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Abstract
We study a magnetic Schrödinger Hamiltonian, with axisymmetric potential in any dimension. The

associated magnetic field is unitary and non constant. The problem reduces to a 1D family of singular
Sturm-Liouville operators on the half-line indexed by a quantum number. We study the associated band
functions. They have finite limits that are the Landau levels. These limits play the role of thresholds in the
spectrum of the Hamiltonian. We provide an asymptotic expansion of the band functions at infinity. Each
Landau level concerns an infinity of band functions and each energy level is intersected by an infinity of
band functions. We show that among the band functions that intersect a fixed energy level, the derivative
can be arbitrary small. We apply this result to prove that even if they are localized in energy away from the
thresholds, quantum states possess a bulk component. A similar result is also true in classical mechanics.
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Introduction

General context

The motion of a spinless quantum particle in Rn is described by the spectral properties of the associated Hamil-
tonian. When the particle moves in a magnetic field, it is the magnetic Laplacian (−i∇−A)2 acting on L2 (Rn),
where A is a magnetic potential.

One of the simplest example of magnetic field is the constant one. In the case n ∈ {2,3}, this model has
been studied from the beginning of quantum mechanics [LL77] and also more recently for the general case
n > 2 [HM96, RD01].

The variations of a non constant field can induce transport properties for the particle. In this context, we fo-
cus on magnetic fields that are translationally invariant along one direction. For such fields, the Hamiltonian has
a band structure and transport properties in the direction of invariance are linked to the study of band functions
(also called dispersion curves) that are the eigenvalues of the fibered operators. Moreover, the propagation of
the particle in this direction is determined by the derivatives of these band functions that play the role of group
velocities [Yaf08, EJK99].

In the case n = 2, one of the studied models of this class is the Iwatsuka model [Iwa85, MP97]. For n = 3,
similar models are the planar translationally invariant magnetic fields [Yaf08, Rai08]. Let (r,θ ,z) denote the
cylindrical coordinates of R3. The potential takes the form A(r,θ ,z) = (0,0,a(r)), where a : R→ R is the
intensity of the potential. The associated magnetic field is therefore given by

B(r,θ ,z) = a′ (r)(−sin(θ) ,cos(θ) ,0) . (1)

Thus this field is planar and its norm is ‖B(r,θ ,z)‖ = |a′ (r)|. Moreover the associated field lines are circles
contained in planes {z = cst} with center on the invariant axis (see Figure 1).

Figure 1: Schematic of translationally invariant magnetic fields.

In view of the form of the magnetic field (1), two specific cases are relevant. The first model consists of a
magnetic field generated by an infinite rectilinear wire bearing a constant current [Yaf03, BP15]. If we assume
that the wire coincides with the Oz axis, then the Biot & Savard law states that the generated magnetic fields
writes as the field (1) for the intensity a(r) = ln(r). Here all the band functions are decreasing from +∞ to 0.
Hence the spectrum of H is σ (H) = R+. The band functions tend exponentially to 0 and it provides a reaction
of the ground state energy of H under an electric perturbation [BP15]. Moreover the particle has a preferable
direction of propagation along the Oz axis [Yaf03].

It is also natural to consider the case of a unitary magnetic field. For the field (1), it corresponds to the
intensity a(r) = r. In this case the band functions tend to finite limits that are the Landau levels [Yaf08,
Proposition 3.6]. Therefore the bottom of the spectrum of H is positive. An approximated value has been
calculated and used to compare the energy on a wedge in a magnetic model and the one coming from the
regular part of the wedge [Pop12, Pop15].

In this article we continue to study this magnetic field in the case a(r) = r and we generalize the framework
to any dimension n > 3. In particular we will show that the derivatives of the band functions possess an new
type of behavior.
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Spectral decomposition of the Hamiltonian and description of the model

For every x ∈ Rn, we set r := ‖(x1, · · · ,xn−1)‖2 and we define the magnetic potential A by

A(x1, · · · ,xn) := (0, · · · ,0,r) . (2)

We define the Hamiltonian as the following operator, self-adjoint in L2 (Rn):

H := (−i∇−A)2 . (3)

In order to define the magnetic field we consider, we identify this potential with the 1-differential form rdxn.
We define the magnetic field B as B = dA. We calculate B j,k = (δ j,n−δn,k)x jr−1, (i, j) ∈ J1,nK2. Therefore B
is unitary since 2−1Tr(B∗B) = 2−1Tr+ (B) = 1 [HM96, Section 1].

After a partial Fourier transform in the xn variable, H is unitarily equivalent to the direct integral in
L2
(
Rξ ;L2

(
Rn−1

))
of the family of operators H (ξ ), self-adjoint in L2

(
Rn−1

)
and defined by

H (ξ ) :=−∆Rn−1 +(r−ξ )2 . (4)

Moreover for any frequency ξ ∈ R, H (ξ ) reduces to the orthogonal sum over m ∈ Z+ (called the magnetic
quantum numbers) of operators Hm (ξ ) self-adjoint in L2

(
R+;rn−1dr

)
and defined by

Hm (ξ ) :=− 1
rn−2 ∂r

(
rn−2

∂r
)
+

m(m+n−3)
r2 +(r−ξ )2 .

The spectrum of each Hm (ξ ) is discrete. Let λm,p (ξ ), p ∈ N be the increasing sequence of its eigenvalues.
The λm,p are the band functions (also called dispersion curves).

We say that an operator A is fibered [RS78, Section XIII.16] if it can be written as

A :=
⊕∫

M

A(ξ )dξ ,

with (M,dξ ) a σ -finite measure space. An important class of fibered operators is the one of analytically fibered
operators introduced in [GN98]. In this framework, M is a real analytic manifold and thresholds can be defined
[GN98, Section 3]. They form a discrete set and their definition remains to stratification. Moreover away
from them, some spectral results are rather standard. For example a limiting absorption principle as well as
propagation estimates hold [GN98, Theorem 3.3] and it is tied to Mourre estimates. For a fibered operator A,
we define the energy-momentum set Σ as

Σ := {(λ ,ξ ) ∈ R×M, λ ∈ σ (A(ξ ))} .

One of the conditions for the operator A to be analytically fibered in this sense is that the projection π : Σ→ R
defined as π ((λ ,ξ )) = λ is proper. Finally, notice that if M is a 1-dimensional manifold, then these thresholds
correspond to the critical points of the band functions and can be referred to as attained thresholds [GS97,
HM01, Soc01, BHRS09].

Other examples of fibered magnetic models can be found in the literature, in dimension 2 [Iwa85], on the
half-plane [BMR14] or in dimension 3 [Yaf08]. In these models, the considered Hamiltonian is also fibered
along R and the band functions tend to finite limits. The sets of frequencies associated with the energy levels
concentrated in the neighborhood of these limits are unbounded. Hence the previous projection, π , is not
proper. So these magnetic models are not contained in the class of analytically fibered operators that we
described above. Nevertheless thresholds can still be defined as the limits of the band functions.

The model described in this article remains in this case. Indeed it is already known that the band functions
tend to the Landau levels Ep [Yaf08, Proposition 3.6]. Our first goal is to precise the convergence of the band
functions to these levels. To that aim we provide an asymptotic expansion for λm,p (ξ ) as ξ →+∞ (see Theorem
3.1). The method used to prove this theorem is inspired by the method of quasi-modes [DS99] that has already
been used in the proof of similar result [BP15, HPS16].
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For the previous magnetic models, some studies of classical spectral problems already exists [MP97,
DBP99, HS15, HPS16, PS16]. Our model contains one additional challenge. Actually for the Iwatsuka
model and for half-plane model, each limit corresponds to a finite number of band functions. In this arti-
cle, each threshold Ep is the limit of all the band functions λm,p for m > 0. Therefore any interval of en-
ergy I ⊂ σ (H) is intersected by an infinity of band functions (see equation (3.15)) and the set of frequencies{

λ−1
m,p (I) , m > 0, p ∈ N

}
associated with I (even if I is away from the Landau levels) is unbounded (see propo-

sition 3.2). Furthermore we will prove in Theorem 3.2 that even if I is away from the Landau levels, the group
velocity tends to 0 at any energy as m→ +∞. Therefore it is not clear at first sight that the Mourre estimates
used in the case of the analytically fibered operators still hold. The proof of Theorem 3.2 use a convenient for-
mula for the derivative λ ′m,p (see Proposition 2.2) which links it to the normalized eigenfunctions of operators
Hm (ξ ) as well as an exponential decay of these eigenfunctions that is uniform with respect to m and relies on
Agmon estimates.

These properties have consequences on the transport properties associated with the magnetic field that we
consider. Indeed these propreties are determined from the behavior of the velocity operator (see Definition
(4.3)) that is linked to the multiplication operator by the family of the derivatives of the band functions (see
formula (4.4)). In the previous models [Iwa85, BMR14], the velocity operator is bounded from below by a
positive constant in any energy interval I, away from the thresholds. Hence every quantum state localized in
energy away from them carries a non trivial current [MP97, DBP99] and is called edge state. Such an estimate
does not hold anymore if the infimum of the derivatives of the band functions on I is 0. This situation occurs
in the previous cases when there is a threshold in I [HPS16] and according to Theorem 3.2, everywhere in the
model of our work. In this sense the definition of “thresholds” as the Landau levels seems not to be relevant.
Indeed for the Iwatsuka model and for the Half-plane model, only the quantum state that are localized in energy
around the thresholds possess a bulk component [MP97, HPS16]. In the case of the model considered here, we
show in Theorem 4.1 that any quantum state, even if it is localized in energy away from the Landau levels can
be decomposed into one state that carries an arbitrary small current and one that carries a non trivial one.

In classical mechanics, such a magnetic fields also induces transport properties. Indeed a charged particle
follows the Newton law mẍ = qẋ∧B. This equation can be integrated [Yaf03, Section 4] and we ploted the
classical trajectories (Figure 2) in the case a(r) = r. We can observe that the particle propagate in the Oz
direction and one can show that it has an effective velocity vz in this direction: there is a constant vz such
that z(t) = vzt +O(1) [Yaf03, Theorem 4.2]. Furthermore, denote by E the total energy of the particle and
by σ its areal velocity that are constants fixed by the initial conditions. These quantities satisfy the estimate
|vz| 6 E3σ−1. Moreover, for (E,σ) ∈ R+×R, with σ 6= 0, one can find initial conditions such that E is the
energy of the particle and σ its areal velocity. Therefore one can find initial conditions such that vz is arbitrarily
small, namely such that the particle propagate arbitrarily slowly along the Oz axis.

(a) Projection in the plan xOy.

(b) Plot of z in function of the time.

Figure 2: Trajectories of a charged particle moving in the magnetic field shown by Figure 1.

4



Organization

In Sections 1, the Hamiltonian is reduced to a family of 1D singular Sturm-Liouville operators. The band
functions are introduced and described in Section 2. Section 3 presents the results concerning the asymptotic
behaviors of these band functions. In Subsection 3.1, we prove Theorem 3.1 that provides an asymptotic
expansion of λm,p (ξ ) as ξ gets large. Subsection 3.2 presents the asymptotic study of the derivative. In
particular, Theorem 3.2 provides the asymptotic behavior of λ ′m,p (ξ ) as m→ +∞ and as λm,p (ξ ) is fixed far
from the Landau level Ep. In Section 4, we analyze the current carried by quantum states that are localized in
energy far from the thresholds.

1 Reduction to one-dimensional Hamiltonians

In this section we define precisely the operators that we consider and we explain how H is reduced to 1 dimen-
sional operators.

Let A : Rn→Rn be the magnetic potential given by definition (2) and let H be the self-adjoint Schrödinger
operator (3). This operator is defined via its quadratic form

q(u) :=
∫
Rn
|−i∇u(x)−A(x)u(x)|2 dx.

This form, initially defined on C ∞
0 (Rn), is semi-bounded from below. Thus it admits a Friedrichs extension:

H. Let qξ be the quadratic form defined by

qξ (u) :=
∫
Rn−1

(
|(∇u)(x)|2 +(−ξ +‖(x1, · · · ,xn−1)‖2)

2 |u(x)|2
)

dx, ξ ∈ R.

This form, initially defined on C ∞
0
(
Rn−1

)
and then closed in L2

(
Rn−1

)
, is the quadratic form associated

with the operator (4). Denotes by F the Fourier-transform with respect to xn, which is defined by

(Fu)(x̃,ξ ) :=
1√
2π

∫
R

e−iξ xnu(x̃,xn)dxn, (x̃,ξ ) ∈ Rn.

The forms q and qξ are related through the relation

q(u) =
∫
R

qξ ((F (u))(ξ ))dξ .

Therefore the operator H is decomposed as follows:

H = F−1
(∫ ⊕

R
H (ξ )dξ

)
F .

We now reduce the problem to a 1-dimensional one using both the cylindrical symmetry and the following
Laplace-Beltrami formula:

∆Rn−1 =
1

rn−2 ∂r
(
rn−2

∂r
)
+

1
r2 ∆Sn−2 .

Recall that −∆Sn−2 is essentially self-adjoint on L2
(
Sn−2

)
and that its spectrum is discrete. Its eigenvalues

are µm := m(m+n−3), m ∈ Z+. Denote by Xm the corresponding eigenspaces. Remember that Xm has finite
dimension: Nm. The spaces L2

(
R+;rn−2dr

)
⊗Xm are invariant by H (ξ ). In addition, the restrictions of the

operator H (ξ ) on these spaces are identified with the operators

Hm (ξ ) :=− 1
rn−2 ∂r

(
rn−2

∂r
)
+

µm

r2 +(r−ξ )2 .

These operators act on L2
(
rn−2dr

)
. They are associated with the bilinear forms

hm (u,v) :=
∫ +∞

0

(
u′ (r)v′ (r)+

µm

r2 u(r)v(r)+(r−ξ )2 u(r)v(r)
)

rn−2dr. (1.1)
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Denote by Φ the angular Fourier transform. The operator H (ξ ) is decomposed as:

H (ξ ) = Φ
−1

(⊕
m∈N

Hm (ξ )

)
Φ.

Finally, it is more convenient to consider operators acting on the Hilbert space L2 (R+). To proceed we use
the isometry φ : L2

(
R+;rn−2dr

)
→ L2 (R+;dr) defined by (φu)(r) = r(n−2)/2u(r). We define km as

km := µm +
n−2

2

(
n−2

2
−1
)
=

(2m+n−3)2−1
4

(1.2)

and the functions Vm as

Vm (r,ξ ) :=
km

r2 +(r−ξ )2 , (r,ξ ) ∈ R+\{0}×R. (1.3)

So Hm (ξ ) = φ−1Lm (ξ )φ where Lm (ξ ) is defined by

Lm (ξ ) :=−∂
2
r +Vm (r,ξ ) . (1.4)

This operator acts on L2 (R+) with domain D (Lm (ξ )) = φ (D (Hm (ξ ))). It is associated with the quadratic
form

lm (u,ξ ) :=
∫ +∞

0

(∣∣u′ (r)∣∣2 +Vm (r,ξ ) |u(r)|2
)

dr. (1.5)

2 Basics about the eigenpairs of the fiber operator

In this section we prove that the dispersion curves are analytic functions, we calculate their derivative and we
investigate the behavior of the eigenfunctions at 0 .

2.1 Behavior of the eigenfunctions at 0

First we investigate the behavior of the functions of D (Lm (ξ )) at 0, namely:

Lemma 2.1
Let n > 3, m ∈ Z+ and ξ ∈ R.

∀ε > 0, D (Lm (ξ ))⊂
{

u ∈ L2 (R+) , u =
r→0

o
(

r
1
2−ε

)}
. (2.1)

Moreover

if n = 3, D (Lm (ξ ))⊂
{

u ∈ L2 (R+) , u(r) =
r→0

O
(√

r
)}

;

if n = 4, D (Lm (ξ ))⊂
{

u ∈ L2 (R+) , u(r) =
r→0

O(r)
}
.

(2.2)

of (2.1). The bilinear form associated with Hm (ξ ) is given by relation (1.1). For every u ∈ D (Hm (ξ )) and
every v ∈ D (hm), we have 〈Hm (ξ )u,v〉 = hm (u,v). Notice that D (hm) ⊂ H1 (R+). We integrate by part the
first term of the form hm which yields:

lim
r→0

u′ (r)v(r)rn−2 = 0, u ∈D (Hm (ξ )) , v ∈D (hm) .

We apply this formula to an arbitrary function u ∈D (Hm (ξ )) and to functions vε ∈ C ∞ (R+)∩D (hm) that
satisfy for any ε > 0

vε (r) = r
3−n

2 +ε , if r ∈ (0,1) ;
vε (r) = 0, if r > 2.

We deduce that

u′ (r) =
r→0

o
(

1

r
n−1

2 +ε

)
, ε > 0, u ∈D (Hm (ξ )) .

6



Therefore integrating this condition, we deduce that

u(r) =
r→0

o
(

r
3−n

2 −ε

)
, ε > 0, u ∈D (Hm (ξ )) .

Thus remembering that D (Lm (ξ )) = φ (D (Hm (ξ ))), we conclude that relation (2.1) holds.

of (2.2). Note that D (H (ξ ))⊂H2
(
Rn−1

)
. So if n ∈ {3,4} then awing to a Sobolev embedding, H2

(
Rn−1

)
⊂

L∞
(
Rn−1

)
. Hence D (H (ξ ))⊂ L∞

(
Rn−1

)
. Thus if u ∈D (Hm (ξ )), then u(r) is bounded as r→ 0. Combine

it with the fact that D (Lm (ξ )) = φ (D (Hm (ξ ))) and it provides the embedding (2.2).

Notice that Vm (r,ξ )→+∞ as r→+∞. Therefore the operator Lm (ξ ) has compact resolvent. So for every
ξ ∈ R and for every m ∈ Z+ the spectrum of Lm (ξ ) is an increasing sequence of positive eigenvalues λm,p (ξ ),
p ∈ N. We conclude this subsection by proving the following proposition.

Proposition 2.1 (Behavior of the eigenfunctions at 0)
Let ξ ∈ R, m ∈ Z+ and p ∈ N. The eigenvalue λm,p (ξ ) is non-degenerate. Let um,p (·,ξ ) be the normalized
eigenfunction associated with it. There exists an analytic function f such that f (0) 6= 0 and such that in a
neighborhood of 0,

um,p (r,ξ ) = r
1+|2m+n−3|

2 f (r) . (2.3)

Proof. First, consider the differential equation

r2u′′ (r)+
(

r2
(

λm,p (ξ )− (r−ξ )2
)
− km

)
u(r) = 0, r > 0. (2.4)

We look for solutions that admit a series expansion in a neighborhood of 0. By the Frobenius method, if a
solution u is given by u(r) = rν f (r) where f is an analytic function such that f (0) 6= 0, then ν satisfies the
indicial equation

ν (ν−1) = km.

This equation has ν± := (1± (2m+n−3))/2 as solutions. Thus the equation (2.4) admits a solution of the
form u+ (r) = rν+ f (r) with f an analytic function such that f (0) = 1. In order to have a basis of solutions
for equation (2.4) we look for a solution of the form u− = hu+. By straightforward calculations we find that
h′ (r) = Ku−2

+ (r)∼ Kr−1−|2m+n−3| as r→ 0, so

• if (n,m) = (3,0), then u− (r) ∼
r→0

K log(r)
√

r,

• in the other cases, u− (r) ∼
r→0

Krν− .

Finally, we deduce from Lemma 2.1 that in both cases u− 6∈ D (Lm (ξ )). Hence ker(Lm (ξ )−λm,p (ξ )) =
span(u+). This concludes the proof since λm,p (ξ ) is an eigenvalue of Lm (ξ ).

Remark 2.1: We deduce from this proposition that the embedding (2.2) is optimal.
According to Proposition 2.1, the eigenvalues λm,p (ξ ) are non degenerate. Moreover, Lm (ξ ) is a Kato

analytic family [Kat66, Chapter VII]. Therefore it follows from Proposition 2.1 that λm,p are real analytic
functions that are called band functions.

2.2 Derivative of the band functions

Here we give a formula for the derivative of the band functions.

Proposition 2.2

Let, for (ξ ,m, p) ∈ R×Z+×N, Km,p (ξ ) := lim
r→0

um,p (r,ξ )
2

r
. The derivative λ ′m,p (ξ ) is given by:
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λ
′
m,p (ξ ) =



−
+∞∫
0

1
r2

[
um,p (r,ξ )

2

r
−K0,p

]
dr if n = 3 and m = 0,

−
∣∣u′m,p (0,ξ )

∣∣2 if n = 4 and m = 0,

−2km

+∞∫
0

|um,p (r,ξ )|2

r3 dr in the other cases.

Proof. In the case n = 3, this proposition has already been proved [Yaf08, Theorem 4.3]. The way to prove it in
the general case is the same as in this particular case so we refer to this proof for more details. We still present
the main ideas of the proof.

The Feynman-Hellmann formula [MR88] yields that

λ
′
m,p (ξ ) =

∫
R+

∂ξ

(
(r−ξ )2

)
|um,p (r,ξ )|2 dr =−

∫
R+

∂r

(
(r−ξ )2

)
|um,p (r,ξ )|2 dr. (2.5)

We apply integrations by parts to get the result. We use the super-exponential decay of eigenfunctions um,p (·,ξ )
for handling the non-integral terms corresponding to r→+∞ [Shn57, Olv97] and Proposition 2.1 for handling
the non-integral term at r = 0. In the particular case (n,m) = (3,0), the result of Proposition 2.1 is not sharp
enough. In order to improve it, we inject the identity (2.3) into the following eigenvalue equation:

L0 (ξ )u0,p (r,ξ ) = λ0,p (ξ )u0,p (r,ξ ) .

Therefore we obtain that um,p (r,ξ )
2 r−1−K0,p = O

(
r2
)

as r→ 0 and we use it for handling non-integral term
at r = 0.

2.3 Global behavior of the band functions

The min-max principle implies that
λm,p (ξ ) ∼

ξ→−∞

ξ
2.

Indeed first note that if ξ 6 0, then Lm (ξ )> ξ 2. Therefore

λm,p (ξ )> ξ
2, ξ 6 0.

On the other hand, we define for ε > 0 the operator G(ε), self-adjoint on L2 (R+),

G(ε) :=−∂
2
r +

km

r2 +

(
1+

1
ε

)
r2.

This operator has compact resolvent, therefore its spectrum is discrete. Let (νq (ε))q∈N be the increasing se-
quence of its eigenvalues. Note that Lm (ξ ) 6 G(ε)+ (1+ ε)ξ 2. Hence, for any p ∈ N, λm,p (ξ ) 6 νp (ε)+
(1+ ε)ξ 2. Thus,

∀ε > 0, limsup
ξ→−∞

λm,p (ξ )

ξ 2 6 1+ ε. (2.6)

From Proposition 2.2 we deduce that if (n,m) 6= (3,0), then for every p ∈ N, λ ′m,p is negative on R. There-
fore in this case the band functions are decreasing. So these functions admit finite limits at +∞. In the case
n = 3 the min-max principle yields that these limits are the Landau levels [Yaf08, Proposition 3.6], namely

lim
ξ→+∞

λm,p (ξ ) = Ep := 2p−1, p ∈ N. (2.7)

This proof is still valid if n > 3 and Subsection 3.1 provides an asymptotic expansion of λm,p (ξ ) when ξ tends
to +∞. In the case n = 3 then k0 = −4−1 < 0. Therefore we will deduce from Theorem 3.1 (see remark 2)
that for every p ∈ N, λ0,p admits local minima (the question of the number of minima stays open). In the other
cases, according to Proposition 2.2, for every p ∈ N, λm,p is decreasing from +∞ to Ep.
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Numerical approximation. We use a finite difference method to compute numerical approximations of the
band function λm,p (ξ ) with n = 5, m ∈ J0,6K and p ∈ J1,3K. We compute for ξ ∈ [−1,6] on the interval [0,20]
with an artificial Dirichlet boundary condition at r = 20.

On Figure 3, we have ploted the numerical approximation of λm,p (ξ ) for ξ ∈ [−1,6], m ∈ J0,3K and p ∈
J1,3K. According to the theory, λm,p decrease from +∞ to Ep = 2p− 1. We also ploted this level. Note that
different band function may intersect for different values of m.

Figure 4 presents a zoom on the first level: p = 1 for ξ ∈ [−1,6] and m ∈ J0,6K.

Figure 3: Plot of the band functions λm,p (ξ ) for n = 5, 0 6 m 6 3, 1 6 p 6 3 and ξ ∈ [−1,5].

Figure 4: Plot of the band functions λm,1 (ξ ) for n = 5, 0 6 m 6 6 and ξ ∈ [−1,6].

3 Asymptotic behaviour of the band functions

In this section we provide an asymptotic expansion for the band functions and their derivative. First we provide
an asymptotic expansion for λm,p (ξ ) as ξ →+∞ with m and p fixed. In a second time we estimate the behavior

9



of λ ′m,p (ξ ) as p is fixed and as m and ξ tend to +∞ and are related to eachother by the condition λm,p (ξ ) = E
where E is a constant.

3.1 Near thresholds: high frequency

In this subsection we study the behaviour of the spectrum of H near the thresholds. Namely we describe the
behaviour of λm,p (ξ ) when m and p are fixed and ξ → +∞. More precisely, this subsection is devoted to the
proof of the following theorem.

Theorem 3.1 (Asymptotic expansion of the band functions)
Let m ∈ Z+ and p ∈ N. There is a sequence of real numbers

(
α

p
q
)

q∈N such that

∀N > 0, ∃C > 0, ∃ξ0 > 0, ∀ξ > ξ0,

∣∣∣∣∣λm,p (ξ )−Ep− km

N

∑
q=1

α
p
q

ξ q

∣∣∣∣∣6 C
ξ N+1 .

To prove this theorem we consider the operators Lm (ξ ) defined by relation (1.4) and we apply the method
of the harmonic approximation [Hel88, DS99] to derive an asymptotic expansion of its eigenvalues.

Remark 3.1: In the case km = 0, that is (n,m) = (4,0), Theorem 3.1 states that λm,p (ξ ) =Ep+O(ξ−∞), as
ξ →+∞. In this case, the operator is −∂ 2

r +(r−ξ )2 with Dirichlet boundary condition at 0. This operator has
already been studied and we know [HPS16, Theorem 1.4] [Ivr18, Section 15.A] that there are some constant
γp > 0 such that

λ0,p (ξ ) =
ξ→+∞

Ep + γpξ
2p−1e−ξ 2 (

1+O
(
ξ
−2)) .

So we focus on the proof in the particular case km 6= 0.
Remark 3.2: We compute that α1 = 0 and α2 = 1. Therefore for N = 2, Theorem 3.1 yields

λm,p (ξ ) = Ep +
km

ξ 2 +O
(

1
ξ 3

)
.

In the case n = 3 and m = 0, km = −4−1 < 0. Therefore for every p ∈ N, λ0,p (ξ ) tend to Ep from below.
Hence the λ0,p have local minima.

Canonical transformation and asymptotic expansion of the operator
For ξ ∈ R+ we apply the change of variable s = r− ξ . It shows that Lm (ξ ) is unitarily equivalent to the
following operator acting on L2 (−ξ ,+∞):

L̃m (ξ ) =−∂
2
s +

km

(s+ξ )2 + s2 =−∂
2
s + s2 +

km

ξ 2
1(

1+ s
ξ

)2 .

A Taylor expansion of the potential for large ξ provides

km

(s+ξ )2 =
km

ξ 2

N

∑
q=0

(q+1)
(
−s
ξ

)q

+RN (s,ξ ) , N > 0. (3.1)

Estimation on the remainder term RN (s,ξ ) will be written later (see equation (3.8)). We define a sequence of
formal operators by 

H0 :=−∂ 2
s + s2,

A1 := 0,
∀q > 2, Aq := (q−1)(−s)q−2 .

For every N ∈ N, we set

L̃N
m (ξ ) := H0 + km

N

∑
q=1

Aq

ξ q , (3.2)
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with the convention L̃0
m = H0. We set R−2 (s,ξ ) = R−1 (s,ξ ) := km (s+ξ )−2. For every N > 0, the operator

L̃m (ξ ) can be formally decomposed into:

L̃m (ξ ) = L̃N
m (ξ )+RN−2 (s,ξ ) .

First we look for quasi-modes for the formal operator L̃N
m (ξ ) acting on L2 (R). This formal procedure

provides functions defined on R and we use a suitable cut-off function in (−ξ ,+∞) to derive quasi-modes for
L̃m (ξ ).

Calculation of the quasi-modes
We look for quasi-eigenpairs

(
λ N

m (ξ ) , f N
m (·,ξ )

)
of L̃N

m (ξ ) of the form

(
λ

N
m (ξ ) , f N

m (·,ξ )
)
=

(
α0 + km

N

∑
q=1

αq

ξ q ,
N

∑
q=0

gq

ξ q

)
,

where the functions gq are mutually orthogonal in L2 (R). Note that the functions gq may depend on km. We
are led to solve the system

(H0−α0)g0 = 0,

(H0−α0)gq + km

q
∑
j=1

(A j−α j)gq− j = 0, q ∈ J1,NK . (3.3)

We solve it by induction:

• q = 0
Note that H0 is the quantum harmonic oscillator. Hence we choose for (α0,g0) a couple (Ep,Ψp) for
p ∈ N where Ep = 2p− 1 is a Landau level, and Ψp is the corresponding normalised Hermite function
with the convention that Ψ1 (s) = (2π)−1/4 e−t2/2. So from now on we set (α0,g0) =

(
α

p
0 ,g

p
0

)
= (Ep,Ψp)

for a certain p ∈ N, fixed. All the quantities considered in what follows may depend on the choice of p.
We simplify the notations with ommiting this index.

• Induction
We assume that there exists q0 ∈ J1,NK such that for every q 6 q0−1, αq and gq have been constructed.

The scalar product of the second equation of the system (3.3) with g0 provides the value of αq0 :

αq0 =
〈
Aq0g0,g0

〉
+

〈
q0−1

∑
q=1

(Aq−αq)gq0−q,g0

〉
.

So αq0 is known, therefore the Fredholm alternative provides a unique value for gq0 such that
〈
gq0 ,gq

〉
= 0

for every q < q0.

The quasi-modes f N
m (·,ξ ) can be computed using the Hermite functions. The Hermite functions satisfy the

following results

∀q > 1, ∃P ∈ R [X ] , ∀s ∈ R, Ψq (s) = e−
s2
2 P(s) ,

∀q > 1, sΨq (s) =

√
q−1

2
Ψq−1 (s)+

√
q
2

Ψq+1 (s) .

Combining them with the system (3.3) we infer that for every N > 0, there exist polynomial functions P0, · · · ,PN

such that

f N
m (s,ξ ) = e−

s2
2

N

∑
q=0

Pq (s)
ξ q , ξ > 0, s ∈ R. (3.4)
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Evaluation of the quasi-mode
Previously we have obtained quasi-eigenpairs

(
λ N

m (ξ ) , f N
m (·,ξ )

)
for L̃N

m (ξ ). The functions f N
m are defined on

R. We now use a suitable cut-off function to get quasi-modes uN
m (·,ξ ) for L̃m (ξ ).

Let χ ∈ C ∞
0 (R; [0,1]) such that

χ (x) =
{

1 if |x|6 1/2;
0 if |x|> 1.

For ξ ∈ R+, we define the cut-off function χξ on R by

χξ (t) := χ

(
2t
ξ

)
, t ∈ R. (3.5)

Note that this function is supported in (−ξ/2,ξ/2) and is equal to 1 on (−ξ/4,ξ/4). Let, for N > 0, uN
m be

defined by
uN

m (r,ξ ) := χξ (r) f N
m (r,ξ ) , ξ > 0, r ∈ R. (3.6)

Since supp
(
uN

m (·,ξ )
)
⊂ supp

(
χξ

)
⊂ (−ξ/2,ξ/2), uN

m can be used as a quasi-mode for L̃m (ξ ).

Lemma 3.1 (Control of the quasi-mode)
Let N ∈ Z+. Recalling that m, N and p are fixed, there is a constant K > 0 such that

∃ξ0 > 0, ∀ξ > ξ0,
∥∥(L̃m (ξ )−λ

N
m (ξ )

)
uN

m (·,ξ )
∥∥

2 6
K

ξ N+1

Proof. First, observe that∥∥(L̃m (ξ )−λ N
m (ξ )

)
uN

m (·,ξ )
∥∥

2 6
∥∥χξ

(
L̃N

m (ξ )−λ N
m (ξ )

)
f N
m (·,ξ )

∥∥
2 +
∥∥RN−2 (·,ξ )uN

m (·,ξ )
∥∥

2
+
∥∥[L̃N

m (ξ ) ,χξ

]
f N
m (·,ξ )

∥∥
2 .

(3.7)

We proceed to control the right hand side term by term:

• We use the definition of f N
m to compute the first term:(

L̃N
m (ξ )−λ

N
m (ξ )

)
f N
m (·,ξ ) =

2N

∑
q=N+1

km

ξ q ∑
i+ j=q

(Ai−αi)g j.

Thus we deduce that

∃K > 0,
∥∥χξ

(
L̃N

m (ξ )−λ
N
m (ξ )

)
f N
m (·,ξ )

∥∥
2 6

Kkm

ξ N+1 .

Note that K may depend on m.

• Remind that RN (s,ξ ) is defined by relation (3.1), the localization of supp
(
χξ

)
provides the following

estimate:

∃C > 0, ∀s ∈ supp
(
χξ

)
, |RN−2 (s,ξ )|6

CsN+1

ξ N+1 , if N > 2;

∀s ∈ supp
(
χξ

)
, |RN−2 (s,ξ )|6 4

km

ξ 2 , if N ∈ {0,1} .

Hence using the exponential decay of Hermite functions, we deduce from the definition of uN
m and from

relation (3.4) that ∥∥RN−2 (·,ξ )uN
m (·,ξ )

∥∥
2 6

K
ξ N+1 if N > 2,∥∥RN−2 (·,ξ )uN

m (·,ξ )
∥∥

2 6 4
km

ξ 2 if N ∈ {0,1} .
(3.8)

• Finally notice that
[
L̃N

m (ξ ) ,χξ

]
f N
m (·,ξ ) = 2χ ′

ξ

(
f N
m
)′
(·,ξ )+ χ ′′

ξ
f N
m (·,ξ ). Moreover, χ ′

ξ
and χ ′′

ξ
are sup-

ported in {t ∈ R, ξ/4 < |t|< ξ/2}. Therefore we deduce from formula (3.4) that∥∥[L̃N
m (ξ ) ,χξ

]
f N
m (·,ξ )

∥∥
2 = O

(
1

ξ ∞

)
.
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Proof of Theorem 3.1
We deduce from the spectral theorem and from Lemma 3.1 that

d
(
λ

N
m (ξ ) ,σ (Lm (ξ ))

)∥∥uN
m (·,ξ )

∥∥
L2(−ξ ,+∞)

6
K

ξ N+1 .

Moreover
∥∥uN

m (·,ξ )
∥∥

L2(−ξ ,+∞)
=
∥∥ f N

m (·,ξ )
∥∥

L2(R)+O(ξ−∞) and
∥∥ f N

m (·,ξ )
∥∥

L2(R)= 1+O
(
ξ−2

)
. Therefore

lim
ξ→+∞

∥∥uN
m (·,ξ )

∥∥
L2(−ξ ,+∞)

= 1 (3.9)

Hence for ξ large enough

d
(
λ

N
m (ξ ) ,σ (Lm (ξ ))

)
6

K̃
ξ N+1 .

Finally we observe that λ N
m (ξ )→ Ep, as ξ → +∞. We combine it with the identity (2.7) that provides the

statement of the theorem.

3.2 Near other energy levels: high frequency and high angular momentum

We are now interested in the behaviour of the spectrum of H near other energy levels. First if ξ is fixed, then
λm,p (ξ ) tends to +∞ as m→ +∞. In a second time we study the behaviour of the band functions when m
and ξ tends to +∞ together. More precisely we fix an integer p and an energy level E > Ep and we study the
behaviour of λ ′m,p (ξ ) when λm,p (ξ ) = E.

Remember that the quadratic form defined by equation (1.5) is associated to Lm (ξ ) and that um,p (·,ξ )
denotes the normalized eigenfunction of Lm (ξ ) associated with the eigenvalue λm,p (ξ ). Therefore,

λm,p (ξ ) =
∫ +∞

0

∣∣u′m,p (r,ξ )
∣∣2 +Vm (r,ξ )um,p (r,ξ )

2 dr. (3.10)

Moreover km (resp. Vm) is defined by relation (1.2) (resp. relation (1.3)). Hence for every m > 0, km > 0.
Therefore the following useful estimates are valid for every m > 0:

λm,p (ξ )> km

∫ +∞

0

|um,p (r,ξ )|2

r2 dr, (3.11)

λm,p (ξ )>
∫ +∞

0
(r−ξ )2 |um,p (r,ξ )|2 dr. (3.12)

Proposition 3.1 (Limit of the band functions)
For every p ∈ N and every ξ ∈ R,

lim
m→+∞

λm,p (ξ ) = +∞.

Proof. We simplify the notations by omitting the index p. According to estimate (3.11),

λm (ξ )>
km

R2
0

∫ R0

0
|um (r,ξ )|2 dr =

km

R2
0

(
1−

∫ +∞

R0

|um (r,ξ )|2 dr
)
, R0 > 0. (3.13)

Moreover, if R0 > ξ , then ∫ +∞

0
(r−ξ )2 |um (r,ξ )|2 > (R0−ξ )2

∫ +∞

R0

|um (r,ξ )|2 dr.

Therefore, from estimate (3.12) we deduce that

λm (ξ )> (R0−ξ )2
∫ +∞

R0

|um (r,ξ )|2 dr, R0 > ξ . (3.14)
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Therefore, combining estimates (3.13) and (3.14) we obtain

λm (ξ )>
km

R2
0

(
1− (R0−ξ )−2

λm (ξ )
)
, R0 > ξ .

Hence, recalling that km→+∞ as m→+∞, we deduce that

∃M ∈ N, ∀m > M, λm (ξ )>
km

R2
0

(
1+ km (R0 (R0−ξ ))−2

)−1
>

(R0−ξ )2

2
.

This is true for all R0 > ξ . So letting R0 tend to +∞ provides the result.

We now study λ ′m,p (ξ ). Remember that for any m ∈ N and for any p ∈ N, λm,p is decreasing from +∞ to
Ep. Therefore

∀m ∈ N, ∀p ∈ N, ∀E > Ep, ∃!ξm ∈ R, E = λm,p (ξm) . (3.15)

3.2.1 Preliminary results: some localization properties

First we look for the behaviour of ξm when m tends to +∞.

Proposition 3.2 (Control of ξm)
There exist constants K± > 0 and M > 0 such that as m gets large,

K−
√

km 6 ξm 6 K+

√
km.

To get the lower bound, we use formula (3.10) and we localize the normalized eigenfunctions um :=
um (·,ξm) of Lm := Lm (ξm).

of the lower bound. Let α ∈ [0,1) and let Rm (α) :=
√

kmαE−1. We inject λm (ξm) = E into estimate (3.11). It
yields

E
km

>
∫ +∞

0

|um (r)|2

r2 dr >
∫ Rm(α)

0

|um (r)|2

r2 dr >
1

Rm (α)2

∫ Rm(α)

0
|um (r)|2 dr.

So ∫ Rm(α)

0
|um (r)|2 dr 6 α. (3.16)

Let ε > 0 and let C (ε) :=
√

Eε−1. We make use of estimate (3.12) to prove in the same way that,∫
{|r−ξm|6C(ε)}

|um (r,ξm)|2 dr > 1− ε. (3.17)

We combine these estimates to derive an upper bound for ξm. Let (ε,α) ∈ (0,1)2 such that 1− ε > α . We
assume that for some m ∈ N,

(ξm−C (ε) ,ξm +C (ε))⊂ (0,Rm (α)) . (3.18)

We deduce from estimates (3.16) and (3.17) that

1− ε 6
∫ C(ε)+ξm

−C(ε)+ξm

|um (r,ξm)|2 dr 6
∫ Rm(α)

0
|um (r,ξm)|2 dr 6 α.

So hypothesis (3.18) can not hold. Moreover according to Proposition 3.1, ξm→+∞ as m→+∞. Therefore
for m large enough ξm−C (ε)> 0. Hence,

∃M > 0, ∀m > M, C (ε)+ξm > Rm (α) .

Thus we deduce the existence of K−.
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of the upper bound. We now examine the second part of Proposition 3.2: we show that
(

ξmk−1/2
m

)
m∈N

admits

an upper bound. The key argument is E 6= Ep. Indeed we prove that if ξm tends too fast to +∞, the limit
operator is a quantum harmonic oscillator whose eigenvalues are the Landau levels. Let’s assume that the
sequence

(
ξmk−1/2

m

)
m∈N

admits no upper bounds. Up to an extraction, one can assume that

lim
m→+∞

ξm√
km

=+∞. (3.19)

Recall (see Subsection 3.1) that H0 is the quantum harmonic oscillator acting on L2 (R) and that the operator
Lm is unitarily equivalent to the following operator acting on L2 (−ξm,+∞)

H0 +

(√
km

ξm

)2 1(
1+ s

ξm

)2 .

Let (Eq,Ψq)q∈N be the eigenpairs of H0. For any m ∈ N, q ∈ N, we use the functions χξm and u1
m (·,ξm)

defined by formulas (3.5) and (3.6). Note that χξm (H0−Ep)Ψq = 0, therefore according to estimates (3.7) and
(3.8), ∥∥(Lm−Eq)u1

m,q

∥∥
2 6

∥∥[H0,χm]Ψq
∥∥

2 +4
(√

km

ξm

)2

, q ∈ N.

Moreover, ∥∥[H0,χm]Ψq
∥∥

2 = O
(

1
ξ ∞

m

)
.

Recall that
∥∥u1

m (·,ξm)
∥∥→ 1 as m→+∞ (remember that ξm→+∞ as m→+∞ and see the identity (3.9))

and that we have assumed that
√

kmξ−1
m → 0 as m→+∞. We thus conclude from the spectral theorem that

lim
m→+∞

d (σ (Lm) ,Eq) = 0.

It implies that for every q ∈ N, d ({λm,s (ξm) ,s > 1} ,Eq)→ 0 as m→+∞. So for every q ∈ N, λm,q (ξm)→ Eq

as m→+∞, therefore E = Ep. But we have assumed that E 6= Ep, hence the hypothesis (3.19) can not hold and
we get the upper-bound.

We now study the potential Vm, defined by formula (1.3). Note that Vm is strictly convex and that it verifies
Vm (r)→+∞ as r→ 0 or r→+∞. Therefore Vm admits an unique minimum on R+, V min

m , reached at the single
critical point of Vm: rm. In Lemma 3.2, we use Proposition 3.2 to localize the quantities rm and V min

m .

Lemma 3.2 (Localization of extrema)
There are constants M ∈ N, R± > 0 and V± > 0 such that for every m > M,

1. R−
√

km 6 rm 6 R+

√
km;

2. V− 6V min
m 6V+.

Moreover, for any y >V min
m , the two solutions r± of Vm (r) = y satisfy:

∃K± > 0, ∃M ∈ N, ∀m > M, K−
√

km 6 r− < rm < r+ 6 K+

√
km.

Proof.

1. First, recall that rm ∈ R+ is the single critical point of Vm. Therefore, V ′m (rm) = 0 provides

km

r3
m
= rm−ξm.
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Since rm > 0, we deduce that rm−ξm > 0. So according to Proposition 3.2

∃K+ > 0, ∃M ∈ N, ∀m > M, rm > ξm > K+

√
km.

Moreover 0 < rm−ξm 6 km

(
K+

√
km

)−3
= K−3

+ k−1/2
m . So using km→+∞ as m→+∞, we deduce that

lim
m→+∞

rm−ξm = 0. (3.20)

Thus Proposition 3.2 provides the result.

2. Recall that V min
m =Vm (rm). Hence, according to equation (3.20), V min

m − kmr−2
m → 0 as m→+∞. So the

first point provides the result.

3. According to the variations of Vm, r± exists and is solution of the equation kmr−2 +(r−ξm)
2 = y. Thus

(r±−ξm)
2 6 y and therefore |r±−ξm|6

√
y. The result follows from Proposition 3.2.

Remark 3.3: We do not know if the limits lim
m→+∞

ξm√
km

and lim
m→+∞

V min
m exist.

3.2.2 Exponential decay of the eigenfunctions

Here we introduce some tools to estimate the exponential decay of the eigenfunctions. This is an application of
the well-known Agmon estimates for 1D Schrödinger operators with confining potential. In our case we would
like to take into account the dependance on m. Therefore we are led to perturb the Agmon distance to get some
uniform estimates.

We define the Agmon distance by:

dm (r1,r2) =

∣∣∣∣∫ r2

r1

√
(Vm (r)−E)+dr

∣∣∣∣ , (r1,r2) ∈ R2
+.

For α > 3/2 and for every m ∈ N, we define δm by

δm = δm (α) :=
α√
km

.

Let Im be defined by
Im = Im (E) := {r > 0, Vm (r)< E} . (3.21)

We recall that we have chosen E > Ep, therfore Im 6= /0. Indeed,

E = lm (um)>
∫
R+

Vm |um|2 >V min
m ‖um‖2

2 =V min
m . (3.22)

Furthermore, remember that Vm is strictly convex and that Vm (r)→+∞ as r→ 0. Therefore Im is an open
bounded interval of R+. Recall that the distance between x ∈ R and a set X ⊂ R is defined as d (x,X) :=
inf(d (x,y) , y ∈ X). For every m ∈ N, we define the function Φm on R+ by

Φm = Φm (·,δm) := δmdm (·, Im) . (3.23)

The function Φm is decreasing on (0, inf(Im)), zero on Im and increasing on (sup(Im) ,+∞). Moreover, it
satisfies the eikonal equation: ∣∣Φ′m∣∣2 = δ

2
m (Vm (r)−E)+ . (3.24)

Notice that Φm is a perturbated Agmon distance and that δm → 0 as m→ +∞. We use this fact to prove the
following proposition that provides a uniform control for eΦmum.

First of all we use the definition of Φm given by equation (3.34) and a Taylor expansion at 0 and at +∞ to
get the following lemma.
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Lemma 3.3
Let Φm be the function defined by definition (3.34). The behavior of Φm (r) as r→ ∂R+ is given by:

• Φm (r) =−α ln(r)+O(1) as r→ 0;

• Φm (r) =
δmr2

2
+O(r) as r→+∞.

The following proposition is a well known Agmon estimate result [Agm82]. Here we are interested in the
uniformity with respect to m. To that aim we adapt the classical proof of the result [Hel88].

Proposition 3.3
There exist a constant K and an integer M such that

∀m > M,
∥∥eΦmum

∥∥
2 6 K.

Proof. According to Lemma 3.4, there is a constant β ∈ R such that,

e2Φm(r) = O
(
r−2α

)
r→ 0;

e2Φm(r) = O
(

e
δm
2 r2+β r

)
r→+∞.

Hence according to Proposition 2.1,

e2Φm(r)um (r) = O
(

rm+ n
2−1−2α

)
, r→ 0.

Therefore for m large enough, e2Φmum ∈ L2 (0,1). Moreover according to the Liouville-Green approximation
[Olv97, Chapter 6],

um (r)∼ (Vm (r)−E)−
1
4 e−

∫√
Vm(r)−Edr, r→+∞.

Remember that
∫√

Vm (r)−Edr ∼ r2/2 as r→ +∞, we deduce that for m large enough, eφmum ∈ L2 (1,+∞),
therefore e2φmum ∈ L2 (R+). Moreover an integration by parts yields〈

−u′′m,e
2φmum

〉
=
∫
R+

(∣∣u′m∣∣2 +2φ
′
mumu′m

)
e2φm−

[
e2φmumu′m

]+∞

0 .

According to what preceds,
[
e2φmumu′m

]+∞

0 = 0, thus eφmum ∈ D (hm). Moreover by combining it with the
relations (3.10) and (3.15) we obtain∫

R+

∣∣∣(eΦmum
)′∣∣∣2 +∫

R+

e2Φm
(

Vm−E−
∣∣φ ′m∣∣2) |um|2 = 0. (3.25)

Furthermore, according to estimate (3.33), E−V min
m > 0. Let for every m ∈ N, εm := 2−1

(
E−V min

m
)
> 0.

Recall that Im is given by definition (3.32). We define I± as

I− := Im (E + εm) = {r ∈ R+, Vm (r)< E + εm} ,
I+ := R+\I− = {r ∈ R+, Vm (r)> E + εm} .

By injecting R+ = I+t I− into equation (3.36), we prove that∫
R+

∣∣∣(eφmum
)′∣∣∣2 +∫

I+
e2φm

(
Vm−E−

∣∣φ ′m∣∣2) |um|2 =

−
∫

I−
e2φm

(
Vm−E−

∣∣φ ′m∣∣2) |um|2 6
∥∥∥Vm−E−

∣∣φ ′m∣∣2∥∥∥L∞(I−)

∫
I−

e2φm |um|2..

Let for m large enough such that δm 6 1, Cm :=
(
1−δ

2
m
)

εm > 0. We combine equation (3.35) with the
definition of I± to get

Vm (r)−E−|Φ′m (r)|2 >Cm, if r ∈ I+;
V min

m −E 6Vm (r)−E−|Φ′m (r)|2 <Cm, if r ∈ I−.
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So remembering that εm =
(
E−V min

m
)
/2, we get

∥∥∥Vm−E−|Φ′m|
2
∥∥∥

L∞(I−)
6 E−V min

m and we deduce that

∫
R+

∣∣∣(eΦmum
)′∣∣∣2 +Cm

∫
I+

e2Φm |um|2 6
(
E−V min

m
)∫

I−
e2Φm(r) |um|2.

We recall that um is normalized that provides∫
R+

∣∣∣(eΦmum
)′∣∣∣2 +Cm

∫
R+

e2Φm |um|2 6
(
E−V min

m +Cm
)∫

I−
e2Φm |um|2 6

(
E−V min

m +Cm
)

e2‖Φm‖L∞(I−) .

Finally we deduce the following estimate∫
R+

e2Φm(r) |um (r)|2 dr 6
E−V min

m +Cm

Cm
e2‖Φm‖L∞(I−) . (3.26)

The choices of δm and εm yield
(
E−V min

m +Cm
)

C−1
m =

(
3−δ 2

m
)(

1−δ 2
m
)−1 . Thus

(
E−V min

m +Cm
)

C−1
m is

bounded as m→+∞. Moreover the variations of Φm ensure that ‖Φm‖L∞(I−) = ‖Φm‖L∞(∂ I−). Therefore Lemma
3.2 provides the following control

∃K > 0, ∃M0 ∈ N, ∀m > M0, ‖Φm‖L∞(I−) 6 Kδm
√

km = Kα.

We conclude the proof by combining it with estimate (3.37) that provides the expected result.

3.2.3 Asymptotic expansion of the derivative

Here we prove the following theorem.

Theorem 3.2 (Asymptotic behaviour of the derivative)
Recall that ξm is defined by relation (3.15). There are constants K± > 0 and there exists M ∈ N such that

∀m > M,
K−√

km
6
∣∣λ ′m (ξm)

∣∣6 K+√
km

.

Remark 3.4: For further use note that this theorem can be adapted to the case where the energy level is an
interval J. Namely, if J ⊂ R denotes an interval such that J∩{Ep, p ∈ N}= /0, then

∃M ∈ N, ∀m > M,∀ξ ∈ λ
−1
m (J) ,

K− (J)√
km

6
∣∣λ ′m (ξ )

∣∣6 K+ (J)√
km

.

Remark 3.5: If J is on the form (Ep,Ep +η), them the combinaison of Theorem 3.1 and of Proposition 3.2
states that there is a constant C > 0 such that if λm (ξ ) ∈ J then ξ >C

√
kmη−1. Therefore one could prove that

∃C > 0, ∃M ∈ N, ∀m > M, ∀ξ ∈ λ
−1
m (J) ,

∣∣λ ′m (ξ )
∣∣6C

√
η

km
.

Lower bound
According to Proposition 2.2,

∣∣λ ′m (ξ )
∣∣> 2km

R3

∫ R

0
|um (r,ξ )|2 dr, ξ ∈ R, R > 0, m > 1.

Let’s combine it with estimate (3.14) and with ‖um (·,ξ )‖= 1. We deduce that

∣∣λ ′m (ξ )
∣∣> 2km

R3

(
1−

∫ +∞

R
|um (r,ξ )|2 dr

)
>

2km

R3

(
1− λm (ξ )

(R−ξ )2

)
, R > ξ > 0.

18



Remembering that λm,p (ξm) = E, we get

∣∣λ ′m (ξm)
∣∣> 2km

R3

[
1− E

(R−ξm)
2

]
, R > ξm.

Let us choose R = Rm := ξm +
√

2E > ξm. in order to obtain E (Rm−ξm)
−2 = 1/2. This implies that∣∣λ ′m (ξm)

∣∣> kmR−3
m . Observe that Rm ∼ ξm as m→+∞. Therefore Proposition 3.2 provides

∃K > 0, ∃M ∈ N, ∀m > M,
∣∣λ ′m (ξm)

∣∣> K√
km

.

Upper bound
Recall that Φm is defined by the formula (3.34). Let us define the function Ψm by

Ψm (r) =
e−2Φm(r)

r3 , r > 0.

Let’s combine Propositions 2.2 and 3.4. We get that for m large enough∣∣λ ′m (ξm)
∣∣6 2Kkm sup

r∈R+

Ψm (r). (3.27)

Therefore it is enough to prove that there is an integer M and a constant K > 0 such that

∀m > M, ‖Ψm‖L∞(R+)
6

K
km
√

km
. (3.28)

First note that Φm > 0. Therefore for any r∈R+, Ψm (r)6 r−1, meaning that Ψm (r)→ 0 as r→+∞. Moreover,
according to Lemma 3.4, −2φm (r) = 2α ln(r)+O(1) as r→ 0. By combining it with the definition of Ψm, we
deduce that Ψm (r) = O

(
r2α−3

)
as r→ 0. Remembering that α > 3/2, we conclude that Ψm (r)→ 0 as r→ 0.

Hence we deduce that
∃r̃m > 0, ‖Ψm‖L∞(R) = Ψm (r̃m) .

Furthermore, r̃m is a critical point of Ψm. Therefore Ψ′m (r̃m) = 0 implies that

Φ
′
m (r̃m) =−

3
2r̃m

. (3.29)

Observing that r̃m > 0, we get Φ′m (r̃m) < 0. Remembering that Φm is non decreasing on (inf(Im) ,+∞), we
deduce that r̃m < inf(Im). Note that inf(Im) is solution of Vm (r) = E. Therefore Proposition 3.2 provides a
constant K+ > 0 such that

r̃m 6 inf(Im)6 K+

√
km.

Now combine equations (3.29) and (3.35). It yields

δ
2
m

(
km

r̃2
m
+(r̃m−ξm)

2−E
)
=

9
4r̃2

m
.

Hence we get
δ 2

mkm− 9
4

r̃2
m

= δ
2
m

(
E− (r̃m−ξm)

2
)
6 δ

2
mE. (3.30)

Remembering that δm
√

km = α , estimate (3.30) can be written as
(
α

2−9/4
)

r̃−2
m 6 Eα

2k−1
m . Moreover

α > 3/2, so there is a constant K− > 0 such that for m large enough,

r̃m > K−
√

km. (3.31)

Recall that Φm (r̃m) > 0 meaning that ‖Ψm‖L∞(R+)
= Ψ(r̃m) 6 r̃−3

m . Combine it with the estimate (3.31) and
recall that Ψm (r)→ 0 as r → 0 and as r → +∞. It provides the estimate (3.28). Finally we combine the
estimates (3.27) and (3.28) that proves the upper bound.
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3.2.4 Exponential decay of the eigenfunctions

Here we introduce some tools to estimate the exponential decay of the eigenfunctions. This is an application of
the well-known Agmon estimates for 1D Schrödinger operators with confining potential. In our case we would
like to take into account the dependance on m. Therefore we are led to perturb the Agmon distance to get some
uniform estimates.

We define the Agmon distance by:

dm (r1,r2) =

∣∣∣∣∫ r2

r1

√
(Vm (r)−E)+dr

∣∣∣∣ , (r1,r2) ∈ R2
+.

For α > 3/2 and for every m ∈ N, we define δm by

δm = δm (α) :=
α√
km

.

Let Im be defined by
Im = Im (E) := {r > 0, Vm (r)< E} . (3.32)

We recall that we have chosen E > Ep, therfore Im 6= /0. Indeed,

E = lm (um)>
∫
R+

Vm |um|2 >V min
m ‖um‖2

2 =V min
m . (3.33)

Furthermore, remember that Vm is strictly convex and that Vm (r)→+∞ as r→ 0. Therefore Im is an open
bounded interval of R+. Recall that the distance between x ∈ R and a set X ⊂ R is defined as d (x,X) :=
inf(d (x,y) , y ∈ X). For every m ∈ N, we define the function Φm on R+ by

Φm = Φm (·,δm) := δmdm (·, Im) . (3.34)

The function Φm is decreasing on (0, inf(Im)), zero on Im and increasing on (sup(Im) ,+∞). Moreover, it
satisfies the eikonal equation: ∣∣Φ′m∣∣2 = δ

2
m (Vm (r)−E)+ . (3.35)

Notice that Φm is a perturbated Agmon distance and that δm → 0 as m→ +∞. We use this fact to prove the
following proposition that provides a uniform control for eΦmum.

First of all we use the definition of Φm given by equation (3.34) and a Taylor expansion at 0 and at +∞ to
get the following lemma.

Lemma 3.4
Let Φm be the function defined by definition (3.34). The behavior of Φm (r) as r→ ∂R+ is given by:

• Φm (r) =−α ln(r)+O(1) as r→ 0;

• Φm (r) =
δmr2

2
+O(r) as r→+∞.

The following proposition is a well known Agmon estimate result [Agm82]. Here we are interested in the
uniformity with respect to m. To that aim we adapt the classical proof of the result [Hel88].

Proposition 3.4
There exist a constant K and an integer M such that

∀m > M,
∥∥eΦmum

∥∥
2 6 K.

Proof. According to Lemma 3.4, there is a constant β ∈ R such that,

e2Φm(r) = O
(
r−2α

)
r→ 0;

e2Φm(r) = O
(

e
δm
2 r2+β r

)
r→+∞.
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Hence according to Proposition 2.1,

e2Φm(r)um (r) = O
(

rm+ n
2−1−2α

)
, r→ 0.

Therefore for m large enough, e2Φmum ∈ L2 (0,1). Moreover according to the Liouville-Green approximation
[Olv97, Chapter 6],

um (r)∼ (Vm (r)−E)−
1
4 e−

∫√
Vm(r)−Edr, r→+∞.

Remember that
∫√

Vm (r)−Edr ∼ r2/2 as r→ +∞, we deduce that for m large enough, eφmum ∈ L2 (1,+∞),
therefore e2φmum ∈ L2 (R+). Moreover an integration by parts yields〈

−u′′m,e
2φmum

〉
=
∫
R+

(∣∣u′m∣∣2 +2φ
′
mumu′m

)
e2φm−

[
e2φmumu′m

]+∞

0 .

According to what preceds,
[
e2φmumu′m

]+∞

0 = 0, thus eφmum ∈ D (hm). Moreover by combining it with the
relations (3.10) and (3.15) we obtain∫

R+

∣∣∣(eΦmum
)′∣∣∣2 +∫

R+

e2Φm
(

Vm−E−
∣∣φ ′m∣∣2) |um|2 = 0. (3.36)

Furthermore, according to estimate (3.33), E−V min
m > 0. Let for every m ∈ N, εm := 2−1

(
E−V min

m
)
> 0.

Recall that Im is given by definition (3.32). We define I± as

I− := Im (E + εm) = {r ∈ R+, Vm (r)< E + εm} ,
I+ := R+\I− = {r ∈ R+, Vm (r)> E + εm} .

By injecting R+ = I+t I− into equation (3.36), we prove that∫
R+

∣∣∣(eφmum
)′∣∣∣2 +∫

I+
e2φm

(
Vm−E−

∣∣φ ′m∣∣2) |um|2 =

−
∫

I−
e2φm

(
Vm−E−

∣∣φ ′m∣∣2) |um|2 6
∥∥∥Vm−E−

∣∣φ ′m∣∣2∥∥∥L∞(I−)

∫
I−

e2φm |um|2..

Let for m large enough such that δm 6 1, Cm :=
(
1−δ

2
m
)

εm > 0. We combine equation (3.35) with the
definition of I± to get

Vm (r)−E−|Φ′m (r)|2 >Cm, if r ∈ I+;
V min

m −E 6Vm (r)−E−|Φ′m (r)|2 <Cm, if r ∈ I−.

So remembering that εm =
(
E−V min

m
)
/2, we get

∥∥∥Vm−E−|Φ′m|
2
∥∥∥

L∞(I−)
6 E−V min

m and we deduce that

∫
R+

∣∣∣(eΦmum
)′∣∣∣2 +Cm

∫
I+

e2Φm |um|2 6
(
E−V min

m
)∫

I−
e2Φm(r) |um|2.

We recall that um is normalized that provides∫
R+

∣∣∣(eΦmum
)′∣∣∣2 +Cm

∫
R+

e2Φm |um|2 6
(
E−V min

m +Cm
)∫

I−
e2Φm |um|2 6

(
E−V min

m +Cm
)

e2‖Φm‖L∞(I−) .

Finally we deduce the following estimate∫
R+

e2Φm(r) |um (r)|2 dr 6
E−V min

m +Cm

Cm
e2‖Φm‖L∞(I−) . (3.37)

The choices of δm and εm yield
(
E−V min

m +Cm
)

C−1
m =

(
3−δ 2

m
)(

1−δ 2
m
)−1 . Thus

(
E−V min

m +Cm
)

C−1
m is

bounded as m→+∞. Moreover the variations of Φm ensure that ‖Φm‖L∞(I−) = ‖Φm‖L∞(∂ I−). Therefore Lemma
3.2 provides the following control

∃K > 0, ∃M0 ∈ N, ∀m > M0, ‖Φm‖L∞(I−) 6 Kδm
√

km = Kα.

We conclude the proof by combining it with estimate (3.37) that provides the expected result.
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4 Velocity operator

In this section we assume that n > 4. The case n = 3 could also been studied but according to remark 2, attained
thresholds arrise in that case. We apply the results of the previous section to derive some properties about the
velocity operator.

We refer to Section 1 for the notations. Remember that F denotes the partial Fourier transform with respect
to xn. Let (r,ω) be the cylindrical coordinates of Rn−1, namely, for any x∈Rn−1\{0}, r = ‖x‖2 and ω = r−1x∈
Sn−2. In terms of these variables, L2

(
Rn−1

)
= L2

(
R+×Sn−2;rn−2dr

)
. Let Ym, j, m > 0, j ∈ J1,NmK be the

spherical Harmonics that are an orthonormal basis of solutions for the equation −∆Sn−2u = µmu, u ∈ L2
(
Sn−2

)
and denote by vm,p (·,ξ ) the eigenfunctions of Hm (ξ ), m > 0 and ξ ∈ R.

We define the (m, j, p)-th generalized Fourier coefficient of ϕ ∈ L2 (Rn) as

ϕm, j,p (ξ ) :=
1√
2π

∫
Rn−1

ϕ̂ (r,ω,ξ )Ym, j (ω)vm,p (r,ξ )rn−2drdω, ϕ ∈ L2 (Rn) .

Moreover for every m > 0, j ∈ J1,NmK and p ∈ N, denote by πm, j,p the orthogonal projection associated with
the (m, j, p)-th harmonic and by πp, the projection associated with all the harmonic that have p as level:

πm, j,p (ϕ)(x) :=
1√
2π

∫
R

eiξ xnϕm, j,p (ξ )Ym, j (ω)vm,p (r,ξ )dξ , x ∈ Rn,

πp :=
+∞

∑
m=0

Nm

∑
j=1

πm, j,p.

In light of Section 1, every ϕ ∈ L2 (Rn) is decomposed as

ϕ =
+∞

∑
m=0

Nm

∑
j=1

+∞

∑
p=1

πm, j,p (ϕ) =
+∞

∑
p=1

πp (ϕ).

Moreover the Parseval theorem yields

‖ϕ‖2
2 =

+∞

∑
m=0

Nm

∑
j=1

+∞

∑
p=1

∥∥ϕm, j,p
∥∥2

2. (4.1)

Finally for any non-empty interval I ⊂ R, denote by PI the spectral projection of H associated with I. A
quantum state ϕ ∈ L2 (Rn) is said concentrated in I if PIϕ = ϕ . With reference to Section 1, this condition can
be written as

∀m > 0, ∀ j ∈ J1,NmK , ∀p > 1, supp(ϕm, j,p)⊂ λ
−1
m,p (I) . (4.2)

Let xn be the position operator defined as the multiplier by coordinate xn in L2 (Rn):

(xn f )x = xn f (x) , x = (x1, · · · ,xn) ∈ Rn

and let xn (t) be the Heisenberg variable defined as

xn (t) := eitHxne−itH .

A quantum state ϕ is a solution of the Schrödinger equation i∂tϕ = Hϕ . Thus ϕ (x, t) = e−itHϕ (x,0) and
we deduce by a straightforward calculation that

〈xnϕ (·, t) ,ϕ (·, t)〉= 〈xn (t)ϕ (·,0) ,ϕ (·,0)〉 , t ∈ R.

Therefore the time evolution of the position operator xn is xn (t) and its time derivative is the velocity, given by
∂txn (t) = ieitH [H,xn]e−itH . We define the velocity operator J as the following self-adjoint operator acting on
D (H)∩D (xn) such that the current carried by a state ϕ is 〈Jϕ,ϕ〉 [Ens83].

J :=−i [H,xn] =−2(i∂xn + r) . (4.3)
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Since F , is an isometry, we observe that F JF−1 =−2(r−ξ ). Therefore the Feynman-Hellman formula
(see equation (2.5)) yields

〈Jπpϕ,πpϕ〉=
+∞

∑
m=0

Nm

∑
j=1

∫
R

λ
′
m,p (ξ )

∣∣ϕm, j,p (ξ )
∣∣2 dξ , p ∈ N. (4.4)

In Theorem (4.1), we will combine this identity with Theorem 3.2 to control the current operator. We define
for each M ∈ N and each p ∈ N:

X−I,M,p :=
{

ϕ ∈ Ran(PI)∩Ran(πp) , ∀m > M+1, ∀ j ∈ J1,NmK , ϕm, j,p = 0
}
,

X+
I,M,p :=

{
ϕ ∈ Ran(PI)∩Ran(πp) , ∀m 6 M, ∀ j ∈ J1,NmK , ϕm, j,p = 0

}
,

X−I,M :=
+∞⊕
p=1

X−I,M,p;

X+
I,M :=

+∞⊕
p=1

X+
I,M,p.

Note that Ran(PI) = X−I,M⊕X+
I,M and that these spaces are H invariant.

Theorem 4.1
Let I ⊂ σ (H) be a non-empty interval such that I∩{Ep, p > 1}= /0.

1. ∀M > 0, ∃C− > 0, ∀ϕ ∈ X−I,M, |〈Jϕ,ϕ〉|>C− ‖ϕ‖2
2

2. ∃C+, ∃M0 > 0, ∀M > M0, ∀ϕ ∈ X+
I,M, |〈Jϕ,ϕ〉|6 C+

√
kM+1

‖ϕ‖2
2.

Proof. First of all, observe that I is bounded and recall that Ep→+∞ as p→+∞. Therefore PI := {p ∈ N, Ep > sup(I)}
is a finite set. Moreover, remembering that for every m ∈ N and p ∈ N, inf{λm,p (ξ ) ∈ R, ξ ∈ R} = Ep, we
get that PI = {p ∈ N, ∃m > 0, I∩λm,p (R) 6= /0}. Moreover notice that for every p ∈ PI and every m ∈ N,
I ∩ λm,p (R) 6= /0. Therefore it is enough to prove the theorem for ϕ ∈ X±I,m,p for a certain p ∈ PI fixed. We
simplify the notations by ommiting the index p.

Proof of the first part. Let M > 0 and let ϕ ∈ X−I,M. Note that ϕ = πpϕ . Therefore, according to the
embedding (4.2) and to the identity (4.4),

〈Jϕ,ϕ〉=
M

∑
m=0

Nm

∑
j=1

∫
λ
−1
m (I)

λ
′
m (ξ )

∣∣ϕm, j (ξ )
∣∣2 dξ .

Moreover Ep 6∈ I, thus for every m∈ J0,MK, λ−1
m (I) is bounded. Therefore, Proposition 2.2 states that for every

m ∈ J0,MK, Dm := inf{λ ′m (ξ ) , λm (ξ ) ∈ I}> 0. Thus C− := inf{Dm,m ∈ J0,MK}> 0. Hence

|〈Jϕ,ϕ〉|>C−
M

∑
m=0

Nm

∑
j=1

∫
λ
−1
m (I)

∣∣ϕm, j (ξ )
∣∣2 dξ . (4.5)

Remember that ϕm, j is localized into λ−1
m (I) (see the embedding (4.2)). Therefore,∫

λ
−1
m (I)

∣∣ϕm, j (ξ )
∣∣2 dξ =

∫
R

∣∣ϕm, j (ξ )
∣∣2 dξ =

∥∥ϕm, j
∥∥2

2 .

Hence according to the Parseval’s identity (4.1),

M

∑
m=0

Nm

∑
j=1

∫
λ
−1
m (I)

∣∣ϕm, j (ξ )
∣∣2 dξ = ‖ϕ‖2

2 . (4.6)

We combine it with the estimate (4.5) that provides the first statment of the Theorem.
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Proof of the second part. Let ϕ ∈ X+
I,M. We prove in the same way as for the first part that

〈Jϕ,ϕ〉=
+∞

∑
m=M+1

Nm

∑
j=1

∫
λ
−1
m (I)

λ
′
m (ξ )

∣∣ϕm, j (ξ )
∣∣2 dξ .

Therefore, according to Theorem 3.2, there exist M0 > 0 and C+ > 0 such that for every M > M0,

|〈Jϕ,ϕ〉|6
+∞

∑
m=M+1

Nm

∑
j=1

C+√
km

∫
λ
−1
m (I)

∣∣ϕm, j (ξ )
∣∣2 dξ . (4.7)

Observe that for m > M+1, C+k−1/2
m 6C+k−1/2

M+1 . We combine it with the estimate (4.7) and with the Parseval’s
identity (4.1) that yields

|〈Jϕ,ϕ〉|6 C+√
kM+1

‖ϕ‖2
2 .

Remark 4.1: Remember that kM →+∞ as M→+∞. According to Theorem 4.1, for every ε > 0 and for
any bounded energy interval I ⊂ σ (H), there are some quantum state ϕε ∈ Ran(PI) such that ‖ϕε‖ = 1 and
|〈Jϕε ,ϕε〉|6 ε , even if I is away from the Landau levels.
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[DBP99] S. De Bièvre and J. V. Pulé. Propagating edge states for a magnetic Hamiltonian. Math. Phys.
Electron. J., 5:Paper 3, 17, 1999.
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[HS15] P. D. Hislop and E. Soccorsi. Edge states induced by Iwatsuka Hamiltonians with positive magnetic
fields. J. Math. Anal. Appl., 422(1):594–624, 2015.

[Ivr18] V. Ivrii. Microlocal Analysis, Sharp Spectral Asymptotics and Applications. Available online on
the author’s website, 2018.

[Iwa85] A. Iwatsuka. Examples of absolutely continuous Schrödinger operators in magnetic fields. Publi-
cations of the Research Institute for Mathematical Sciences, 21(2):385–401, 1985.

[Kat66] T. Kato. Perturbation theory for linear operators. Die Grundlehren der mathematischen Wis-
senschaften, Band 132. Springer-Verlag New York, Inc., New York, 1966.

[LL77] L.D. Landau and E.M. Lifshitz. Quantum Mechanics (Third Edition, Revised and Enlarged). Perg-
amon, third edition, revised and enlarged edition, 1977.

[MP97] M. Mântoiu and R. Purice. Some propagation properties of the Iwatsuka model. Communications
in Mathematical Physics, 188(3):691–708, Oct 1997.

[MR88] E.H. I. Mourad and Z. Ruiming. On the Hellmann-Feynman theorem and the variation of zeros of
certain special functions. Advances in Applied Mathematics, 9(4):439 – 446, 1988.

[Olv97] F. W. J. Olver. Asymptotics and special functions. AKP Classics. A K Peters, Ltd., Wellesley, MA,
1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)].

[Pop12] N. Popoff. On the spectrum of the magnetic Schrödinger operator in a dihedral domain. Theses,
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