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Abstract. Palmprint recognition systems are dependent on feature extraction. A method of feature extraction
using higher discrimination information was developed to characterize palmprint images. In this method, two
individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image,
and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the
binarized statistical image features. They are then evaluated using an extreme learning machine classifier
before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong
Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II,
and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method
effectively identifies and verifies palmprints and outperforms other methods based on feature extraction. © 2017
SPIE and IS&T [DOI: 10.1117/1.JEI.26.6.063006]
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1 Introduction
As security threats have become increasingly sophisticated,
the demand for biometric capability has risen. Services that
demand authentication and high levels of data protection are
increasingly dependent on convenient biometric security.
The scope for applying biometric security to identify and
verify an individual through their physical or behavioral
attributes1 is broad. Forensic science and access control
are two capacities that have stimulated an increase in biomet-
ric research.2,3 Physical characteristics that have been used
for identification and verification purposes include face,
fingerprint, gait, iris, keystroke, and palmprint. Some of
the methods used in identifying these characteristics are
well established and widely implemented in particular fields.
Palmprint images have the qualities of being unique, reliable,
and stable, and the techniques for distinguishing palmprints
are flexible, nonintrusive, user-friendly and have good dis-
crimination capabilities. The principal lines, minutiae points,
ridges, wrinkles, and texture of palmprints are the features
that confer their uniqueness.

Over the past 10 years, palmprint recognition (PPR) has
been the subject of investigation. This study contributes to
the research by detailing a technique that further enhances
recognition accuracy by generating superior discrimination
information during feature extraction. Of the numerous
PPR techniques that have recently emerged, coding-based
methods of multispectral palmprint images, which generate
high recognition rates, are most popular. In our study, a PPR
method that fuses palm features is proposed and aims to
surpass the performance of preexisting techniques.

At each of the three stages of the standard biometric
cognition process, the experimental method is applied to

promote recognition performance. The stages are (i) applica-
tion of the discrete wavelet transform on palmprint images,
(ii) the final feature code that is derived from the fusion of
histogram of gradient (HOG) and binarized statistical image
features (BSIF), and (iii) matching using extreme learning
machine (ELM), which determines the inter- and intraspec-
tral similarities in palmprint feature maps. Testing the
method on the IIT Delhi palmprint image database (IITD),
polyu multispectral palmprint database (MSPolyU), and
PolyU palmprint database (PPDB) generated results that
indicate that the method has a high identification and veri-
fication accuracy. Specifically, it achieved 98.17% in its
identification rate and a 0.016 equal error rate (EER). These
results are superior to those of similar methods, such as those
described in Ref. 4, in which the EER for the MSPolyU data-
base was 0.034 higher than in our experimental method. The
methods outlined in Ref. 5 also performed worse than the
experimental method.

The rest of this paper is organized as follows. In Sec. 2,
related work regarding PPR is introduced. Section 3
describes the proposed method. Section 4 provides the
results of the experiments, and Sec. 5 gives a conclusion.

2 Related Work
A major stage common to PPR systems is the feature extrac-
tion process. The goal of this step is to capture the most dis-
tinctive information from the region of interest (ROI) that
has been identified. A number of algorithms are available
for this purpose, and they can be distinguished accordingly:
structural-based approaches, such as local line direction
patterns, Sobel/Canny edge lines or minutiae determined
by scale-invariant feature transform or speeded-up robust
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features;6 appearance-based approaches, such as subspace
based on EigenPalm and principal component analysis
(PCA);7 statistical approaches, such as Gabor and wavelet;6,7

coding-based methods (e.g., palmcode);8 or hybrid tech-
niques, such as two-dimensional (2-D) fisher locality pre-
serving projections.9,10

We were attracted by the success of coding-based meth-
ods that encode the responses of a bank of filters into bitwise
features. Our interests extend to multiscale schemes that
denote palm lines represented at higher scales. This approach
has yielded several algorithms by other researchers. Based
on a normalized 2-D Gabor filter, Zhang et al.8 devised
an effective palm-code algorithm. By contrast, the multi-
scale-orientated 2-D log-Gabor filters devised by Sellami-
Masmoudi and Djemal 11 used competitive coding. The com-
petitive coding approach was also used by Tahmasebi et al.7

to encode the dominant orientation. Jia et al.5 employed line-
orientation code based on a modified finite Radon transform,
which is similar to the competitive code. In Ref. 7, the
multispectral approach of Zhang et al is described; in this
approach, features are extracted by competitive coding using
six oriented 2-D Gabor filters for each spectral band. A score
fusion at the recognition stage completes the process. Gabor
filters were also used by Tahmasebi et al.7 to create a rank-
level fusion for a multispectral palmprint system. A different
approach is taken in Ref. 12, which fuses the features
extracted by Gabor and matched filters from both a palmprint
and vein of the palm, to create a combined palmprint and
palmvein verification system. Ribaric and Fratric13 explored
using a sparse competitive code based on the second deriva-
tive of Gaussians with a bank of 18 multiscale oriented
filters. The hierarchical approach of Zhang et al.14 fused a
rough feature extraction using a block-dominant orientation
code. This was subsequently refined using a block-based
histogram of oriented gradients from the different spectral
bands. The technique of Kumar and Shen15 used a bidirec-
tional representation derived from pattern classification.
Laadjel et al.16 collected recent advanced research studies
on multispectral biometrics, including multispectral PPR.
Laadjel et al.17 proposed a new multispectral PPR system
that combined a digital Shearlet transform and multiclass
projection ELM. Fei et al.9 introduced a method that
used a double half-orientation bank of half-Gabor filters,
designed for half-orientation extraction. A double-orienta-
tion code based on Gabor filters and nonlinear matching
scheme was described in Ref. 10. The methods presented

in Refs. 9 and 10 were evaluated using multispectral palm-
prints from the MSPolyU database.

The technique of competitive coding favored by some
researchers captures discriminative-orientation information
of the palm line contrast in a filtering process that uses
a neurophysiological Gabor function. It has a competitive
rule of winner-take-all. Inspired by the human visual sys-
tem,18 this popular state-of-the-art texture-based feature-
extraction algorithm compares images of palm lines. Palm
lines are specific multiscale features. In contrast to fine
lines and wrinkles that are vulnerable to change or disappear
depending on lighting, principal lines are well-defined and
clear at large scales. Palm lines are determined to be positive
if they are bright or negative if dark.19 In the spatial domain, a
2-D Gabor function is a Gaussian multiplied by a complex
exponential and can be seen as a Gaussian that has shifted
from the origin in the Fourier domain. It is well-suited to
image-processing applications because of its mathematical
properties. These include a smooth and infinitely differentia-
ble shape. In addition, the modulus is monomodal, and the
joint localization of space, orientation, and frequency is opti-
mal. Moreover, as a model, the 2-D Gabor function closely
mimics the properties of simple receptive fields in the primary
visual cortex (V1) of primates as shown in the statistics of
natural images.20 Using filters with transfer functions that are
Gaussian when viewed on the logarithmic frequency scale
have been shown to result in superior encoded natural
images.21 In particular, log-Gabor filters generate better dis-
crimination of image features than do Gabor filters. This can
be attributed to the transfer function being viewed at a loga-
rithmic frequency scale that includes limited maximum band-
width; this is confined to approximately one octave on Gabor
filters. However, this is below the level necessary to achieve
broad spectral information and maximum spatial localization.

Of the several texture-oriented methods for PPR, HOG
emerges as an outstanding and effective descriptor of texture
features. It is resistant to changes in rotation and illumination.
The experimental method outlined in this study unites HOG
descriptor with BSIF. The effect of fusing the descriptor
during feature extraction results in a daughter descriptor with
a recognition performance that exceeds the parent descriptor.

3 Proposed Method
The proposed method pipeline for PPR based on BSIF and
HOG features is shown in Fig. 1. The scheme is composed of
two steps.

HOG features 

Palmprint image 
Region of interest 

(ROI)

BSIF features

Haar wavelet 
décompositions

Features fusion

Features selection
(PCA) 

Similarity mesure
(ELM) 

Fig. 1 Proposed method pipeline.
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3.1 Region of Interest Extraction
Effective PPR demands accurate ROI extraction. This means
that a region of the palmprint that is rich in features, such as
principal lines, ridges, and wrinkles, must be identified; this
region is then extracted using the algorithm devised by
Han,22 which computes the center of mass and valley regions
to align the palmprint.

We performed our ROI extraction only on images from
the PolyU PPDB. Note that ROI images were already avail-
able in the MSPolyU and IITD databases (see Fig. 2).

3.2 Haar Wavelet Transform
The efficient and simple Harr wavelet transform23 is used to
extract local information from a color texture map and the
original color map to enhance the local contrast. Dividing
the image into subbands preserves additional texture, shape,
and color information, thereby decreasing the dimensional-
ity. As explained in Refs. 23 and 24, the 2-D Haar wavelet
transform is defined as an image projection onto the 2-D
Haar basis functions formed by the tensor product of the
one-dimensional (1-D) Haar scaling function and 1-D Haar
wavelet function (see Fig. 3).

The Haar scaling function ϕðxÞ25 is defined by the follow-
ing equation:

EQ-TARGET;temp:intralink-;e001;326;752

!
1; 0 ≤ x ≤ 1
0 otherwise

: (1)

In our paper, we presented our RIO palmprint image as
signal 1-D; then we applied the scaling function

EQ-TARGET;temp:intralink-;e002;326;695ϕi;jðxÞ ¼ 2
i
2ϕð2ix − jÞ; (2)

where for any i ∈ Z, j determines the position of ϕi;jðxÞ
along the x-axis and i determines the ϕi;jðxÞ’s width.

The vector spaces Vi can be spanned by the scaling
functions ϕi;jðxÞ and are nested as follows:

EQ-TARGET;temp:intralink-;e003;326;622V0 ⊂ V1 ⊂ V2 ⊂ : : : : (3)

The Haar wavelet’s mother wavelet function ψðxÞ is
expressed as

EQ-TARGET;temp:intralink-;e004;326;574ψðxÞ ¼

(
1; 0 ≤ x ≤ 1∕2
− 1; 1∕2 ≤ x ≤ 1
0; otherwise

: (4)

The Haar wavelets are then generated from the mother
wavelet by scaling and translation. The 2-D Haar basis func-
tions are the tensor product of the 1-D scaling and wavelet
functions.

3.3 Histogram of Gradient Descriptor
Information regarding image shape features is stored in his-
tograms of object edges within subbands of the images after
wavelet transformation.

The HOG method26–28 was applied to these wavelet-trans-
formed images to extract shape features. The number of
edges having orientations with a specific range was repre-
sented by each bin within the histogram. Concatenating
the calculated histograms with all of the HOG descriptor’s
four subbands generated the HOG descriptor containing
both the texture and shape information and thus the informa-
tion required to retrieve the original image. The directional
binary code and Haar wavelet transform enhance high-
frequency features, such as edges.

To produce local gradient histograms, the gradient must
first be calculated before each cell’s orientation histogram is
built. Then, the histograms and their individual groups of
cells are normalized. These steps are described in detail
as follows.

The gradient calculation is achieved by first filtering with
a 1-D horizontal discrete derivative mask, Dx, and a 1-D
horizontal discrete derivative mask, Dy, as shown in the
following Eq. (5), through convolution, as shown in Eq. (6)

EQ-TARGET;temp:intralink-;e005;326;211Dx ¼ ½ − 1 0 1 % and Dy ¼
" 1

0
− 1

#
; (5)

EQ-TARGET;temp:intralink-;e006;326;159IðxÞ ¼ I & Dx and IðyÞ ¼ i & Dy: (6)

The size of the gradient is

EQ-TARGET;temp:intralink-;e007;326;121jGj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ðxÞ þ I2ðyÞ

q
: (7)

In addition, its orientation is shown in the following
equation:

Extraction of ROI

(a) (b)

Fig. 2 ROI extraction: (a) palmprint image and (b) ROI.

Fig. 3 Palmprint image and corresponding wavelet subband:
(a) plamprint image, (b) approximation coefficient of L1, (c) horizontal
detail coefficient of L1, (d) vertical detail coefficient of L1, and
(e) diagonal detail coefficient of L1.
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EQ-TARGET;temp:intralink-;e008;63;481θ ¼ arctan
Iy
Ix
: (8)

The second step (i.e., creating the cell histograms) is per-
formed by orientation binning. In this process, orientation is
spread evenly over a range of 0 deg to 360 deg (for a signed
gradient) or 0 deg to 180 deg (for an unsigned gradient).
Each pixel calculates a weighted vote for a channel based
on the gradient computation values.

Dalal and Triggs proved that unsigned gradients used in
conjunction with nine histogram channels give better results
in their experiments.

Finally, the gradient is normalized locally to account for
variations in contrast and illumination. This requires cells to
be grouped into larger blocks that are connected in space.
The vector of the normalized cell histograms’ elements
from all of the block regions forms the HOG descriptor.
Because the blocks typically overlap, cells contribute multi-
ple times to the descriptor (see Fig. 4).

3.4 Binarized Statistical Image Features
BSIF was first introduced by Kannala and Rahtu.29 This
method represents a binary code string for the pixels of a
given image, where the code value of a pixel is considered
a local descriptor of the image surrounding the pixel. Given
an image Ip and a linear filter Wi of the same size, the filter
response Ri is found as

EQ-TARGET;temp:intralink-;e009;63;178Ri ¼
X

m;n

Ipðm; nÞWiðm; nÞ; (9)

where m and n denote the size of the PPI patch and
Wi denotes the number of linear filters for all i ¼
f 1; 2; : : : ; ng whose response can be calculated and binar-
ized to obtain the following binary string:29

EQ-TARGET;temp:intralink-;e010;326;752bi ¼
!
1; if Ri ≻ 0
0; otherwise

: (10)

The BSIF codes are presented as a histogram of pixel
binary codes, which can effectively distinguish the texture
features of the PPI. The filter size and length of bit strings
are important for effectively evaluating the BSIF descriptor
for palmprint verification. In this study, eight filter sizes
(3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, and
17 × 17) with four bit lengths (6, 7, 9, and 11) were assessed
(see Figs. 5 and 6).

3.5 Feature-Level Fusion
By uniting the biometric information before matching it, we
can obtain feature-level fusion results in greater detail.
Furthermore, compared with score-level fusion, feature-
level fusion has a faster response time. The drawback of
this system, which has limited its widespread uptake, is
that it struggles to fuse incompatible feature vectors derived
from multiple modalities.

Creating a linked series of extracted features is the sim-
plest type of feature-level fusion. However, concatenation
may result in the “curse of dimensionality.”

3.5.1 Normalization of feature vector
Because of the deviation in their ranges and distributions,
feature vectors extracted separately from BSIF and the HOG
features are incompatible. Using the min–max, z-score, or
median can normalize the feature vectors,30 thus improving
compatibility. In this study, the min–max normalization
scheme was used to normalize the feature vectors in the
range [0, 1]. If X ¼ ½x1; x2; x3; : : : ; xn% was the feature vec-
tor, the normalized feature vector could then be represented
using min–max normalization

EQ-TARGET;temp:intralink-;e011;326;367x 0 ¼ xi − MinðXÞ
MaxðXÞ − MinðXÞ : (11)

3.5.2 Fusing the feature vector
By concatenating the normalized feature vectors of BSIF and
HOG features into a single fused vector [see Eq. (12)], we
can achieve the definitive fused vector. Let the normalized
feature vectors be EI ¼ ½e1; e2; e3; : : : ; en% for BSIF and II ¼
½i1; i2; i3; : : : ; in% for HOG extraction. The fused vector is
represented as31

EQ-TARGET;temp:intralink-;e012;326;229Fused vector ¼ ½e1; e2; e3; : : : ; en; i1; i2; i3; : : : in%: (12)

3.6 Feature Selection Based on Principal
Component Analysis

The vector dimension is minimized in PCA-based feature
selection, and a new feature vector is created. To find the
optimal projection bases, PCA draws on statistical distribu-
tion of the set of given features to generate new features.32

This method locates the projection of the feature vector
based on a set of basis vectors. Let F ¼ f ft; t ¼ 12: : :Mg
be a set of M n-dimensional feature vectors.

Fig. 4 HOG codes of wavelet subband: (a) plamprint image, (b) HOG
features of the approximation coefficient, (c) HOG features of the
horizontal coefficient, (d) HOG features of the vertical coefficient,
and (e) HOG features of the giagonal coefficient.
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3.7 Extreme Learning Machine
Single-hidden layer feedforward neural networks often were
learned by utilizing ELM.33 The iterative tuning of obscured
nodes is not necessary after random initialization using ELM
has been performed. Thus, learning must occur only for the

input weight parameters. If ðxj; yjÞ, j ¼ ½1; : : : ; q% indicates
A as the training sample with xj ∈ RM and yj ∈ RM, then the
following equation can be used for the ELMs output function
with L obscured neurons

EQ-TARGET;temp:intralink-;e013;326;350flðxÞ ¼
XL

i¼1

giwiðxÞ ¼ ΩðxÞG: (13)

The m > 1 output nodes are associated with the hidden
nodes by the output weight vector G ¼ ½g1; : : : ; gL%. With
the nonlinear activation function represented by ΩðxÞ ¼
½w1ðxÞ; : : : ; wLðxÞ%,34 the following formula is an explicit
form variation of the system ΩiðxÞ:

EQ-TARGET;temp:intralink-;e014;326;245ΩiðxÞ ¼ βðτi:xþ θiÞ; τi ∈ Rd; θi ∈ R: (14)

With the obscured layer parameters ðτ; θÞ having the
activation function βð:Þ, the following least squares norm
was used to resolve the output weight Ω and training data
error minimization during the second phase of ELM learning

EQ-TARGET;temp:intralink-;e015;326;170 min kΩ − H k 2; G ∈ RN&M; (15)

where the hidden neurons layer system being identified by
Ω& is

Fig. 5 Samples from MSPolyU database and corresponding BSIF codes: (a) palmprint image, (b) filters
3 × 3 5-bit, (c) filters 7 × 7 6-bit, (d) filters 11 × 11 8-bit, (e) filters 15 × 15 9-bit, and (f) filters 17 × 17 11-bit.

Fig. 6 BSIF codes of wavelet subband: (a) plamprint image, (b) BSIF
features of the approximation coefficient, (c) BSIF features of the hori-
zontal coefficient, (d) BSIF features of the vertical coefficient, and
(e) BSIF features of the diagonal coefficient.
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EQ-TARGET;temp:intralink-;e016;63;752Ω ¼

0

B@
βðτ1:x1 þ θ1Þ : : : βðτL:x1 þ θLÞ

..

. . .
. ..

.

βðτ1:xN þ θ1Þ · · · βðτL:xN þ θLÞ

1

CA : (16)

Then, the training data matrix H can be presented as

EQ-TARGET;temp:intralink-;e017;63;688H ¼

2

64
hT1
..
.

hTN

3

75: (17)

That the training set LhQ values are greater than the
amount of hidden neurons L is taken to be the case in reality
for the training error in Eq. (15) to be diminished through the
optimal solution. The study in Ref. 34 presents the optimal
solution for Eq. (15) in the form of the Moore–Penrose gen-
eralized inverse matrix, with the inverse of Ω being Ω& .

4 Assessment Protocol
To test the validity of our scheme, exhaustive experiments
were conducted using data available through three large-
scale publicly available PPDBs: (1) PolyU PPDB,14 (2) IIT
Delhi PPDB,35 and (3) multispectral PolyU PPDB.4 The
results are presented in terms of the EER together with
their statistical validation.36

We gathered 7752 palmprint images in two sessions
(two months apart) from 193 individuals (62 females and
131 males) stored in the PolyU database. As each session
involved the capture of 10 images from each palm, 386
classes of palms were present in the database, with each
class containing ∼ 20 images. All images were cropped to
128 × 128 pixels.14

In the IIDT database, 230 individuals contributed 5
images from both palms to produce a database of 2300
contactless palmprint images. The images were cropped to
150 × 150 pixels.35

The third database (multispectral) was composed of four
independent spectral databases of palmprints, each of which
was collected from 250 volunteers (55 females and 195
males). The four databases stored information on different
images from the color spectrum (in green, red, near-infrared,
and blue), with 12 images for each being stored for each

palm of each volunteer. Therefore, the spectral database
for each color consists of 6000 images from 500 palms.
The images stored in the multispectral database were
cropped to 128 × 128 pixels.4

5 Results and Discussion

5.1 Identification Rates
For this study, the BSIF histogram and HOG feature vectors
were combined to form the last feature vector. To obtain the
best results, BSIF filters with different sizes and bits were
chosen. The degrees of accuracy are shown in Fig. 7.

The 17 × 17 filter with an 11-bit length was selected
based on the superior experimental accuracy achieved with
this combination. The performance of the fused HOG and
BSIF applied to different databases is presented in Table 1.
It shows that, compared with other feature extraction meth-
ods,9–11,26–28,31 the experimental method provides a superior
performance, with an EER from 0.016 to 0.0538.

The proposed method was compared with several state-
of-the-art orientation-based techniques, including the ordinal
code, fusion code, robust line orientation code (RLOC),
palmcode, binary orientation co-occurrence vector (BOCV),
and half-orientation methods.

Several training palmprint images (between two and six
for each palmprint database) were used to evaluate the pro-
posed method’s performance. The test dataset comprised the
remainder of the palmprint images. Therefore, the identifica-
tion experiments were performed six times with Ntrain ¼ 1 to
6. The IITD database contained only five palmprint images
for each palm. For this database, Ntrain was 4.

Figure 8 shows the results for six palmprint databases.
That the proposed method is superior to other orientation-
based methods when applied to the PolyU and IITD data-
bases is clear, it achieved lower error rates in both instances.
Occasionally, the competitive method outperformed the pro-
posed method on the multispectral databases (i.e., the blue,
green, and near-infrared databases). A possible explanation
for the poorer performance of the proposed method on these
databases is that they contained relatively indistinct flat palm-
print images. As such, the competitive code method extracted
robust orientation features from the images, producing a
higher level of accuracy of identification in specific instances.
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Fig. 7 Average accuracy for different palmprint databases.
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However, in the majority of conditions, the proposed method
was found to be superior to the competitive method.

Combining HOG features with BSIF resulted in the last
feature vector. To gauge the accuracy of the technique, we
applied different numbers of features of different sizes to
palmprints from all databases. The results are shown in
Fig. 9. The EER results reveal that the most efficient number
of features was 160 for the two databases Poly U and IIT
Delhi and 120 for the rest.

5.2 Speed Performance
The proposed technique was implemented in MATLAB®

version 10.3 using a PC with a dual-core Intel i5-6600
3.3-GHz processor and 8-GB RAM. The operating system

was Windows 10.0. The method was compared with pre-
vious state-of-the-art methods based on feature extraction
in terms of computational cost to evaluate the complexity
of its computation. The average time required to perform fea-
ture extraction and matching over 100 runs was calculated to
assess the computational complexity. The result is shown in
Table 2. The proposed method was found to consume a
greater amount of time during feature extraction than did
the competitive code, BOCV, and half-orientation methods.
However, the proposed method’s matching speed was a little
higher as it used a simple matching scheme.

The proposed method required 22.117 ms to perform the
operation. This is acceptable for practical applications,
although it is slightly more time than with many conventional

Table 1 EERs of different orientation-based methods on six palmprint databases.

EERs Competitive codes Palm code Fusion code Ordinal code RLOC BOCV Half-orientation Proposed method

PolyU 0.0261 0.0931 0.0899 0.0272 0.0360 0.0469 0.0204 0.0197

IITD 0.0696 0.0933 0.0878 0.0744 0.0826 0.0708 0.0633 0.0538

Red 0.0145 0.0297 0.0179 0.0161 0.0223 0.0186 0.0131 0.0128

Green 0.0168 0.0507 0.0216 0.0202 0.0249 0.0323 0.0144 0.0118

Blue 0.0170 0.0463 0.0212 0.0202 0.0203 0.0207 0.0147 0.0129

NIR 0.0137 0.0322 0.0213 0.0180 0.0208 0.0284 0.0139 0.0116
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Fig. 8 EERs for different palmprint databases.
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methods based on orientation. Future work will focus on
reducing the feature extraction time.

6 Conclusion
In this study, we proposed an approach for palmprint feature
extraction. The method applies the Haar wavelet, HOG, and
BSIF descriptor with the aim of extracting a palmprint
image’s best features. The method is capable of extracting
a greater quantity of information than the HOG and BSIF
methods when applied individually. We validated our tech-
nique by extensive application to three large publicly avail-
able databases. The results compared with those of seven
previous state-of-the-art methods. The method was found to
be either comparable or superior to the methods. Therefore,
the method is a robust and efficient method and, thus, is
suitable for performing PPR. In the future, we will do more
research on fusing two biometric modalities, which are
the palmprint and iris, and extracting more discriminative
information for bimodal identification system.
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