to be imposed in the FE model, is constituted of 8 components

(plane and shear eigenstrain and curvature) denoted by ∆E∗i j,∆G∗i3,∆R∗i j. This generalized

eigenstrain is given as a function of the three dimensional eigenstrain computed following

section 3 as follows:

∀(i, j) ∈ {1, 2}2 ,



∆E∗i j =
1
h

∫ h
2

− h
2

∆ε∗i jdx3

∆G∗i3 =
1
h

∫ h
2

− h
2

∆ε∗i3dx3

∆R∗i j =
12
h3

∫ h
2

− h
2

x3∆ε
∗
i jdx3

(18)

4.2. Boundary conditions

Boundary conditions are specified as follows. At one end of the strip an average tension is

applied by the coiler and displacement U3 is blocked. Furthermore, displacements U1 and U3

and all rotations are blocked at the other end. However, edge effects should be avoided. Indeed,

the local distribution of the applied tension is unknown, only the resultant force applied by the

coiler is known. Similarly, displacements are not blocked at the other end but a distribution

takes place instead. This difficulty is overcome by adding extra pieces of strip (whose length

is twice the strip width) at both ends of the strip in order to apply boundary conditions. Thus,

mechanical fields unduly affected by simplified boundary conditions does not spread in the real

zone of interest. It should be mentioned that in the following results are presented only in this

zone of interest.

Figure 5: Boundary conditions
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5. Numerical simulation

5.1. Material parameters and modeling conditions

A numerical example is proposed in order to present typical outputs of the model. A 140 m

long run out table is considered. A steel strip initially at 1150 K and going at 10.25 m/s is

cooled down on the run out table with water-jets identically distributed along the strip width.

The cooling path along the strip length is determined by a succession of water, wet and dry

zones characterized by Heat Transfer Coefficients. The upper surface is cooled down faster

than the lower surface because there are more water jets spraying on the upper surface, as

shown in figure 6. The geometrical profile defines the strip thickness as a quadratic function

of the strip width (i.e., x2 coordinate). In this example, a 3 mm thick strip is considered with

a strip crown of 2% (i.e., the strip thickness at the edges is 98 % of the strip thickness at the

center). The temperature and phase proportion fields are presented in figure 7a and 7b at three

positions along the strip thickness (top, middle and bottom). There are almost no variations

along the strip width because the cooling is homogeneous along this direction. However it is

clear that the upper surface is cooled down faster than the lower surface. Material parameters

are extracted from the literature. The Poisson coefficient is set to 0.3 and the Young modulus is

assumed to be identical for all phases and given by [35]:

E(T ) = 2.08 × 105 − 1.90 × 102T + 1.19T 2 − 2.82 × 10−3T 3 + 1.66 × 10−6T 4 (19)

On the other hands, temperature dependent yield stresses are given for each phase in figure 8a

by interpolating numerical values found in [36].

Figure 6: Prescribed cooling path
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(a) Temperature field (b) Phase proportion field

Figure 7: Coupled thermal/metallurgical problem

(a) Yield stress of each phase (b) Initial residual stress profile

Furthermore, an initial residual stress profile is considered in this numerical simulation. A

simple variation of σ11 along the strip width is presented in figure 8b. There is no variation of

the initial residual stress profile along the strip thickness in this numerical example. The strip is

modeled in CAST3M with 10 elements along the strip width and 560 elements along the strip

length.
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5.2. Results

Numerical results are given at different time steps for the in-plane stress resultant N11 and

the bending moment M11 in figure 9 and 10. Six other components are calculated but for sake

of concision only the most interesting components are presented. The effect of plasticity and

transformation induced plasticity is clearly in this example to reduce significantly the residual

stress state. This is due to the fact that temperature and phase proportion fields are almost

homogenous along the strip width. However, since the cooling path is not symmetric (upper

surface cooled down faster than the lower surface), bending moments are generated. It can be

noticed that there is a maximum zone in figure 10 that shifts according to time steps. This is

only due to the equilibrium because of the quick variation of the in-plane stress resultant N11.

The final residual stress profile, that takes place in the strip, is obtained at the last time step

at the end of the run out table. Stresses at three positions along the strip thickness are presented

in figure 11 as well as the corresponding bending moments. Therefore by comparing initial

and final residual stress profiles in figure 8b and 11 , it is clear with the proposed simulation

parameters (e.g., cooling path is homogenous along the strip width) that plasticity tends to

decrease significantly the stress level. However, bending moments are also introduced and

are responsible for flatness defects called longbow and crossbow. It should be noted that the

resultant of σ11 has been subtracted in figure 11a in order to remove the offset due to the applied

tension even though at this stage there is no computation of the the residual stress relaxation by

properly releasing the tension.

The entire simulation lasts aroud 2 hours and a non-negligible part of the computation time

is used for writing files characterizing the mechanical state in order to compute the increment

of eigenstrain. Thus, a way of reducing even more computation times is to avoid to write these

files by using the flash memory instead.
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Figure 9: In-plane stress resultant N11
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Figure 10: Bending moment M11
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(a) Final residual stress σ11 (b) Final bending moment M11

(c) Final residual stress σ22 (d) Final bending moment M22

(e) Final residual stress σ12 (f) Final bending moment M12

Figure 11: Final stress profiles
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6. Relaxation of residual stresses

In this section a post-processing is proposed in order to compute out of plane displacements

due the relaxation of the residual stress profile obtained previously. In order to evaluate the

influence of the run out table only, the final residual stress profile obtained at the end of the

run out table (i.e., x3 = 140) is applied on the whole 140 m long strip as though there were

no subsequent evolution of the residual stress after the run out table (which is obviously not

verified). A Finite Element simulation at finite strain is performed in order to quantify how

residual stresses are relaxed by out of plane deformation. Thus, U3 is not blocked any more

and the tension is released. In figure 12 the residual stress profile after releasing the applied

tension is presented. In comparison with figure 11 there is a clear relaxation of residual stresses

through out of plane deformations. The out of plane displacement is presented in figure 13. It

corresponds to the displacement that would occur if the strip were cut off just after the run out

table. There is a longbow defect at both ends of the strip. Of course, the strip cooling continues

during the coiling process and the residual stresses evolve as studied in [6–8].

(a) Relaxed stress σ11 (b) Relaxed bending moment M11

Figure 12: Relaxed stress profiles
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Figure 13: Out of pane displacement U3

7. Conclusion

This contribution deals with a numerical strategy to simulate a non-linear and multiphysics

problem: the cooling of a steel strip on the run out table. The proposed approach accounts for

heat conduction strongly coupled with metallurgical transformations (multiphase transitions)

and an elastic-plastic calculation of residual stress evolution. Thermal expansion, density mis-

match between different phases and transformation induced plasticity are included under the

form of an imposed increment of eigenstrain. This work enables to obtain reasonable compu-

tation times (around 2 hours for a 140 m long strip) because the mechanical problem is solved

separately from the thermal/metallurgical problem and authorizing different meshing and time

steps.

Numerical results show that homogenous cooling conditions along the strip width tend to

decrease significantly the initial residual stress profile, but cooling one surface faster than the

other creates an asymmetry that is responsible for bending moments. Therefore, classic flatness

defects such as longbow and crossbow are detected.
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Figure 1: Chain of hot forming processes

Figure 2: Couplings
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Figure 3: Numerical scheme

Figure 4: History of mechanical states

Figure 5: Boundary conditions
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Figure 6: Prescribed cooling path

(a) Temperature field (b) Phase proportion field

Figure 7: Coupled thermal/metallurgical problem

(a) Yield stress of each phase (b) Initial residual stress profile
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Figure 9: In-plane stress resultant N11
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Figure 10: Bending moment M11
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(a) Final residual stress σ11 (b) Final bending moment M11

(c) Final residual stress σ22 (d) Final bending moment M22

(e) Final residual stress σ12 (f) Final bending moment M12

Figure 11: Final stress profiles
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(a) Relaxed stress σ11 (b) Relaxed bending moment M11

Figure 12: Relaxed stress profiles

Figure 13: Out of pane displacement U3
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