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We study the formation of magnetic clusters in frustrated magnets in their cooperative param-
agnetic region. For this purpose, we consider the J1-J2-J3 classical Heisenberg model on kagome
and pyrochlore lattices with J2 = J3 = J . In the absence of farther-neighbor couplings, J = 0,
the system is in the Coulomb phase with magnetic correlations well characterized by pinch-point
singularities. Farther-neighbor couplings lead to the formation of magnetic clusters, which can be
interpreted as a counterpart of topological-charge clusters in Ising frustrated magnets [T. Mizoguchi,
L. D. C. Jaubert and M. Udagawa, Phys. Rev. Lett. 119, 077207 (2017)]. Reflecting the tendency
of clustering, the static and dynamical magnetic structure factors, respectively S(q) and S(q, ω), de-
velop half-moon patterns. As J increases, the continuous nature of the Heisenberg spins enables the
half-moons to coalesce into connected “star” structures spreading across multiple Brillouin zones.
These characteristic patterns are complementary of pinch point singularities, and signal the prox-
imity to a Coulomb phase. Shadows of the pinch points remain visible at finite energy, ω. This
opens the way to observe these clusters through (in)elastic neutron scattering experiments. The
origin of these features are clarified by complementary methods: large-N calculations, semi-classical
dynamics of the Landau-Lifshitz equation, and Monte Carlo simulations. As promising candidates
to observe the clustering states, we revisit the origin of “spin molecules” observed in a family of
spinel oxides AB2O4 (A = Zn, Hg, Mg, B = Cr, Fe).

PACS numbers: 75.10.Kt

I. INTRODUCTION

Geometrically frustrated magnets provide a stage to re-
alize exotic states of matter, ranging from quantum and
classical spin liquids1–3, unconventional magnetic order-
ing with topological response4–6, and states accompanied
by exotic phase transitions7–9. Among them, the disor-
dered Coulomb phase is a canonical example for discrete
and continuous spins on the three-dimensional pyrochlore
lattice when frustration imposes a local divergence-free
constraint10, whose exotic character has been drawing
considerable interest.

The Coulomb phase consists of degenerate spin con-
figurations in absence of any spontaneous symmetry
breaking. The magnetic correlations due to the local
divergence-free constraint are characterized by singu-
larities in the static magnetic structure factor, S(q)11.
These singularities, called pinch point, have been ob-
served in the canonical spin ice materials, Ho2Ti2O7 and
Dy2Ti2O7

12,13.
On top of exotic correlations, the Coulomb phase sup-

ports fractional excitations. These excitations are easy to
visualize in spin ice, where Ising spins satisfy the so-called
ice rules with two spins pointing inwards and two spins
pointing outwards on every tetrahedron in the ground
state. A tetrahedron in a “three-in-one-out” or “one-in-
three-out” configuration, breaking this ice rule, carries a
gauge charge and serves as an elementary fractional ex-
citation. In spin ice, these gauge charges are actually
effective magnetic charges14. By identifying the spins
with their inherent “magnetic field”, one can regard the

gauge charge as a source or sink of the field, and assign a
magnetic charge −2(+2) for “one-in-three-out” (“three-
in-one-out”) tetrahedron states. Magnetic charges are
defined from the discrete divergence of the magnetic field,
i.e. the number of inward spins minus that of outward
spins.

The introduction of the concept of magnetic charges
turned out to be quite illuminating. The implicit as-
sumption for a “charge” quantity is two-fold in conven-
tional electromagnetism. Firstly, charge should be con-
served. Indeed, the above mentioned magnetic charge in
spin ice satisfies a local conservation in the sense that
they are always created/annihilated in pair of positive
and negative charges. And secondly, opposite charges
are expected to attract each others. However, this sec-
ond property is non-universal. In the canonical spin-ice
systems, Ho2Ti2O7 and Dy2Ti2O7, opposite charges in-
deed interact with attractive force, attributed to the long-
range dipolar interaction. However, the sign of the force
actually depends on the microscopic details of the sys-
tem.

Indeed, recently, the role of charge interactions are
drawing interest in spin ice15,16 and its two-dimensional
analog17–20. If the interaction is chosen unnaturally, i.e.,
attractive between same-sign charges, the Coulomb phase
is destabilized towards the formation of same-sign-charge
hexamer clustering15,16,20. The generic tendency to clus-
tering can be naturally understood from the competition
of the two-fold properties of charges. Same-sign charges
attract each others, but they cannot pair-annihilate due
to charge conservation. As a result, they form stable clus-
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ters. Their proliferation leads to unconventional classical
spin liquids. Accompanying the clustering, the magnetic
correlation displays a noticeable evolution, characterized
by half-moon patterns in S(q), which replaces the pinch
point singularities15,16,20,45.

The rich physics brought by the attraction of charges
of the same sign naturally motivates us to generalize its
analysis to the system with continuous spins. Indeed, the
magnetic charge in the Ising system can be generalized
to a conserved magnetic vector in continuous spin sys-
tems. With the continuous nature of magnetic vector,
one can expect a variety of stable textures beyond hex-
amer clustering. From this viewpoint, it is interesting to
look at a class of spinel oxides with 3d magnetic ions,
AB2O4 (A = Zn, Hg, Mg, B = Cr, Fe)21–29. These com-
pounds have weak magnetic anisotropy with small spin-
orbit interaction of 3d ions, and the classical Heisenberg
model with farther-neighbor interactions is expected to
give a good starting point of analysis29. Indeed, accord-
ing to inelastic neutron scattering experiments, this fam-
ily lacks “pinch points” in the dynamical structure factor,
which are characteristic of the Coulomb phase. Instead,
diffuse scattering patterns appear at the corners of the
Brillouin zone. The diffuse scatterings are attributed to
the clustering of small number of spins, coined as “spin
molecules”. Depending on materials, molecules take the
form of hexamers21–25 and dodecamers26–28. In the work
by Conlon and Chalker29, the lack of pinch points has
been attributed to weak, generic, farther-neighbor ex-
change, inducing hexagonal cluster scattering as observed
in experiments.

To address these issues, in this paper, we consider the
classical Heisenberg models on kagome and pyrochlore
lattices with farther-neighbor interactions, on the high-
symmetry line J2 = J3 = J , for arbitrary values of J > 0.
We focus on cooperative paramagnetic region above mag-
netic ordering temperature, where the magnetic fluctu-
ations reflect the intrinsic nature of the system, in con-
trast to the ordering pattern itself, which is susceptible
to structural changes or other extrinsic effects.

Our main results are summarized as follows: (i) We
found three distinct patterns in S(q): pinch points, half-
moons, and stars. These patterns are counterparts of the
topological clusters obtained in the corresponding Ising
models. (ii) The three patterns are originated in the
structure of softest magnetic modes. (iii) The half-moon
and star patterns can be interpreted as a shadow of pinch
point, and serves as a signal of proximity to Coulomb
phase. (iv) These characteristic patterns also appear in
the low-energy region of dynamical structure factors, im-
plying the possibility of experimental detection through
inelastic neutron scattering.

The rest of this paper is organized as follows. In Sec. II,
we first describe the model, namely the J1-J2-J3 classical
Heisenberg Hamiltonian on the kagome and pyrochlore
lattices. Next, we introduce the theoretical methods;
large-N calculations, Monte Carlo simulations and semi-
classical Landau-Lifshitz (LL) equation. In Sec. III, the

three distinct patterns of the static structure factors and
their origin are discussed. Here the main arguments are
based on band-structure analyses of the large-N approx-
imation, supported by Monte Carlo simulations on the
O(3) Heisenberg model. Section IV is devoted to the spin
dynamics, analyzed by the LL equation. In Section V, we
discuss the real-space structure of the clusters, and show
that they can be understood as a continuation from the
topological charge cluster obtained in the Ising counter-
part. Finally, we present discussions and summary in
Sec. VI. Details of the large-N approximation, Monte
Carlo simulations, and the quadrupolar order parameter
are described in the Appendices.

II. MODEL AND FORMALISM

A. Model

We consider a Heisenberg model on kagome and py-
rochlore lattices with up to third-neighbor interactions:

H =J1

∑
〈i,j〉n.n.

Si · Sj + J2

∑
〈i,j〉2nd

Si · Sj

+J3a

∑
〈i,j〉3rd,a

Si · Sj + J3b

∑
〈i,j〉3rd,b

Si · Sj

=
1

2

∑
n,m

∑
µ,ν

∑
α=x,y,z

Sµ,αn Hµ,ν
n,mS

ν,α
m . (1)

J1, J2 and J3a,3b are the exchange coupling constants
connecting nearest-, second-nearest- and third-nearest
neighbors, as shown in Fig. 1. Notice that two differ-
ent types of the third-neighbor term (J3a and J3b) are
distinguished in that J3a connects the sites along edges,
while J3b connects those across a hexagon. Here, we
have introduced unit cell indices, n, m, and sublattice
indices, µ, ν, and expressed each sites as their combi-
nations: i = (n, µ) and j = (m, ν). The unit cells

FIG. 1. Schematic picture of the model in Eq. (1) for (a) a
kagome lattice and (b) a pyrochlore lattice. Red, blue, green
and purple lines denote, respectively, J1, J2, J3a and J3b. In
this paper, we consider J1 = 1, J2 = J3a = J and J3b = 0.
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contain respectively triangles (tetrahedra) of one orien-
tation for kagome (pyrochlore) lattice, and the sublat-
tice indices take µ = 1, · · ·Nsub, with Nsub = 3 (4).
Sµn = (Sµ,xn , Sµ,yn , Sµ,zn ) are (classical) three-component
vectors with unit length |Sµn | = 1.

The model with general parameter set has been inten-
sively studied on both kagome30–35 and pyrochlore29,36–40

lattices, putting an emphasis on the low-temperature or-
dered states. In the present work, we focus on the pa-
rameters (J1, J2, J3a, J3b) = (1, J, J, 0) with J > 0. This
parameter set has recently been shown to lead to a clus-
tering of topological charges in the corresponding Ising
models for J > 0 (see Sec. V for details15,16,20). The
value of J1 = 1 sets the energy and temperature scales
of our problem.

B. Conserved spins

It is instructive to introduce a local magnetic moment
for each triangular and tetrahedral unit, n,

Mn ≡ ζn
∑
j∈n

Sj , (2)

where ζn = ±1 is a sign factor distinguishing between
upward (+1) and downward (−1) triangles/tetrahedra41.
The Hamiltonian (1) can be rewritten as a function of
Mn:

H =

(
1

2
− J

)∑
n

|Mn|2 − J
∑
〈n,m〉

Mn ·Mm, (3)

where the summation over n is taken over both up-
ward and downward triangles/tetrahedra, and the sum-
mation over 〈n,m〉 is over neighboring pairs of trian-
gles/tetrahedra. This expression naturally accounts for
the Coulomb phase at J = 0, with Mn = 0 for all n, and
for its stability for small J as will be discussed in details
in the next sections. Equation (3) is a generalization of
the spin to charge mapping of the corresponding Ising
systems15,16,20,42 and satisfies a conservation law:∑

n∈D
Mn =

∑
j∈∂D

Sj , (4)

where D is a connected ensemble of triangles/tetrahedra,
and ∂D is its contour. The contour ∂D is made of all
spins shared between two triangles/tetrahedra, n ∈ D
and m /∈ D. This “Gauss’ law” means that the inter-
nal structure of magnetic cluster is constrained by the
boundary spins. Indeed, in the Ising case, the discrete
variant of this Gauss’ constraint strictly determines the
structure of clusters, and leads to hexamer spin liquids20.

C. Formalism

We study the static properties of model (1) with
(J1, J2, J3a, J3b) = (1, J, J, 0) and J > 0, by combining

classical Monte Carlo simulations and analytical large-N
method. We also address the dynamics by semi-classical
LL equation. In this section, we introduce the latter two
methods, and all details for the classical Monte Carlo
simulations will be given in App. B.

1. Large-N approximation

To investigate static structure factors, we employ a
large-N approximation11,29,43,44. The length of classical
Heisenberg spins satisfies a hard constraint |Sµn | = 1. In
the large-N method, Heisenberg spins Sµn are replaced
by soft-spin variables sµn whose length is constrained on
average:

〈(sµn)2〉 =
1

3
. (5)

Here disordered phases are assumed with 〈sµn〉 = 0. The
above constraint (5) is enforced by introducing a La-
grange multiplier λ which satisfies

1

Nsite

∑
q

Tr[λÎ + βĤ(q)]−1 =
1

3
, (6)

where the sum runs over all wavevectors q in the Brillouin
zone and Nsite is the total number of sites. Ĥ(q) repre-
sents the Fourier transformation of the exchange matrix:

[Ĥ(q)]µν =
∑
m

Hµν
0,me

iq·(Rm+rν−rµ) , (7)

where Rm is the position of unit cell m with respect to
the reference 0, and rµ is the position of the sublattice
µ within a unit cell. The static structure factor S(q) in
this formalism is given as

S(q) =
∑
µ,ν

〈sµ(−q)sν(q)〉 =
∑
µ,ν

[
λÎ + βĤ(q)

]−1

µν

=

Nsub∑
η=1

∑
µ,ν

[ψ∗η(q)]µ[ψη(q)]ν

λ+ βεη(q)
, (8)

where εη(q) and ψη(q) are respectively eigenvalues and

eigenvectors of Ĥ(q) with a band index η. Their cal-
culation can be carried out by using the premedial lat-
tices of kagome and pyrochlore, which are respectively
the honeycomb and diamond lattices. The main idea of
the analytic calculation is to regard the nearest-neighbor
(n.n.) exchange interaction of the original lattice as be-
ing mediated by the sites of the premedial lattice located
in between. We describe this method in Appendix A.

2. Landau-Lifshitz equation

To investigate the dynamical properties, we numeri-
cally solve the following LL equation45–47:

∂Si
∂t

= −Si ×Heff,i, (9)
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where Heff,i is an effective magnetic field at site i given
as

Heff,i =
∂H

∂Si

=J1

 ∑
j:〈i,j〉∈n.n.

Sj

+ J2

 ∑
j:〈i,j〉∈2nd

Sj


+J3a

 ∑
j:〈i,j〉∈3rd,a

Sj

+ J3b

 ∑
j:〈i,j〉∈3rd,b

Sj

 .

(10)

In our simulation, we first prepare the initial states,
which are well-thermalized with temperature T , by using
single-spin updates with Metropolis algorithm. Then we
solve Eq. (9) by using fourth order Runge-Kutta method,
and compute S(q, ω) as

S(q, ω) =
1

Nt

Nt∑
l=0

∑
n

∑
µ,ν

〈Sµ0 (0)Sνn(lδt)〉init

×ei[ωlδt−q·(Rn+rν−rµ)], (11)

where 〈· · · 〉init represents the sample average of
independently-prepared initial states; we prepared 864
states for a kagome lattice and 432 states for a pyrochlore
lattice. δt is an interval of time, set as 0.01, and Nt is the
number of steps for the time evolution, set as 100000. In
this simulation, the system size we use is 3 × 302 spins
for a kagome lattice, and 4 × 123 spins for a pyrochlore
lattice.

III. FOURIER-SPACE ANALYSIS:
PINCH POINTS, HALF-MOONS & “STARS”

We will primarily focus our attention to understand
the magnetic correlations in the disordered regimes of
cooperative paramagnetism. This is why we shall not go
into the details of the low-temperature ordered phases,
with the exception of the high-symmetry point J = 1/2
on pyrochlore in Section V C, whose nature is particu-
larly enlightening. This approach presents the advantage
that, in the cooperative paramagnets, the properties of
the kagome and pyrochlore lattices are qualitatively very
similar, allowing for a parallel analysis of the two lattices.

The evolution of the correlations in the cooperative
paramagnetic regimes are closely linked to the qualitative
changes in the band structure obtained by large-N anal-
ysis. The discussion in this section relies heavily on the
analysis of the low-energy band structure, supported by
Monte Carlo simulations at finite temperatures. The out-
line of the ground-state phase diagram is given in Fig. 2
while the excellent agreement between analytics and nu-
merics is illustrated in Fig. 3.

To briefly introduce the overall structure of phase dia-
gram [Fig. 2], the small-J region, which we call region (I),

FIG. 2. Ground-state phase diagram within the large-N ap-
proximation. Region (I) represents the Coulomb phase where
static structure factor shows pinch points for 0 < J < J1c =
1/5 (kagome) and 1/6 (pyrochlore). For J > J1c, the flat
bands are not ground state anymore and the physics is dom-
inated by the energy minima of the dispersive band [Figs. 4
and 5], giving rise to half-moon patterns in the static struc-
ture factor [Fig. 3]. The high-symmetry point at J2c = 1
(kagome) and 1/2 (pyrochlore) separates the large-J region
into two parts, with qualitatively different positions of the
energy minima in Fourier space [Figs. 4 and 5]. In the struc-
ture factor, the half-moons evolve continuously into “star”
patterns within region (II). The boundaries have been con-
firmed by Monte Carlo simulations.

is characterized by the pinch points in structure factor
[Fig. 3(a,d)]. As increasing J , the structure factor shows
qualitative changes twice. At intermediate values of J ,
at the beginning of region (II), the structure factor de-
velops characteristic pattern, which we call “half-moon”
after its shape [Fig. 3(b,e)]. Further increasing J , moving
continuously from region (II) to (III), S(q) shows further
change into the “star” pattern. Below, we will introduce
the nature of each regions, separately.

A. Flat bands of the Coulomb phase

The first noticeable outcome of the large-N theory is
the persistence of the flat band(s) for all values of J
[Figs. 4 and 5]. These flat bands – one for kagome and
two for pyrochlore – are well known from the n.n. model
11,38,43. They represent the Coulomb spin liquid where
every unit cell (triangle and tetrahedron) bears zero mag-
netization, {Mn = 0 | ∀n}, and appear in the static
structure factor as pinch points. The persistence of the
flat bands – and their double degeneracy for pyrochlore
– are readily understandable from Eq. (3) since all con-
figurations of the Coulomb phase with Mn = 0 remain
degenerate in presence of the farther-neighbor coupling
J . Mathematically, this persistence takes the form of
the exchange matrix Ĥ(q) being a polynomial of the n.n.
exchange matrix [see Apps. A, in particular Eqs. (A2)
and (A8)]. As such, the two exchange matrices share the
same basis of eigenvectors and the flatness of eigenvalues
is transmitted from the latter to the former.

Hence one needs to consider the evolution of the dis-
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—————————————————————————————————————————————–

FIG. 3. Structure factor for kagome (top) and pyrochlore (bottom) lattices calculated by (a)-(c) large-N approximation and (d)-
(f) Monte Carlo simulation. White lines denote the Brillouin zones. The model being antiferromagnetic, all the characteristic
features of the scattering appear in the secondary Brillouin zones. For region (I), the pinch points are clear signatures of the
divergence-free condition of the Coulomb phase. Their absence in regions (II) and (III) indicates that the system is out of
the Coulomb phase. The complementary patterns of the pinch points are the half-moons (II), which adiabatically evolve into
“star” shapes. The star patterns appear in region (II) and persist in (III). See Fig. 2 for the boundaries of the three regions.

persive bands to understand the qualitative changes in
the magnetic correlations as a function of J .

B. From pinch points to half-moons, near J1c

The flat bands form the ground-state manifold up to
J = J1c = 1/5 for kagome and 1/6 for pyrochlore. This
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FIG. 4. Kagome: Band structures of H(q) on high-symmetry lines (the first row), and on a two-dimensional momentum space
(the second row) for several values of J . In the second row the highest band is omitted for clarity. The position of energy
minima are shown with black arrows.

FIG. 5. Pyrochlore: Band structures of H(q) on high-symmetry lines (the first row), and on the hhl-plane (the second row) for
several values of J . In the second row the highest band is omitted for clarity. The position of energy minima are shown with
black arrows.

delimits the region (I) of the phase diagram of Fig. 2.
For J > J1c, one of the dispersive bands has a lower en-
ergy than the flat bands in parts of the Brillouin zone
[Figs. 4 and 5], and the energy minima form closed line
(surface) in a Brillouin zone for a kagome (pyrochlore)
lattice [Fig. 6, 7]. It means that the static structure fac-
tor is now dominated by a dispersive band rather than

FIG. 6. The energy minima in the Brillouin zone for (a)
J = 0.26 and (b) J = 1.1 in the kagome system.

the flat band. As a consequence, the pinch points are
smoothed out and disappear, giving rise to half-moon
patterns at the center of the Brillouin zone. The half-
moons, and later “star” patterns are characteristic of the
region J > J1c, and can be regarded as complementary

FIG. 7. The energy minima in the Brillouin zone on a hhl-
plane for (a) J = 0.22 and (b) J = 1 in the pyrochlore system.
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FIG. 8. Kagome: Top: Heat capacity Ch showing the low-
temperature bump/kink into the coplanar regime at T ≈
0.005 for J = 0 (black dots) and at T ≈ 0.0004 for J1c = 1/5
(colored triangles). Bottom: Temperature evolution of the
static structure factor S(q) for J = 0 (left) and J1c = 1/5
(right), obtained by the classical Monte Carlo simulation.

to the pinch points [see discussion in Sec. III C].

The kagome n.n. Heisenberg antiferromagnet (J = 0)
is well known for its Coulomb phase at intermediate tem-
peratures, followed by a coplanar regime at lower temper-
atures selected by thermal order by disorder30–33. The
Coulomb phase is marked by a plateau in the heat ca-
pacity and pinch points in the structure factor. When

FIG. 9. Pyrochlore: (a) Heat capacity Ch showing the low-
temperature ordering when J is just above J1c, but not at
J1c = 1/6, down to T ∼ 10−4. (b) Static structure factor
S(q) in the [hhl] plane at T = 0.005 showing the pinch points
at J1c replaced by very small half moons above J1c.

the system enters the coplanar regime, the heat ca-
pacity marks a kink, and sharp peaks of scattering at
q√3 = (4π/3, 0) appear in the structure factor [Fig. 8].

These peaks represent the onset of the
√

3 ×
√

3 long-
range order as T → 0+ [34], but are not Bragg peaks
since there is no dipolar long-range order at finite tem-
perature.

At J = J1c, the softening of the band touching
between the lowest dispersive and the flat bands en-
hances thermal fluctuations compared to J = 0. As a
consequence, the coplanar regime is pushed down to
lower temperatures by an order of magnitude [Fig. 8].
Noticeably, at intermediate temperatures (T = 0.022),
the pinch points visible at J = 0 have disappeared in
favor of the onset of the characteristic half-moons for
J = J1c. This is why the heat capacity does not show
the characteristic plateau of the Coulomb phase at J1c.

As for the pyrochlore lattice, the value of J1c = 1/6 ob-
tained from large-N is confirmed by simulations down to
T ∼ 10−4 [Fig. 9]. For J = J+

1c, just above the boundary
inside region (II), the system orders. But it remains dis-
ordered at the boundary J1c. As a consequence, the pinch
points of the Coulomb phase are visible up to J = J1c,
replaced by half-moons as soon as the system enters re-
gion (II) [Fig. 9.(b)]. Please note that the small thickness
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of the pinch points for J = J1c is due to the proximity of
the half-moon regime at finite temperature.

C. Origin of the half-moons

In region (II), the structure factor develops half-moon
patterns [Fig. 3 (b,e)]. What kind of information can
be read from this characteristic magnetic scattering ?
The intensity of scattering at particular wave vectors q
is determined by the energy of magnetic modes and the
corresponding real-space structure of dominant modes.
In our large-N language, they are described by the
shape of the energy-minima manifold, εmin(q), and the
weight of the corresponding eigenfunctions, Ξη(q) ≡∑
µ,ν [ψ∗η(q)]µ[ψη(q)]ν . The weight, Ξη(q), satisfies the

sum rule: ∑
η

Ξη(q) = Nsub, (12)

due to the normalization of spin length.
Basically, the high-intensity points of the half moons

follow the position of the energy minima. However, the
energy of magnetic modes do not account for everything.
On one hand, the energy-minima manifold, εmin(q), is
extended in Fourier space. More precisely, it can be de-
fined locally as a hypersurface; a closed line for the two-
dimensional kagome and a closed surface for the three-
dimensional pyrochlore [see Figs. 6 and 7, and Apps. A 5
and A 6 for more details]. On the other hand, it is clear
from Fig. 3.(b,e) that the extension of the half-moons is
finite. They terminate at some point and do not form
closed curves as expected from the energy-minima man-
ifold. This vanishing intensity was coined as “ghost” ex-
citations for the kagome Heisenberg antiferromagnet45.

This discrepancy, symbolized by a missing arc that
should connect the half moons by pair, can be attributed
to the spatial character of the magnetic mode. In Fig.
10, we show the intensity maps of Ξη(q) for a kagome lat-
tice in the second Brillouin zone, surrounding the wave

vector
(

0, 4π√
3

)
. The traditional pinch point resides in the

flat band [Fig. 10(c)]. Half-moons are from the lower-
dispersive band [Fig. 10(a)]. From Ξη(q), one finds

FIG. 10. Kagome: The weights of eigenvectors, Ξη(q), in the

second Brillouin zone centered at
(

0, 4π√
3

)
, for (a) a dispersive

band with lower energy, (b) a dispersive band with higher
energy, and (c) a flat band.

FIG. 11. Pyrochlore: The weights of eigenvectors, Ξη(q), in
the second Brillouin zone centered at [002] for (a)-(c) and at
[111] for (d)-(f). (a) and (d) are for a dispersive band with
lower energy, (b) and (e) for a dispersive band with higher
energy, and (c) and (f) for the summed contribution of the
two flat bands.

that the high-intensity regions of flat mode and lower-
dispersive mode complement each other. This comple-
mentarity is originated in the sum rule, Eq. (12). Around
the pinch point, the contribution from the highest-energy
band is small, and the sum rule is satisfied only between
the flat mode and the lower dispersive mode. The miss-
ing arc is attributed to the vanishing weight of lower dis-
persive band in the bow-tie region, where the flat band
contribution is dominant. In this sense, the missing arc
of the half-moon can be considered as a shadow of pinch
point, explaining the 10-year old open question about the
nature of the “ghost” excitations in the kagome Heisen-
berg antiferromagnet45. This missing arc signals the
proximate presence of pinch point, and serves as evidence
that the system is in the vicinity of a Coulomb phase.

The same scenario holds for the pyrochlore lattice: the
maps are shown in Figs. 11(a)-(c) (centered at [002]) and
11(d)-(f) (centered at [111]). Again, the combination of
the energy-minima surface and the intensity map Ξη(q)
gives rise to the half-moon patterns.

This explanation remains valid throughout the phase
diagram for J > J1c, and in particular as the half-moons
continuously deform into star patterns.

D. From half moons to star patterns for J1c < J

In the previous subsection, we have seen how the shape
of the half-moon is linked to the position of the energy
minima in Fourier space. These energy minima contin-
uously move as a function of J , and the shape of the
half-moon evolves with them, as illustrated in Figs. 12
and 13.

As increasing J , the radius48 of the half-moons in-
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FIG. 12. Kagome: Evolution from half-moon to star patterns
in the static structure factor S(q) for J1c < J < J2c, obtained
by Monte Carlo simulation. The simulation temperature is
T = 0.32.

creases. Since the radius is limited by the size of the Bril-
louin zone, neighboring half-moons eventually connect
to each other by their extremities, forming star shapes.
Please note that while the star shapes are rather obvious
for kagome [see the top panels of Fig. 3.(c,f) and Fig. 12],
they are somewhat more figurative for pyrochlore in a
[hhl] plane [see the bottom panels of Fig. 3.(c,f) and
Fig. 13]. For convenience, we shall use the name of “star”
for both lattices, which shall be understood as the pat-
terns formed by connected half-moons.

The increase of the half-moon radius in Fourier space,
RK,P , can be calculated analytically thanks to the large-
N method

RK =
4√
3

arccos

√√√√1

8

[(
1 + J

2J

)2

− 1

]
, (13)

along the ΓM direction for kagome, and

RP = 2 arccos

[
4J + 1− 28J2

32J2

]
, (14)

along the ΓX direction for pyrochlore. These formulae
are in excellent agreement with results obtained from
Monte Carlo simulations in the regime of collective para-
magnetism, and above any potential transition tempera-
ture [Fig. 14].

IV. SEMI-CLASSICAL DYNAMICS

In experiments, signals of anomalous magnetic correla-
tion are sometimes observed in finite-frequency regions,

FIG. 13. Pyrochlore: Evolution from half-moon to star pat-
terns in the static structure factor S(q) for J1c < J < J2c, ob-
tained by Monte Carlo simulation. The bottom right panel is
below the transition temperature at the high-symmetry point
J = J2c with Bragg peaks at qL =

[
1
2

1
2

1
2

]
.

through, e.g., inelastic neutron scattering. For example,
it is at finite energy of the kagome Heisenberg antifer-
romagnet that half-moons were first observed45, before
being stabilised as signature of the ground state, at low
energy, via farther-neighbor interactions15,16,20. Accord-
ingly, in order to find the half-moons and stars in a re-
alistic experimental setting, it is desirable to estimate
the energy scale of corresponding magnetic excitations.
In the context of large-N analysis, these magnetic pat-
terns are associated with energy bands [Fig. 4, 5], but
this band energy cannot be interpreted as the frequency
of experimental probes in itself. A relation connecting
them was proposed under the assumption of relaxation
dynamics29,46. However, it is not a priori obvious if this
assumption holds in our system. To this end, in this sec-
tion, we address the dynamics of the system by solving
the semiclassical LL equation in Eq. (9) and calculating
the dynamical structure factor S(q, ω). Here we focus
on regions (II) and (III) for both kagome and pyrochlore
lattices.

Let us first see the results for a kagome lattice. Cuts
for several frequencies are shown in Figs. 15. As ex-
pected, the characteristic patterns observed for S(q) are
obtained in the low-energy sectors in both regions. In the
region (II), as clearly seen in Fig. 15(a), the half-moon
signal appears in the quasi-elastic regime: ω = 0, show-
ing that this pattern dominates the long-time behavior of
magnetic correlation in this region. The pattern sustains
with small ω dependence in the low-frequency region. As
going to intermediate energy scale comparable to n.n.
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FIG. 14. The evolution of the radius of the half moons
in Fourier space (normalized by 2π) for pyrochlore (a) and
kagome (b) agrees quantitatively between numerics (red cir-
cles) from classical Monte Carlo simulations and analytics
(black line) derived from large-N calculations [Eqs. (13) and
(14)]. The error bars come from the discretisation of the
Fourier space in a system of finite size (L = 30). For kagome,
data were taken at T = 0.32. For pyrochlore, data were taken
for a range of temperature above the transition temperature,
T ∈ [0.08; 0.24].

coupling, ω ∼ 1, the signal smears out. Similarly, in the
region (III), the star shape appears in the low-frequency
part of the dynamical structure factor [Fig. 15(c)], and
it gradually blurs towards higher energy. The remnant
of star pattern remains observable up to higher energy,
compared with the vanishment of half-moons in the re-
gion (II), probably attributed to the growing energy scale
of magnetic modes as J , as implied by the larger band
width obtained in the large-N analysis [Fig. 4 and 5].

The same trend is also seen for a pyrochlore lattice, as
shown in Fig. 16. The half-moon and the star patterns
are clearly visible in each region. The results of both
lattices show that the shadow of pinch points can be ob-
served through the excitations in finite-frequency range,
i.e., the proximity to Coulomb phase can be captured
through the inelastic neutron scattering experiment.

V. REAL SPACE PICTURE:
MAGNETIC CLUSTERING

In this section, we will address the real space picture,
accompanying the characteristic patterns in the struc-
ture factors. We will show that half-moons and stars re-

FIG. 15. Kagome: ω-cuts of S(q, ω) for (a,b) J = 0.3, T =
0.05 and (c,d) J = 1.1, T = 0.275.

FIG. 16. Pyrochlore: ω-cuts of S(q, ω) for (a,b) J = 0.22, T =
0.05, and (c-e) J = 1, T = 0.5.

flect the formation of magnetic clusters. These magnetic
clusters can be associated with the cluster of topologi-
cal charges obtained in the Ising systems, through the
analogy of conserved spin introduced in Eq. (2), with the
topological charge defined in the Ising system15,16,20.
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A. Comparison with Ising systems

The half-moons and stars in S(q) are also seen in the
corresponding Ising model15,16,20:

H =
∑
〈i,j〉n.n.

σzi σ
z
j + J

∑
〈i,j〉2nd

σzi σ
z
j + J

∑
〈i,j〉3rd,a

σzi σ
z
j .

(15)

For Ising degrees of freedom σzi , the Hamiltonian can be
re-written in terms of local topological charges on each
triangle (for kagome) or tetrahedron (for pyrochlore),

Qn = ζn
∑
i∈n

σzi , (16)

with ζn = +(−)1 for a upward (downward) trian-
gle/tetrahedron. The possible values of charges are Qn =
{±3,±1} for a kagome lattice; Qn = {±4,±2, 0} for a py-
rochlore lattice. The Hamiltonian then becomes15,16,20,42

H =

(
1

2
− J

)∑
n

Q2
n − J

∑
〈n,m〉

QnQm + (const.). (17)

The vector field defined in Eq. (2) and the Hamiltonian
form of Eq. (3) were natural extensions of these discrete
topological charges to continuous degrees of freedom. We
see in Eq. (17) that J couples the n.n. charges. J > 0
means that same-sign charges attract each other.

The static structure factors of this Ising model show
similar features to those of the Heisenberg model. The
half-moons appear for 0 < J < 1

3 on kagome20, and for

J ∼ 1
4 on pyrochlore15,16. In both lattices, the origin of

the half-moons is to a large extent due to the formation of
“hexamers” [Figs. 17(e) and 17(f)], which correspond to
closed loops made of at least six charges of the same sign.
Branches of same-sign charges are then attached to these
central hexamers, forming disordered spin-liquid phases
made of large clusters of topological charges.

Here, we show that the star patterns discussed in this
paper also appear in the large-J region of the Ising mod-
els: J > 1

3 for a kagome lattice [Fig. 17(a)] and J > 1
4 for

a pyrochlore lattice [Fig. 17(b)]. At lower temperatures,
the system orders into phases paved by small clusters of
charges, with a maximal charge at the centre, surrounded
by smaller charges of the same sign [Fig. 17(c,d)].

From this point of view, the passage from the half-
moons to the stars in the static structure factor corre-
sponds to the evolution from a disordered phase made of
hexamers to the ordered phase of smaller clusters cen-
tered around a maximal charge. The similarity of half-
moons/stars between Ising and Heisenberg models sug-
gests that short-range correlations similar to topological
charge clusters also develop in the Heisenberg models,
even though topological stability, with a discretised value
of the topological charge, cannot be expected for the con-
tinuous spin systems. The motivation of the next sections
will be to make this idea more quantitative.

FIG. 17. The star patterns in the structure factor for Ising
models on the (a) kagome and (b) pyrochlore lattices, ob-
tained by Monte Carlo simulations. The parameters J and T
are described in the figure. White lines denote the Brillouin
zones. The corresponding clusters of topological charges are
shown in (c) and (d). The hexamers for (e) kagome and (f)
pyrochlore lattices are also presented. Red (blue) dots denote
the spin up (down). Orange (yellow) triangles for a kagome
lattice denote Q = +3(+1); dark blue (light blue) tetrahedra
for a pyrochlore lattice denote Q = +4(+2).

B. Conserved spin correlator

To characterize the real space structure in the Heisen-
berg models, we focus on the conserved spin Mn as a
vector-field analogue of the topological charge Qn in the
Ising models. The momentum-space correlator of Mn is
defined as

SM (q) ≡ Nsub

Nsite

∑
n,m

〈Mn ·Mm〉e−iq·(Rm−Rn), (18)

where Rn,m is the coordinate at the center of the tri-
angle/tetrahedron where Mn,m is defined. Within the
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large-N approximation, SM (q) is represented as

SM (q) =
Nsub

Nsite

∑
k,k′=4,5

ζkζk′
Nsub∑
η=1

〈Mη
k (−q)Mη

k′(q)〉

=

Nsub∑
η=1

∑
µ,ν

[ψ∗η(q)]µ[ψη(q)]ν

[λ+ βεη(q)]
· Fµ,ν(q). (19)

Here, k = 4,5 denotes the direction of trian-
gle/tetrahedron, rc ≡ 1

Nsub

∑
µ rµ is the coordinate at

the center of the upper triangle/tetrahedron,

Mη
k′(q) =

∑
µ

eiq·[ζk(rµ−rc)][ψη(q)]µ, (20)

is the conserved spin of η-band, and

Fµ,ν(q) =
∑

k,k′=4,5

ζkζk′e
iq·[ζk′ (rν−rc)−ζk(rµ−rc)], (21)

is the additional form factor. Figure 18 shows SM (q)
obtained by the large-N approximation. In the region (I),
SM (q) becomes very small as decreasing temperature,
due to the divergence-free nature of the Coulomb phase.
In large-N sense, the flat band does not contribute to
the conserved spin correlator since Mµ

k (q) = 0 for flat
bands. For regions (II) and (III), since SM (q) is written
by a linear combination of sublattice-resolved structure
factors, it shows the characteristic patterns reminiscent
of the static structure factor S(q). While the shadow
pinch points are absent due to the additional form factor
F k,k

′

µ,ν (q), the high-intensity points of SM (q) traces the
trajectory of εmin(q) in Fourier space.

The real-space correlator,

SM (R) ≡ 〈M0 ·MR〉, (22)

is defined on dual honeycomb (diamond) lattice for
the kagome (pyrochlore) case, and given by the inverse
Fourier transformation of SM (q). We show SM (R) for
both cases, in Figs. 19 (kagome) and 20 (pyrochlore).
The site 0 is shown with a white circle. The red (blue)
dot means that the correlation 〈M0 ·MR〉 takes posi-
tive (negative) value, and its radius denotes the rescaled
absolute value (see the captions of the figures).

As shown in Fig. 19 (a), in the region (II), positive cor-
relation develops in n.n. sites, as can be expected from
the Mn-representation of Hamiltonian [Eq. (3)]. More-
over, a noticeable amount of correlation develops beyond
n.n sites, especially surrounding hexagons, implying the
clustering of spins reminiscent of the hexamer cluster in
the Ising case, made of same-sign charges surrounding an
hexagon. In the Heisenberg case, instead of the charge,
the conserved spin shows substantial positive correlation
around an hexagon.

The qualitative difference of patterns between region
(II) with half-moons and region (III) with stars indicates
that different types of clusters evolve in these two re-
gions. For region (III) the positive n.n. correlation is

FIG. 18. The conserved spin correlator for a kagome lattice
[(a)-(c)] and for a pyrochlore lattice [(d)-(f)]. Corresponding
values of J and T are given in the figure.

surrounded by the negative correlations, which is remi-
niscent of the crystalization of double/triple-charge clus-
ters in the Ising models15,20.

Despite the qualitative similarity of cluster structures
between Heisenberg and Ising cases, there is one signifi-
cant difference. In the Ising case, the cluster shapes are
rigidly fixed in the region (II) and (III), respectively, due
to the discrete spin nature of Ising spins, and do not
change with J . Meanwhile in the Heisenberg case, the
continuous spins allow continuous modification of clus-
ters, and their amplitudes and cluster sizes also change
continuously with J . For example, in the region (II), the
cluster can be considerably long-ranged near the bound-
ary with region (I), as implied by the small half-moon
radius in the Fourier space [Fig. 14].
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FIG. 19. The conserved spin correlator in real space for a
kagome lattice. Black lines denote bonds of the premedial
honeycomb lattice. Colors of dots correspond to the sign (see
the main text), and the central white circle denotes the origin.
The radius is proportional to the absolute value, and rescaled
as r = C|SM (R)| with C = 3 for (a) and C = 1 for (b).

FIG. 20. The conserved spin correlator in real space for a
pyrochlore lattice. Black lines denote bonds of one buckled
honeycomb layer, cut through the premedial diamond lattice,
as seen from the [111] direction. Colors of dots correspond
to the sign (see the main text), and the central white circle
denotes the origin. The radius is proportional to the absolute
value, and rescaled as r = C|SM (R)| with C = 3 for (a) and
C = 1/3 for (b).

C. Gauge-charge ordering at the high-symmetry
point J = J2c on pyrochlore

We will confirm the change of clustering patterns be-
tween regions (II) and (III) via Monte Carlo simulations,
using the pyrochlore model at the boundary J = J2c as
a working example.

What happens at J2c ? Within the large-N approxima-
tion, this is where the energy-minima manifold changes
its topology, as illustrated in Figs. 6 and 7. The man-
ifold moves from enclosing the Γ point in region (II)
(J1c < J < J2c) to the zone corners in region (III)
(J2c < J). The model at J2c is thus a high-symmetry
point of our Hamiltonian. As we will see in this section,
it confers to the J2c boundary an advantage of simplicity
particularly useful to characterise the low-temperature
ordered state.

Since the energy minima cover an extended region in
Fourier space, the ordering mechanism is necessarily via
thermal order by disorder. For most of the phase diagram
when J > J1c, the continuous evolution of the energy-
minima manifold implies incommensurate order at low

FIG. 21. First order phase transition at the high-symmetry
point J = J2c on pyrochlore, as demonstrated by the discon-
tinuity of (a) the dipolar order parameters ML at wave vector
qL and (b) the quadrupolar order parameter MQ. The black
dashed lines indicate the value of saturation for each order
parameter.

temperatures. But at the high-symmetry model J2c, or-
der by disorder selects the L point on the boundary of
the Brillouin zone, (h,k,l)= (1/2, 1/2, 1/2), as suggested
by the large-N analysis of Fig. 5 and confirmed by Bragg
peaks in the Monte Carlo of Fig. 13 [bottom right panel].
The corresponding order parameter

ML =

∣∣∣∣∣ 1

N

N∑
i=1

Sie
ıri·qL

∣∣∣∣∣ (23)

displays a clear first-order jump at the transition
[Fig. 21]. Since there are eight L points for each Bril-
louin zone, and that each L point is shared between two
adjacent Brillouin zones, the saturated value of ML is
2/8 = 1/4. Measurements of ML are especially diffi-
cult to thermalize below the transition. ML seems to
converge towards its saturated value of 1/4, possibly via
a second transition at very low temperature. However,
further work is necessary to confirm this point. It is also
possible that the order parameter ML does not saturate.
Measurements of the quadrupolar order parameter MQ

on the other hand thermalize quite easily to its saturated
value of 2/

√
3 at zero temperature [see App. C for the

definition].
In the rest of this section, we will focus on the nature

of the ground state. The saturation of the quadrupolar



14

FIG. 22. Ground state at the boundary J = J2c on the pyrochlore lattice displayed over 32 tetrahedra. All spins are collinear,
pointing either up (blue sphere) or down (red sphere). The color of the tetrahedra represent their effective topological charges
as defined in Eq. (16): +4 (dark blue), +2 (light blue), 0 (white), −2 (orange), −4 (red). Each cubic unit cell is composed of a
small cluster of five charges (including one maximal charge) and three zero charges (acting as a vacuum separating charges of
opposite sign). This intervening vacuum allows for a global shift of the clusters, illustrated between the left and right panels.
The spin configurations are split into two parts by an horizontal semi-transparent plane. Between the two panels, all spins
above the semi-transparent plane have been shifted along the [110] direction to the next tetrahedron (at a distance of two
nearest neighbours). Because the contact between charges is not modified, the energy is the same. Doing the same shift a
second time gives back the initial state. From the point of view of discrete degrees of freedom, this gives a sub-extensive entropy
to the ground state.

order parameter MQ [Fig. 21.(b)] indicates that all spins
are collinear in the ground state. This collinearity al-
lows to temporarily forget the continuous nature of the
classical Heisenberg spins and to consider them as Ising
degrees of freedom, pointing either up or down. In anal-
ogy with Sec. V A, each tetrahedron bears an effective
charge Qn = {0,±2,±4}. At J2c = 1/2, the “chemical
potential” (i.e. the first term) of Eq. (17) disappears and
the ground-state energy, EGS , only comes from the n.n.
coupling between charges

EGS = −1

2

∑
〈n,m〉

QnQm. (24)

This coupling is attractive between same-sign charges.
Because of the staggering value of ζn between up and
down tetrahedra in Eq. (16), this attraction does not give
rise to ferromagnetism. The minimization of the energy
is done by paving the lattice with the small clusters of
Fig. 17.(d); a central charge +4 or −4 surrounded by four
charges +2 or −2 respectively. This state is illustrated
in Fig. 22 over four cubic unit cells (32 tetrahedra). In
order to avoid contact between charges of opposite sign,
each cluster is separated from the other ones by a vac-
uum (zero-charge tetrahedra). Furthermore, each cluster
fits within the eight tetrahedra of a cubic unit cell: one

maximal charge Qn = ±4, four charges Qn = ±2 and
three vacuum tetrahedra Qn = 0. In order to respect the
global neutrality of the system, there must be as many
positive as negative clusters. Since the centres of the cu-
bic unit cells form, by definition, a bipartite cubic lattice,
the global neutrality is enforced by a staggering arrange-
ment of the clusters, alternatively positive and negative.
The magnetic unit cell of the ground state is made of 32
spins (16 tetrahedra).

This structure is responsible for the peaks at (h,k,l)=
(1/2, 1/2, 1/2) in the structure factor of Fig. 13 [bottom
right panel]. In the actual simulations, however, the diffi-
culty of thermalization remains in the low temperatures,
because the order parameter ML does not saturate com-
pletely. We believe this is due to the sub-extensive en-
tropy of the ground state, as illustrated in Fig. 22. We
explain the origin of the degeneracy of the (1/2,1/2,1/2)-
state in App. D.

VI. SUMMARY AND DISCUSSIONS

We have investigated the magnetic correlations of
Heisenberg models with antiferromagnetic farther- neigh-
bor interactions on kagome and pyrochlore lattices in
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their cooperative paramagnetic regions. For both lat-
tices, we found three distinct patterns of the static struc-
ture factor, S(q), namely pinch points, half-moons, and
stars. We clarified the origin of these patterns by com-
bining the band structure analysis based on a large-N
approximation, and Monte Carlo simulations.

Among the above characteristic patterns, the pinch
point serves as a direct evidence of a Coulomb phase.
This singular feature of S(q) comes from the structure of
flat band in the large-N analysis. Meanwhile, the latter
two patterns show that the system is not in the Coulomb
phase any more. The half-moon and star patterns can be
interpreted as complementary of pinch point, and signals
the system is in the vicinity of a Coulomb phase. The
half-moon signal comes from the lower dispersive band in
the large-N analysis, and it is attributed to the structure
of energy-minima manifold, and the spatial structure of
corresponding magnetic mode. The star pattern can be
obtained from half-moon, via the topological change of
energy-minima manifold in Brillouin zones. In the re-
gions where half-moon and star patterns dominate the
low-energy physics, a shadow of the pinch points remains
observable at finite energy [Figs. 10 and 11].

In real-space perspective, the half-moon and star pat-
terns signal the formation of magnetic clusters. These
magnetic clusters are characterized by the short-range
correlation of conserved spin, which is analogous to the
topological charge defined for the corresponding Ising
system. Through this analogy, the half-moon and star
cluster can be associated with the hexamers and triple-
charge cluster obtained in the Ising system, respectively.

The analogy to Ising system can be extended to the
ordering at the high-symmetry point, J = J2c on py-
rochlore system, where the structure of low-temperature
ordered phase can be well understood through the con-
cept of topological charge. In contrast, the difference
from the Ising system is found in the rigidity of clus-
ter structure: While the clusters are rigidly fixed due
to the discreteness of spins in the Ising system, in the
Heisenberg system, the cluster shape is flexibly changed
as varying J, due to the continuous nature of spin degrees
of freedom.

We further addressed the dynamical properties of the
model by solving the semiclassical LL equations. As a
result, we found that the characteristic half-moon and
star patterns appear in the frequency-resolved structure
factors, in particular in the low-frequency regime, which
means the magnetic clusters dominate the long-time be-
havior of the dynamics. Obtained patterns in S(q, ω) can
be directly accessible through the experimental probes,
such as inelastic neutron scattering.

In fact, in pyrochlore compounds, several types of mag-
netic clusterings have been reported. In ZnCr2O4

21 and
MgCr2O4

23–25, six-spin composites dominate the low- en-
ergy excitations. While the proposed spatial structure is
different from the hexamers obtained in our analysis, our
model clearly gives a route to similar clustering around
hexagons. It is tempting to point out the possibility that

our hexamers may be continuously connected to the low-
energy excitations observed for these materials. As to the
half-moon signal corresponding to the hexamer type clus-
ters, recently, it was theoretically proposed for a double-
layered kagome material50.

It is also worthwhile to look at another pyrochlore com-
pound, ZnFe2O4. The cluster excitation observed for
this compound takes a “dodecamer” form, consisting of
twelve spins28. The spatial structure of this excitation
is common in the triple-charge cluster obtained in the
region (III) in our model. Interestingly, for this com-
pound, large farther-neighbor coupling, J3a > J1, is ex-
pected26–28. Different dodecamer structure reminiscent
of the kagome hexamer was also proposed for HgCr2O4

22.

In conclusion, we found new characteristic patterns
in magnetic structure factors, complementary to pinch
points, which signal the proximity to Coulomb phase.
These patterns signal the formation of magnetic clusters,
analogous to the low-energy excitations observed for py-
rochlore compounds.
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Appendix A: Analytical formula for S(q) in large-N
analysis

In this section, we describe the derivation of S(q) in
large-N approximation, in detail. The J1-J2-J3 model
has two special properties at J2 = J3 ≡ J , which enables
us simple analytical approach. One is the polynomial
expression of Hamiltonian in terms of incident matrices,
and the other is the line graph correspondence. With the
help of graph-theoretical argument, we can construct a
simple and systematic way to obtain the analytical ex-
pression of S(q) in Eq. (8).
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1. Polynomial expression

We consider kagome and pyrochlore lattices on the
same footing, and start with introducing an N × N in-

cident matrix, δ̂(1) ≡ ĥ, where we write N = Nsite for
brevity. Each row j, and column indices j′ correspond to
the sites of the lattice, and the matrix element takes

[δ̂(1)]jj′ = [ĥ]jj′ =

{
1 if j & j′are connected
0 otherwise

(A1)

The Hamiltonian matrix can be expressed as Ĥ = ĥ at
J = 0, supposing J1 = 1 and J2 = J3 = J .

Generalizing δ̂(1), we introduce a matrix, δ̂(n), so that

the element [δ̂(n)]jj′ takes 1, if and only if the two sites,
j and j′ are n Manhattan distance away, and otherwise,

0. Since the squared incident matrix (δ̂(1))2 connects any
two sites, where one can be reached from the other in two
hoppings, one can obtain

(δ̂(1))2 = zÎN×N + xδ̂(1) + δ̂(2), (A2)

with z = 2(Nsub − 1) is a number of coordination, and
x = Nsub−2 is a number of paths through which, starting
from a site, one reaches a n.n. site of that site by two
other n.n. moves. Hereafter, Î`×` represents the ` × `
identity matrix.

Obviously, δ̂(2) corresponds to the part of Hamiltonian
matrix describing the second- and third-neighbor inter-
actions, so we can express

Ĥ = δ̂(1) + Jδ̂(2) = δ̂(1) + J(δ̂(1))2 − xJδ̂(1) − zJÎN×N
= (1− xJ)ĥ+ Jĥ2 − zJÎN×N . (A3)

Now the Hamiltonian matrix is expressed as a polynomial

of incident matrix, ĥ, the eigenvalue problem of Ĥ is

reduced to that of ĥ.

2. Dual lattice

To solve the eigenvalue problem of ĥ, it is convenient to
introduce dual lattice. For clarity, we focus on a kagome
lattice, first. We start with constructing an intermediate
lattice, by placing new sites on the centers of triangles,
and connecting the new sites and neighboring old sites,
while erasing the original bonds of kagome lattice. Sec-
ondly, from this intermediate lattice, we erase the origi-
nal sites of the kagome lattice, and obtain a honeycomb
lattice as a dual lattice [Fig. 23(a)]. As a dual lattice
of pyrochlore lattice, we obtain a diamond lattice in a
similar way [Fig. 23(b)].

The dual lattice shares the same unit cell as the orig-
inal lattice. Below, we adopt the following lattice con-
ventions. For a kagome lattice, as lattice vectors, we

choose a
(K)
1 = (1, 0) and a

(K)
2 =

(
1
2 ,
√

3
2

)
, and as the co-

ordinates of three sublattices, 1,2, and 3, r
(K)
1 = (0, 0),

r
(K)
2 =

(
1
4 ,
√

3
4

)
, r

(K)
3 =

(
1
2 , 0
)
. Accordingly, the coor-

dinates of two sublattices, A and B of the dual honey-

comb lattice are r
(H)
A =

(
5
4 ,

5
√

3
12

)
and r

(H)
B =

(
1
4 ,
√

3
12

)
.

For a pyrochlore lattice, the lattice vectors are aP
1 =(

0, 1
2 ,

1
2

)
, aP

2 =
(

1
2 , 0,

1
2

)
, aP

3 =
(

1
2 ,

1
2 , 0
)
, and the posi-

tions of four sublattices are rP
1 = (0, 0, 0), rP

2 =
(
0, 1

4 ,
1
4

)
,

rP
3 =

(
1
4 , 0,

1
4

)
, rP

4 =
(

1
4 ,

1
4 , 0
)
. For the dual diamond

lattice, the coordinates of two sublattices (A and B) are
rD
A =

(
1
8 ,

1
8 ,

1
8

)
, and rD

B =
(

7
8 ,

7
8 ,

7
8

)
.

3. Line-graph correspondence

Here, let us apply the idea of dual lattice to solve the

eigenvalue problem of ĥ. Here, we focus on a kagome
lattice, again. First, we look at the intermediate lattice
we have introduced in the previous subsection. On this

graph, we introduce N ×NH rectangular matrix, ĥK←H,
whose N rows correspond to sites on a kagome lattice,
and NH columns correspond to the sites of a honeycomb

lattice. We define ĥK←H as an incident matrix for the
intermediate lattice, i.e., we set

[ĥK←H]jl =

{
1 if j & l are connected
0 otherwise

(A4)

And we define NH × N rectangular matrix, ĥH←K as

ĥH←K = (ĥK←H)t.
The key step to solve the eigenvalue problem is the

observation that the matrix ĥ can be written as a product

of ĥH←K and ĥK←H:

ĥ = ĥK←HĥH←K − 2ÎN×N . (A5)

The form (A5) immediately tells us significant informa-

tion on the energy spectrum of ĥ. For N ×M matrix Â
and M × L matrix B̂, it is known that

(i) rankÂ ≤ min{N , M}

(ii) rankÂB̂ ≤ min{rankÂ, rankB̂}

Applying these properties to ĥK←H and ĥH←K, we obtain

rank(ĥK←HĥH←K) ≤ NH = (2/3)N. (A6)

This inequality results in the existence of at least N −
NH = 1

3N zero modes, i.e. ĥ has 1
3N eigenstates

with degenerate eigenenergy, −2. Moreover, the matrix

ĥK←HĥH←K and the inverse product, ĥH←KĥK←H share
the common non-zero eigenvalues. Accordingly, given
that the incident matrix of honeycomb lattice is given
by

ĥH = ĥH←KĥK←H −NsubÎNH×NH , (A7)

the eigenspectrum of ĥ consists of NH eigenvalues of ĥH+
(Nsub − 2)1̂, and N − NH-fold degenerate modes with
eigenvalue, −2.
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4. Momentum-space expression

The translational invariance of the Hamiltonian ma-
trix allows us to block-diagonalize it with respect to the
momentum q. For each q, we obtain Nsub×Nsub Hamil-
tonian matrix Ĥ(q) defined in Eq. (7). Due to the poly-
nomial expression in Eq. (A2), we obtain

ĥ2(q) = [ĥ1(q)]2 − xĥ1(q)− zÎNsub×Nsub
, (A8)

with

[ĥi(q)]µν =
∑
m

[δ(i)](0,µ),(m,ν)e
−iq·(Rm+rν−rµ). (A9)

Therefore, Ĥ(q) is also expressed as a polynomial of the

Fourier transformation of ĥ1:

Ĥ(q) = (1− xJ)ĥ1(q) + J [ĥ1(q)]2 − zJÎNsub×Nsub
,

(A10)

From Eq. (A10), we see the eigenvalue problem for Ĥ(q)

is reduced to that for ĥ1(q). To solve it, one can utilized
the momentum space version of Eq. (A5), namely

ĥ1(q) = ĥK←H(q)ĥH←K(q)− 2ÎNsub×Nsub
. (A11)

Here ĥK←H(q) is NH
sub ×Nsub matrix:

[ĥK←H(q)]µ,ν =

NH
u.c.∑
m

[ĥK←H](0,µ)(m,ν)e
−iq·(Rm+rH

ν −rµ),

(A12)

and

ĥH←K(q) = [ĥK←H(q)]†. (A13)

Using Eq. (A11) as well as the momentum-space ana-
logue of Eq. (A7), one can show that the eigenvalues

of ĥ1(q) consists of eigenvalues of ĥH(q) (up to a con-
stant) and (Nsub − NH

sub) flat mode with the eigenvalue

−2; ĥH(q) is given by

[ĥH(q)]µ,ν =

NH
u.c.∑
m

[ĥH](0,µ),(m,ν)e
−iq·(Rm+rH

ν −r
H
µ ). (A14)

Note that the similar relations hold in the case of a py-
rochlore lattice.

5. Kagome lattice

Utilizing the above idea, we now show the explicit
forms of the eigenvalues and eigenvectors of our model.
Let us first consider a kagome lattice. As discussed in
the previous section, the exchange matrix on a kagome
lattice is expressed as

ĤK(q) = ĥK
1 (q) + JĥK

2 (q), (A15)

FIG. 23. Dual lattices for (a) kagome and (b) pyrochlore lat-
tices. Black dots/spheres denote original lattices, and brown
ones denote dual lattices.

with

[ĥK
1 (q)]µν =

{
2 cos q · (rK

µ − rK
ν ) (µ 6= ν)

0 (µ = ν)
(A16a)

[ĥK
2 (q)]µν =

 2 cos q ·
(∑

ρ 6=µ,ν r
K
µ + rK

ν − 2rK
ρ

)
(µ 6= ν)

2 cos q ·
[
2
∑
ρ6=µ(rK

ρ − rK
µ )
]

(µ = ν)

(A16b)

To obtain the eigenvalues of ĥH
1 (q), we first write down

the exchange matrix on a dual honeycomb lattice:

ĥH
1 (q) =

(
0 G(q)

G∗(q) 0

)
, (A17)

with

G(q) = e
i
qy√
3 + 2e

−i qy
2
√

3 cos
qx
2
, (A18)

The eigenvalues of ĥH
1 (q) are given by ε

(H)
± (q) = ±|G(q)|

and the corresponding eigenvectors are

ψH(±)(q) =
1√
2

(
±eiθG(q)/2

e−iθG(q)/2

)
, (A19)
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with θG(q) = argG(q).
Then, we immediately obtain the eigenvalues and

eigenvectors of (A15) in the following manner. First, the
eigenvalues of hK

1 (q) are identical with those of hH
1 (q) up

to a constant, and thus, using Eq. (A8) and the fact that
z = 4, x = 1 for a kagome lattice, the two eigenvalues of
(A15) are obtained as

εK
±(q) = J |G(q)|2 ± (1 + J)|G(q)|+ 1− 4J. (A20)

Next, to obtain the corresponding eigenvectors, we con-

sider a rectangular matrix ĥK→H(q) as we have discussed
int Sec. A 3. Its explicit form is given as

ĥK→H(q) =

 eiϕ1 e−iϕ1

eiϕ2 e−iϕ2

eiϕ3 e−iϕ3

 , (A21)

with ϕ1 = qx
4 +

qy
4
√

3
, ϕ2 = − qy

2
√

3
,and ϕ3 = − qx4 +

qy
4
√

3
.

Then, the eigenvectors are obtained as

ψK
±(q) =

hK→H(q)ψH
±(q)

||hK→H(q)ψH
±(q)||

. (A22)

Note that the remaining flat mode is orthogonal to two
dispersive modes, and its eigenvalue is −2(1− J).
Energy minima.- We now obtain the eigenvalues of

(A15), so let us discuss the properties of obtained band
structure. The energy minima of the lower dispersive
band can be found by solving

∂εK
−(q)

∂qx
=
∂εK
−(q)

∂qy
= 0, (A23)

By using the expression (A20), one obtains

∂εK
−(q)

∂qi
= [2J |G(q)| − (1 + J)]

∂|G(q)|
∂qi

. (A24)

Therefore, (A23) is satisfied when

(i) |G(q)| = 1+J
2J ,

(ii) ∂|G(q)|
∂qx

= ∂|G(q)|
∂qy

= 0.

Condition (ii) is satisfied at Γ, K, and M points, but
they do not become energy minima. So let us examine
(i). Notice that the solution of (i) in q space forms lines,
rather than a set of discrete points. The solution evolves
as follows. First, when 0 ≤ J ≤ 1

5 , (i) does not have solu-
tions: in this region the flat band has the lowest energy
and the static structure factors is determined by a flat
band, which gives rise to pinch points in S(q). Second,
when 1

5 ≤ J ≤ 1, the solution is given by a closed path
enclosing Γ point [see Fig. 6(a)]. Finally, when J ≥ 1,
the solution is given by a closed path enclosing K points
[see Fig. 6(b)]. As we have seen in the main text, the
shape of energy minima is reflected to the characteristic
shape of the static structure factor, namely half-moons
and stars.

FIG. 24. J dependence of uK. The solution of Eq. (A25) for
0 ≤ Q ≤ π exists for the shaded area. Note that uK becomes
a complex number for J ≥ 1.

Derivation of phase boundaries.- The change of topol-
ogy of energy minima surface can be detected by looking
at ΓM line. On ΓM line, we can parametrize the mo-
mentum as q = (Q, Q√

3
) with 0 ≤ Q ≤ π. Then |G(q)| is

given by

|G(q)| =
√

8 cos2
Q

2
+ 1, (A25)

and the solution of (i) is then given by

Q = 2 cos−1

√√√√1

8

[(
1 + J

2J

)2

− 1

]
. (A26)

Figure 24 shows uK ≡
√

1
8

[(
1+J
2J

)2 − 1
]

as a function

of J . In order that Q is between 0 and π, uK has to
be between 0 and 1, which is represented by the shade.
One can see that the lower bound is J = 1

5 , and the
upper bound is J = 1, which correspond to J1c and J2c,
respectively.
Nearly isotropic nature of half-moon.- The energy dis-

persion of the lower-dispersive band around Γ point is
isotropic. Indeed, εK

−(q) can be expanded around Γ point
as

εK
−(q) ∼− 2(1− J) +

(
1

4
− 5J

4

)
q2 +

(
− 1

192
+

17J

192

)
q4

+O(q5
i ), (A27)

with q =
√
q2
x + q2

y. Equation (A27) shows that the en-

ergy dispersion is isotropic up to the order of q4, and
this leads to nearly circular shape of the energy-minima
surface in region (II) [see Fig. 6(a)].

6. Pyrochlore lattice

The same method can be applied to a pyrochlore lat-
tice, so here we outline the calculations. We consider the
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exchange matrix on a original pyrochlore lattice:

ĤP(q) = ĥP
1 (q) + JĥP

2 (q), (A28)

where

[ĥP
1 (q)]µν =

{
2 cos q · (rP

µ − rP
ν ) (µ 6= ν)

0 (µ = ν)
(A29)

and

[ĥP
2 (q)]µν =

 2 cos q ·
(∑

ρ 6=µ,ν r
P
µ + rP

ν − 2rP
ρ

)
(µ 6= ν)

2 cos q ·
[
2
∑
ρ6=µ(rP

µ − rP
ρ )
]

(µ = ν)

(A30)

The polynomial form of the Hamiltonian (A28) with re-

spect to ĥP
1 (q) is obtained as

ĥP
2 (q) = [ĥP

1 (q)]2 − 2ĥP
1 (q)− 6Î4×4, (A31)

since z = 6 and x = 2 for a pyrochlore lattice.
Next, the exchange matrix for the dual diamond lattice

is given as

ĥD
1 (q) =

(
0 g(q)

g∗(q) 0

)
, (A32)

with

g(q) = e−i
qx+qy+qz

4 +ei
qx+qy−qz

4 +ei
qx−qy+qz

4 +ei
−qx+qy+qz

4 .
(A33)

Its eigenvalues are ε
(P)
± (q) = ±|g(q)|, and the corre-

sponding eigenvectors are

ψD
±(q) =

1√
2

(
±eiθg(q)/2

e−iθg(q)/2

)
, (A34)

with θg(q) = arg g(q).
Then, using the argument in Sections A 3 and A 4, we

obtain the eigenvalues of the Hamiltonian (A28) as

εP
±(q) = J |g(q)|2 ± (1 + 2J)|g(q)|+ 2− 6J. (A35)

The corresponding eigenvectors are given as

ψP
±(q) =

hP←D(q)ψD
±(q)

||hP←D(q)ψD
±(q)||

, (A36)

where ĥP←D(q) is a rectangular matrix

ĥP←D(q) =


eiφ1 e−iφ1

eiφ2 e−iφ2

eiφ3 e−iφ3

eiφ4 e−iφ4

 , (A37)

and φ1 =
qx+qy+qz

8 , φ2 =
qx−qy−qz

8 , φ3 =
−qx+qy−qz

8 , and

φ4 =
−qx−qy+qz

8 . The rest of eigenvectors, i.e. two flat

modes, are orthogonal to ψP,±(q) and their eigenenergy
is −2(1− J).

FIG. 25. J dependence of uP ≡ −12J2+4J−1
48J2 . The solution of

Eq. (A39) for 0 ≤ Q ≤ π exists for the shaded area.

Energy minima.- The minima of εP
−(q) is obtained by

solving

∂εP
−(q)

∂qi
= [2J |g(q)| − (1 + 2J)]

∂|g(q)|
∂qi

= 0. (A38)

(A38) is satisfied when

(i) |g(q)| = 1+2J
2J ,

(ii) ∂|g(q)|
∂qx

= ∂|g(q)|
∂qy

= ∂|g(q)|
∂qz

= 0.

Again (ii) is satisfied at several high-symmetry points,
which turn out not to be energy minima, so let us focus
on (i). When 0 ≤ J ≤ 1

6 , (i) does not have solutions, the
lowest-energy band in this region is the flat band. Then,
for 1

6 ≤ J ≤
1
2 , the solution is a surface enclosing Γ point

[Fig. 7(a)]. Finally, for J ≥ 1
2 , a solution is a surface

enclosing the zone corners [Fig. 7(b)].
Derivation of the phase boundaries.- Similar to the case

of a kagome lattice, the phase boundaries for a pyrochlore
lattice are determined by the presence/absence of the
energy minima on ΓL line. On ΓL line, the momentum
is parametrized as q = (Q,Q,Q) with 0 ≤ Q ≤ π. Then
the condition for the energy minima is given by

|g(q)| =
√

6 cosQ+ 10, (A39)

and its solution of (i) is

Q = 2 cos−1

(
−12J2 + 4J − 1

48J2

)
. (A40)

We plot uP ≡ −12J2+4J−1
48J2 in Fig. 25. We again examine

the condition that Q is between 0 and π (a shaded area
of Fig. 25), and find that the lower (upper) bound is
J = 1

6

(
1
2

)
.

Appendix B: Monte Carlo simulations

Monte Carlo simulations are performed on systems of
classical O(3) spins on the kagome and pyrochlore lat-
tices, whose system sizes are respectively 12L2 and 16L3
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sites. To decorrelate the system, we use jointly the
heatbath method, over-relaxation and parallel temper-
ing. Thermalization is made in two steps: first a slow
annealing from high temperature to the temperature of
measurement T during te Monte Carlo steps (MCs) fol-
lowed by te MCS at temperature T . After thermalization,
measurements are done every 10 MCs during tm = 10te
MCs. All temperatures are given in units of J1 = 1. The
details of each simulation are

• Fig. 3: L = 30 for both lattices and tm = 105, 106

MCs for the pyrochlore and kagome lattice respec-
tively.

• Fig. 8, top: tm = 106 MCs, and the error bars are
coming from an average over n runs with different
initial configurations, where n = 50 for L < 15 and
n = 20 for L > 15.

• Fig. 8, bottom: L = 20 and tm = 106 MCs.

• Fig. 9: L = 8 (a) and L = 16 (b) and tm = 106

MCs. The error bars in (a) are coming from an
average over 6 runs with different initial configura-
tions; when not visible, they are smaller that the
dots.

• Fig. 12: L = 30 and tm = 105 MCs.

• Fig. 13: L = 20 and tm = 105 MCs.

• Fig. 14: L = 30 and tm = 105 MCs.

• Fig. 21: L ∈ {6, 8, 10} and tm ∈ {107, 2.107, 107}
MCs respectively.

Appendix C: Rank-two tensor order parameter

The rank-two tensor order parameter is time-reversal
invariant and measures the on-site quadrupolar order.
For a pyrochlore lattice of N sites, the rank-two tensor
is defined following Ref. 49,

Qα =
1

N

N∑
i=1

Qαi , (C1)

where

Q3z2−r2
i =

1√
3

[
2(Szi )2 − (Sxi )2 − (Syi )2

]
, (C2)

Qx
2−y2
i = (Sxi )2 − (Syi )2, (C3)

Qxyi = 2Sxi S
y
i , (C4)

Qyzi = 2Syi S
z
i , (C5)

Qzxi = 2Szi S
x
i . (C6)

The order parameter used in Fig. 21.(b) comes from the
norm of all quadrupole moments

MQ =

√∑
α

(Qα)
2
, (C7)

and is saturated when all spins are collinear, taking the
value 2/

√
3.

Appendix D: Origin of subextensive entropy in the
ordered state at J = J2c for pyrochlore

In this section, we explain the origin of the sub-
extensive entropy of (1/2,1/2,1/2)-state at J = J2c, il-
lustrated in Fig. 22. For this state, which consists of the
double-charge clusters, the energy of the ground state
comes from the contact between charges [Eq. (24)]. These
contacts only take place within each cluster. Let us re-
call there is one double-charge cluster per cubic unit cell,
with one double charge, four single charges, and three
vacuum tetrahedra. It means that any change which does
not affect the integrity and connectivity of the clusters is
iso-energetic. Thanks to the vacuum surrounding every
cluster, such changes are possible by shifting an entire
plane of clusters. An example is given in Fig. 22. The
plane of clusters in the upper part of the figure is shifted
in the [110] direction between the left and right panels,
while the bottom part remains fixed – the thickness of
a plane is exactly one cubic unit cell. More precisely all
spins along the [110] lines are shifted by a distance of two
nearest neighbors; the spins along the [11̄0] lines are left
unchanged. Thanks to the intervening layers of vacuum
tetrahedra (the one just below the transparent plane, and
the one at the top of the figure), this shift does not affect
any n.n. pair of charges. The resulting state is thus also
a ground state. A second shift in the [110] direction gives
back the initial state. The same is also true if one shifts
the spins in the upper plane along the [11̄0] lines, leaving
the [110] lines unchanged. The addition of both shifts
makes a fourth possibility. This gives 4L ground states
for a system of L planes in the [001] direction.

The same reasoning applies for planes orthogonal to
the [010] and [100] directions. However, it is not possible
to do successively a shift in a (100) plane followed by a
shift in a (001) plane. This is because the conservation
of the energy depends on the intervening vacuum layers.
Visually, a plane of clusters can glide at no energy cost as
long as there is a layer of vacuum to isolate it from the two
planes above and below. But the shift of a (100) plane
intersects the layers of vacuum orthogonal to the [001]
direction; the shift of a (001) plane is now forbidden in
the ground state. As a result, the entropy of the ground
state is sub-extensive, of the order of L ln 4.

The configurations of Fig. 22, as well as the shift of
entire planes, have been observed in snapshots of Monte
Carlo simulations at low temperatures, up to fluctua-
tions away from collinearity. The presence of the shifting
planes favors a given cubic axis but not a given direc-
tion. This spontaneously breaks rotational symmetry as
measured by the quadrupolar order parameter MQ. But
in this picture, the correlations along the preferred cubic
axis should be “paramagnetic” and the order parameter
ML should vanish like 1/L in the thermodynamic limit.
This is not what is observed in simulations. The rea-
son is because the system is not made of Ising spins, but
of continuous Heisenberg spins. The ground state is se-
lected via order by disorder because of soft modes around
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the L points of the Brillouin zone, which favor the long-
range ordered states where none of the planes are shifted.

However, the sub-extensive entropy is probably respon-
sible for the difficulty of the simulations to thermalize at
very low temperatures.
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