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ABSTRACT

We address the problem of predicting a score for candidate
axioms within the context of ontology learning. The pre-
diction is based on a learning procedure based on support
vector clustering originally developed for inferring the mem-
bership functions of fuzzy sets, and on a similarity measure
for subsumption axioms based on semantic considerations
and reminiscent of the Jaccard index. We show that the pro-
posed method successfully learns the possibilistic score in a
knowledge base consisting of pairs of candidate OWL axioms,
meanwhile highlighting that a small subset of the considered
axioms turns out harder to learn than the remainder.
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1 INTRODUCTION

Ontology learning [8] is an emerging field of research, whose
goal is to overcome the knowledge acquisition bottleneck
through the automatic generation of ontologies, mainly within
the context of the semantic Web. The input for ontology learn-
ing can be text in natural language or existing ontologies
(typically expressed in OWL) and instance data (typically
represented in RDF) [7]. In the latter case, induction-based
methods like the ones developed in inductive logic program-
ming and data mining are developed to detect meaningful
patterns and learn schema axioms from existing instance
data (facts) and their metadata, if available.
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Ontology learning relies critically on (candidate) axiom
scoring. To see why, let us consider the following exam-
ple. While constructing an ontology for a given domain
(say, politics), based on the description of instances in a
given dataset, e.g., DBpedia, we might suspect that a mayor
is an elected representative. Before we add this piece of
knowledge to the ontology, we should test the corresponding
axiom SubClassOf(Mayor ElectedRepresentative) against
the statements in the dataset. In practice, testing an axiom
boils down to computing an acceptability score, measuring
the extent to which the axiom is compatible with the recorded
facts.

Methods to approximate the semantics of given types of ax-
ioms have been throughly investigated in the last decade (e.g.,
approximate subsumption [13]) and some related heuristics
have been proposed to score concept definitions in concept
learning algorithms [12]. The most popular candidate ax-
iom scoring heuristics proposed in the literature are based on
statistical inference (see, e.g., [4]). Because such a probability-
based framework is not always completely satisfactory (see
Sect. 4 of [15] for a detailed critique), an alternative ax-
iom scoring heuristics based on a formalization in possibility
theory of the notions of logical content of a theory and of
falsification and complying with an open-world semantics
has recently been proposed [15]. While empirical evidence
has been found that such a possibilistic scoring heuristics
may lead to more accurate ontologies [16], the heavy com-
putational cost of the heuristics makes it hard to apply in
practice, unless some implementation tricks are devised (e.g.,
time capping [14]).

This work considers a promising alternative to the direct
computation of the possibilistic score, consisting in training
a surrogate model on a sample of candidate axioms for which
the score has already been computed or is otherwise available,
in order to be capable of predicting the score of a novel, unseen
candidate axiom. The major weakness of this approach is
related to the fact that training such a model may consume
a significant amount of resources; On the other hand, that
can be done once and for all: once trained, the model can
be used to score new candidate axioms at a comparatively
negligible additional cost.

We apply a support vector clustering method, originally
developed for learning the membership functions of fuzzy
sets [9], to this task, i.e., predicting the possibilistic score of
candidate OWL axioms. To prove the feasibility of this con-
cept, we perform an experiment on a dataset of SubClassOf
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(i.e., subsumption) axioms, whose possibilistic score has been
previously determined by direct application of the heuristics
on the DBpedia RDF dataset [14].

The paper is structured as follows: Sect. 2 depicts the
heuristics estimating the possibilistic score of the axioms used
in order to train and test the predictors, while Sect. 3 explains
how the similarity between axioms has been computed. In
Sect. 4 we illustrate the learning procedure having as input
the above mentioned scores and similarities, and producing
predictors as output. The performed numerical experiments
are described and discussed in Sect. 5. Some concluding
remarks end the paper.

2 POSSIBILISTIC AXIOM SCORING

We briefly recall the possibilistic scoring heuristics for OWL
axioms proposed in [15], to which the reader is referred to
for the details.

Given a candidate OWL 2 axiom 𝜑, expressing a hypothesis
about the relations holding among some entities of a domain,
we wish to evaluate its credibility, in terms of possibility and
necessity, based on the evidence available in the form of a
set of facts contained in an RDF dataset 𝒦.

The content of 𝜑 is defined as a (finite) set of basic state-
ments 𝜓 which are logical consequences of 𝜑, i.e., 𝜑 |= 𝜓. The
open-world hypothesis (OWA) is fully taken into account.
Therefore, given 𝒦, for each such 𝜓, there are three cases:

(1) 𝒦 |= 𝜓: in this case, we will call 𝜓 a confirmation of 𝜑;
(2) 𝒦 |= ¬𝜓: if so, we will call 𝜓 a counterexample of 𝜑;
(3) 𝒦 ̸|= 𝜓 and 𝒦 ̸|= ¬𝜓: in this case, 𝜓 is neither a

confirmation nor a counterexample of 𝜑.

Possibility theory [5] is a mathematical theory of epistemic
uncertainty. Its central notion is that of a possibility distri-
bution which assigns to each elementary event a degree of
possibility ranging from 0 (impossible, excluded) to 1 (com-
pletely possible, normal). A possibility distribution 𝜋 induces
a possibility measure Π, corresponding to the greatest of the
possibilities associated to an event and the dual necessity
measure 𝑁 , equivalent to the impossibility of the negation of
an event.

If we denote by 𝑢𝜑 the support of 𝜑, which is the cardinality
of its content, by 𝑢+

𝜑 the number of confirmations of 𝜑 and

by 𝑢−
𝜑 the number counterexamples of 𝜑, the possibility and

the necessity of candidate axiom 𝜑 may be defined as follows:

∙ if 𝑢𝜑 > 0,

Π(𝜑) = 1−

⎯⎸⎸⎷1−

(︃
𝑢𝜑 − 𝑢−

𝜑

𝑢𝜑

)︃2

; (1)

𝑁(𝜑) =

⎧⎪⎪⎨⎪⎪⎩
√︃

1−
(︂
𝑢𝜑−𝑢+

𝜑

𝑢𝜑

)︂2

, if 𝑢−
𝜑 = 0,

0, if 𝑢−
𝜑 > 0;

(2)

∙ if 𝑢𝜑 = 0, Π(𝜑) = 1 and 𝑁(𝜑) = 0, i.e., we are in a
state of maximum ignorance, given that no evidence is

available in the RDF dataset to assess the credibility
of 𝜑.

The possibility and necessity of an axiom can be combined
into a single handy acceptance/rejection index

ARI(𝜑) = 𝑁(𝜑) + Π(𝜑)− 1 = 𝑁(𝜑)−𝑁(¬𝜑)
= Π(𝜑)−Π(¬𝜑) ∈ [−1, 1],

(3)

because 𝑁(𝜑) = 1−Π(¬𝜑) and Π(𝜑) = 1−𝑁(¬𝜑) (duality
of possibility and necessity). A negative ARI(𝜑) suggests
rejection of 𝜑 (Π(𝜑) < 1), whilst a positive ARI(𝜑) suggests
its acceptance (𝑁(𝜑) > 0), with a strength proportional to
its absolute value. A value close to zero reflects ignorance
about the status of 𝜑.

One nice property of this acceptance/rejection index, which
stems from the duality of possibility and necessity, is that,
for all 𝜑,

ARI(¬𝜑) = −ARI(𝜑).

The idea, then, is that, if we can train a model to predict
the possibility of a candidate axiom 𝜑, Π(𝜑), and of its
negation, Π(¬𝜑), we have enough information to estimate
ARI(𝜑) without having to compute 𝑢𝜑, 𝑢

+
𝜑 , and 𝑢

−
𝜑 . To this

aim, we can use a set of candidate axioms whose ARI (i.e.,
possibility and necessity) is known to construct a training set
consisting of axioms and their negations, labeled with their
possibility, which may be regarded formally as a degree of
membership (in the fuzzy set of possible formulas).

3 AXIOM SIMILARITY

The support vector clustering method we train to predict
the possibilistic score of candidate axioms requires a kernel
function which, for our purposes, may be assumed to return
the similarity between two candidate axioms.

It is clear that such similarity should be based on the
semantics of axioms and not on their syntax. Furthermore,
since we operate in a possibilistic framework, it makes sense
to define a similarity measure with values in [0, 1], satisfying
the following desirable properties: for all axioms 𝜑 and 𝜓,

(1) 0 ≤ sim(𝜑, 𝜓) ≤ 1;
(2) sim(𝜑, 𝜓) = 1 if and only if 𝜑 ≡ 𝜓;
(3) sim(𝜑, 𝜓) = sim(𝜓, 𝜑).

Our basic intuition is to base the definition of such a similarity
measure on an underlying fuzzy implication operator [10]. If
such a suitable operator Impl is given, then the similarity
between two axioms 𝜑 and 𝜓 may be defined as

sim(𝜑, 𝜓) = min{Impl(𝜑, 𝜓), Impl(𝜓, 𝜑)}, (4)

which may be paraphrased as saying that 𝜑 and 𝜓 are similar
to the extent that 𝜑 ⇒ 𝜓 and 𝜓 ⇒ 𝜑 (i.e., the min in the
definition translates a logical conjunction).

This moves the problem one step away, to finding a suit-
able definition for the Impl operator. Classical (material)
implication would be defined as

Impl(𝜑, 𝜓) =

{︂
1, if |= ¬𝜑 ∨ 𝜓;
0, otherwise.
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A tentative fuzzy definition, based on the Herbrand semantics
of the axioms, might be the following:

Impl(𝜑, 𝜓) = ‖{ℐ:ℐ|=¬𝜑∨𝜓}‖
‖Ω‖

= ‖[¬𝜑]∪[𝜓]‖
‖Ω‖ = ‖[𝜑]∪[𝜓]‖

‖Ω‖ ,
(5)

[𝜑] and Ω denoting the set of the models of 𝜑 and the universe
set.

One problem with Equation 5 is that exactly computing
the numerator would require to count the models and coun-
termodels of both axioms being compared. This can be very
inefficient, as the Herbrand universe of a real-world RDF
dataset may be huge and Ω is its power set. However, a rough
approximation of it can be obtained by replacing interpre-
tations by individuals occurring in the RDF dataset that
confirm or contradict the two axioms.

We now restrict our attention to subsumption axioms, of
the form SubClassOf(𝐶 𝐷), or, to use the more compact
DL syntax, 𝐶 ⊑ 𝐷, where 𝐶 and 𝐷 are two OWL class
expressions, and their negation, which one may write as
¬(𝐶 ⊑ 𝐷) or 𝐶 ̸⊑ 𝐷. Given an individual 𝑎 occurring in an
RDF dataset, we may say that

∙ 𝑎 confirms axiom 𝐶 ⊑ 𝐷 (and contradicts 𝐶 ̸⊑ 𝐷) iff
𝐶(𝑎) ∧𝐷(𝑎);

∙ 𝑎 contradicts axiom 𝐶 ⊑ 𝐷 (and confirms 𝐶 ̸⊑ 𝐷) iff
𝐶(𝑎) ∧ ¬𝐷(𝑎).

Instead of counting the models of an axiom, we will be count-
ing the individuals that confirm it; instead of counting its
countermodels, we will count the individuals that contradict
it. Given an OWL class expression 𝐶, let us denote by

[𝐶] = {𝑎 : 𝐶(𝑎)}

the extension of 𝐶 in the RDF dataset at hand. Given four
OWL class expressions 𝐴, 𝐵, 𝐶, and 𝐷, we can now compute
the degree to which axiom 𝐴 ⊑ 𝐵 implies axiom 𝐶 ⊑ 𝐷 as

Impl(𝐴 ⊑ 𝐵,𝐶 ⊑ 𝐷) = ‖{𝑎:(𝐴(𝑎)∧¬𝐵(𝑎))∨(𝐶(𝑎)∧𝐷(𝑎))}‖
‖{𝑎:(𝐴(𝑎)∨𝐶(𝑎))}‖

= ‖[𝐴]∩[𝐵]∪[𝐶]∩[𝐷]‖
‖[𝐴]∪[𝐶]‖ .

(6)
Substituting in Equation 4 then would yield

sim(𝐴 ⊑ 𝐵,𝐶 ⊑ 𝐷) =
= min{Impl(𝐴 ⊑ 𝐵,𝐶 ⊑ 𝐷), Impl(𝐶 ⊑ 𝐷,𝐴 ⊑ 𝐵}

= min
{︁

‖[𝐴]∩[𝐵]∪[𝐶]∩[𝐷]‖
‖[𝐴]∪[𝐶]‖ , ‖[𝐶]∩[𝐷]∪[𝐴]∩[𝐵]‖

‖[𝐴]∪[𝐶]‖

}︁
= min{‖[𝐴]∩[𝐵]∪[𝐶]∩[𝐷]‖,‖[𝐶]∩[𝐷]∪[𝐴]∩[𝐵]‖}

‖[𝐴]∪[𝐶]‖ .

An alternative, simpler definition, much in the same spirit,
might be

sim(𝐴 ⊑ 𝐵,𝐶 ⊑ 𝐷) =
‖[𝐴] ∩ [𝐵] ∪ [𝐶] ∩ [𝐷]‖

‖[𝐴] ∪ [𝐶]‖ , (7)

which is somehow reminiscent of the Jaccard index. We decide
to stick with this latter definition of similarity.

Given that, in order to predict the ARI of subsumption
axioms we will need to compute similarities between positive
or negated subsumption axioms, we can give the formulas to
apply in all four cases as in Table 1.

Table 1: A summary of the formulas to be used to
compute the similarity sim(𝜑, 𝜓) between positive or
negated subsumption axioms 𝜑 and 𝜓.

↓ 𝜑 𝜓 → 𝐶 ⊑ 𝐷 𝐶 ̸⊑ 𝐷

𝐴 ⊑ 𝐵
‖[𝐴] ∩ [𝐵] ∪ [𝐶] ∩ [𝐷]‖

‖[𝐴] ∪ [𝐶]‖
‖[𝐴] ∩ [𝐵] ∪ [𝐶] ∩ [𝐷]‖

‖[𝐴] ∪ [𝐶]‖

𝐴 ̸⊑ 𝐵
‖[𝐴] ∩ [𝐵] ∪ [𝐶] ∩ [𝐷]‖

‖[𝐴] ∪ [𝐶]‖
‖[𝐴] ∩ [𝐵] ∪ [𝐶] ∩ [𝐷]‖

‖[𝐴] ∪ [𝐶]‖

The similarity between two candidate OWL axioms of
the form 𝐴 ⊑ 𝐵 and 𝐶 ⊑ 𝐷, as defined in Equation 7 can
be easily computed using SPARQL counting queries. For
instance, the denominator ‖[𝐴] ∪ [𝐶]‖ may be computed by

SELECT (count(DISTINCT ?x) AS ?n)

WHERE { { ?x a 𝐴 . } UNION { ?x a 𝐶 . } }, (8)

whereas the numerators for the four cases covered in Table 1
may be computed by SPARQL queries of the form

SELECT (count(DISTINCT ?x) AS ?n)

WHERE { { 𝑄([𝐴]) . 𝑄([𝐵]) . }
UNION

{ 𝑄([𝐶]) . 𝑄([𝐷]) . } },

(9)

where

𝑄([𝑋]) = ?x a 𝑋,

𝑄([𝑋]) = FILTER NOT EXISTS ?x a 𝑋.

4 FUZZY MEMBERSHIP INFERENCE

Let 𝐴 be a fuzzy set and denote by 𝜇𝐴 the corresponding
membership function. Given a set {𝑥1, . . . , 𝑥𝑛} of objects and
the corresponding set of membership values {𝜇1, . . . , 𝜇𝑛},
that is 𝜇𝑖 = 𝜇𝐴(𝑥𝑖) for each 𝑖, the procedure described
in [9] induces an approximation 𝜇̂ of 𝜇𝐴, provided that for
each 𝑖, 𝑗 = 1, . . . , 𝑛 a similarity value between 𝑥𝑖 and 𝑥𝑗 ,
denoted 𝑘(𝑥𝑖, 𝑥𝑗), is available. This procedure, relying on a
customization of an SVM algorithm (see for instance [1] and
[2] for similar approaches used for the inference of regression
functions), is based on the minimization of

𝑓(𝜒1, . . . , 𝜒𝑛) =

𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝜒𝑗𝑘(𝑥𝑖, 𝑥𝑗)−
𝑛∑︁
𝑖=1

𝜒𝑖𝑘(𝑥𝑖, 𝑥𝑖) (10)

as a function of 𝜒1, . . . , 𝜒𝑛 under the constraints
∑︀
𝑖 𝜒𝑖 = 1

and −𝐶(1 − 𝜇𝑖) ≤ 𝜒𝑖 ≤ 𝐶𝜇𝑖 for each 𝑖 = 1, . . . ,𝑚, where
𝐶 > 0 is a hyperparameter. Consider the optimal values
𝜒*
1, . . . , 𝜒

*
𝑛 of all independent variables, and term support

vector any 𝑥𝑖 such that −𝐶(1− 𝜇𝑖) < 𝜒*
𝑖 < 𝐶𝜇𝑖. It can be

shown that the constrained optimization corresponds to the
search of a sphere 𝑆 containing all points having unitary
membership value, and having the property that the distance
between its center and the remaining points is consistent
w.r.t. their membership values. The role of 𝐶 is that of ruling
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a trade-off between the radius of this sphere and the accuracy
of the obtained model (see [9] for a discussion about the
sensitivity w.r.t. this parameter). As a result, the quantity

𝑅(𝑥) = 𝑘(𝑥, 𝑥)−2

𝑛∑︁
𝑖=1

𝜒*
𝑖 𝑘(𝑥𝑖, 𝑥𝑖)+

𝑛∑︁
𝑖,𝑗=1

𝜒*
𝑖𝜒

*
𝑗𝑘(𝑥𝑖, 𝑥𝑗) (11)

computes the distance of a generic point 𝑥 from the center of
𝑆, and the latter will have a radius of length 𝑅1 = 𝑅(𝑥SV),
being 𝑥SV any of the support vectors.

The learnt sphere 𝑆 will identify therefore with the crisp
support of the fuzzy set, and an approximation 𝜇̂ for 𝜇𝐴 can
be easily induced mapping a point 𝑥 to 𝜇̂(𝑥) = 1 whenever
𝑅(𝑥) ≤ 𝑅1, and letting otherwise 𝜇̂(𝑥) decrease towards zero
as much as 𝑥 is far from the center of 𝑆 through application
of a suitable fuzzification function. For the sake of concision,
such a function will be described in terms of the corrected
distances defined as the differences between 𝑅1 and the dis-
tance of a point from the center of 𝑆 (thus amounting to
the distance of a point from the surface of the sphere). The
experiments described in Sect. 5 will refer to the following
fuzzification functions.

∙ CrispFuzzifier, associating null membership to all points
not belonging to the crisp support of the set:

𝜇̂crisp(𝑥) =

{︃
1 if 𝑅(𝑥) ≤ 𝑅1,

0 otherwise.
(12)

∙ LinearFuzzifier, decreasing from 1 to 0 as the distance
from the center of 𝑆 ranges from 𝑅1 to the maximum
observed value (cfr. Figure 1(a)); more precisely, de-
noted by max the maximum corrected distance, the
fuzzification has the followig form:

𝜇̂lin(𝑥) =

⎧⎪⎨⎪⎩
1 if 𝑅(𝑥) ≤ 𝑅1,
𝑅1−𝑥
max

− 1 if 𝑅1 < 𝑟 ≤ 𝑅1 +max,

0 otherwise.

(13)

∙ QuantileConstantPiecewiseFuzzifier, computing a con-
stant piecewise membership funtion whose steps are
identified by the four empirical quartiles of corrected
distances, and the height of the steps are respectively 1,
0.75, 0.5, 0.25 and 0 (cfr. Figure 1(b)); namely, denoted
by 𝑞1 and 𝑞3 the first and third quantile, and by 𝑚 the
median:

𝜇̂qconst(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if 𝑅(𝑥) ≤ 𝑅1,
3
4

if 𝑅1 < 𝑟 ≤ 𝑅1 + 𝑞1,
1
2

if 𝑅1 + 𝑞1 < 𝑟 ≤ 𝑅1 +𝑚,
1
4

if 𝑅1 +𝑚 < 𝑟 ≤ 𝑅1 + 𝑞3,

0 otherwise.

(14)

∙ QuantileLinearPiecewiseFuzzifier, amounting to a piece-
wise linearization of QuantileConstantPiecewiseFuzzi-
fier (cfr. Figure 1(c))):

𝜇̂qlin(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 𝑅(𝑥) ≤ 𝑅1,

− 𝑟−𝑅
4𝑞1

+ 1 if 𝑅1 < 𝑟 ≤ 𝑅1 + 𝑞1,

− 𝑟−𝑅−𝑞1
4(𝑚−𝑞1)

+ 3
4

if 𝑅1 + 𝑞1 < 𝑟 ≤ 𝑅1 +𝑚,

− 𝑟−𝑅−𝑚
4(𝑞3−𝑚)

+ 1
2

if 𝑅1 +𝑚 < 𝑟 ≤ 𝑅1 + 𝑞3,

− 𝑟−𝑅−𝑞3
4(max−𝑞3)

+ 1
4

if 𝑅1 + 𝑞3 < 𝑟 ≤ 𝑅1 +max,

0 otherwise.

(15)
∙ ExponentialFuzzifier, computing an exponentially de-
caying membership function belonging to the family

𝜇̂exp,𝛼(𝑥) =

{︃
1 if 𝑅(𝑥) ≤ 𝑅1

exp
(︁

ln𝛼
𝑞𝛼

(𝑟 −𝑅1)
)︁

otherwise,
(16)

parametrized on the value 𝛼 ∈ [0, 1] insuring that
𝜇̂exp,𝛼(𝑅1 + 𝑞𝛼) = 𝛼, where 𝑞𝛼 denotes the 𝛼-quantile
of corrected distances (see Figure 2).

5 EXPERIMENTS

We based the inference of possibilistic scores of candidate
OWL axioms on an enhancement of the scheme proposed
in Sect. 41. The first step consisted in building a knowledge
base as follows:

∙ starting from a set of 𝑚 = 722 axioms in a set 𝐴start =
{𝜑1, . . . , 𝜑𝑛}, we considered all formulas in 𝐴start, as
well as their negations, getting 𝐴 = {𝜑 ∀𝜑 ∈ 𝐴start} ∪
{¬𝜑 ∀𝜑 ∈ 𝐴start}, including therefore a total of 𝑛 =
2𝑚 = 1444 formulas;

∙ we computed the similarity function sim described in
Sect. 3 for all pairs of formulas in 𝐴, obtaining a Gram
matrix 𝐾;

∙ we considered the possibility of each 𝜑𝑖 ∈ 𝐴, previously
computed using the heuristic described in Sect. 2, as a
degree of membership in a fuzzy set (to be understood
as the set of “valid”, “acceptable”, or “likely” formulas),
henceforth identified as the membership value 𝜇𝑖 =
Π(𝜑𝑖).

The axioms of 𝐴start are SubClassOf axioms involving atomic
classes which were exactly scored against DBpedia; altogether,
computing their scores required a little less than 290 days of
CPU time on quite a powerful machine [16].

We subsequently applied the procedure described in Sect. 4,
inferring a function 𝜇̂ approximating the membership/possibi-
lity of any formula. Evaluation and model selection have been
performed through the following repeated holdout scheme:2

∙ formulas and memberships in the knowledge base have
been shuffled and subsequently divided into three sets

1Code and data to replicate all experiments is available at https:
//github.com/dariomalchiodi/SAC2018
2We could not apply more sophisticated schemes such as cross-
validation, because the relative small size of the obtained training
sets did not suffice in order to infer meaningful models.

https://github.com/dariomalchiodi/SAC2018
https://github.com/dariomalchiodi/SAC2018
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(a) 𝜇̂lin

(b) 𝜇̂qconst

(c) 𝜇̂qlin

Figure 1: Graph of linear (a), piecewise constant (b),
and piecewise linear (c) fuzzification function.

respectively devoted to training, model selection,3 and
model validation (these sets contained the 80%, 10%,
and 10% of the original data, and any formula was
assigned to the same set of its negation, so as to insure
the subsequent computability of ARIs);

∙ we inferred from the training set an approximate mem-
bership function 𝜇̂ for each 𝐶 in the grid {0.005, 0.007,
0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 10, 100},4 mea-
suring its accuracy in terms of RMSE over the model
selection set;

∙ we evaluated the function giving rise to the lowest
error using RMSE, standard deviation, and median
of accuracies computed on membership values and on
possibility scores over the model validation set.

3The model selection procedure, fine-tuning fuzzification functions,
only involved the choice of the tradeoff parameter 𝐶, as we used a
precomputed kernel based on the values returned by sim.
4This grid was selected empirically after some experimentations.

(a) 𝜇̂exp,0.001

(b) 𝜇̂exp,0.07

(c) 𝜇̂exp,0.5

Figure 2: Graph of exponential fuzzifiers with param-
eters 0.001 (a), 0.07 (b), and 0.5 (c).

For each fuzzification function proposed in Sect. 4 we iter-
ated the above procedure 10 times. Table 2 summarizes the
results in terms of RMSE, standard deviation and median
of squared errors observed w.r.t. (i) membership, thus refer-
ring to the ability of 𝜇̂ in predicting the values 𝜇𝑖, and (ii)
ARI, computed for each pair (𝜑,¬𝜑) of axioms as the value
𝜇(𝜑)− 𝜇(¬𝜑) = Π(𝜑)−Π(¬𝜑) (cf. Equation 3).

As the best results were obtained using a crisp fuzzifier,
that is learning a crisp rather than a fuzzy set, we decided
to repeat all experiments using the original SV one-class
classifier [3] as base learner. The results of this new round of
experiments, illustrated in Table 3, are in line, although with
slightly lower performance, with those previously obtained.
This suggests that, although there is a cluster of elements
naturally gathering in a crisp set, information about fuzzy
membership allows to better single out this set.

Note that performances, rather poor in terms of RMSE, are
quite good when considering median errors. The histograms
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Table 2: Results of the membership learning procedure, in terms of root mean square error (RMSE), standard
deviation (STD), and median (Median) for membership and ARI values inferred in 10 repeated holdout
experiments.

𝜇̂crisp 𝜇̂lin 𝜇̂qconst 𝜇̂qlin 𝜇̂exp,0.001 𝜇̂exp,0.005

Membership
RMSE 3.77E-01 3.13E-01 3.14E-01 3.14E-01 3.62E-01 3.92E-01
Median 0.00E+00 4.09E-03 7.85E-03 1.38E-02 5.00E-19 4.19E-14
STDEV 3.33E-01 1.91E-01 1.79E-01 1.64E-01 3.21E-01 3.44E-01
ARI
RMSE 5.72E-01 4.90E-01 4.91E-01 4.91E-01 5.51E-01 6.04E-01
Median 7.56E-04 6.05E-02 8.40E-02 1.07E-01 8.45E-04 8.94E-04
STDEV 6.11E-01 3.80E-01 3.70E-01 3.34E-01 5.95E-01 7.00E-01

𝜇̂exp,0.070 𝜇̂exp,0.100 𝜇̂exp,0.200 𝜇̂exp,0.300 𝜇̂exp,0.400 𝜇̂exp,0.500

Membership
RMSE 3.86E-01 3.92E-01 3.39E-01 3.37E-01 3.08E-01 3.41E-01
Median 1.28E-06 1.53E-05 2.35E-04 8.54E-03 3.22E-02 7.54E-02
STDEV 3.33E-01 3.31E-01 2.57E-01 2.16E-01 1.61E-01 1.54E-01
ARI
RMSE 5.97E-01 6.09E-01 5.28E-01 5.32E-01 4.86E-01 5.35E-01
Median 1.35E-03 3.03E-03 1.20E-02 4.29E-02 7.56E-02 1.70E-01
STDEV 6.75E-01 6.54E-01 5.20E-01 4.63E-01 3.77E-01 3.52E-01

Table 3: Results of the membership learning procedure using one-class SV classifiers. Same notations of
Table 2.

𝜇̂crisp 𝜇̂lin 𝜇̂qconst 𝜇̂qlin 𝜇̂exp,0.001 𝜇̂exp,0.005

Membership
RMSE 3.86E-01 3.46E-01 3.54E-01 3.55E-01 3.84E-01 4.15E-01
Median 0.00E+00 2.52E-04 1.08E-04 3.80E-03 4.61E-18 3.76E-07
STDEV 3.37E-01 2.68E-01 2.54E-01 2.43E-01 3.38E-01 3.60E-01
ARI
RMSE 5.73E-01 5.27E-01 5.23E-01 5.25E-01 5.77E-01 6.22E-01
Median 1.14E-03 2.80E-02 1.39E-01 1.19E-01 9.44E-04 1.51E-03
STDEV 5.37E-01 5.01E-01 3.95E-01 3.73E-01 5.58E-01 6.17E-01

𝜇̂exp,0.070 𝜇̂exp,0.100 𝜇̂exp,0.200 𝜇̂exp,0.300 𝜇̂exp,0.400 𝜇̂exp,0.500

Membership
RMSE 4.02E-01 3.78E-01 3.72E-01 3.45E-01 3.59E-01 3.88E-01
Median 2.74E-06 1.57E-05 1.65E-04 1.16E-02 4.37E-02 1.69E-02
STDEV 3.41E-01 3.21E-01 2.96E-01 2.35E-01 2.13E-01 2.26E-01
ARI
RMSE 6.07E-01 5.68E-01 5.52E-01 5.08E-01 5.33E-01 5.57E-01
Median 2.58E-03 1.90E-03 1.18E-02 7.75E-02 1.38E-01 2.21E-01
STDEV 6.16E-01 5.42E-01 4.72E-01 3.62E-01 3.41E-01 2.65E-01

of the latter, in all experiments (see for instance Figure 3)
suggest a mixture of two distributions, respectively for easy
and hard to learn pairs of candidate axioms. In order to
get furhter insights about this hypothesis, we adopted the
following setting:

(1) for each pair of axioms and each fuzzifier we computed
the average median error in all experiments selecting

the pair,5 and organized the results in a table having
pairs as rows and fuzzifiers as columns;

(2) there is a non-negligible probability that a pair is never
selected in the 10 iterations, and indeed for almost
each pair of axioms there is one fuzzifier for which the
previous operation cannot be carried out: we resolved

5Recall that in each experiment pairs are shuffled and only 10% of
them are used in the model validation phase.
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(a) 𝜇̂crisp

(b) 𝜇̂exp,0.001

Figure 3: Histograms of median errors for two of the
used fuzzifiers in an iteration of the experiments.

the corresponding missing values in the table throug
standard row-wise average imputation;

(3) we considered all rows of the post-processed table as
points in a Euclidean space, to be clustered through
K-means algorithm [6], letting the number 𝑘 of clus-
ters range from 2 to 9 and computing each time the
silhoutette index [11] (whose values range from −1 and
1, the higher the better); Table 4 shows that indeed
the best grouping corresponds to 𝑘 = 2;

(4) finally, we considered the two groups of axioms in
the best clustering and computed the histograms of
ARI errors within each cluster: the results highlight a
strong separation of the distributions, especially when
the nonlinearity degree of the fuzzifier increases (Fig. 4
shows some examples of these histograms).

Thus there is strong evidence that axiom pairs belong-
ing to these distinct distributions need to be learned sepa-
rately. The positive members of the 17 pairs of “hard” ax-
ioms are listed in Table 5. Puzzlingly, they are almost im-
possible to tell apart intuitively from “easy” axioms, like
SubClassOf(dbo:ArchitecturalStructure dbo:Agent) or
SubClassOf(dbo:Village dbo:Settlement).

6 CONCLUSIONS

Within the emerging field of ontology learning, a promising
task is that of investing resources for estimating the possi-
bilistic score of a relatively small set of formulas and using

𝑘 Silhouette index

2 0.834
3 0.707
4 0.631
5 0.632
6 0.594
7 0.591
8 0.563
9 0.531

Table 4: Values of the silhouette index for different
clusterizations of the points summarinzing the fuzzi-
fiers average median error for each axiom pair.

(a) 𝜇̂crisp

(b) 𝜇̂exp,0.001

(c) 𝜇̂exp,0.5

Figure 4: Histograms of ARI errors within a group-
ing of two clusters for (a) a crisp fuzzifier, (b) an
exponential fuzzifier of parameter 0.001, and (c) an
exponential fuzzifier of parameter 0.5.
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Table 5: Positive members of the detected “hard”
axiom pairs.

SubClassOf(dbo:ArchitecturalStructure gml:_Feature)

SubClassOf(schema:Product dbo:MeanOfTransportation)

SubClassOf(dbo:Eukaryote dbo:Animal)

SubClassOf(dbo:Library gml:_Feature)

SubClassOf(schema:School gml:_Feature)

SubClassOf(dbo:Racecourse gml:_Feature)

SubClassOf(dbo:WomensTennisAssociationTournament

gml:_Feature)

SubClassOf(schema:Airport gml:_Feature)

SubClassOf(dbo:GovernmentAgency

schema:GovernmentOrganization)

SubClassOf(dbo:GovernmentAgency gml:_Feature)

SubClassOf(dbo:Venue dbo:Building)

SubClassOf(dbo:Venue dbo:Theatre)

SubClassOf(dbo:Venue gml:_Feature)

SubClassOf(dbo:YearInSpaceflight skos:Concept)

SubClassOf(dbo:Village gml:_Feature)

SubClassOf(dbo:ProtectedArea gml:_Feature)

SubClassOf(dbo:ComedyGroup foaf:Person)

the result as training data for learning a predictor to be
henceforth used to get scores for new formulas with negligible
computational costs.

In this paper we proposed a procedure aiming at infer-
ring a predictor for the possibilistic score of candidate OWL
subsumption axioms. The corresponding learning algorithm
relies on a procedure mapping the inference task to the esti-
mation of the membership function to a fuzzy set. In turn,
the sample of axioms used in the training and testing phase
should be equipped with their own possibilistic score, as well
as with pairwise similarity values. After having proposed two
heuristics devoted to compute this additional information,
we applied the proposed procedure to a knowledge base and
obtained a very good performance in terms of the accuracy of
the induced predictors. The obtained results also highlighted
the existence of a (relatively small) subset of axioms whose
structure results harder to learn w.r.t. the rest of the knowl-
edge base. Further research will be devoted to consider how
different choices of the axiom similarity measure and of the
estimation of the possibilistic score for training and testing
data may impact on performances. Moreover, an extended
experimentation phase involving a higher number of candi-
date axioms will allow to specifically investigate the detected
hard axiom class.
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