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This article presents a modular framework allowing to construct probabilistic models of coupled heat transfer
problems in complex systems. First, a substructuring approach has been applied to formalize the problem. This
process allowed for the coupling of physical field submodels, in our case temperature and radiative intensity.
Each physical model was established according to the conservation law inside of its domain (solid and fluid) and
the continuity laws at interfaces. Then, these models have been rewritten from the deterministic point of view to

a probabilistic one. This enables a recursive Monte Carlo algorithm to estimate the desired values. After a
validation stage, against academic cases, this framework is applied to examples emulating heat transfer in
buildings. This approach presents a major beneficial behavior for complex systems optimization: only the in-
fluential parts of the problem have an effect on the computational time. These regions are automatically
identified in a self-adaptive way, even in intricate or extensive geometries.

1. Introduction

For decades, the optimization processes have enabled engineers and
designers to improve systems during their design stages. Taking ad-
vantage of the increasing computational power, they now wish to op-
timize more and more complex systems (complicated geometry, multi-
variate and/or multi-objective design, multi-scale phenomena, multi-
physics problems). Simulation-based optimization methods are aiming
at finding, by an iterative process, an extremum of a function, known as
the objective function, which is evaluated thanks to the simulation re-
sults [1-3]. To perform these simulations, the most spread methods are
the grid-based quadratures. Yet their use usually requires to describe
complex systems by a great number of mesh elements owing to tortu-
osity, extensive geometry and/or multi-scale problems. Furthermore a
vast grid implies a proportional need of computing power and memory
to run a simulation. This limitation becomes all the more important
when the complexity of systems is increasing.

Another kind of quadrature exists: the stochastic grid-free quad-
ratures among which the Monte Carlo method is found. This method
was first formalized by Metropolis and Ulam, in 1949, in the neutron
diffusion field of science [4]. Fifteen years later, Hammersley and
Handscomb highlighted the opportunity to use this method in a large
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variety of other domains among which the solution of linear operator
equations, statistical mechanics or polymer science [5]. This approach
allows for a stochastic estimation of a quantity of interest. The esti-
mation is the mean value and the standard error of a great number of
independent evaluations of a probabilistic model. Its two main char-
acteristics are being a meshless quadrature and presenting a con-
vergence rate independent of the problem dimension. Consequently,
the higher the number of problem dimensions and the more competitive
the Monte Carlo method is, compared to grid-based quadratures. In-
deed, the laters follow a decreasing convergence rate when the problem
dimension increase [6,7]. That is why even today the Monte Carlo
method is mostly restricted to problems described by more than 3 di-
mensions such as radiative transfer, finance, particle physics, acoustics,
cosmological models [8,9]. The drawback of a meshless approach is
that the result is a single value (and its standard error), which can be a
function evaluated locally or integrated over a domain. This could be a
considerable disadvantage if you are looking to the whole unknown
field. But, when using an optimization process, only the objective
function needs to be assessed, not the whole field. Hence, that main
drawback of the Monte Carlo grid-free approach can easily be overcome
for an optimization process. Indeed, using the Monte Carlo method to
estimate directly the objective function will only cost a single



Nomenclature

o Specific heat capacity of the Q domain [J. kg~!. K7!]
d;; Direction vector defined at the r;; point [m]

li} Thermal dissipation coefficient [W. m=2. K~']

H* (x) Hemisphere of the directions incident from the Q domain
at the x point (identifying name)
H™ (x) Hemisphere of the directions leaving the x point towards
the Q domain (identifying name)
hs% Convection coefficient at the interface 6Q, on the Q fluid

g Flux density of surfacic heat source at an interface

W. m2]

Ty Vector of the j-th position of the total directional intensity
exploration path/series starting at the x; point [m]

s$h Specularity ratio for the reflection at the interface dQ, on

the Q domain side

T (x) Temperature field at the x point [K]

Tref Reference temperature used for the radiative transfer lin-
earization [K]

=CHO A Wevent Monte Carlo weight associated to the event occurrence
domam‘ 51de? w. m : K 1 . . X; Random variable of the i-th position vector x; [m]
I(x, w) Total directional intensity field at the x point towards the x; Vector of the i-th position of the exploration path/series
w direction [W. m2. sr1] [m]
(i +j) Mean length of the exploration paths used to compute the X€0 =x; € Q [m]
A
estimation (calculated in number of interaction points) xl_ean =x, € 3Q [m]
T
o Total mass flow rate leaving the Q fluid domain (positively '
defined) [kg. s™'] Greek symbols
rqg-(Q,) Mass flow rate coming from the Q, fluid domain into the Q
domain (positively defined) [kg. s7'] ol Total hemispherical absorpivity of Q boundary, on the Q
nsy Normal direction vector at the boundary dQ leaving the Q domain side
domain [m] e Total hemispherical emissivity of dQ boundary, on the Q
Reond Direction vector along which the conductive heat transfer domain side
takes place (1D plane model) [m] Ao Thermal conductivity of the Q domain [W. m~1. K]
P(event) Probability that the event occurs Q Volumetric domain (identifying name)
Drv Probability density function associated with the RV oQ Domain boundary (identifying name)
random variable o5 Total hemispherical reflectivity at the interface 4Q, on the
G Total net flux density leaving the Q domain [W. m~2] Q domain side
Q,ﬁie Net flux leaving the Q domain by the mode of heat transfer [y Stefan-Boltzmann constant: 5.67 X 1078[W. m~2. K4]
(conduction, convection, radiation or enthalpy) [W] o Standard error of the computational time estimation (t) [s]
qy{};de Net flux density leaving the Q domain by the mode of heat or Standard error of the temperature estimation (T) [K]
transfer (conduction, convection, radiation or enthalpy) Ta Total hemispherical transmittivity for the interface dQ
[W. m™2]
estimation. characteristics homogeneity and the aforementioned attractive features

According to the Los Alamos National Laboratory [10], two of the
main limitations to the Monte Carlo method spreading in simulation-
based optimization are: the ability to evaluate nonlinear functions of
integrals and the coupling issue because complex systems are generally
multiphysic. Recent works [11-13] are bringing perspectives in order to
alleviate the first challenge. We will focus on the second one, which is
also a current concern for the grid-based methods and is shared by a
wide variety of fields from astrophysics to biochemistry passing by
nuclear reactor engineering or rarefied gas [14-18]. When dealing with
multiphysic problems, the most spread approach consists in trying to
couple several models or even simulation codes, one for each physical
phenomenon, in a iterative converging process. The main difficulty is to
keep coherent results from different tools, which rely on their own
assumptions and have sometimes radically different solving strategies.

Regarding more specifically coupled heat transfer, and by instance
the coupling of conduction and radiative transfer, we can find in the
litterature different examples. Originally motivated by reducing com-
putational time within a context of lesser available computational
power, numerous attempts to couple grid-based methods for both ra-
diative and conductive heat transfer can be found [19-26]. That ap-
proach has the advantage of coupling two similar methods but suffers
twice of the drawbacks of grid-based quadratures as the systems be-
come more and more complex. Furthermore, examples of coupling a
grid-free method with a finite volumes or elements method can be
found in literature [27-31]. Usually, in these cases, the Monte Carlo
method is used to model the radiative transfer. These attempts have
spread thanks to the increasing availability of computational power but
are especially difficult to implement owing to the heterogeneity of the
techniques which have to cooperate together. Finally, the third
possibility is to use the Monte Carlo method to solve the whole pro-
blem. That approach allows to take advantage from both model

of the Monte Carlo method. This goal was announced by the pre-
sentation of a first draft, in collaboration with the Meso-Star start-up,
during the CTRPM-V conference [32]. Nevertheless, according to the
best of authors' knowledge, this way of coupling has not been in-
vestigated yet. Although, Vignoles proposed very recently a method
dedicated to simulation inside of porous media by coupling two Monte
Carlo Random Walks, one for each phenomenon, in Ref. [33]. The idea
is to follow the spreading of a ”walker” population into the porous
medium by both a radiative random walk and a conductive one. Each
“walker” carrying a "quantum of excess enthalpy”. At the end of a si-
mulation, the temperature perturbation field is approximated by
counting the number of "walker” in each discretized volume element.
Even if this technique is also named "Monte Carlo”, it features im-
portant differences with the Monte Carlo method used in the present
article which is using neither a volume discretization nor following an
energy quantum carrier population.

In order to solve the whole problem, i.e. coupled condution, convection
and radiative heat transfer, using a single Monte Carlo algorithm, the pre-
requisite is to get a probabilistic model of the system. However, the more
complex the system, the more difficult its modeling step. Therefore, to face
this challenge, we have created a framework easing the construction stages,
by using a systemic substructuring approach. This tool allows to assemble
components, which have been already independently modeled. This ap-
proach provides several benefits: modularity, versatility and ease to up-
grade. The aim of this article is to show how such an approach can be
applied to fully coupled heat transfer problems. First we describe the sub-
structuring approach and how the Monte Carlo algorithm can be used to
solve modular models. Next, each submodel is detailed. Then the reliability
of this approach is assessed by validating the framework results against
academic cases. Finally, an application to heat transfer in a building will
show the practical advantages of this strategy.



2. A recursive Monte Carlo algorithm to solve the modular models

The proposed framework is built on a systemic approach, which
models a complex system as a group of elementary components po-
tentially interacting with each other. Applied to grid-based determi-
nistic quadratures, this kind of modeling process is known as the Model
Synthesis approach. This has been firstly introduced in 1993 by Ebert
and Nataf [34,35] and then developed by Lefebvre [36-38].

In the following, systems are modeled by assembling three kinds of
3D components: solid domains, fluid domains and interfaces. A set of
assembled components is called a scene. In each component, the phy-
sical fields are described by either a model depending on its sur-
rounding or by an explicit condition. The expression accounting for the
model surrounding could be the field value at other points or in other
components for instance. To apply this approach to coupled heat
transfer, we have used two physical fields: the temperature and the
total directional intensity for radiative heat transfer. The models of
these physical fields in the different kinds of components will be made
explicit in the next section. But before, we have to understand how the
Monte Carlo algorithm will solve the problem modeled as a scene. To
explain that process, we will use an example (Fig. 1).

As aforementioned, a Monte Carlo algorithm is a stochastic esti-
mation process. Values are determined by averaging the results of a
large number of evaluations of the probabilistic function. Each eva-
luation is named an history. In the coupled heat transfer case, one of the
simplest objective functions could be a temperature value at a specific
point in the scene. As an example, we are going to evaluate this ob-
jective function at a point x;. We have previously explained that the
temperature at x; can be known in two forms: as an explicit condition or
as a model. If it is an explicit condition, the data is directly obtained and
the evaluation is done. If it is known as a model, the algorithm has to
evaluate it. Models are generally a sum of several contributions, each
having an associated probability. Consequently, to evaluate the model,
firstly a stochastic process is used to choose a contribution, pro-
portionally to its probability, then the chosen contribution is evaluated.
The simplest contribution possible is the value of the physical field,
here the temperature, at an other point, which may originate from
another component. So if the temperature model at x; depends on the
temperature at two other points y, and y,, the stochastic process will
randomly choose one of them: the y, contribution for example. So to
evaluate the temperature at x;, the algorithm needs now to evaluate the
temperature at x;_;: =y,, which can also be known in one of the two
forms. This will create an exploration path of the scene by generating a
series of positions with this recursive stochastic process. This path ends
when an explicit data is found, which is generally a boundary value of
the problem. Thanks to this explicit data, the model value at the up-
stream point can be evaluated, and so on until the algorithm reaches the
first point x; of the series in an inverse cascade process. By using a
stochastic process to pick a single direction/contribution to extend the
exploration path, a well convergent behavior is obtained for this re-
cursive evaluation algorithm.

3. Probabilistic modeling of physical fields in components

The following models are based on two main physical laws: the energy
conservation inside domains (regardless their kind) and the continuity
principle of physical fields and their associated flux densities at interfaces.
On top of that, four general assumptions have been made: the conduction,
convection and radiative transfer are in steady state; they can be described
by linear models; domains can be either opaque or totally transparent; and
finally parameters and physical properties are constant. Hence, the tem-
perature field inside domains is governed by: conduction for solid domains
and convection for fluid domains. Furthermore, interfaces can potentially
exchange energy by conduction with the surrounding solids, by convection
with the fluid domains next to them and/or by radiative heat transfer with
other interfaces through a transparent domain.

3.1. Temperature field inside solid domains

Deterministic model. Let Q be a solid and homogeneous domain with
no heat source where a 1D conductive heat transfer takes place along
the direction n.,y between two planes. This domain is defined by two
parallel planar boundaries (6Q_ and ) where the temperature is known
(explicitly or as a model). By applying the energy conservation law in a
such domain, a well known results is obtained, the temperature field
has a linear expression linking the temperature value at each boundary:
T(xie‘m-) and T(x,»E‘m*) (Eq. (1) and Fig. 2). That result will serve as
temperature field model in solid domains.

TS
T(x,eg) = €Q _ €0

| e e TR - TS o

Probabilistic model. Eq. (1) is a deterministic model of the tem-
perature field in solid domains, nevertheless in order to evaluate it by
the stochastic Monte Carlo method it has to be turned into a prob-
abilistic equation. Two different contributions can be identified in that
model: the temperature field influence from both boundaries. By re-
arranging this model, some barycentric weightings can appear before
each temperature field evaluation. They can be used as probabilities to
extend the exploration path towards a boundary rather than the other.
This probability will be written as the probability of a point y<° at the
boundary 0Q to be the next position x;_; in the exploration path i.e.
P(x;_,: =y<%?). The associated remaining part of the contribution,
which will be explicitly evaluated, is named a weight and is written
w(x;_1). Finally, the deterministic equation (Eq. (1)) is equivalent to the
following probabilistic model (Eq. (2)):
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Fig. 1. Diagram representing exploration paths construction to evaluate a field
value at x;.
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Fig. 2. Diagram representing the notations used in the temperature model for
points inside solid domains.

3.2. Temperature field inside fluid domains

Deterministic model. To model the temperature field inside fluid
domains, without having to take into account fluid dynamics, specific
assumptions have been made. Firstly, fluid domains are considered as
perfectly mixed hence their temperature field is uniform in each do-
main. On top of that, the convection is seen as a macroscopical phe-
nomenon and is modeled by a convection coefficient, hsh ¥So?).

In the case of fluid domains, we consider two kinds of energy fluxes:
the convection between the fluid and its boundaries and enthalpy fluxes
which are a consequence of mass exchanges between several fluid do-
mains.

On one hand, the convective flux leaving the QO domain is obtained
by integrating the convective flux density over the domain boundary 6Q
(Fig. 3 and Eq. (3)).

Q@™ = [ hHOSI) X (TEE = TOSD) Aoy @)

On the other hand, the net enthalpy flux leaving the Q fluid domain
is the difference between the total leaving enthalpy flux and the sum of
fluxes coming from the n other fluid domain(s) Q. (Eq. (4)).

. Q
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Where ¢,  is the specific heat capacity of Q, ri1q_(Q,) is the mass flow
rate coming from the Q, domain into Q (positively defined), and riq, is
the total mass flow rate leaving Q (positively defined). The mass and
energy conservation laws establish that, in steady state, there are nei-
ther mass (Eq. (5)) nor energy (Eq. (6)) accumulation in the domain.

gy = D Mg ()
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Egs. (5) and (6) can be rearranged in the following deterministic
model of the temperature in fluid domains (Eq. (7)):
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Probabilistic model. We can see on the first line of Eq. (7) the con-
vection contribution coming from the boundary and below the sum of
the all coming enthalpy contributions from Q, domains. It can be re-
written in a probabilistic manner by adding probabilities and associated
weights. A probability density function, written py_, (x;-1), is therefore
introduced. It will be used to sample a point over the 6Q boundary, in
order to evaluate the integral by the Monte Carlo method. Thus, the
following probabilistic model is obtained (Eq. (8)):
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3.3. Temperature field at an interface

Deterministic model. An interface can eventually delimit two dif-
ferent domains, generically named Q; and Q,. In this case, the interface
is a shared boundary (I = 8@ (OC)). The interface I can also de-
limit a single domain and in th1s case, tﬁe interface is a boundary of the
scene. In order to remain faithful to our chosen generalized and sys-
temic approach, we have developed a single model for both cases.

As aforementioned, we have used the continuity law of the physical
field (here the temperature) and the flux density associated between the
both sides of each interface to build the following model (Eq. (9) and
Figs. 4-6).

Fig. 3. Diagram representing the notations used in the temperature model for
points inside fluid domains.
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Fig. 4. Diagram representing the notations used in the temperature model for
points on an interface under conductive heat flux.
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Fig. 5. Diagram representing the notations used in the temperature model for
points on an interface under convective heat flux.
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Complementary assumptions have been made for radiative transfer:
the interfaces are modeled as gray surfaces under the Local
Thermodynamic Equilibrium assumption. On top of that, a linearized
model for the radiative transfer has been built using a Taylor expansion
at the vicinity of an arbitrary reference temperature, T,,;. This implies a
100 K maximum contrast among the scene elements. Furthermore, it is
possible to develop each flux density expression (Eq. (10)).
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Before transforming this model into a probabilistic one and in order
to get a smaller equation, we introduce 6(x{51 ), which can be called a

thermal dissipation coefficient, defined in Eq. (11).
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Probabilistic model. Following the same procedure as previously, we
get the following probabilistic model (Eq. (12)). The probabilities as-
sociated with locally irrelevant contributions become null by taking
zero as default values for parameters and physical properties. Thus, this
convention allows to automatically adapt this general model to all the
encountered possibilities.
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In the following section, two different models for the total direc-
tional intensity (in incident or leaving directions) are presented. These
models are showing that the incident intensity is function of a leaving
intensity at another position (Eq. (13)), which can be itself linked either
to the temperature field (by the radiation emission phenomenon) or to
the incident intensity field (by reflection for example) (Eq. (14)). Thus,
the evaluation of the incident intensity model requires to construct an
other exploration path (where intensity models are recursively eval-
uated) to find the emission location which is the next point in the
temperature exploration path. In order to distinguish them, the r;; po-
sitions are used for the intensity path starting at the x; point. This
complementary path can be seen as an intricate sampling function of
the next temperature path position (x;_;: =r;). Thus, with our systemic
point of view, the radiative transfer has exactly the same impact on the
temperature exploration path as the other heat transfer phenomena.

3.4. Field of total directional intensity incident at an interface
The total directional intensity is defined as incident from the Q

domain at the point r;; on the domain boundary when its direction is in
the hemisphere H*(r; EaQ) (Fig. 7). Domains can either be opaque or

totally transparent. In the former case, no light is spreading through the
domain and the field of total directional intensity incident is null. In the
latter case, the light is transmitted without any interaction with the
domain. Hence, the total directional intensity is constant along its di-
rection into the domain and only the interfaces are exchanging by ra-
diative transfer. Consequently, with rf]a‘% defined as the intersection
point of a ray leaving the point rﬁ‘m in the direction - d;; with
the domain boundary 6Q, we have the following model (Eq. (13)):
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This model has a single contribution. Thus its deterministic form is
fully equivalent to a probabilistic form with a probability of 1 of con-
tinuing the path with the single contribution.

3.5. Field of total directional intensity leaving an interface

Deterministic model. The total directional intensity leaving the point

cHO (,.ean)
5%} in the direction d;; is the sum of potentially three phe-
nomena (Eq. (14) and Flgs. 8-11): emission, reflection (with a specular

part defined by s§y) or transmission by the interface.
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In Eq. (14), we can see two directions preceding the reflection
phenomena. The first one is associated to the diffuse reflection:

68(2
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T ransparent

Fig. 7. Diagram representing the notations used in the total directional in-
tensity model for directions towards an interface.
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Fig. 8. Diagram representing the notations used in the total directional in-
tensity model for directions leaving an interface by a diffuse reflection.
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Fig. 9. Diagram representing the notations used in the total directional in-
tensity model for directions leaving an interface by a specular reflection.
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Fig. 10. Diagram representing the notations used in the total directional in-
tensity model for directions leaving an interface by transmission.

ewm(riegq)
d, " /. The second one, linked to the specular reflection, is de-
termined by the Snell-Descartes law (Eq. (15)).
G‘I{Q*(rs‘i‘%] E'HO’(rS-‘iﬂ] HO- [rlej‘iﬂ]
dps = diJ -2 nd ( 56?) diJ ( l‘E}a?
15)

Probabilistic model. Thanks to the Kirchhoff law of thermal radiation,
we can rearrange it to get the equivalent probabilistic model (Eq. (16)).
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Fig. 11. Diagram representing the notations used in the total directional in-
tensity model for directions leaving an interface by emission.
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3.6. Validation

This probabilistic modeling framework has then been validated
against analytical results of 13 academic test cases. Firstly, 9 cases il-
lustrating a single phenomenon of thermal heat transfer (conduction,
convection or radiation) have been tested. In these cases the tempera-
ture field at several points has been estimated and showed a perfect
agreement with the analytical expectations. Secondly, 4 additional
cases, where at least two transfer modes are coupled together, have
been undertaken. These tests have also been successful. All of this al-
lows us to be very confident in the framework results and to consider
them as reference results in validity domain of the aforementioned
taken assumptions. Some of these validation cases are provided as
supplementary materials.

4. Application and discussion
4.1. Application case: the Building Module

Some applications cases in the thermal simulation of buildings have
been chosen to illustrate the framework capabilities. Problems of in-
creasing geometrical complexity have been built using a Building
Module as the constituent sub-system (Fig. 12). They are spread from a
single Building Module up to a compound of 50 of them. Each Building
Module consists of 7 domains separated by interfaces (5 walls, a glazed
window and the inner air). In addition, the external environment is
taken into account.

Walls. The five walls are 0.2 m thick with a thermal conductivity of
0.12 W. m~L. K7! in order to model autoclaved aerated concrete [39].
The ground floor is considered adiabatic. The inner and outer walls
have an 0.5 emissivity completed with a totally diffuse reflection.
Below the window, an area of 2 X 1 m experiences a heat source of
700 W. m~2 to represent a heater.

Glazed window. The glazed window is modeled by a 5mm thick
piece of glass of 1.2 W. m~L. K7! of thermal conductivity. Concerning its
radiative properties, it is seen as perfectly opaque to infrared radiation
with an emissivity of 1.

Inner air. The inner air volume has a specific heat capacity of
1006 J. kg~'. K~! (300 K and atmospheric pressure). On one hand, this
volume exchanges heat with the inner side of the walls and the glazed
window thanks to a convection coefficient of 5.0 W. m=2. K~1. On the
other hand, the regulation air renewal is modeled by a mass flow of
8.0 X 1073 kg. s7! (0.5 of the total air mass per hour) from and towards
the environment.

Environment. Finally the environment has a constant temperature of
273 K. The outer side of the walls and the window is experiencing a
convection coefficient of 40.0 W. m~2. K~! with the air environment to
account for windy conditions. Regarding the radiative transfer, the
ground and the horizon are represented as black bodies.

In all these cases, the Monte Carlo simulations aim at estimating the
inner air temperature of a Building Module located around the scene
center.
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Fig. 12. Cross-sectional representation of a Building Module.

4.2. Results and discussion

In order to assess these models, we have used the open source
EDStaR framework, which is a dedicated tool to build and run Monte
Carlo algorithms in complex systems [40,41].

Thermal conductivity influence. The thermal conductivity influence
on the inner air temperature of a single Building Module has been in-
vestigated (Table 1 and Fig. 13). Inner temperature is firstly falling from
30221 K (for a conductivity of 0.04 W.m L. K7!) to 276.75K (at
1.20 W. m~1. K1) and then decreases slowly until to converge at a 273 K
asymptote. When the walls have a low thermal conductivity, the heat
conduction through them is the limiting phenomenon in terms of heat
transfer. This explains why increasing the wall capability to transfer
heat has an significant impact on the building heat losses. From a
thermal conductivity of 1.0 W. m~'. K~! and higher, the inner convec-
tion becomes the limiting transfer phenomenon, which explains why
increasing thermal conductivity further has almost no influence. The
previously described behavior could be expected from common heat
engineering knowledge. Our framework was able to capture it without
any human intervention, which is a token of its quality.

Computational time assessment. The Monte Carlo method enables an
easy parallelization of the computation by allowing each process to
independently explore the scene. Nevertheless, the computational time
have been assessed without using it, on a mainstream computer (CPU:
Intel Core i5-2435M (Sandy Bridge) 2.4 GHz | RAM: 4 Go DDR3 1333
Mhz). For Monte Carlo simulations, the number of histories, and hence
the run time, is linked with the standard error of the obtained result.
That is why, as an indicator, we chose to estimate the computational
time needed to reach a standard error of 0.1% on the temperature es-
timation in this work. In order to present more reliable computational
time data, a batch of 12 runs for each case have been done and the two
extrema have been removed before the estimation of mean value and
standard error.

Dependence on the exploration path length. An estimation by the
Monte Carlo algorithm consists in creating a great number of explora-
tion paths. Hence, the lengths of these paths play a part in its execution
time. They have been defined as the number of evaluation points be-
tween the probe and the final explicit data location. To assess the impact
of this variable, the mean lengths ((i + j)) of paths originating from
each probe have been estimated. The plot of the computational time
evolution against this variable (Fig. 14) shows that the former is clearly
correlated to the mean exploration path length (R? = 0.985).

Asymptotic exploration. On one hand, the mean exploration path
length starts from 22 evaluation points for a single module and is
converging to 31 evaluation points for scenes of ten modules and more
(Fig. 15 and Table 2). According to the aforementioned correlation, the



execution time shows the same asymptotic trend with 1.0 s to compute
the first scene and an asymptote value around 2.1 s. In other words, the
addition of Building Modules in the scene does not significantly increase
the computational time although the problem becomes much more
complex and extensive.

Problem influence area. On the other hand, the air temperature value
estimated inside the central Building Module presents also an asymptotic
trend. Actually, when the Building Module is alone, its inner air has a
temperature of 292.16 K (Table 2). By adding three other modules, one
above and the two others on sides, this temperature increases to
296.92 K. Finally, the temperature is converging towards approximately
300 K when the number of Building Modules involved in the scene in-
creases. The magnitude of the first increase can be explained by the fact
that adding modules improves the insulation of the first one. However,
as the additional modules are more and more distant from the probe
location, they have less and less influence on the inner air temperature
of the first module, which explains the noticed asymptotic trend.

Probability value effect. These two facts are related by the probability
values used in the models. Indeed, by choosing them to be the closest as
possible to the physical phenomena described, the exploration paths are
directed towards the system parts influencing the probe. Applied to the
heat transfer physics, this means choosing probability value of each
exchange contribution proportionally to its heat transfer capacity. This
approach explains also why the Monte Carlo weights associated with
each contribution in the models are generally a simple expression of the
physical field at an other location. Actually, when linear models are
used, the heat transfer intensity results from a difference in the thermal
potential field (temperature or radiative intensity) flowing trough a
heat transfer capacity (by multiplication).

Self-adaptive computation. All of this means that the computational
time of this approach is depending almost exclusively on the influential
parts of the problem, which are automatically identified in a self-
adaptive way. Hence, the computational time does not depend on the
whole scene complexity. This is a major beneficial behavior for the
complex system simulation and their optimization. Indeed, by defini-
tion of these systems, it is very difficult for the user to determine a priori
which part of the system has an important influence on the probe, or on
the objective function estimation, and which has not. In addition,
during an optimization process, identifying the influential parts of the
problem to be modeled, for each assessed proposal, is commonly a time-
consuming step even for rather simple systems. This self-adaptive es-
timation algorithm allows now the user to save this pre-processing time.

Comparison with grid-based deterministic approach. Logically, this re-
sult on computational time have to be compared with those obtainable
by a grid-based deterministic approach. However, a such unbiased
comparison is not straightforward due to the great heterogeneity ex-
isting among these two kinds of methods (assumptions, parameters and
result structures). On one side, the grid-based approach computes a
field estimation, at each grid element, resulting in a runtime complexity
almost proportional to the discretizing elements number for the best
algorithms. On the other side, the Monte Carlo algorithm estimates the
field at each positioned probe in the system by the number of stochastic
histories enabling to end up with the aimed statistical precision; each
history consisting in recursively building exploration paths in the pre-
sent proposal. Thereby, its runtime complexity is proportional to the
number of probes and evaluation histories used, multiplied by the mean
path length, which essentially depends on the probability value choices
and on the probe locations. Consequently, direct comparison is not
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Fig. 13. Graph representing the inner air temperature evolution for a single
Building Module against its wall thermal conductivity.
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Fig. 15. Graph representing the mean exploration path length and the com-
putational time evolutions, on a single processor thread, against the number of
Building Modules in the simulated scene.

possible. Deterministic grid-based methods yet appear to be the most
efficient choice in some cases: low complexity systems, problems with
at most three integral dimensions or involving non-linear phenomena,

Table 1

Table of the estimated temperatures, and their standard errors, inside a single Building Module depending on the thermal conductivity of the walls.
Awatis [W. m=L. K-1] 0.040 0.12 0.40 0.80 1.2 3.0 5.0 10.0
T [K] 302.21 292.16 281.86 278.18 276.75 274.86 274.33 273.92
or [1073K] 59.7 45.1 27.1 18.8 15.0 9.17 7.27 5.64




Table 2

Table of the estimated temperatures, the needed computational times (and their
standard errors) and the mean lengths of exploration paths depending on the
number of Building Modules in the simulated scene.

n 1 4 10 30 50
T K] 292.16 206.92 299.43 299.45 299.46
(top=012) Is] 1.00 1.59 2.01 2.11 2.11

o [10-25] 1.55 2.44 3.52 3.65 3.93
G+j) 22.36 27.90 30.99 31.00 31.01

or even when the whole physical field estimation is needed. To tackle
problems with opposite characteristics, the Monte Carlo method ap-
pears more relevant. In the end, there are different tools fitted for dif-
ferent problems.

5. Conclusion

In this work, we have presented a modular framework which allows
to construct probabilistic models of coupled heat transfer cases. A
systemic approach has been implemented in order to substructure
problems in assembled physical field submodels.

First, deterministic submodels of the physical fields in different
component classes have been established. Each model dealing with one
phenomenon of heat transfer, or more, i.e. conduction, convection and
radiation. Then, these models have been rewritten from the determi-
nistic point of view to a probabilistic one. This enabled us to solve the
model combination using a unique recursive Monte Carlo algorithm.
Next, the framework results were successfully validated against analy-
tical results. Finally, it was applied to tackle an elaborated toy problem
emulating heat transfer in a building.

Over the course of this paper, the framework has demonstrated its
capability to find classic behaviors such as identifying the limiting heat
transfer phenomenon in a problem. In addition to that, taking full ad-
vantage of a Monte Carlo method faithful to physical phenomena, this
approach has shown to be able to select the most influential parts of the
problem on its own. Hence, its need for computational power is reduced
to what is required to only explore the contributing parts of the domain.
This enables the algorithm to tackle multiscale problems, with com-
plicated and/or extensive geometry.

To put it in a nutshell, the framework computational speed is not
hindered by the complexity and/or extensiveness of the problem as it
selects all by itself the relevant fractions of the domain making it a self-
adaptive simulation method. Furthermore, a recent work [42] estab-
lished that this modeling approach enables to end up with estimations
not only as values but also as functions of the boundary conditions, by
simplifying the Symbolic Monte Carlo algorithm application inside
complex systems. These behaviors appear as major benefits to enable
engineers and designers to simulate and optimize increasingly complex
systems.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.ijthermalsci.2018.04.004.
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