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ABSTRACT
Over the last decade, digital media (web or app publishers) general-
ized the use of real time ad auctions to sell their ad spaces. Multiple
auction platforms, also called Supply-Side Platforms (SSP), were
created. Because of this multiplicity, publishers started to create
competition between SSPs. In this setting, there are two successive
auctions: a second price auction in each SSP and a secondary, first
price auction, called header bidding auction, between SSPs.

In this paper, we consider an SSP competing with other SSPs for
ad spaces. The SSP acts as an intermediary between an advertiser
wanting to buy ad spaces and a web publisher wanting to sell its ad
spaces, and needs to define a bidding strategy to be able to deliver
to the advertisers as many ads as possible while spending as little
as possible. The revenue optimization of this SSP can be written
as a contextual bandit problem, where the context consists of the
information available about the ad opportunity, such as properties
of the internet user or of the ad placement.

Using classical multi-armed bandit strategies (such as the orig-
inal versions of UCB and EXP3) is inefficient in this setting and
yields a low convergence speed, as the arms are very correlated. In
this paper we design and experiment a version of the Thompson
Sampling algorithm that easily takes this correlation into account.
We combine this bayesian algorithm with a particle filter, which
permits to handle non-stationarity by sequentially estimating the
distribution of the highest bid to beat in order to win an auction.
We apply this methodology on two real auction datasets, and show
that it significantly outperforms more classical approaches.

The strategy defined in this paper is being developed to be de-
ployed on thousands of publishers worldwide.
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1 INTRODUCTION
Real-Time Bidding (RTB) is a mechanism widely used by web pub-
lishers to sell their ad inventory through auctions happening in real
time. Generally, a publisher sells its inventory through different
Supply-Side Platforms (SSPs), which are intermediaries who enable
advertisers to bid for ad spaces. A SSP generally runs its own auc-
tion between advertisers, and submits the result of the auction to
the publisher.

There are several ways for the publisher to interact with multiple
SSPs. In the typical ad selling mechanism without header bidding,
called the waterfall mechanism, the SSPs sit at different priorities
and are configured at different floor prices (typically the higher
the priority, the higher the floor price). The ad space is sold to the
SSP with the highest priority who bids a price greater than its floor
price.

With header bidding, all the SSPs are called simultaneously
thanks to a piece of code running in the header of the web page.
Then, they compete in a first-price auction which is called the
header bidding auction thereafter. In this mechanism, a SSP with a
lower priority can purchase the ad if it pays more than a SSP with
a higher priority. Consequently, a RTB market with header bidding
is more efficient than the waterfall mechanism for the publisher.

In this paper, we take the viewpoint of a single SSP buying
inventory in a RTB market with header bidding. Based on the result
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Figure 1: Ad-selling process
Typically some digital content will call a Supply-Side Platform

(SSP) when loading, that will itself call many advertisers for bids in
a real-time auction. To increase competition, some publishers have
been calling several SSPs to introduce some competition among
them. This setting is called header bidding because the competition
among SSPs has typically been happening on the client side, in the

header of HTML pages. Header bidding is, in practice, a
two-staged process, with several second-price auctions happening
in various SSPs, the response of which are aggregated in a final
first-price auction. A SSP may be willing to adjust the bid it is

responding to adapt to the first price auction context. This can be
seen as an adaptative fee.

of the auction it runs internally, it submits a bid in the header
bidding auction and competes with the other SSPs. This ad-selling
process is summarized on Figure 1. When it wins the header bidding
auction, the SSP is paid by the advertiser displaying its ad, and pays
to the publisher the closing price of the header bidding auction.
We study the problem of sequentially optimizing the SSP’s bids in
order to maximize its revenue. Quite importantly we consider a
censored setting where the SSP only observes if it has won or lost
once the header bidding auction has occurred. The bids of the other
SSPs are not observed.

This optimization problem is formalized as a stochastic contex-
tual bandit problem. The context is formed by the information
available before the header bidding auction happens, including the
result of the SSP internal auction. In each context, the highest bid
among the other SSPs in the header bidding auction is modeled
with a random variable and is updated in a bayesian fashion using
a particle filter. Therefore, the reward (i.e., the revenue of the SSP)
is stochastic. We design and experiment a version of the Thomp-
son sampling algorithm in order to optimize bids in a sequence of
auctions.

The paper is organized as follows. We discuss earlier works
in Section 2. In Section 3 we formalize the optimization problem
as a stochastic contextual bandit problem. We then describe our
version of the Thompson sampling algorithm in Section 4. Finally,
in Section 5, we present our experimental results on two real RTB

auction datasets, and show that our method outperforms two more
traditional bandit algorithms.

2 RELATEDWORK
[31] provides a very clear introduction to the header bidding tech-
nology, and how it modifies the ad selling process in a RTB market.

Bid optimization has been much studied in the advertising litera-
ture. A lot of papers study the problem of optimizing an advertiser
bidding strategy in a RTB market, where the advertiser wants to
maximize the number of ads it buys as well as a set of performance
goals while keeping its spend below a certain budget (see [32] and
references therein). [15] and [22] state the problem as a control
problem and derive methods to optimize the bid online. In [34], the
authors define a functional form for the bid (as a function of the
impression characteristics) and write the problem as a constrained
optimization problem.

The setting of an intermediary buying a good in an auction and
selling it to other buyers (which is what the SSP does in our setting)
has been widely studied in the auction theory literature. In [28], the
author uses the tools developed in [27] (one of the most well-known
papers in auction theory) to derive an optimal auction design in
this setting, and [14] and [10] analyze how the intermediary should
behave to maximize its revenue.

[17] studies the optimal mechanism a SSP should employ for
selling ads and analyzes optimal selling strategies. [29] analyzes
the optimal behaviour of a SSP in a market with header bidding,
and validates the approach on randomly generated auctions.

From an algorithmic perspective, the Thompson sampling algo-
rithm was introduced in [30]. The papers [19, 21] studied its theo-
retical guarantees in parametric environments, while [23] studied it
in non-parametric environments. Besides, a very clear overview of
the particle filtering approach to update the posterior distribution
is given in [12, 26].

Bandit algorithms were already designed and studied for re-
peated auctions, including RTB auctions. For instance, in repeated
second-price auctions, [33] construct a bandit algorithm to optimize
a given bidder’s revenue, while [5] design a bandit algorithm to
optimize the seller’s reserve price.

In a setting very similar to ours, [18] study the situation where
a given SSP competes with other SSPs in order to buy an ad space.
They design an algorithm that provably enables the SSP to win
most of the auctions while only paying a little more than the ex-
pected highest price of the other SSPs. Though the problem seems
similar, our objective is different: we want the SSP to maximize
its revenue, and not necessarily to win most auctions with a small
extra-payment. In particular we cannot neglect the closing price of
the SSP’s internal auction in the optimization process.

We finally mention the work of [20] for the online posted-price
auction: for each good in a sequence of identical goods, a seller
chooses and announces a price to a new buyer, who buys the good
provided the price does not exceed their private valuation (see
also [24, 25] when the seller faces strategic buyers). Though their
problem is different, the shape of their reward function is very
similar to ours. The authors show that the classical UCB1 and
Exp3 bandit algorithms applied to discretized prices are worst-case
optimal under several assumptions on the sequence of the buyers’



valuations. In our paper we do not tackle the worst case and instead
use prior knowledge on the ad auction datasets (i.e., an empirically-
validated parametric model) to better optimize the SSP’s revenue.

3 PROBLEM STATEMENT
3.1 RTB market
We represent the RTB market as an infinite sequence D of time-
ordered impressions 1, . . . ,n, . . . happening at times t1, . . . , tn , . . ..
We note Dt the sequence of impressions happening before time t
(including t ).

Impression i happening at time ti is characterized by a context
ci , which summarizes all the information relative to impression i
that is available before the header bidding auction starts. It may
contain the ad placement (where it is located on the web page), some
properties of the internet user (for example its operating system),
or the time of the day. An important variable of the context which is
specific to our setting is the closing price of the SSP internal auction,
which is known before the header bidding auction happens.

We assume that the context is categorical with a finite number
of categories C . A continuous variable can be discretized to meet
this assumption. Without loss of generality, we assume that the
categories are 1, . . . , c, . . . ,C . We noteDt,c the subsequence ofDt
containing all impressions i such that ci = c .

3.2 Ad selling process with header bidding
We assume that S SSPs: S1, . . . ,SS compete in the header bidding
auctions (possibly bidding 0 if they are not interested in purchasing
the ad). We note bi,s the bid of Ss in the header bidding auction for
impression i . As the header bidding auction is a first-price auction,
its closing price is maxs (bi,s ).

From now on, we consider the problem from S1 standpoint.
We note qi = bi,1 the bid submitted by S1 in the header bidding
auction, which is the variable to optimize. We also write xi =
max(bi,2, . . . ,bi,S ), which is the highest bid among the other SSPs.

In each impression i , we assume that S1 runs an internal auction
between advertisers, whose closing price is denoted pi . pi is the
amount paid by the advertiser winning the internal auction to S1
should S1 win the header bidding auction. Note that we do not
need to know the detailed internal auction mechanism but only its
closing price.

Before header-bidding, a SSP would run a second-price auction
with an advertiser bidding $10 and closing at pi = $8. Then the SSP
would respond qi = pi − fees = $6 to the publisher. In this context,
the advertiser pays $8, the publisher receives $6 and the SSP gets
its fees: $2. In a header bidding context, the SSP is in competition
with other SSPs in a first price auction, it may lose an opportunity
by taking too much fees or pay too much if it is sure to win and
take too little fees.

3.3 Revenue function for the SSP S1
The revenue function Ri (.) of S1 at impression i can be written as
Ri (q) = 1q≥xi (pi − q). Indeed:

• When q ≥ xi , S1 wins the header bidding auction. It is paid
pi by the advertiser winning the internal auction, and it pays
q to the publisher.

Figure 2: S1 revenue as a function of its bid q

• Otherwise, S1 does not display any ad and gets no revenue
in the auction.

In Figure 2 we plot S1’s revenue as a function of its bid q, for
two sets of values for the closing price p of the internal auction and
the highest bid x among the other SSPs.

Note that in the setting described here, we ignore some factors
having an impact on S1’s revenue. Indeed S1 may charge a fee to
the advertiser in addition to the closing price of the internal auction
it runs. Also, the cost of running the internal auction may lower
S1’s revenue. These factors would impact the revenue function but
the strategy described in this paper would remain applicable.

3.4 Optimization problem statement
Before the header bidding auction for impression i happens, the
value xi of the highest bid among the other SSPs is unknown and
is modeled with the random variable Xi . Thus, the revenue opti-
mization problem over n impressions can be expressed as follows:

max
q1, ...,qn

E

[ n∑
i=1

1qi ≥Xi (pi − qi )]

]
= max

q1, ...,qn

C∑
c=1

∑
i ∈Dtn ,c

E[1qi ≥Xi (pi − qi )] ,

(1)

where the maximum is over the prices q1, . . . ,qn that the SSP can
choose as a function of the past observations.

It would be tempting to model the variables Xi as independent
and identically distributed within any context c , with an unknown
distributionϕc . Under this assumption, the task presented here boils
down to a contextual stochastic bandit problem. A closer look at the
data, however, shows that there are significant non-stationarities
in time. We explain below that our final model does address this
issue, by the use of a particle filter within the bandit algorithm.

We emphasize that, after the header bidding auction for impres-
sion i has occurred, S1 does not observe the value of the bid xi , but
only observes if it has won or lost the header bidding auction, i.e.,
1qi ≥xi . This censorship issue must be tackled in the optimization
methodology.



4 REVENUE OPTIMIZATION USING
THOMPSON SAMPLING

In this section we present a method to sequentially optimize the
bids qi . It combines the Thompson sampling algorithm with a para-
metric model for the distributions ϕc (recall that ϕc is the distribu-
tion of the other SSPs’ highest bids Xi within context c). Note that
all the contexts c are modeled independently.

4.1 Parametric estimation of ϕc
We introduce fθ a family of distributions parametrized with θ , and
we note Fθ the corresponding cumulative density functions. For
each context c , we assume that the distribution ϕc of the other
SSPs’ highest bids Xi belongs to the family fθ ; let θc be such that
ϕc = fθc .

According to the Thompson sampling method, we fix a prior
distribution πc,0(θ ) over θc . Then, for all t , we consider the posterior
distribution πc,t (θ ) given all the observations available at the end of
the t-th auction, i.e., the censored observations 1qi ≥xi for i ∈ Dt,c .

The Bayes rule yields the following expression for πc,t :

πc,t (θ ) ∝ πc,0(θ )
∏

i ∈Dt,c

[
Fθ (qi )1xi ≤qi + (1 − Fθ (qi ))1xi>qi

]
(2)

4.2 Overview of the methodology
In our model the Thompson sampling algorithm unfolds as follows:
before any impression i ,

• Sample a value θ from the posterior distribution πci ,ti−1 ;
• Compute the bid qi that would maximize the SSP’s expected
revenue if Xi ∼ fθ (see below);

• Observe the auction outcome 1qi ≥xi and update the poste-
rior πci ,ti .

As the particle filter provides a discrete approximation of the
posterior distribution, the sampling step is straightforward. The op-
timization of the bid qi is a one-dimensional optimization problem:
when Xi ∼ fθ , the maximal SSP expected revenue is

max
q

(pi − q)Fθ (q) .

There is no closed form solution in general, but this problem can
be solved numerically for example by using Newton’s method.

The difficult step of the algorithm is the update of the posterior,
which is explained in the next section.

4.3 Updating the posterior distribution
It would be difficult to sample directly from the posterior distri-
bution πc,t , which does not have a simple or tractable form. Even
the use of MCMC methods like Metropolis-Hastings would be haz-
ardous, since computing the density of the posterior distribution
has a linear cost in the number of past observations which is huge
in advertising 1.

To overcome these difficulties, we approximate the posterior dis-
tribution with a particle filter, a powerful sequential Monte-Carlo

1Indeed, the profile of the payoff function induces a posterior distribution that cannot
be simplified. Hence, computing the posterior density exactly, cannot be done better
than by computing the product of all bayesian updates, which in practice is intractable
and rules-out MCMC sampling.

method for Hidden Markov Models (HMM). For an introduction
on HMM and particle filtering, we refer to [4]. The basic idea of a
particle filter is to approximate the sequence of posterior distribu-
tions by a sequence of discrete probability distributions which are
derived from one another by an evolution procedure (which may
include a selection step). The posterior distribution πc,t is estimated
by a discrete distribution on K points called particles. The particles
are denoted by (θc,1,t , . . . ,θc,K,t ) and their respective weights by
(wc,1,t , . . . ,wc,K,t ). The evolution procedure and the selection step
we use are described below.

A very important strength of the particle filter approach is that it
allows to handle non-stationarity: the HMMmodel encompasses the
possibility that the hidden variable (here, the unknown parameter θ )
evolves in time according to a Markovian dynamic of kernel p(θ ′ |θ ),
thus forming an unobserved sequence (θt )t . We use this possibility
by assuming that the parameter θt is equal to θt−1 plus a small step
in an unknown direction: this permits to handle parameter drift
directly inside of the model.

The theory of particle filters for general state spaceHMM [8, 9, 11,
12] suggests that, in cases such as ours, the particle approximations
converge to the true posterior distributions of the parameter θ
when the number of particles tends to infinity.

4.3.1 Evolution: updating the distribution. Recall that we run C
independent instances of Thompson Sampling, one for each con-
text c . Next we focus on one context c and recall how to update the
particle distribution in the particle filter. To simplify the notation,
we write t − 1 and t for the times of two consecutive impressions
within context c , even if other contexts appeared in between.

The update consists of two steps. First the particles θc,k,t are
sampled from a proposal distribution q(θc,k,t |θc,k,t−1, 1qt ≥xt ). We
then compute new unnormalized weights ŵc,k,t by importance
sampling:

ŵc,k,t = ŵc,k,t−1 ×
[
Fθc,k,t (qt )1xt ≤qt + (1 − Fθc,k,t (qt ))1xt >qt

]
×

p(θc,k,t |θc,k,t−1)

q(θc,k,t |θc,k,t−1, 1qt ≥xt )
,

(3)

where p(θ ′ |θ ) is the transition kernel of the hidden process. Here,
wemay simply take the proposal distributionq(θc,k,t |θc,k,t−1, 1qt ≥xt )
to be equal to the transition distribution p(θc,k,t |θc,k,t−1), which
yields:

ŵc,k,t = ŵc,k,t−1 ×
[
Fθc,k,t (qt )1xt ≤qt + (1 − Fθc,k,t (qt ))1xt >qt

]
.

(4)
The normalized weightswc,k,t can be computed as:

wc,k,t =
ŵc,k,t∑K

k ′=1 ŵc,k ′,t
.

4.3.2 Selection: resampling step. The basic update described pre-
viously generally fails after a few steps because of a well-known and
general problem: weight degeneracy. Indeed, most of the particles
soon get a negligible probability, and the discrete approximation
becomes very poor. A standard strategy used to tackle this issue
is the use of a resampling step when the degree of degeneracy is
considered to be too high. We use the following methodology given
in [26] for resampling:



• Compute S =
( ∑K

k=1w
2
c,k,t

)−1 to quantify the degree of
degeneracy of the particle filter

• If S < Smin (Smin is a hyperparameter of the particle filter),
resample all the particles by sampling K times with replace-
ment the current set of weighted particles

{
θc,1,t , . . . ,θc,K,t

}
.

The result is an unweighted sample of K particles, so we set
the new weights to ŵc,k,t =

1
K .

There exist some alternative resampling schemes that could
be used: see [11] for a presentation of some of them, and for a
discussion on their convergence properties and computation cost.

Time and space complexities. Recall that K is the number of particles
and that C is the number of contexts. After each new impression i ,
since i only falls into one context c , the evolution and selection
steps described above need only be carried out for this particular c .
This thus only requires O(K) elementary operations per impression
(including calls to the cumulative distribution function Fθ (x)). As
for space complexity, a direct upper bound is O(CK) since we need
to store weight vectors for each context c = 1, . . . ,C .

4.4 Implementation of Thompson sampling
We may now detail our modelling and algorithmic choices for the
particle filter within the Thompson sampling algorithm.

Distribution of the highest bids xi . We model the highest bids xi
among the other SSPs with a lognormal distribution, a standard
choice in econometrics or finance. Lognormal distributions are
parametrized by θ =

(
θ (1),θ (2)

)
, where θ (1) = σ > 0 and θ (2) =

µ ∈ R. Here, µ and σ are respectively location and scale parameters
for the normally distributed logarithm ln(xi ).

Particle filter. We write θc for the parameters of the lognormal
distribution associated with context c . The particle filter for the
posterior distributions works as follows:

(1) In order to handle non-stationarity, we model the parameters
θc byMarkov chainsθc,t such that log

(
θ
(1)
c,t

)
= log

(
θ
(1)
c,t−1

)
+

E1 and θ
(2)
c,t = θ

(2)
c,t−1+E2, where E1,E2 ∼ N(0, ϵ = 0.005) are

independent Gaussian variables with mean 0 and standard
deviation ϵ .

(2) At each time t , for each context c ∈ {1, . . . ,C = 100}, we
use K = 100 particles θc,k,t =

(
θ
(1)
c,k,t ,θ

(2)
c,k,t

)
.

(3) As explained above, the particles θc,k evolve at step t ac-
cording to the same dynamic as the unobserved parameters
θc,t : log

(
θ
(1)
c,k,t

)
= log

(
θ
(1)
c,k,t−1

)
+ N(0, ϵ = 0.005) and

θ
(2)
c,k,t = θ

(2)
c,k,t−1 +N(0, ϵ = 0.005).

(4) We use a uniform distribution as prior πc,k,0(θ ) for the pa-
rameter θc,0, and thus uniformly generate the components
of the initial particle θc,k,0 =

(
θ
(1)
c,k,0,θ

(2)
c,k,0

)
. Because of the

high number of auctions in each context, the choice of the
prior distribution πc,k,0(θ ) has little impact on the result, as
long as its support contains the parameter θc .

(5) Finally, we choose Smin = K/2 as a resampling threshold
criterion.

Table 1: Some properties of the datasets P1 and P2.

P1 P2

Number of auctions 1,496,294 410,840
Number of users 875,634 269,272
Number of ad placements 3,526 31
Share of auctions where xi ≤ pi 55.2% 48.4%

5 EXPERIMENTS ON RTB AUCTIONS
DATASETS

5.1 Constrution of the datasets
In practice, the SSPs generally do not share their bids with one
another, and we do not have a dataset with the bids from all SSPs
in header bidding auctions. The datasets we have used in these
experiments give, for two web publishers, the bids as well as the
names of the advertisers in RTB auctions run by a particular SSP
over one week, in a setting without header bidding.

For these two web publishers, a dataset giving both the bids in
S1 internal auction and the bids from other SSPs in the header
bidding auction has been artificially built the following way:

• All the advertisers competing in the RTB auctions (typically
a few dozens) have been randomly assigned to one of two
groups of advertisers named A and B

• In each auction, the bids coming from advertisers in the
group A are supposed to be the bids of the internal auction
run by the SSP S1, and the bids coming from advertisers in
the group B are supposed to be the bids coming from the
other SSPs in the header bidding auction

• Hence, in a given auction i , the closing price of the internal
auctionpi is given by the second highest bid from advertisers
in the group A, and the highest bid among other SSPs xi is
given by the highest bid from advertisers in the group B

• The auctions where there are less than two bids from adver-
tisers in the group A or less than one bid from advertisers in
the group B have been removed from the dataset

These two datasets are named P1 and P2 thereafter. A brief de-
scription is given in Table 1. We give the share of auctions where
xi ≤ pi , which is the share of auctions where the SSP S1 could
have won the header bidding auction while generating a positive
revenue, by choosing qi ∈ [xi ,pi ].

The experiments have been performed in the two following
configurations:

• Stationary environment: the data is shuffled. This configura-
tion is used to evaluate the strategy in a stationary environ-
ment

• Non-stationary environment: the data is sorted in chrono-
logical order. In this case, the data is non-stationary, as the
bids highly depend on the time of the day. This configu-
ration is used to evaluate the strategy in a non-stationary
environment

Note that all the bids have been multiplied by a constant.



5.2 Definition of the contexts
In the experiments, we define the context in auction i by the closing
price of S1 internal auction pi . The closing price pi is transformed
into a categorical context by discretizing it into C disjoint bins.

The l-th bin contains all auctions where pi ∈

[
q( l−1C ),q( lC )

[
,

where q is the empirical quantile function of the closing prices (pi )
estimated on the data. Consequently, each one of the C contexts
contains approximately the same number of auctions.

The number of contexts should be chosen carefully. A high num-
ber of contexts enables to model more precisely the distribution of
the highest bid among other SSPs, which is modeled independently
on each context, at the price of a slower convergence. In the exper-
iments, we have chosen C = 100 which yields a good performance
on the datasets.

5.3 Baseline strategies
We define in this section the baseline strategies used to assess the
quality of the Thompson sampling strategy. They correspond to the
use of classical multi-armed bandit (MAB) models [6]. Each arm
j = 1, . . . , J corresponds to a coefficient α (j) = j

J applied to the
closing price of the internal auction pi to obtain the bid of the SSP
S1, qi = α (j) ·pi . Note that this strategy implies that qi ≤ pi , as the
revenue for the SSP S1 can not be positive when qi > pi .

In each auction i , the SSP S1 chooses an arm j(i) and bids qi =
α j(i) · pi . Then, it receives a reward equal to 1qi ≥xi (pi − qi ), and
the rewards associated to the other arms are unknown.

The goal of the SSP is to maximise their expected cumulative
reward. In the MAB literature, this reward maximisation is typically
defined via the minimisation of the equivalent measure of cumu-
lative regret. The regret is the difference between the cumulative
rewards of the SSP S1 and the one that could be acquired by a
policy assumed to be optimal. In our case, the optimal policy (or
the oracle strategy) consists in playing for each auction i the price
qi = xi 1{xi ≤pi } .

We consider two baseline strategies, corresponding to two dis-
tinct state-of-the-art policies:

• the Upper Confidence Bound (UCB) policy [1, 3]. Under the
assumption that the rewards of each arm are independent,
identically distributed, and bounded, the UCB policy achieves
an order-optimal upper bound on the cumulative regret;

• the Exponential-weight algorithm for Exploration and Ex-
ploitation (Exp3) policy [2, 3]. Without any assumption on
the possibly non-stationary sequence of rewards (except for
boundedness), the Exp3 policy achieves a worst-case order-
optimal upper bound on the cumulative regret.

The number of arms J has a high impact on the performance
of these baseline strategies. A high number of arms makes the
discretization of the coefficient applied to the bid pi very precise,
but slows the convergence as the average reward for each arm is
learnt independently. We have used J = 100 in the experiments.

5.4 Evaluation of the Thompson sampling
strategy

This section compares the performance of the Thompson sampling
strategy (TS) defined in Sections 4 and 4.4 with the performance of

Figure 3: Evolution of the aver-
age rewards of TS, UCB, and Exp3
for dataset P1 (stationary environ-
ment).

Figure 4: Evolution of the aver-
age rewards of TS, UCB, and Exp3
for dataset P1 (non-stationary en-
vironment).

Figure 5: Evolution of the aver-
age rewards of TS, UCB, and Exp3
for dataset P2 (stationary environ-
ment).

Figure 6: Evolution of the aver-
age rewards of TS, UCB, and Exp3
for dataset P2 (non-stationary en-
vironment)

the two baseline strategies (UCB and Exp3) introduced in Section 5.3
on the datasets P1 and P2.

The performance of a strategy after n auctions is measured with
the average reward:

1
n

n∑
i=1

1qi ≥xi (pi − qi ) .

Figures 3-4 plot the average reward as a function of n on dataset
P1, in a stationary environment (i.e. on the shuffled dataset) and in a
non-stationary environment (i.e. on the ordered dataset). Figures 5-
6 plot the same results on dataset P2.

The TS strategy clearly outperforms the baseline strategies EXP3
and UCB in both stationary and non-stationary environments.
Moreover, one can observe that the convergence of the TS strat-
egy is faster than that of the EXP3 and the UCB strategies. This
convergence speed is expressed in terms of the smallest number of
auctions needed by the strategy to reach the overall average reward
on the whole dataset.

On the dataset P1, the average reward with TS strategy is 2.0888
for the stationary case and 2.0937 for the non-stationary case.
The corresponding success rates (i.e. the share of auctions won
n−1

∑n
i=1 1qi ≥xi ) are 32.19% and 32.09% respectively.

On the dataset P2, the average reward with TS strategy is 2.0312
for the stationary case and 2.0342 for the non-stationary case. The
corresponding success rates are 29.36% and 29.10% respectively.



5.5 Advantages of the Thompson sampling
strategy

The main advantage of the Thompson sampling strategy introduced
in this paper is that it relies on a random modeling of the highest
bid among other SSPs xi , which is the unknown variable. Then, the
revenue function of the problem is introduced explicitly to deter-
mine an optimal bid in each auction. In the strategies EXP3 and
UCB, the rewards corresponding to each arm are learnt indepen-
dently whereas they are highly correlated because they derive from
a common revenue function.

In addition, as argued above, the use of a particle filter within
Thompson sampling permits to handle elegantly a parameter drift,
a problem which is still under investigation for classical bandit
algorithms. We ran experiments using the non-stationary bandits
algorithms of [16], but the results were not better than plain UCB
strategies. In contrast, the algorithm proposed above significantly
outperforms the classical approaches.

The price for this improvement is an increased computational
cost (proportional to the number of particles), and the presence of
an additional parameter ϵ which controls the intensity of the drift.
It must be chosen so as to reach a good tradeoff between accuracy
of the discrete approximation and the adaptation to the parameter
drift. Experiments show, however, that even a very rough choice of
ϵ does lead to good performance, and that over-estimating the drift
intensity has little impact.

5.6 Discussion on the parameters of the
Thompson sampling strategy

5.6.1 Choice of the contexts. As precised in Section 5.2, the
number of contexts has a high impact on the performance of the
strategy and should be chosen carefully.

In the experiments presented in this paper, we have defined the
context as the closing price of the internal auction run by the SSP
S1. This definition of the context is intuitively a good choice, as the
result of the internal auction measures the value of the ad space
being sold according to the advertisers bidding in this auction. This
value is probably highly correlated with the bids of other SSPs for
this ad space.

The definition of the contexts could be improved by using char-
acteristics of the ad placement or of the internet user. Experiments
show that defining the context as the ad placement does not im-
prove the results.

5.6.2 Choice of the parametric distribution. We chose the log-
normal distribution to model the highest bid xi among the other
SSPs both because it is frequently used in practice for online auc-
tions and it fitted our datasets reasonably well. However, when the
number of other SSPs is sufficiently large, using the generalized
extreme value distributions or the generalized Pareto distributions
[7, 13] might be more relevant.

Some preliminary studies we conducted show that Fréchet dis-
tributions fit well the sample maxima of the bids xi within each
context. The reason is that such probability distributions are stable
and relevant to model and to track the extreme values (sample
maxima or peaks over threshold) of independent and identically
distributed random variables, whatever the behavior of their tail

distributions. In such situations, the associated Thompson sampling
strategy could yield even higher cumulative revenues.

5.6.3 Computation time. We have measured the running time
(the CPU response time) of the TS strategy using standard computer
(µP 2.8GHz, RAM 8GB). Updating the full distribution model and
estimating the optimal price qi for an auction i requires about
0.14ms. This running time is below the limit of 1ms at which the
optimal price must be decided.

Note that the running time is strongly related to the paramet-
ric probability distribution modeling the highest bid among other
SSPs xi and to the number of particles K used to approximate the
corresponding posterior distributions.

6 CONCLUSION AND FUTUREWORK
We have formalized the problem of optimizing the sequence of
bids of a given SSP as a contextual stochastic bandit problem. This
problem is tackled using the Thompson sampling algorithm, which
relies on a bayesian parametric estimation of the distribution of
the highest bid among other SSPs. The distribution of the highest
bid among other SSPs is approximated with a particle filtering
approach. It provides a very efficient way to sequentially update
the distribution and sample from it to apply the Thompson sampling
algorithm.

The results obtained on datasets artificially built from real RTB
auctions show that the Thompson sampling strategy outperforms
other bandit approaches for this problem. Also, the estimation of the
optimal bid for each impression is fast enough and the strategy can
be used in real conditions where a bid prediction must be performed
in a few milliseconds. This strategy is currently being developed to
be deployed on thousands of web publishers worldwide.

The particle filtering models naturally the non-stationarity of
the bid distributions through the hypothesis p(θc,k,t |θc,k,t−1). This
hypothesis should be linked to the non-stationarity of the distribu-
tions, as decreasing its standard deviation (named ϵ in the paper)
enables to forget past observations faster.

In the approach described here, the contexts are modeled inde-
pendently. The learning speed of the algorithm could be increased
by taking into account the correlations between the contexts. In
particular, these correlations may be very high when the context is
defined by a continuous variable. This point may lead to improve-
ments in the strategy.

Finally, we are planning to explore further how the performance
of the strategy depends on the parametric distribution used tomodel
the highest bid among other SSPs xi .
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