DECARBONISING POWER GENERATION -THE EFFECTIVENESS OF RENEWABLE ENERGY POLICY IN EUROPE AND LATIN AMERICA

- Germán **Bersalli**; University Grenoble-Alpes german-ariel.bersalli@univ-grenoble-alpes.fr

- Jonathan El-Methni; University Paris Descartes
- Philippe Menanteau; University Grenoble-Alpes, CNRS

IEW 2018, Gothenburg, 19-21 June 2018

Laboratoire d'Économie Appliquée de Grenoble

OUTLINE

- 1. Intruduction
- 2. Determinants of RE investments
- 3. Methodology and data
- 4. Main results
- 5. Final remarks

INTRODUCTION: motivation and research objectives

- Renewable energy policy is at the heart of decarbonization strategies in both developed and developing countries
- Europe and Latin America are playing central roles in power sector decarbonization
- We evaluate policy effectiveness using a panel dataset covering 50 countries over 1995-2014

Objectives :

- Evaluate the e**ffectiveness** of different **policy instruments** to promote RE investments in Europe and LA

- Analyse the influence of energy-economic determinants

The determinants of renewable energy investments (I)

1. Support policies

Contrasting results concerning:

Price-based instruments: FIT, FIP

Quantity-based instruments: RPS, tenders

The determinants of renewable energy investments (II)

2. Structure and dynamic of energy sectors:

- a) Energy mix: competition and complementarity between technologies
- b) Costs of RE and conventional energy sources and electricity prices
- c) Energy dependence
- d) Power sector dynamics: annual rate of growth of consumption rate
- e) Level of CO2 emissions from fuel combustion

The determinants of renewable energy investments (III)

3. Macroeconomic and institutional determinants :

- a) Income per capita
- b) Access to funding
- c) Openness to international trade ?
- d) Political and institutional determinants (governance quality including the policy framework)

Methodology and data I: the model

Panel dataset:1995-201420 countries in LA, 30 in Europetechnologies:PV, wind, biomass, geothermal

$$Y_{it} = \alpha_i + \beta 1 X_{it} + \beta 2 W_{it} + \beta 3 Z_{it} + \varepsilon_{it}$$

Method: PCSE

Methodology and data II

Dependent variable: newly installed RE capacity per inhabitant (MW/1 million inhabitants) (Popp et al., 2011, Polzin et al., 2015)

$$\frac{(CAP_t^{i,j} - CAP_{t-1}^{i,j})}{POP_{ij}}$$

$$\forall i = 1, ..., 20; j = 1, ..., 4; t = 1995, ..., 2014$$

CAP is total installed capacity at the end of each year;

POP is the population.

Methodology and data III: RE policies in LA

Methodology and data IV: RE policies in Europe

Methodology and data V: explanatory variables

NAME/CODE	DEFINITION/INDICATOR
Evolution of electricity demand (crois_con)*	Growth rate of electricity consumption over the last 5 years.
Share (%) of nuclear in the electricity mix (part_nuc)*	Percentage of nuclear energy, in toe, in the gross total electricity production
Share (%) of hydropower in the power mix (part_hyd)*	Percentage of hydropower, in toe, in the gross total electricity production
Energy independence rate (inde_en)*	The coverage of primary energy consumption by total domestic primary
	production. It measures the ability of a country to cover its energy needs and its
	dependence on energy imports.
CO ₂ emissions (em_co2)*	CO_2 emission per inhabitant (CO_2 from fuel combustion) (t CO_2 /inhab.)
Coal production per inhabitant (charbon)*	Gross annual coal production per inhabitant (Mt/inhab)
Gas production per inhabitant (gaz)*	Gross annual gas production per inhabitant (Mm3/inhab)
Income per inhabitant (pibh)*	GDP US\$ at constant price and exchange rate (2005) per capita
Domestic credit to the private sector (as % of GDP)	Financial resources provided to the private sector by the banking sector and
(credit)**	other financial corporations, through loans, purchases of non-assimilated
	securities and commercial credits (% du PIB)

Main results I

Summary - global model I

Dependent variable: cap_ad							
Variables	PCSE(1)			RE(3)		
FIT	(+)S	**	(+)S	**	(-	+)S	***
CVN	(+)S	**	(+)S	* * *	(+)S	* * *
SEC	(+)NS		(+)S	**	(+)S	* *
FISC	(+)NS		(+)NS		(-	⊦)NS	
Crois-con	(-)S	**	(-)S	**	(-)S	***
Part_nuc	(-)S	***	(-)S	**	(-)S	* *
Part_hyd	(+)NS		(-)NS		(-)S	*
Inde_en	(+)NS	* * *	(+)S	*	(-	+)NS	
Em_co2	(-)NS		(-)S	***	(-)S	* * *
Charbon	(+)S	***	(+)NS		(+)S	***
Gaz	(-)S	**	(-)S	*	()NS	
PIBh	(+)S	***	(+)S	* * *	(+)S	***
Credit	(+)NS		(+)NS		(+)S	**
Observations	1000		10000				1000

Main results II

Summary -Europe/LA model

	Europe				Latin America				
Variables	PCSE(1)	PCSE(2	2)	PCSE(1)	PCSE(2			
FIT	(+)S	***	(+)S	***	(+)NS	(+)NS			
CVN	(+)S	***	(+)S	***	(+)NS	(+)S *			
SEC	(+)NS		(+)S	**	(+)NS	(+)S **	*		
FISC	(+)NS		(+)NS		(-)NS	(-)NS			
Crois-con	(-)S	***	(-)S	***	(-)NS	(-)NS			
Part_nuc	(-)S	***	(-)S	***	(-)NS	(+)S *			
Part_hyd	(-)NS	**	(-)S	***	(+)S **	(+)NS			
Inde_en	(+)NS		(+)S	**	(+)S *	(+)NS			
Em_co2	(-)NS		(-)S	***	(-)NS	(-)NS			
Charbon	(+)S	**	(+)S	***	(-)S *	(-)NS			
Gaz	(-)S	**	(-)S	***	(+)NS	(+)NS			
PIBh	(+)S	**	(+)S	***	(+)S ***	(+)S **	**		
Credit	(+)NS		(+)NS		(+)NS	(-)NS			
		C00							

Main results III

Latin America:

- Support policies: the main drivers of RE diffusion in LA (factor 5)
- Policy effect delay (3 years-lag)
- Positive impact of GDP per capita
- Positive and significant impact of auction and quota system
- Positive but not significant impact of other policy instruments
- Influence credit market development?

Main results IV

Europe:

- Support policies: the main drivers of RE diffusion in Europe
- Policy effect delay (3 years-lag)
- Positive impact of GDP per capita
- Positive and significant impact of FIP/FIT and quota system
- Positive but not significant impact of auctions
- Negative correlation with power demand growth

Final remarks

- 1. The results converge for the influence of promotion policies in general: policies have a positive and statistically significant effect on investment in RE in both Europe and LA
- 2. Auctions scheme appears to be the main instrument in LA but it need to be adapted to the new phases of RE deployment in each country
- 3. Main challenges for LA:
 - Funding
 - Grid balance
 - Cooperation and energy integration in the region

Thank you for your attention!

german-ariel.bersalli@univ-grenoble-alpes.fr

