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Abstract— We address a nonstationary blind source separation

(BSS) problem. The model includes both nonstationary sources

and mixing. Therefore, we introduce an algorithm for joint BSS

and estimation of stationarity-breaking deformations and spectra.

Finally, its performances are evaluated on a synthetic example.

1 Introduction: model and background

The BSS problem, originally introduced in a stationary con-

text, has also been discussed in nonstationary situations. Ex-

tensions to nonstationary signals have been proposed, based on

time-frequency analysis (see [1], chap. 9 in [2] and references

therein), or based on mutual information [3]. The BSS of a non-

stationary mixtures of stationary signals have also been studied.

For instance, in [4], the authors explore the convolutive BSS

problem. In the following, we tackle a doubly nonstationary

BSS problem, and propose a demultiplexing algorithm adapted

to a specific class of nonstationary signals mixed by a instanta-

neous nonstationary mixing matrix.

1.1 Nonstationarity

The nonstationary signals of interest here are deformed ver-

sions of stationary signals.

Let x denote a stationary signal, modeled as a realization

of a stationary random process with power spectrum denoted

by SX . Acting on x with a stationarity-breaking operator

yields a nonstationary signal denoted by y. Various classes of

stationarity-breaking operators are relevant to model physical

phenomena (e.g. frequency modulation [5], amplitude modula-

tion [6]). We focus here on the time warping operator denoted

by Dγ and defined by:

y(t) = Dγx(t) =
√

γ′(t) x(γ(t)) , (1)

where γ ∈ C2 is a strictly increasing smooth function. Such

deformations can model nonstationary physical phenomena as

diverse as Doppler effect, speed variations of an engine, animal

vocalization or speech [7, 6].

The wavelet transform is a natural tool to analyze such sig-

nals. Hence, the wavelet transform Wx of the signal x is de-

fined by:

Wx(s, τ) =

∫

R

x(t)q−s/2ψ

(

t− τ

qs

)

dt with q > 1 . (2)

In that framework, it can be shown that the respective wavelet

transforms Wy and Wx of y and x are approximately related

by

Wy(s, τ) ≈ Wx(s+ logq(γ
′(τ)), γ(τ)) . (3)

In the following, we make the assumption that x is a realization

of a stationary random processX . In such a setting, the approx-

imation error can be controlled thanks to the decay properties of

the wavelet ψ, and the variations of γ′. In [5, 6], corresponding

quantitative error bounds are given.

1.2 Blind source separation
The problem we consider is the BSS of nonstationary signals

modeled by equation (1).

We investigate the case where the number of sources and

the number of observations are equal and denoted by N .

The sources are additionally assumed to be independent. Let

y(t), z(t) ∈ R
N denote the column vectors containing respec-

tively all the sources and observations at time t. Then, the mix-

ture is written as
z(t) = A(t)y(t) , (4)

where A(t) ∈ R
N×N denotes the time varying mixing matrix,

assumed to be invertible. This model generalizes the amplitude

modulation model in the case N = 1 detailed in [6]. For exam-

ple, this model can be appropriate in bioacoustics to describe

the BSS of a howling wolf pack [8, 9].

Our goal is to determine jointly the mixing matrix A(t), the

time warping functions γi(t), and the spectra of the stationary

sources SXi
for i = 1, . . . , N from the observations z(t).

Let us consider a fixed time τ , then for each observation zi,
we denote by wzi,τ =Wzi(s, τ) the row vector containing the

values of the wavelet transform for a vector of scales s (of size

denoted by Ms). Then, all these vectors are gathered into a

N × Ms matrix wz,τ such that wz,τ =
(

wT
z1,τ · · ·w

T
zN ,τ

)T
.

The same operation is applied to the wavelet transform of the

sources. The matrix A(t) is assumed to vary slowly with re-

spect to the oscillations of the signals. It can be shown that the

linear relation (4) becomes in this new setting a relationship

between the wavelet transforms of y and z of the form

wz,τ ≈ A(τ)wy,τ . (5)

Aside from the terms controlling the error bound in (3), the

error bound in (5) is also controlled by the variations of the

mixing matrix coefficients.

2 Estimation procedure

Approximation equations (3) and (5) allow us to write an ap-

proximate likelihood in the Gaussian case (see [10] for more

details on this approach).

The estimation procedure is based upon discrete wavelet

transforms, time-varying parameters are therefore estimated on

a discrete time grid D. In the following, the estimation pro-

cedure is described for a given τ ∈ D. For the sake of sim-

plicity, we introduce the following notations: Bτ = A(τ)−1,

θi,τ = logq (γ
′
i(τ)) and θτ = (θ1,τ · · · θN,τ)

T .

2.1 Probabilistic setting
It follows from the Gaussianity assumption on X that wyi,τ ∼
N (0,Σi(θi,τ )), where

[Σi(θi,τ )]kk′ = q
sk+s

k′

2

∫

R

SXi
(q−θi,τ ξ)ψ̂ (qskξ) ψ̂ (qsk′ ξ) dξ.

Let pV denote generically the probability density function of a

random vector V . Then, the source independence hypothesis



gives the following opposite of the log-likelihood:

ℓτ (Bτ , θτ )
∆
=− log(pwz,τ |(Bτ ,θτ )(wz,τ ;Bτ , θτ )) + c

=−Ms log | det(Bτ )|+
1

2

N
∑

i=1

log |detΣi(θi,τ ))|

+
1

2

N
∑

i=1

[Bτwz,τ ]i·Σi(θi,τ )
−1[Bτwz,τ ]

H
i· ,

where [M]i· denotes the i-th line of the matrix M, and MH is

its conjugate transpose. Maximum likelihood (ML) estimates,

i.e. minimizers of ℓτ (Bτ , θτ ), can be evaluated numerically.

However, in order to take into account the smoothness as-

sumption on the mixing matrix with respect to time, we switch

to the Bayesian framework and introduce a prior pBτ
on the

unmixing matrix Bτ (assuming i.i.d. matrix coefficients). We

choose for pBτ
a uniform distribution centered on Bτ−∆τ

, and

with support 2ǫB∆τ . Then the maximum a posteriori (MAP)

estimate B̃τ can be written as the solution of the problem

B̃τ = argmin
Bτ

ℓτ (Bτ , θτ ) s.t. ‖Bτ−Bτ−∆τ
‖∞ ≤ ǫB∆τ .

(6)

This problem is consistent with the smoothness hypothesis on

Bτ . Indeed, assuming ∆τ is small, the constraint in equa-

tion (6) is almost equivalent to ‖B′
τ‖∞ ≤ ǫB .

Concerning the time warping estimation, we choose not to

give a prior on θτ . Thus, θ̃τ is the ML estimation of θτ .

2.2 Estimation algorithm

The estimation strategy is to alternate the estimations of Bτ ,

θτ and the spectra. The algorithm 1 (named JEFAS-BSS) syn-

thesizes all the estimation steps which are described below.

• Mixing matrix estimation. In practice, we numerically solve

the problem (6). Besides, because of the assumption of slow

variations of the matrix coefficients, we make the approxima-

tion that Bτ is constant on the interval Iτ = [τ −∆τ/2, τ +
∆τ/2[. Finally, the estimated sources ỹτ are obtained via

ỹτ (t) = B̃τz(t) where t ∈ Iτ . Notice that for each interval

Iτ , a new matrix B̃τ is applied to the observations. Due to

the source ordering indeterminacy, a reordering method has

to be introduced to connect consecutive segments of each

source signal. We use for that the Gale-Shapley stable mar-

riage algorithm [11] which constructs stable matchings be-

tween consecutive time slices source estimations. The rank-

ing criterion is based on the comparison of the dot products

between normalized Fourier spectra of these slices.

• Deformations and spectra estimations. For each source, the

joint estimation of {θi,τ}τ∈D and SXi
is obtained via the

JEFAS algorithm (which is detailed in [6]). For this purpose,

the input wavelet transform wy of the source yi is replaced

with its estimate {Bτwz,τ}τ∈D.

Regarding initialization, a basic method is to use a stationary

BSS method on observations to obtain a first unmixing matrix

estimate. For instance, SOBI [12] is a stationary BSS algo-

rithm which can give an initial unmixing matrix. A better ini-

tial matrix can be obtained by piecewise SOBI estimates on non

overlapping segments (called p-SOBI), within the stationarity

assumption makes more sense.

The convergence is monitored using the Source to Interfer-

ence Ratio (SIR) introduced in [13]. For a given estimated

source, SIR quantifies the presence of interferences from the

other true sources. We use as stopping criterion the SIR be-

tween ỹ(k−1) and ỹ(k) which gives an evaluation of the BSS

update, and is therefore a relevant convergence assessment.

Algorithm 1 JEFAS-BSS

Initialization: Obtain B̃
(0)
τ by means of the p-SOBI algo-

rithm. Compute the estimated source ỹ(0)(τ) = B̃
(0)
τ z(τ).

• k ← 1
while stopping criterion is false and k ≤ kmax do

• For i = 1, . . . , N , estimate parameters θ̃
(k)
i,τ , ∀τ ∈ D

and spectrum S̃
(k)
Xi

applying JEFAS algorithm to ỹ
(k−1)
i .

for τ = 0,∆τ , . . . , T do

• Estimate B̃
(k)
τ : solve (6) replacing θτ and SX with

their current estimations θ̃
(k)

τ and
{

S̃
(k)
Xi

}

i=1,...,N
.

end for

• Estimate the sources ỹ(k).

• k ← k + 1
end while

3 Results
We construct a synthetic example to evaluate the performances

of the algorithm. The two sources are band-pass filtered white

noise, with time-varying bandwidth. On the left of figure 1, the

wavelet transforms of both observations are displayed.

The evolution of the convergence criterion through iterations

of JEFAS-BSS is displayed in figure 1 (top-right). We can em-

pirically note that our algorithm converges in a small number of

iterations. Indeed, after 15 iterations the convergence criterion

is around 100 dB meaning the BSS update is negligible.

Finally, we evaluate the performances of the BSS algorithms

(we refer to [6] for the evaluation of the performances of the

deformations and spectra estimations). The Amari index [14]

is a measure of divergence between the matrix B̃τAτ and the

identity matrix. The closer to zero the Amari index the better.

On the bottom-right of figure 1, we display the evolution of the

Amari index through time for each BSS algorithm. In table 1,

we also compare the SIR, the SDR (Source to Distortion Ra-

tio [13]), and the time-averaged Amari index of the BSS algo-

rithms. Those different criteria show that BSS-JEFAS perfor-

mances are higher than those of SOBI and p-SOBI. Besides, in

average, p-SOBI gives a better Amari index than SOBI, which

is understandable because it takes into account the nonstation-

arity of the mixing matrix. Nonetheless, the SIR and SDR of

p-SOBI are worse than those of SOBI. Indeed, because this

method does not take into account the regularity of Bτ , the

connections between slices are sensitive to discontinuities and

create distortion in the estimated sources.
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Figure 1: Synthetic example. Left: scalograms of the observations. Top-right:

Convergence criterion evolution. Bottom-right: Amari index evolution.

Criterion SOBI p-SOBI JEFAS-BSS

SIR (dB) 28.55 6.25 46.55
SDR (dB) 16.60 −6.46 37.69
Amari index 4.63× 10−2 1.74×10−2 1.40× 10−4

Table 1: Comparison of the performances between BSS algorithms: standard

SOBI, piecewise SOBI and the proposed algorithm.
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