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Abstract. We are interested in a 2D propagation medium obtained from a localized perturbation of a reference homogeneous
periodic medium. This reference medium is a “thick graph”, namely a thin structure (the thinness being characterized by a
small parameter £ > 0) whose limit (when ¢ tends to 0) is a periodic graph. The perturbation consists in changing only the
geometry of the reference medium by modifying the thickness of one of the lines of the reference medium. In the first part of this
work, we proved that such a geometrical perturbation is able to produce localized eigenmodes (the propagation model under
consideration is the scalar Helmholtz equation with Neumann boundary conditions). This amounts to solving an eigenvalue
problem for the Laplace operator in an unbounded domain. We used a standard approach of analysis that consists in (1) find a
formal limit of the eigenvalue problem when the small parameter tends to 0, here the formal limit is an eigenvalue problem for
a second order differential operator along a graph; (2) proceed to an explicit calculation of the spectrum of the limit operator;
(3) deduce the existence of eigenvalues as soon as the thickness of the ladder is small enough. The objective of the present work
is to complement the previous one by constructing and justifying a high order asymptotic expansion of these eigenvalues (with
respect to the small parameter €) using the method of matched asymptotic expansions. In particular, the obtained expansion
can be used to compute a numerical approximation of the eigenvalues and of their associated eigenvectors. An algorithm to
compute each term of the asymptotic expansion is proposed. Numerical experiments validate the theoretical results.

Keywords: spectral theory, periodic media, quantum graphs, matched asymptotic expansion

1. Summary of Part 1 and Main results of Part 2

This article is the sequel of [1] and we refer the reader to its introduction for the motivation of the
study and related bibliographical comments. We choose to go directly to the heart of the subject and to
give below a brief recap about the problem under consideration, then to give a summary of the main
results of [1] in Sections 1.1 and 1.2. Finally, we state the main result of the present paper in Section 1.3.

Let €2, be a homogeneous periodic domain consisting of the infinite band {(x,y) € R x (=L/2,L/2)}
of height L > 0 minus an infinite set of equispaced similar rectangular obstacles (see Figure 1). The
domain €2, is 1-periodic with respect to the variable x. The distance between two consecutive obstacles
is equal to the distance from the obstacles to the boundary of the band and is denoted by &.
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Fig. 1. The unperturbed periodic ladder (left) . The Perturbed ladder (right)

Starting from the periodic domain ()., we introduce a local perturbation by changing the distance be-
tween two consecutive obstacles from & to ue, ¢ > 0 (i.e by modifying the size of two consecutive
obstacles of (1 — u)e/2) see Figure 1 (right) in the case where u € (0, 1)). It corresponds to modify
the width of the vertical rung of the ladder from |x| < £/2 to |x| < pe/2. The corresponding domain
is denoted 2. We wonder whether such a perturbation creates so called localized modes, that is to say
harmonic in time functions of the form

u(x,y,t) = v(x,y) ", ve L), weR, (1)
that satisfy the wave equation with homogeneous Neumann boundary condition

32

WZ—Au: . Gu=0 on 09, )

1.1. Mathematical formulation of the problem

1.1.1. The operator A%
Injecting (1) into (2), one can easily see that the construction of localized modes turns out to solve the
following eigenvalue problem for the function v:

—Av=0*vinQ., 8,v=0ind,. 3)

It consequently leads us to investigate the spectrum (and more precisely the eigenvalues) of the self-
adjoint and positive operator A%, acting in the space Ly (%) :

Afu = —Au, D(AY) = {u € H'(Q), Au € Ly(%), duulye =0}

Based on an asymptotic approach, the spectrum of the operators A% is investigated in [1]. In particular,
it is shown that for u € (0, 1), and for £ > 0 sufficiently small, the operator A% has eigenvalues. The
objective of the present paper is to complement the aforementioned work by constructing a high order
asymptotics of these eigenvalues.

1.1.2. The decomposition of the operator Ak into its symmetric and antisymmetric components

To study the operator A%, it is convenient to decompose it as the sum of its symmetric and antisymmet-
ric parts. Denoting Lo ;(£2%) and Lo ,(€2%) the subspaces of Ly (%) consisting of functions respectively
symmetric and antisymmetric (with respect to the axis y = 0),we have

Lo(%) = Lo (%) @ Lo ($%).

The operator A% is then decomposed as follows, where A% ; and A%, are both self-adjoint and positive
Al = AL DAL with AL = AL and Af, = Af

£,a’

|L2YS(Q!‘;)’ ‘LQ,H(Q{;),

In this paper, we shall restrict ourselves to the study of the spectrum of the symmetric operator A ;.
Naturally, we could study the antisymmetric one as well.
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1.2. The limit problem: spectral problem on the graph

As might be expected, the investigation of the spectrum of A% relies on the investigation of the
spectrum of a limit operator denoted by A5 defined on a graph G obtained as the geometrical limit of the
domain Q% as ¢ tends to 0. In this section, we define the limit operators A%, and we remind important
characteristics of its spectrum, established in [1].

1.2.1. The limit operators A*, A5 and A}

The limit periodic graph G.

Let us first introduce some notation associated with the limit periodic graph G = (., (% represented
on Figure 2. We denote by e; the vertical edge e; = {j} x (—L/2,L/2). The edge e( corresponds to the
limit of the perturbed rung {|x| < ue/2}. For all j, the upper end of the edge ¢; is denoted by M;T and the

lower one by M. The horizontal edge joining M;.—L and MjiJrl is denoted by ejjr L= (J,j+1) x{£L/2}.

The sets of all vertices and all edges of the graph are then
M= {M;}jen, €={ejel, 1 }jen
Jt3

and we denote by £(M) the set of all the edges of the graph containing the vertex M.

+ —+ +
M]fl M] MJ“
+ T
€j-1/2 €j+1/2
L €j-1 €j €j+1
Ci-1/2 Cit1/2
— M- M- M

Fig. 2. Limit graph G

Weighted functional spaces on G. If u is a function defined on G we will use the following notation

+ + oy + _
uj - M(M] )’ uj(y) - u‘e_," Mj+%(.x> - u’e;:%
Let w" : £ — RT dsuch that w(eg) = u, wh(e) =1, Vec&, e ep. 4)

Let us now introduce the following weighted functional spaces

L5(G) = {u/u € La(e), Ve € & lulljug) = D w(e) lullf, ) < oo}, (5)
ecE
H'(G) = {uc L5G) /ucC(G); ueH(e)Vec& |ulfg = llulf, <oc}, (©
ec&

H*(G)={ueL5(G)/ueC(G); ucH(e), Vee€E&; HuHi,z(g) = Z Hqug(e) <oo}, (D
ect
where C(G) denotes the space of continuous functions on G.
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Definition of the limit operators A*, A5 and AL . As known since the work of [2—4], the limit operator
AH acting on L5(G) is defined as follows: denoting by u, the restriction of u to e,

(A'u)e = —ul, Ve € E, DA)={uecH*G)/ > w(e)u,(M)=0, VM e M}, (8)

ecE(M)

where u/,(M) stands for the derivative of the function u, at the point M in the outgoing direction. The
vertex relations in (8) are called Kirchhoff’s conditions. Note that they all have an identical expression
except at the vertices Maﬂ. We remark that the perturbation, which results from a geometrical modifica-
tion of the domain for the initial operator, is taken into account at the limit by means of the Kirchhoff’s
conditions at the vertices M(j)[. The operator A* is indeed positive and self-adjoint (cf. [5, Section 3.3]).

As for the ladder, denoting L (G) and L5 ,(G) the subspaces of L5(G) consisting of functions respec-
tively symmetric and antisymmetric (with respect to the axis y = 0) we have

Ly(9) = L3, (9) & Ly ,(9)-

Thus, the operator A* can be decomposed into the orthogonal sum where A% and A} are again self-
adjoint positive operators

A=A o A, with A = A md%:m@(

‘L’é,s(g)’ )’
1.2.2. The spectrum of A

The operator A5 being self-adjoint, its spectrum consists of its essential spectrum oes(A5) and its
discrete spectrum o, (A%). It is well-known that o (Af) coincides with the spectrum of the periodic
operator A, := A for u = 1 (see e.g. [6, Theorem 4, Chapter 9]) and has a band-gap structure [7-9]:

Toss(AL) = o(A;) = U [an, by,

neN

where ag > 0, a, < a,+1 and a, < b,. In general, the segments [a,, b,| may overlap. If, for some n € N,
by < ap41, the open interval |b,, a,11[ is called a gap of the essential spectrum operator A .

The following proposition, based on explicit characterizations of s (A5 ) and og(Af ), is proved in [1,
Proposition 5 and Theorem 1]:

Proposition 1.

(1) The essential spectrum of the operator A% has infinitely many gaps whose ends tend to infinity.
(2) Foru > 1, the discrete spectrum of the operator As is empty, while for u € (0, 1), the operator A%
has exactly one or two eigenvalue(s) in each of its gaps, each eigenvalue being simple.

To show the last item, we use the characterization of the spectrum

(V) -1
(8(/2) + cos V)2

1€ oy(A) < [g(vVA)|>1and u=1 —\/ )
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sin(w) tan(wL/2) ‘

5 (10)

where Vw>0, g(w)=—-cos(w)+
An associated eigenvector u is given, on the horizontal edges eﬁl 12 (J € Z), by

wy1(5) = r(V) (sin (VA1 = 5)) + (V) sin (VAs)) sin VA, si=x—j€[0,1], (1)
while, on the vertical edges e; (j € Z), it is given by

ui(y) = r(\/jl)‘jl cos (VAy)/cos (VAL/2), y € [-L/2,L/2], (12)
where 7(1/2) is the unique root in (—1, 1) of the following characteristic equation

2+ 2g(VA)r+1=0. (13)
1.3. Main result

Before stating the main result of this paper, let us remind first the result, already proven for instance in
[4], which states the convergence of the essential spectrum of the operator A% ; to the essential spectrum
of A5. More precisely, let (a, b) be a gap of the operator A% on the limit graph G then, there exists gy > 0
such that if £ < & the operator A% ; has a gap (a®, b°) whose extremities satisfy

a®=a+0(g) and D°=0b+ O(e). (14)
This means that for some C; > 0 and for any € < &g
Tess(Ab )N [a+Cre b—Cre]=0. (15)

In [1, Theorem 1], we have shown that for 4 € (0,1), and for £ > 0 sufficiently small the discrete
spectrum of A% ; is not empty. More precisely, for u € (0, 1), the discrete spectrum of A% is not empty
and if (O € (a,b) is an eigenvalue of this operator, then there exists 0 < &, < &g such that if £ < &;
the operator A% ; has an eigenvalue A° inside the gap (a®, b?). Moreover,

22 =29 4 o). (16)

The present paper complements the result of [1] by obtaining and constructing an asymptotic expansion
of these eigenvalues at any order with respect to the parameter €.

Theorem 1. Ler A0 € (a, b) be an eigenvalue of the operator A% and for & small enough, A° the unique
eigenvalue of the operator Ak satisfying (16). Then, there exists a real sequence (/l(k))keN*, which is
constructed inductively with the help of an algorithm that is presented in detail in Section 5, such that

VneN, => 10+ o). (17)
k=0
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Remark 1. Note that as every eigenvalue of the operators Ak is simple (as established in Prop. 1), for
& small enough, A° is a simple eigenvalue of Ak, see [10]. As soon as one obtains such asymptotic
expansions for these simple eigenvalues, it is also possible to deduce an asymptotic expansion for a
prescribed associated eigenvector (see for instance [11, Part 4]).

We point out that the main novelty of the previous result lies in the determination of a high order asymp-
totic expansion of the eigenvalues of A% ;, and we use it for numerical computations. The convergence
of the spectrum of A% toward the spectrum of A5 has been proved in [10]. The case of ’fattened’
compact graphs with more general boundary conditions has been investigated in [12] while the specific
case of Dirichlet boundary conditions was also studied in [13]. A more complete presentation of related
bibliographical references can be found in [1].

2. Methodology of the proof and asymptotic expansion ansatz
2.1. Methodology of the proof

The proof of Theorem 1 relies on the following lemma.

Lemma 1. Ler 29 € (a,b) be an eigenvalue of A%. Suppose that there exist two sequences of real
numbers (/l(m))meN* and (@) men=, with

O<a,<m+1 and lim «,, = +oo. (18)

m——400

and a sequence u®" € H! (%) such that, for any v € H! (%)
‘ j; (Vut"Vy — 5™ u®™y) ‘ < C ™ [ @y VIl ey, where 257 = isk/l(k), (19)
Q k=0
Then there exists at least one eigenvalue A° of A s such that
VneN, 1= zn:s’u(k) + 0(e"™h).

k=0

Proof. Assume that the sequences (u®"),,cn and (15™) e satisfying (19) are constructed and letn € N.
First, let us choose m,, € N such that @,,, > n + 1 (this is possible because of (18)). By adapting the
Lemma 4 for [14] (see the Appendix A in [15] for a proof in a general case), (19) provides an estimate
of the distance from A%™ to the spectrum of A% :

dist(o (L), 25™) < C " < Ce"TL, (20)
with some constant C which is related to C but does not depend on &. Of course,

(20) <  GAL)NIEAD, = [ 1" — Cgtl,5m 4+ C et

n
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Since 1) € (a, b), for & small enough, the interval I (which tends to A1(®) when & goes to 0) is included
in [a + C1&,b — Ci&] (which tends to [a,b]) and thus does not intersect os(A% ) according to (15)
again. As a consequence of (20), o4(A% ) denoting the discrete spectrum of A%

oa(AL ) N [/l‘g”"" — C&th a4 C gt ] £0,
Thus, for small & , there is at least one eigenvalue A, of Ak at a distance to 4™ of order £, i.e.
|Ae — A5™| < Ce"T
The end of the proof of (17) then follows directly from the triangular inequality since

’/le - /ls,n‘ < ’/ls - /ls,m,l| + ‘Aa,mn o /ls,n‘ < C|/1£ o /18”""‘ + Z 8k‘/l(k)‘ < C8n+1. 0
k=n+1

The function u®™ is called a pseudo-mode. This pseudo-mode and the associated expansion A*™ are
constructed thanks to a formal asymptotic expansion of an eigenpair (1°,4°) of the following problem

Find u® € H' (%) s. t. u®(x,y) = u®(x, —y), ¥(x,y) € Ok, u® # 0, and 2° € R,

21
Au? + 2uf =0 in Q, 0u°=0 on 90K, @D

This asymptotic expansion will be constructed by induction starting from an eigenvalue 10 € (a,b) of
the operator A5 and an associated eigenvector u©),

Due to the multiscale nature of the problem, it is not possible to construct a simple asymptotic expansion
of u® that would be valid in the whole domain 2. We need to distinguish two asymptotic expansions
of u®. The first one, describing the overall behaviour of #® far from the junctions, is expressed by means
of the longitudinal coordinate s (s = x — j for the j-th horizontal thin slit and s = y for the vertical
thin slits) and is called the far field expansion. The second one is the near field expansion and is used
to approximate #° in the neighborhood of each junction. Thus, it is expressed by means of the fast vari-
ables ((x— j)/e, (y+ L/2)/e) near the j-th junction and is defined on a normalized unperturbed junction
for j # 0 and a normalized perturbed junction for j = 0. Since both expansions are meant to be two
approximations of the same function u®, they have to satisfy some matching conditions in some inter-
mediate zones. This method is often called Matched Asymptotic Expansion. For complete and detailed
descriptions of the method, we refer the reader to [16], [17] and [11] (cf. Part IV dedicated to eigenvalue
problems). See also [18] for a recent application of the method to a spectral problem. See also [19, 20]
and [21, Chapter 8] for another asymptotic study of similar periodic skeletal structures.

In Section 2.2, we give the ansatz for the far field and the near field expansions as sums of far field
and near field terms indexed by n € N and derive the problems (defined inductively on n) satisfied by
these far field and near field terms. We give the matching conditions in Section 2.3. We study in Sections
3.1-3.2 and in Section 3.3 the well posedness of the problems satisfied by the near field terms and the far
field terms respectively. We explain the algorithm of construction of each term in Section 4 and finally
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8 B. Delourme et al. / Trapped modes in thin and infinite ladder like domains. Part 2
prove Theorem 1 by establishing (19) in Section 5.

Before entering the details, let us introduce some notations. The function u® being even in y, it suffices
to construct an asymptotic expansion of u® on the lower half part '~ of Q% (comb shape domain):

Q7 ={(xy) € ¥ st y<0}.

As represented on Figure 3, we denote by 5;’; , j € 7, the horizontal slits of the domain Q%™
2

10N 0 |

L te g [ N N
2 |

Fig. 3. The domain Q4™

€ =(J+eu/2.(j+1) = epjn/2) x (-L/2,=L/2 + &),

»

by £57 its vertical slits £ = (j — &j/2, j + &u;/2) x (—L/2 + &,0).

The domains K™ are the junctions K5~ = (j — en;/2, j + eu;/2) x (—L/2,—L/2 + &) where for all
JE€EZypu;j=1if j# 0and ug = p

2.2. Asymptotic expansions : ansatz and equations

From now on, , 10 ¢ (a,b) is an eigenvalue of A" and u(© an associated eigenvector :

u® e DAY, A u® =20 40 (22)
i.e. denotingV j € Z u(o) (0)’ + and Wl = u(o)’ _(using the notations of Section 1.2.1)
J+ €12 J ej
’aﬁuﬁ’%(s) +/l(0)u§’2%(s) =0, s=x—jel0,1],
2" () + 204" (y) = 0, y € [~L/2,0],
viez, {auP0) =0 (23)
N0 MO
i, (1) =i (-L72) =, 0),
o, (0) - asujo); )+ " (~L/2) = 0
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where we denote d, (resp. d,) the derivative with respect to s (resp. to y).

To start the construction of the asymptotic expansion, we have to fix u(®). We have chosen u(?) such
that uéo)(—L/2) = 1, namely, V j € Z,
0) _ jjsin (VA0 (1 - 5)) 1 Sin (VA0)s) .
w /i, (s)=r + s=x—j€0,1], (24)
it3 sin v/ A(0) sin v/ A(0)

Oy _ il s (VAOy) —L/2,L/2 25
u;'(y)=r cos (VAOL2)’ y € [-L/2,L/2]. (25)

Here r stands for r(\/ /1(0)) defined in (13). Note that u(?) is exponentially decaying with |x|.

Remark 2. Choosing another eigenvector u'®) leads obviously to the asymptotic expansion of a different
u. but this does not change the asymptotic expansion of A° (see Remark 7).

We propose an asymptotic expansion for 4° and u® solution of (21) constructed by induction starting

from A9 and (). In the following, O(&*°) will always denote a remainder that (formally) decays more
rapidly that any power of €. We first suppose a formal power series expansion for the eigenvalue:

=YW 4 0(e>). (26)
keN

Remark 3. Throughout the rest of the paper, we shall extend the above convention : any quantity indexed
by k with k < 0 is automatically 0.

Mimicking the approach of [22-24], we use the following ansatz (see Figure 4)

t — i
FF NF FF NF

Fig. 4. Schematic representation of the asymptotic expansion (NF: near field, FF: far field)

| -1 0 1

IUE
FF NF FF NF

e Far field asymptotic expansion: in the horizontal thin slits 5,11 , j € Z, we assume that
2

u(x,y)  us ) (%,y) = % & uﬁ,’f%(s) TO(E>). s=x—j (xy) €€ @27)
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In the same way, in the vertical thin slits Ef’f, j € Z, we assume that

u®(x,y) Z &t u k 0(e™), (xy) €& (28)

keN

With the ansatz (27) and (28), we anticipate that, for small &, in each slit, the field is essentially a
1D field in the longitudinal variable, except maybe close to the junctions, the transverse variations
being contained in the O(£*°) remainders. The 1D functions appearing in the above expansions are
defined on the edges of the half graph G~ = G N {y < 0}. More precisely

WMoien =101 R Wl e = [-L/2,0] R

IERLIE

These functions are independent of & and given by (24-25) for £ = 0. In what follows, for any &,
collecting these functions over the index j, we define a function u®) : G~ — R (by definition the
far field of order k)

u €y (G7), ) =uf]yone o u —ufoner, (29)
where H},(G™) is the Hilbert space
H.(G) = {u €L5(G7) /uc H'(e), Ve € &; Z HMH?_Il(e) < oo}. (30)
ec&

If we denote H'(G™) = {u‘ _, u € H'(G)}, we have H'(G™) C H}.(G™) : the larger space differs
from the smaller one by the fact that we removed the continuity condition (see the definition (6) of
H! (G). As we shall see, except for k = 0, all u® will be discontinuous on g.

Substituting (26-27-28) into the eigenvalue problem (21), and separating formally the different
powers of &, we get the following set of problems for the far field terms u®), k € N*: Vj € Z,

k—1
2 (k) 0),, (k) _ (k=m),, (m)
G}y () + A (s) = ZO/I ui(s), s €(0,1).

" 31)
2u' () + 20l ( ZN m) ), ye(-L/2,0),  au’(0)=0.

The far field terms u®) are still not completely defined by (31). More precisely, we need to prescribe
transmission conditions at each node M; of the graph G to link the functions
k) k) (k)
( uj+%,uj_%,uj )

These transmission conditions will result from the so-called matching conditions.
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Near field asymptotic expansion: in the neighborhood of the junctions ICj’*, J € Z, we assume
that the following expansion holds

. . x—j y+1L/2
u (x,y) ~ Uj(x,y) = Zsk U](k) <8.]’ yg) s 32)
keN

where the near field terms U

J(.k) do not depend on € and are defined on "infinite T-shaped junctions":

k .
v .g7,»R, jeL,

where the junctions J; ( all identical for j # 0) are defined by (see also Figure 5)

J;=KjUB;,_UB; UBj, K;=[-"2 70,1,
272
" - (33)
Biw =+ (M 400) x (0.1), Bjo = (=15 x (1, 400).
1 L
BJO Bo,o
U B | K P B |1 1| Bo- iKe! Boy |l

Fig. 5. The junctions J; (perturbed for j = 0 (left) and unperturbed for j # O (right))

In what follows, for any k, we denote by U (%) (near field of order k) the set of the near field functions

K ._ 77k
U = {uW} . (34)
As usual (see [23], [22]), we look for near field terms that belong to
Ul(k) €V;={U€H, (T), w;UecH(J;)} where 35)

wiX,Y)=1in K;, e VFXFi2in B, eV Tin Bjg.

which prevents an exponential growth but authorizes a polynomial one. Note that, for j # 0, J; can
be identified to 1, V; can be identified to V. Substituting (26-32) into (21) and separating formally
the different powers of &, we find a set of problems for the near field functions U®), k € N:

viez AUY = - 5 At vt in g5, (i) a6
3,U =0 onag;. (i)
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As for the far field terms, near field terms U®) are not completely defined by (36) (for instance, any
constant function satisfies Problem (36) for k < 1 or more generally any harmonic function that
belongs to V;). We need to prescribe their behavior at infinity (in the three infinite branches B,
6 € {+,—,0}), which here again results from the matching conditions.

To make the matching conditions more explicit, we need to describe the form of of the near field
terms in the three infinite branches B;;s of 7;, which relies on a modal expansion. To do so, for any
6 € {0,+, —}, we denote by (t,s) the transversal and longitudinal variables of B, i.e.

(= X iIlBj,O, 5 — Y iIlBj’o,
Y in Bj’i, X in Bj,i-

and we introduce the two following bases of L2(—,uj/2,,uj/2) and L?(—1/2,1/2) and

Vé’o(f) = //% cos (%(t—k,uj/Q)) and Véi(f) = v,(t) := /2 cos({nt), (37)
which are nothing but the eigenfunctions of the corresponding 1D Neumann laplacians.

We begin with some recaps about solution of homogeneous Laplace equations in bands. More
precisely, we are interested in the problem

—Auf(cp) =0 in Bj,(;, u?(cp) = @ on Ej,(s, Onuf(cp) =0on 03./"5 \ E./’(g. (38)

where ¢ is the Dirichlet data belonging to H 2 (X;6), with 6 € {0, +, —}. It is well-known that this

problem has a unique solution in the space

1%

iie
and defining Harm(Bs;) := {U € H'(Bs,), AU = 0in By, 3,U = 0o0n dBs, \ S5}, (40)

H'(Bjs) :={v € H},.(B,s), € L*(B;s), Vv € L*(Bjs)} D H'(B,s) (39)

the mapping ¢ + u5(¢) is an isomorphism from H 2 (X,6) into the space Harm(Bs;)  (41)

The well-posedness of (38) follows from Lax-Milgram’s lemma and Hardy’s inequality (see for
instance [25, Lemma 2.5.7]). Moreover, it can be solved by separation of variables in (s, t), yielding

—+o0
wF (@) =Y Brre ™lvi(t) inBis, Bra = (0. V0)12(s,0),
(=0 (42)

Lﬂ5|

+o0 _tx|
W)=Y Proe “
=0

vio(t) in Bjo, Bro = (0, V70)12(x,0)5

where, we see that u‘js- tends exponentially fast to a constant as |s| tends to +o0o. We are now ready
to give the structure of the near field terms in the bands Bj.
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Proposition 2. Assume that there exists a sequence of near fields {U® k > 0} (see (34)), with
U](-k) € V},V j € Z, satisfying (36). Then, for any k € N, for any j € Z, there exists 1D polynomials

(U](];)[ U](IE))) € Pyy1 and {( H:’ U](z)o) € P, £>1}

(k)

such that the function U™ admits the following decomposition in the bands Bjs

400
v =0 (s) + Z O, (s)e ™ol ve(t) in By
(43)
vl = 0 (s) Z 0Wo(s)e " vig(t) in By,

where the above series converge in H}, (Bjs). A more detailed description of Uj(.k) in each band is
U =aWs + 2P (ts) + UL (ts) inBy (44)
(k)

where a i is a real constant and

- %j((f ) belongs to Harm(Bjs) (see Def. (40), in particular A%j,(ék) = 0), thus of the form (see (42))

w) = +Z B e @l vy(t) in B
(45)
k ! Ko s .
%j,(o) = /3§-,3 + Z /35-,20 e ' vy(t) in Bjo.
=1
- Uj(lf; pi)rt € H} . (B;s) is the only particular solution of
k—2
AUSD =N 26Dy s a,U% 2 =000 0B\ S, (46)
m=0
that admits a decomposition of the form:
k—2 _
U](:I: p;rt = Uj:l: part + Z U/f:l: part &TM Vf(t)’
47)

(k=2) _ Z _FM j
Uj,O,part_ ]Opart + U]é’Opart e V[,O(t)’
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U/(]:;pi)rt e P, and satisfies (a) U/(];;i)rt (0) = ds Uj((gpa)rt(O) =0,
with (48)
U(eap)art € Py g and satisfies (b) Uj(.’];;?art(O) =0.

Remark 4. The link between (43) and (44-47) is quite straightforward. In particular,

> A (k—2 2 2
U](,]:S) (5) - ay;) 5 +ﬁ§,k§) + U](',I;,pa)rt (5)’ 1(66( ) ﬁEkf)é jkfdp)art (5) (49)

In the decomposition (44), the label (k — 2) for the functions

)

Jjopart?

k=2) orU( 2)

(
U Jj.opart Jlopart
indicates that they are entirely determined by A" and U for m< k—2.

In opposition, "the harmonic part" of UJ(.k) in the band B s, namely the function
ot s+ wl(s),

involves infinitely many "free parameters” (aﬁ?, BE{?) and {ﬁﬁ.’l})’é, ¢ > 1}. In the following, the de-
composition (43) will be used for deriving the matching conditions in Section 2.3. On the other
hand, we shall prefer to use the alternate formula (44) for the construction of the terms of the
asymptotic expansion (see in particular Section 3).

Remark 5. Integrating (47) with respect to t gives

1 j
k—2 k—2 2 k—2 (2
/0 Uiohee (5.8 dt= U7 (s)  and /_#j U (s,8) dt = p; U 2 (s).
2
1 "21
aswellaS/ U (s,9) dt= 0% ?(s) and / UY(s,4) dt = p; U5 (s).
0 1

Sketch of the proof of Proposition 2. We only give, for completeness, the main lines of one possible
proof for this result. More details can be found for instance in [22, p. 316]. This proof is done
by induction on k using separation of variables techniques. We treat here the case of the bands
Bj+. One proceeds similarly in the band Bjq. For each k, the near field can be decomposed along
the orthonormal basis v,. The coefficients of the decomposition are functions of the longitudinal
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variable 5. For k = 0,1, the announced result simply follows from the fact that any harmonic
function in the space V; admits, in each branch, a decomposition of the form

“+o0o
—; S .
@j+ s+ B+ + E ajer ey, (t) in B4
=1

For k > 2, assuming that (43) holds up to k — 1 and substituting (43) (seen as a particular writing

of the modal expansion) into (36), we first see that the coefficient functions Uj(kj)[ (s) must satisfy

k—2
UYL == At oy, (50)

J

It means that Uj(li (s) is the sum of an affine function in s and a particular solution Uj(liiirt of (50),
which can be chosen as the one that satisfies the Cauchy conditions (48)(a). It turns out that this
particular solution is a polynomial of degree k, that has no affine part.

In the same way, one sees that the functions UJUZ,) . satisfy

k—2
(02 2tm 9,) Ufy) = = - A2 O, (51)

m=0

The main difference with what preceeds is that a basis of the space of solutions of the homogeneous
equation associated with (51) is made of the constant function 1 and the function (75| The latter
(k)

must be eliminated because U™ 1s in V;.

Therefore, Uj(l;)i is a sum of a constant and a particular solution U;ﬁ,ﬁl)oart of (51). Taking into

account that we exclude exponentially growing functions, we can only impose one condition to
"eliminate the constant", by imposing (48)(b). As a matter of fact, as the right hand side of (51) is
a polynomial of degree [k/2] — 1, it is easily shown that, because ¢ # 0 the particular solution is a
polynomial of degree [k/2].

2.3. Matching conditions

2.3.1. Derivation of the matching conditions

To find the missing information (the transmission conditions at the vertices of the graph for the far
field terms and the behaviour at infinity for the near field terms), we shall write the so-called matching
conditions that ensure that far field and near field expansions coincide in some intermediate areas. In-
deed, far field and near field expansions are assumed to be both valid in some intermediate areas M¥,
J € Z,localized at the left, right and above each junction K%,

© = Mo UM UM,

Jim
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Then the matching zone M? ;. corresponds to x — j — 0 for the far field and to X = (x — j)/& — +00
for the near field. Typically, we can choose for instance (see Figure 6 for this example), for any integer
J» the left and right intermediate areas M?_ and M? | of the form

ME_=(0,8) x (j—2Ve,j—E), M5 =(0,8) x (j+Vej+2Ve),

and the vertical intermediate areas of the form
fo = (=45 ) x (=§ + V. ~§ +2v8).

Let us first explain how we proceed in the matching zone M¢_, which involves the junction J; (for the

~L/2+ 2y .
— A
~Lj2+ Mio
J-2VE §-VE J+VE G+2VE
FF NF FF
M;.— “MJ.+

Fig. 6. the matching area M5, = M’ _ U M7 UM, for j # 0 (NF: near field, FF: far field).

near field) and the edge e i+ (for the far field).
(k)

We first use the (formal) Taylor series expansion of the far field term Uiy
2

), (5) = 3 o S"

teN

so that the ansatz (27) can be (formally) rewritten as

¢ X—j)e .
=> & Za +1 7+ 0(>®), jel. (52)

t!
keN teN

On the other hand, using the expansion (43) for Uj(-k) in B, we remark that (32) can be rewritten as

- s U(k)( j) +0(E®), jeL (53)

keN

where we have noticed that, for s = (x — j)/e, (x — j) € (0,1), the terms in factor of e~ £ > 1 can
be put into the O(&>°) remainder.
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Then, writing s = (x — j)/&, the identification of (52) and (53) leads to relate the two expansions :

¢
k) 5 o (k .
g E g ou ( O) 1= E &t UJ(-’J)F(S), jE€Z.

keEN (eN keEN

Finally, identifying the terms of the order £ leads to the equalities

€
Zafu” o keN. ez

Obviously, we proceed in the same way for the matching areas M _ and M, to obtain
¢

k k
~ _ N _ S .
0P ()= > oult ")(1)5 and  U(s) =" ot ”(—5)5, keN, jer
=0 =0

k ¢
(0 _ g k1) 0 _ 0 =2) oy (=0) () &
=0 0 (0) B = (0) Ujpa(s) = ;2: o (0) 7y,
k ¢
0 _ g k1) (0 _ 0 F-2) o N 50,00 (1) 8
ajm =0 (1), B =u (D UiZgs(s) = 2 (1) 5o
k ¢
— ~ (k— — 5
ofy =0u 5, B =ul(5). U520 =3 I T
=0 )

2.3.2. A useful version of the matching conditions

17

(54)

(55)

(56)

Let us now anticipate here the way we shall exploit these matching conditions for the construction
of the asymptotic expansion by induction on %. In fact, these will be used for "building conditions at

infinity" for the near field terms in addition to (36). If one assumes (4,,, U,(nk)) known for m < k — 2, we

know from Proposition 2 and Remark 4:

The functions U (k=

H 6part (in (44)) are known and considered as data.

(57)

In view of the decompositions (44)-(45)-(47) of Proposition 2, the equations of the first two columns of

(56) can be rewritten as

U(.k) < &) 1 (0) + 05 u(k 11) (0)s + U( 2 ) € Harm(Bj4) N LexP(B +)5 (0)

j i+3 i Jpart

LS J,—.part exp

UW‘O@(D+&#3RW+U()) € Harm(B;—) N L, (B;-), (ii)

U(.k)—<u§-k)(—%)+6su(-k_1)(—%) + U2 )eHarm( 0) VL, (Bjo), (iii)

J.0,part

(58)
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where the spaces Harm(B;) are defined in (40) and the spaces L2, ,(B,s) are given by

exp

L2,(Bj+) == {v € L}.(Bjz). ellve L*(B;+)},
sl
Lgxp(BJ?O) - {V < Lloc(B 0), e'ive Lz(Bj,O)} .

Note that the functions belonging to Harm(Bj;s) N L2,,(B;s) have an expansion of the form (42) with
Bos = 0. As aresult (see the definitions (37)),

Harm(B;s) 0 L2, (Bjs) = {vG’Harm(Bj,ﬁ), /

vdo = 0}. (59)
Xis

On the other hand, using Remark 5, the condition of the last column of (56) can be reformulated as

1 5
(k— e .
/0 U2 (s.t) dt—z ol i (i)
! ( (k— ( 5
/0 j,part (s,t) dt = Z 8 u 7% ? (ii) (60)
/2 l
k—2 k—¢ 5
[ ey a=n, S a0 %
—Hj =2 ’

However, these conditions are redundant, as explained in the following lemma, in the sense that at each
step k, they appear to be consequences of the matching conditions (58) form < k — 1.

Lemma 2. Assume that (36)-(31) are satisfied (with m instead of k) for m < k and that the matching
conditions (56) (with m instead of k) are satisfied for m < k — 1. Then, (60) is satisfied.

Proof. The forthcoming proof is done for (60)-(i), but an entirely similar approach leads to (ii)-(iii). As
already observed in the proof of Proposition 2 (see (50)), the function U;k) (s) satisfies

k—2
9.0 = =3 am o s). ©61)

But, since the matching conditions (56) are satisfied for m < k — 1, we have
( k—2—m 5 )
A~ (k—2—m) g (k— 2 m—{
Uit = 77 Ost (0),
=0

As a result, inverting the roles of £ and m in the summations, (61) can be rewritten as

k—2 k—2—¢ k—2

o.U k i /1 )af (k—2—m—{’)(0) _ [ af+2 (k—2— [)(0)
U 0 ( >, AV )_Z o + :

=0 m=0 =
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Here, we have used the far field equations (31) (with k — 2 — ¢ instead of k) to obtain the second equality.
Solving explicitly the previous ordinary differential equation, we obtain (see Proposition 2, Remark 4
and Remark 5 for the notation)

k=2 2 k
7K oy o (R) (k) s 042, (k=2=0) 1\ _ s’ NG [
o (8) = ajis + B + ;0: +2)! & u (0) = §2 7 0)-

Finally, identifying the previous equality with (49) directly gives (60)-(i). [

In other words, under the hypotheses of the previous lemma, it suffices to satisfy (58) in order to satisfy
the matching conditions (56).

3. Analysis of far and near field equations

As usual in the method of asymptotic expansions, the construction of the terms {/l(k), u("), U (k)} in the
formal expansions will be done by induction on k. The idea is, at each step of the induction process to
"eliminate" the near field U®) in order to formulate a problem in {A1*), 4} only, which is similar in its
form to the problem (2.2) for {/1(0), ul® }. To do so, in Section 3.1, we first derive transmission conditions
on the far fields terms {u#(*)} assuming that the whole sequence {1%),u®), UV} exists (Prop. 3). The
next two sections prepare the induction process which will be described in Section 4. In Section 3.2, we
prove that the above mentioned transmission conditions are also sufficient conditions for the construction
of UK , assuming that the previous terms {/l(’"), u(’"), ym },m < k are known as well as the far field term
u®) (Prop. 4). Finally, in Section 3.3, we formulate the problem in (1%, 1)) and show the existence
and uniqueness of the solution provided that {1 (m) | yy(m) gy (m } m < k are known (Prop. 5). The step-by
step construction of each term of the asymptotic expansion is conducted in Section 4.

3.1. Necessary conditions for the existence of the near field terms

In this section, assuming the existence of the whole sequence {/l(k), u(k), U (k)}keN, we derive non ho-
mogeneous transmission conditions for #®) (similar to those necessarily satisfied by for «(?)). To obtain
these conditions, several approaches are possible. We have chosen the one that consists in "replacing"
the problem satisfied by each near field term (namely (36) plus the matching conditions (58)(60)) by
an "equivalent” problem set in the bounded domain K; defined in (33) using the so called Dirichlet-to-
Neumann operators introduced in the next section. Beyond pure theoretical purposes, another interest of
this method is that it directly results into a numerical method that will be explained later.

3.1.1. Dirichlet to Neumann operators
LetT¢ € Z(H 2(2 is)H —3(2 js)) be the DIN operator defined by

TFe=—0ui(p)  onX;, (62)
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+

where u; (¢) € #H'(Bjs) is the unique solution of (38) and n denotes the unit normal vector to X4

outgoing with respect to K ;. Formula (42) allows us to put the operators T;-S in diagonal form

“+oo +oo

i ; ;
TFe =Y Cr(e.ve)i2(s;.) Voo TV =>" o (. V20)12(5,50) Vio- (63)
=1 =1

Note that, by definition of the spaces Harm(B; ;) and the operators T;? (and some abuse of notation),
VU € Harm(Bs;), 8,U+TU =0 on s (64)

3.1.2. Reduction to a bounded domain
We wish to characterize, for j € Z and k € N, the restriction of U; ® o K j» denoted U](.k) for simplicity.

We first introduce the notation: k 2) Z Alk=m=2) U (m) (65)

where again the superscript (k — 2) is here to fndicate that this function depends on the (A,,, Uy,)’s for
m < k — 2 and is thus a data. Of course, we immediately infer from (36) that

ATW =o' in kg,
(66)
ant(k) =0 onaKj\(Ej,+UZj,_UEj,0).

To close the problem, it remains to derive boundary conditions on the boundaries 3,5, 6 € {0,4+, —}.
More precisely, we write non homogeneous DTN conditions on each boundary ;5. Noticing that con-
stant functions belong to Harm(Bs ;), we deduce from (58) and the property (64) that

anU](h + 710 U](-") _ g% Y on %5 where 7
k—1 k—1 k—2 k—2
g§’+ ) = 0w ( 2 )( ) + g§+p)art’ gg"'_’p)art B (a - T+) Uj(-‘r pzlrt on ZjHr&
k—1 k—1 k—2 r—2 3 o
5_ ) = 8Su5 %)(1) + gﬁ_p)art, gﬁ,_,plrt =0, +T;) U,(-,_,pirt on X, (68)
k—1 k—1 k—2 —2 (—2
gEO ) (9} 5 )(7%) + gsopgrt, gS',O,pa)rt = (an + T?) Ufopa)rt on E]’O

Collecting (66) and (67) we see that, in K, U](k) satisfies the boundary value problem

(k) & (k—2) ;
AUj = <I>j inkj,
0,0 4 T8 = D onss G- 0,4 (69)
8n V§k):() on 6Kj\ (EJH_UE]',—UELO)-

Note that, since the image of constant functions by any of the operators T}; is 0, any constant is a solution
of the homogeneous boundary value problem corresponding to (69), which means that, at best, a solution
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of (69) is defined up to an additive constant. As a matter of fact, the study of (69) relies on Fredholm’s
alternative (exactly as the Neumann Laplace problem) and we let the reader prove the following result:

Lemma3. For j € Z, let ® € L*(K;), gs € H '/%(2}4). There exists a unique solution U € H*(K;)/R
to the problem

AU =3 in K,
0,U + T}SU =gs onXjs 0=0,+,— (70)
(?nU:O on()Kj\ (Ej,+U2j,_U2j,()).

if and only if the following compatibility condition is satisfied, (-, '>E,«,5 denoting the duality bracket
between H=Y2(X5) and H'%(X4).

(g 1), + (g Us, + (gD, = [ @ )

The fiunction U solution of (70) is omny defined up to an additive constsnt at our disposal.

As we shall see later, in the case of U ()

; '» the choice of this constant will imposed by the matching
conditions.

3.1.3. Necessary conditions on the far field
The main result of this section is Proposition 3 whose proof involves two "profile functions" A/ /i

- The function /\fj_ is the unique function of H'(K) solution to the problem (70) with

=0, g =0, g =1, go = —1/u; that satisfies / N dx = 0. (72)

K;

- The function ;" is the unique function of H'(K;) solution to the problem (70) with
® =0, gy =1, g =0, go = 1/u; that satisfies / ./\/'j+dx = 0. (73)
Kj

Remark 6. Note that, according to the identification of the junctions Jj, j # 0 to the single junction
J1, all profile functions /\/ji coincide with /\/‘1i As a consequence, we only have four profile functions

for j = 0,1 and +. In addition, ./\/'J.Jr and /\/']7 are linked by the following symmetry property:
N7 (X, Y) =N (-X,Y) VjeN. (74)

Proposition 3. Assume the existence of a sequence {/l(k), u®, U (k)} satisfying (31), (36), (58) and (60).
Then, the far field u™ satisfies for any k € N the inhomogeneous generalized Kirchhoff conditions

9, (0) — ™, (1) + p; 9P (L) = =D, (75)

K j+% j— J

N |—=
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as well as the inhomogeneous jump conditions

() —uf(=5) =afjez

(
_1 J—
Zk)z (k) (k—1) (76)
u;’ (—%) —uH%(o):AL+ , j € Z, (ii)
where, (I>§ ), g(k) and g%part being given by (65, 68),
',:('kfl): _< (k—1) _< (k=1) _< (k=1) (k—1) .
= 8j+part 1>EH 8j—part> 1>E,~,, 8j0.part> 1>ij0 + K, (I)J . ()
k
1 k=0 L (=D o w0
=3 (@)~ A w)
" (k—1) (k=2) ()
k—1 _ k=2) s/
+ ) <gj,6 ’Nj>2,_/‘bj N
se{+.—.0} o K
k
(k—1) wt (k f) L k-0, L
AJ,—ir _Z < 2 p1 Ou (0) il v’ (_5) )
" (k=1) (k=2) (@)
k=1 + k=2) \r+
+ Z <gj,5 ’Nj>2__/¢’j N
\ se{+.—.0} oo K
(17
Proof. The result will follow of the investigation of Problem (69) satisfied by Uj(k) and Uj(-k+1).
First, we deduce from Lemma 3, that the compatibility condition (71) applied to (69) for Uﬁkﬂ) writes
® > < ® > < ® 4 > _ / (k=1)
1 1 = [ & 78
<gj,+’ E_,H_ + gj’f’ ij_ + g]O bl E_,‘YO Jj > ( )

K;j
which is easily seen to be equivalent to the condition (75) thanks to (68) and (77)-(i).

Next, to obtain the jump condition (76)(i), we use a particular reciprocity result : let us multiplying
equation (69) by J\/j_ and integrate the result over the domain K;. Using Green’s formula, we get

Z |:<an'/\[j_’0j('k)>z <a,,U k) N7 >E- } _ _/q)gk—m/vj_

se{+,—,0} K;

which can be rewritten, using the symmetry properties of the DtN operators T;.S

> [{@mar o) (@ mofag) == ey

6e{+.—.0} ’ K;
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Using the DtN boundary conditions satisfied by U](k) (cf. (69)) and /\/'j_ (see (70) and (72)), we get

SO =1 (k) (k=1) \p— _ (k=2) )
[or-L [op- S (), - el ™

Hj
) Zjo o0€{+.—.0} K;

Finally, substituting (60) into (79) leads, after some easy computations, to the jump condition (76)-(i).

Proceeding in the same manner with /\/jJr instead of /\/j_ leads to the jump condition (76)-(ii). [
3.2. Towards the inductive construction of the near field terms

In this section, we assume that we are inside an induction process and wish to construct U ) for k >1
assuming that

(Hy) The far field terms (u(’"), /l(’”)), m < k and the near field terms U (’”), m < k — 1 have been
k constructed so as to satisfy (31), (75) and (76) on the one hand, (36), (56) on the other hand.

Proposition 4. Assume that (Hy) holds. Then, for each j, there exists a unique near field term U}k) eV
satisfying (36) and (58).

Proof. We are going to construct the solution piecewise as

U](.k) = ﬁj(k) inK; U](.k) = UJ(-? inBj;, o0 =%,0, according to the following lines;
(1) We build Uj(.k) in order that it satisfies the non homogeneous Laplace equation (69) in K.
(2) We construct Uj(-? in Bjs, 6 € {£,0} by extending Uj(-k).

(3) We check that U](k) satisfies the matching conditions (58).

Step 1. First, according to (69), we construct U](k) as a solution of
(k) (k=2) .
A i = (I)j m Kj,
- (k - (k k—1
8,0 + 10" = g%V onsy,, s=0,4, (80)
ﬁn V](-k):() on aKJ\ (Ej’iUEj’o).

which, in view of Lemma 3, is well-posed in H!(K;)/R (note that due to (H), @5"72) and g&f{l) are
known). Indeed, as explained in Section 3.1.3 (proof of Proposition 3), the condition (75) (written for
k — 1 instead of k) is a consequence of (Hy) and is nothing but the compatibility condition for the well-
posedness of (80). However, as this solution is defined up to an additive constant, we need to adjust this

constant appropriately.
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This is where we use the fact that we want U](-k) to satisfy also (58), which implies, as shown below,
k it :
k j k—¢
DS e U
i+ =0
k £, €
k (=1)y, k—¢ .
/ U; ) _ 72(?5!] aiuﬁié)(l), (ii) 81
S =0
” *) ~ 1
k ¢ (k—¢
/UJ :'ufz ﬂay i (=%), (i)
\Z.LO =0

Indeed, let us prove (81)-(i) (the proof is the same for the other two equalities). Using the mean value
property (59) for functions in Harm(B;s) N L2, ,(B;s), (58)-(i) implies

exp

® _ ( ® (k=1) (k=2) 1 _
/z:,-+ Uj ("j+%(0) + Oy (0)s + UJ+Part) =0

2

However, Lemma 2, which we can apply thanks to (Hy), implies (60)-(i). It is then easy to verify that
the previous equality is nothing but (81)-(i).

A priori, imposing each of the equalities in (81) would lead to fix the missing constant. Fortunately,
there is no possible ambiguity thanks to the compatibility jump conditions (76):

Lemma 4. Assume that the conditions (76) hold. Then, if U](-k) is a solution of (80), the three equalities
(81) (written with Uj(k) instead of U](-k) ) are equivalent.

Proof. For simplicity, let us adopt the notation

e 5 (), - [t

se{+,—.,0}

so that the jump condition (76)-(i), which is a consequence of (Hy), can be rearranged as

k k
‘u (k=€) 11\ 1 (k—0) _
[Z: 2€g|] du j (1) = Z 1l duy 7 (=5) + LIN) (82)
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so that (82) can be rewritten as

which shows the equivalence between (81)-(i) and (81)-(iii). In the same way, the jump condition (76)-
(ii) implies the equivalence between (81)-(ii) and (81)-(iii). O

As a consequence of the lemma, we fix the free constant in order that each of the conditions (81) (with
l7j(-k) instead of Uj(.k) ) is satisfied.

Step 2. Next, we construct the extensions UJ(.? of UJ@ in the bands B;s (6 € {0,+,—}). Below, we
restrict ourselves to the case of B, the other bands being treated in the same way.

In B; 1, according to the desired matching condition (58)-(i), we need to take Uj(li in the form

k k—1 k k—2 k
U = ol D) s+l )+ UL+ 7Y (83)

where “//j(fr) should belong to the space Harm(B;+)NLZ (B;+). As an element of Harm(B; ), accord-

exp
ing to (41),we have necessarily

k k k 1
"I/jf+) = uj“(goﬁ}r) for some goEJ)r € H2(X;4)
At this stage it only remains to choose gogkl In order to match the values of Ulgk) and Uj(lfz on X,
according to (83), we need to choose
k) _ k) _ (K 5 (k=1 (k) (k=2) )
At =0, (5 0wl O vl @+ UL (84)

This choice is in fact sufficient to ensure also the matching of the normal derivatives. In view of the DtN
boundary condition satisfied by U (k), it suffices to check that

k k—1
(00 +Tj) U,(J)r = 8§,+ )

But, using (83) and (64) for %, this is nothing but the definition of g', ") (see Section 3.1.2).

Step 3. It remains to check that U](-k) satisfies the matching conditions (58). In view of Lemma 2, it suf-

fices to verify that (58)-(i) is satisfied, i.e.

18 € Harm(Bj+) N L2, (B;4)-

exp
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According to the characterization (59), this simply amounts to verifying that go(k) has mean value 0 alon
it g

> +. However, thanks to Lemma 2, (81) rewrites as
(k) (:“j (k=1) (k) (k=2) ) —
U’ — osu’ 0)+ u/,(0) + U, =0,
/z.,; L 2 %"j+] (0) ”;+§( ) /Zj,+ Jtpart

which, using again Lemma 2, is nothing but tp(~k) =0(see (84)). O
gag g it

i+
3.3. The problem in (u®, A%),

Here we assume that {10, u("), U™} are known for m < k. Collecting the results of the previous
sections (far field equations (31), Kirchhoff conditions (75), and non-homogeneous jump conditions
(76)), we see that (1), 1)) should satisfy the following problem:

(02ul), () + A0, (5) = =AW (5) = 1), s€ (01, ()
) 6) + 20U ) = 20U ) = V0. y e (L/2.0). G
viez < oul’0) =0, (iii)  (85)
asuﬁ)% (0) - ésuili)% (1) + ol (~L) ==Y, (iv)
d () = (<5) = AF W () = A

\ /=3

where the data at the right hand sides of last two equations are given by (77) and (68), and thus known
from {10, 1™ UMY m < k, while

k—1 k—1
(k=1) _ k—m), (m) (k=1) ._ k—m). (m) ,
i) = §1:1< )uj+%, ;= §1jz< W, jel. (86)

Let E(Ap) := span [u(9)] ¢ H'(G~) € HL (G™) be the eigenspace of A% associated to the eigenvalue .

Proposition 5. Let k > 1. Assume that
“Deryg) (=) en@ ad {AV} cn@ 7
FV e {170 | en@ ad (V) cn@), )

then there exists a unique (u®, A0 € H} (G~) / E(Ao) x R solution of (85). Moreover

_92 ~(k— _
0 = gy (2 5 B () ), )
JEZ
~ (0)
where =% = Eg-k*l) — sinf//m (Aﬁkgﬁ - Ask:ll}r + cos V A0) (A;’:l) — Ag,k:l))) . (89)
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Proof. The proof of this theorem is an elementary application of the Fredholm’s alternative. A similar
proof can be found, for instance in [26] (see Theorem 4.10, Corollary 2.2 and Theorem 2.13). Note that
(88) is the necessary compatibility condition for the existence of a solution of (85) seen as a generalized
boundary value problem for u®). [0

Remark 7. In the solution of (85), the field u® is defined up to the addition of any element of E (A0)-
The uniqueness can be restored by imposing, for instance, any linear condition of the form £(u*) = 0,
where { is a linear form of HY, (G~ ) such that £(u®) # 0. The choice of € will specify the construction of
a particular pseudo-mode. In Section 4 (see e.g. (115)), we shall precise our choice of €.

Besides, we can notice that the expression of A% given by (88) is homogeneous of degree 0 with re-

spect to the eigenvector u®) so that one can check that it does not depend on its normalization. Indeed,
==

it can be shown by induction that fj(k_l) and =; b depend linearly on u©).

We conclude this section by a symmetry property (in the variable x) of the far field ().

Lemma 5. Let k € N*. Assume that (87) holds and that condition (88) is fulfilled. Suppose also that the
following symmetry conditions hold: Vj € 7,

; ff’;*_gu —5) = fj{’f;)(s) s€0,1] " Al - A
i ii (90)

(k=1)y — plk—=1) L —(k=1) _ —(k=1)

7= 06 yel-35.0 25 =20

Then, the solution u® of Problem (85) is symmetric, i.e., for any j € Z,

u(_ki,_%(l — )= uﬁ?%(s) s€0,1]

k k)
W) =u ) yel-L0

(€29

Proof. Let us introduce the function #®) defined by

i (s) = u(k)il(l —s), s€0,1], it(.k)(y) = u(f}(y), yE [—%,0}.

Then, the function w®) = #® — 4(®) solves the homogeneous problem (23). Consequently, there exists
a real constant ¢ such that w) = ¢ (9.
Since wg’j)z(O) = u(_k%/z(l) — ug’j)Q(O) = Aé’f:l) + Ag:l) = 0, we deduce that c = 0 and w¥) = 0. O

4. The asymptotic expansion: existence and algorithm

By repeating applications of Proposition 5 and Proposition 4 (successively), we are able to define a
recursive procedure to construct all the terms of the different asymptotic expansions (far field expansion,
near field expansion and eigenvalue expansion) up to any order. The construction is done by induction.
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Moreover, we can derive explicit formulas for the far field terms and semi-explicit expressions for the
near field terms, which are suitable for the numerical computations of the successive terms of the asymp-
totic expansion. In particular, we point out two important features of the forthcoming construction:

(1) First, by induction, all far field terms (ugl_?l /25 uﬁk)) inherit of the symmetry property (91). Moreover,

the near field term satisfy an analogous symmetry property
(k) _ W ;
USi(X.Y)=U;"(-X,Y) VjeN 92)

In practice, at each step k, it is consequently sufficient to compute ug.l_?l /20 uﬁk) and Uj(-k) for j € N.

(2) Secondly, an explicit dependance with respect to j can be proved by induction. This turns out to be

very useful from the numerical point of view.

This section is organized as follows. First, we initialize the induction process for k = 0 in Section 4.1.
Then, we proceed to the first induction step k = 1 in Section 4.2. This step has a pedagogical interest for
the understanding of the general induction step at any order k£ made in Section 4.3.

4.1. Order 0 : initialization of the algorithm

We start from an eigenvalue 2() of the operator A* defined in the limit graph and the associated
symmetric eigenvector u(®) given by (24-25).

For convenience in the forthcoming exposition, we shall use the following alternative expressions of

(uﬁ_(jr) L uﬁ-o)) for j > 0, (completed by the symmetry property (91))
uﬁ)l(s) =/ (a(()o) cos(VAO)s) + b((]o) sin( /l(o)s)), s=x—j€l0,1],
’ 93)
u§0) (y) =1+’ céo) cos(V A0)y), y € [-L/2,0].

where a((JO) =1, b((JO) = sin (V /1(0))_1 ((r — cos (VA )), C(()o) = cos(V A0 L/2))~ 1.

According to Section 3 and more particularly Proposition 4, each near field terms Ulgo), J € Z is then
defined as the unique solution of (36, 58) for k = 0. Indeed, thanks to the convention of Remark 3, it is
easy to check that Assumption (Hy) (needed for applying Proposition 4) is nothing but the fact that u®)
is an eigenvector associated to the eigenvalue A which is precisely our starting point.

) is constant equal to u'” (0), 1. e.

Moreover, since ®(—1) = 0, it is then easy to see that for all j, Uj(p i
2

vl =/, vjiez. (94)
4.2. Order 1 : first induction step

We shall construct in turn
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(1) the coefficient A and the far field terms u(") by means of an explicit resolution (see Remark 8)
of (85) for k = 1 . We prove that u is symmetric (in the sense of (91)) and that

ulY ) (s) = rjfzzljos" (agl)(j) cos (v/Aos) + bgl)(j) sin (\//Tos)> , s€[0,1], jeN,

L1
]+§

1
) () =17 325" (et Gy cos (VAy) + P (ysin (VAy) ), v € [-5.0], jeN,  (95)

1
u(()l)(y) = é’Z:O yt (cglo) coS (\//Toy) + dt(;’lo) sin (\//Toy)) , y € [—%,O] )

\

where the coefficients (a(l) (J)s dél) (J)s cgl) (J)s d;l)( 7 ct(;,lo), dt(;,lo)) are explicitly determined.

(2) the near field term U (1) | which is symmetric in the sense of (92) and is of the form

J

vy =i <L{(1)(-) + p(l)(j)) Vj e N*,  with J; identified to Jy (96)

where UM € HL (1) is a so-called profile function and the constant P(Y) () is a polynomial of
degree 1 in j. Note that (96) avoids the case j = 0 which will be the object of a separate treatment.

Remark 8. 7o avoid a boring exposition of long and complicated formulas or expressions, we shall
most often restrict ourselves to explain how these explicit computations can be done, without giving the
results (this will be also the case in Section 4.3). Note however that these formulas are necessary and
used in the numerical method presented in Section 6, while the general form of these formulas will be
used for the error analysis of Section 5.

Remark 9. Note that it is natural that the vertical edge corresponding to j = 0 is treated in a separate
manner since it corresponds to the refined branch ot the thich graph Q™.

4.2.1. Determination of AV and u™™
They are obtained by solving (85) for k = 1. Let us investigate the structure of the data

0 0) A(0) A(0) =(0
(f/‘(—s-)l/%fj( QYNNG ))

9 ]’J,_ ) j7_ b ‘—‘]
of this problem. First of all, by definition, we know that

VieZ fO.=r"=0. 97)

J
Concerning A(ggi, we first notice that, from (68), (93) and Remarks 3 and 6,

Viz0, g9 =rigl and Vjez 0 =g% ), =g (98)

where moreover

g = g9 = Va0, 0 = 9 \/20) sin (v 20 L/2). (99)
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Using the definition (77)(ii) and (iii) for AE-’(?E, we easily see, since o1 = 0, that

0 0 0 0 —
A = o, (L) + 4 o >é+6€{+z . (8- A7)y,

A =gou —oud(-p)+ T (e N])

se{+.— Sis
Therefore, as a consequence of (93) and (98)-(99), we can write
AN =rAD  jenN (100)

where Ai) can be explicitly determined as a function of (a[() ), b[()o), cé )) and 1(©) . Moreover, using the

symmetry properties of /\/’]i (see Remark 6), we can see that for j € Z,

AY =AY and AY), = -AQ. (101)

J>

In particular we deduce that {A i4}ien € I2(Z). Finally, we prove below that

vjez, 2¥=o0 (102)
Indeed, since @5.0) — A0 U (see (65)) and U ©) — rlil (the constant function), using definition
(77)(1), we obtain (we use also meas K;=uj)

=0)_ _ /(0 (0) _ /.0 — 4. 100) ]

=i = <gj,+,part’ 1>Ej,+ <g] —,part? 1>Ej,7 <gj,0,part’ 1>Ej,0 Hj AL (103)

Using the definition (68) for gg.o) and the definition of TJQ, we have

,0,part
<g§,%),part’1>2 S0 <8 UEO)part’ >Z
(0)

Next, according to Proposition 2, U ..., 1s obtained from the decomposition (44) of U](.Q) fork = 2
and is solution of (46)-(47)-(48). It is then easy to see that

= (0 + T U rs1)

J:0 ;0

0 0 sl
U](O)part(s’ t) = ljl Z U](E)Opart € o é,O(t)

Then, since X corresponds to s = 1, we find that

J:0

O 0 J o U w N

BB B R R W WWWWwWw W W NDNDNDNDNDDNDNDNNDNDNND R R R R R R R R
o U w DR O VW 0oy U WD O vV oY U WD RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WO ®Jd oS W R O WO Jd o0 W N P O WO doUs W N R O

B. Delourme et al. / Trapped modes in thin and infinite ladder like domains. Part 2 31

Proceeding in the same way in the bands B;+ where 8, = & J,, we find that

(0)
<gj,+,part ’ 1>Z

The relations (104) and (105) enables to conclude that Eg.o) =0forall j € Z.

— M 00) il (0) 1 — K 00) il 105
2 r, < >E 2 r (105)

8~ .part?
it =

Thanks to (97), (100) and (102), the assumptions of Proposition 5 are satisfied for k = 1 so that we
can claim that there exists a unique (1), u"), up to a normalization condition for u(") (cf. Remark 7)
that we will specify below (see (115)). Moreover, according to (88), A g given by

A0 =2l gy (30 F7). (106

€z

[1]

where, according to (89) and (100), we compute that

VjeN,

VA r -
sin V' 1(0)

- - /20 R . . .
SIS VAT (r A 1 A(f) + cos V A(0) (A(f) — A@)) .

We can also give an explicit formula for x(1). First, from properties (101), we can claim that u®) satisfy
the symmetry property (91), so that we can restrict ourselves in the following to j > 0.

Let us first consider the two linear ordinary differential equations of (85) for k = 1, namely:

8u (1) L (s) + 20y 1) (s) = =AWy 0) . (s), s€(0,1),
! ]+ i jeN. (107)
Wy

53u§)< )+ 20D () = a0 u@),  ye (-L/2,0),

(NI

Using (93), we first compute a particular solution of (107), namely

(1) (s) = A 4

]+2 ,part

a(() Vs sin(V A0 s) + b(()o) s cos( /l(o)s)> ,

2F <
QF (— c(()o)y sin( /l(o)y)>.

Therefore, there exist {a (), 5" (j), j € N}, {&§"(j),dS"” (j)), j > 0}) and {é&é, Vé,lg} such that

jEN. (108)
e () = AV P

jpart

5)2<) a(()l)(j)cos(\//l(o))—i—b()()sm( /l(o)s)—i—u(_l) (s), se€[0,1], jeN

J+%part
u§1)(y) ) cos(V A0)y) +d ) sin(V A(0)y) Egart y€[0,1], j € N*
ulM (y) :eggg s(VAO)y) + dfy sin(vVAOy) +ul) (v y € [0,1].
(109)
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Let us now determine the above coefficients. First, (85)-(iii) (Neumann b. c.) leads to
(1) s .
dV(j)y=0. vjez dj=o.
Next, (85)-(v) (the jump conditions for j € N*) give, after some manipulations,

1

O (1), j . X .
C = —qa +c1 1/, VjeN 1

0 (]) COS(\//WL/Q) 0 (]) 1 J ( ) (110)
. 1 1 ,
bV () =al(j+1) ——— —aV(j) ————+ b1 F, VjeN, (i)

sin(vA(0)) 0 tan(vA(0))

where the constants b; and ¢; are explicit functions of 1(?) (whose expression is omitted on purpose).
To be more precise, (110)-(i) directly follows from the first jump condition while (110)-(ii) is deduced
from the second jump condition at j + 1 taken into account (110)-(i).

Finally, substituting (110) in the fourth equation in (85) (the Kirchhoff condition) yields to
as ) (j+1) +25(VaO)al () +al -1 =r @ VieN (111)

where, again, a; is an explicit function of 1(9) and g is defined in (13). Using that r2 —|—2g( /1(0)) r+1=
0, a direct computation shows that a particular solution of the difference equation (111) is given by

. . rai
ao,part(J) = 2 _

jrl, VjeN. (112)
As aresulta(j) := Elé

.]) - éO,part(j) satisfies

a(j+1)+2g(VA9)a(j)+a(j—1)=0 VjeN*

whose general solution in £3(N) has the form a/(()l) r/. In other words, we have then proved that
Zl(()l)(j) = rja(()l)(j), with a(()l)(j) = a(()l) + r;i?)l J VjeN, (113)

Substituting (113) into (110) and (109), we obtain the formulas of the first two lines of (95) where we
observe that

agl)(j), bgl)( ), (1)( ) and d( )( ) are polynomials of degree < 1 — ¢ with respect to ;. (114)

Except the constant coefficient of a(()l) (/) (coefficient of the polynomial a(()l) (j) associated with the mono-
mial of degree 0), these polynomials are explicitly determined by formulas (110)-(113). It is consistent

with the fact that Problem (85) has a solution up to a multiple of #(?). At this stage, we can choose

agl)(O) -0, (115)
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where by definition a(()l) (0) = ”(1%(0) as our normalisation choice (see Remark 7 with € : u — u3,2(0)).

It remains to compute E(% for which we use the jump conditions and the Kirchhoff condition for j = 0.

A priori, this gives 3 linear equations in é((fg. However, these three equations reduce to a single one

allowing us to compute this coefficient explicitely. The verification of this property can be done by hand
using the symmetry properties together with the fact that (1) is given by (106). However, this property
is a consequence of Proposition 5, that ensures that there exists a unique solution to (85) (for k = 1)
satisfying the normalisation condition (115).

4.2.2. Determination of U @
We already know that (u(o), /1(0)) satisfy (31), (75) and (76). In the same way, as solutions of (85) for
k=1, (u®, M) also satisfy (31), (75) and (76).

Since U, obtauned by concatenation of the constant functions Uj(.o) (see (94)) satisfies (36), (56), we
have checked that(H1) is satisfied. In view of Proposition 4, we can thus assert that,

Vjez, 3! U;l) € V; solution of (69) for k = 1 satisfying the matching conditions (54-55). (116)

)

is shown to be symmetric in the sense of (92) by using the symmetry of u(®) and u(").

At this stage, we distinguish between the computation of Uél) and the computation of Uj(-l), j#0.

1
Moreover, U j(

The computation of U(()l) is obtained by solving (69), for k = 1, j = 0, providing the restriction of U(()l)

to the junction Kj. Then, it is extended to the whole domain 7 as in the proof of Proposition 4.

Let us now consider the case j # 0 and prove (96) by showing that there exists a profile function
U e V; = Vi (with K; identified with K) and a constant 77(1)( J), that is a polynomial of degree 1
with respect to j, such that the decomposition (96) holds.

We first establish this decomposition inside K; and then extend it to the domain J; as in the proof

of Proposition 4, Section 3.2. As for U (0

; » this (straightforward) second step will be omitted.

For j € N*, according to Section 3.2 and (98), we know that U;l) , the restriction of U/(.l) in K; satisfies

AU =0 ink;,
ant(,l) + 79 Uj(_l) =rig!) on%s 6=0,+, (117)
ant('l) =0 on 8KJ \ (Ej,i U Zj,()) .

as well as the following condition, which is nothing but the matching conditions (see (81)-(iii))

[ o= ),
3o
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From (93)-(95), one easily finds explicitly a polynomial P(!) of degree 1 such that
N _ ip);
/ Uy = Pa(j). (118)
ijo

The identification of K; with K7 for j # 0 suggests of course to introduce the profile function U as
the unique solution in H' (K1) of (note that the well-posedness of (117) ensures the one of (119)))

AUD =0 inKj,
3V + TUD = ¢ onTjs 6=0,4,— (cf.(99) (119)
8,11;{(1) =0 on c')K] \ (Ej,i U Ej,O) N

completed with [y, UM =0, So, using (118), by linearity Uj(»l) = U 4+ PM(j).
4.3. Order k : the general induction step

The previous reasoning can be repeated for any k > 2. As for k = 1, we shall construct in turn

(1) the coefficient A% and the far field terms u*) by means of an explicit resolution of the far field
problem (85) (see Section 3.3). In particular, we prove that x*) is symmetric and

(JZ (s)=1r/ i st <a§k (j) cos (v/Aos) + b( )( /) sin (\/>s)) se0,1], jeN,
2 =0
ug.k)(y) =7/ zi: yt (c{(, (J) cos (v/Aoy) +a’ ( /) sin (\/>y)) . ye[-50], je N, (120)

u((])( ) = Z y (cmcos (\/ y) dgosm(\/ y)) ye [—%,0].
the dependence with respect to the parameter j being fully exhibited.

(2) the near field term U (k) (Section 4.3.3). We show that U ®) is symmetric (cf. (92)) and that

=0

where U{Sk) € V; = Vi (see (35)) are profile functions independent of j and P®) () is a polynomial
of degree k with respect to j and constant with respect to (X, Y) € J;.

We emphasize that the construction, although more technical, is similar to the one for k = 1.

4.3.1. Induction Assumptions

First, we assume that the numbers /l(”), the far field terms u and the near field terms U™ are known
up to order n = k — 1, satisfy (31), (75), (76), (36) and (56) (with n instead of k) and are symmetric in
the sense of (91) and (92) respectively.
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We also assume that for all n < k — 1, there exist polynomials (at(,") (), bg") (), cﬁ") (), d{g") (+)) of degree
n—¢, 0 < ¢ < n,and constants (c%,d%), 0 < ¢ < nsuch that

d () =5 s (@l () cos (VAs) + b () sin (VAos) ), s€[01], jEN,

W) = 1 3 3 (e () cos (VAy) +df” (sin (VA) ), ve [-50], jeN,  (22)

=0
) = 3 (el cos (V) + df sin (V) ). velm2ol

Finally, we assume that there exists profile functions L[é") ceVi=V,for0<n<k-land0 << n-1
and constants P (/),0 < n < k — 1, that are polynomials of degree less than n in j, such that

n—1
U=+ (Zﬁ Ui () +7><"><j>> jen (123)

=0

4.3.2. Determination of/l(k) and u®
They are obtained by solving (85). Let us investigate the structure of the data of this problem. First,
using (68), one can verify that, for any j € Z,

k—1 k—1) k—1 k—1 k—1 k—1 k—1 k—1)

g(—j,()) = gE‘,O g§,+ ) = g(fj,f)’ and gE',O,pa)rt = g(—j,(),gart g§,+,p?art = (fj,f,part’ (124)
and, thanks to (122), for any § € {0, +, —}, there exists a family of k functions (explicit) gé{}_l), inde-
pendent of j, such that

k—1
g =pNT e vie N (125)
=0
In the same way, the fields <I>§.k_2) have the symmetry property (92) and of the form
k—2 k—2

%P =N FOFY, vieN, with 6 = -3 alkemm2 g (126)

=0 m=0

where the profile functions functions L{j(m) are the ones appearing in (123). Then, using (77), we deduce

from (125) and (126) that, for any j € Z,

zk=1) _ =(k-1) (k=1) _ _ A(=1)

Y =g Al = Al (127)
and there exist polynomials 2~ (.) and As_f_l) (+) of degree at most k — 1 such that

¢ = gl0G), Al =AY, vien (128)
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Finally, it is easily seen that f(*~1) satisfies the symmetry property (90)(i) and that
(k=1)/ N _ Ry ¢ ~(k—1) i (k— .
4000 =13 s (8D () cos (vAs) + B () sin (VAos) ) s € 0.1), e N,
: =0

k—1
£V = P y (Egn) (/) cos (Voy) + 0§V (j) sin (x%y)) . ve[-50], j#0, (129

f0) = zy(cm Vcos (VAoy) + (5 sin (Vo) ) ye [-40].

where the coefficients a(k )( ), [AJE,k_I)( 7)s Egk_l)( 7 6E,k_1)( ), cgko Y and 65{‘0—1) are explicitly computed
in function of the coefﬁments appearing in (122) for n < k — 1 Formulas (128) and (129) ensure that

(= ez € (@), (A} jez € b(Z) and f47V € 15(G7).
Thus the assumptions of Proposition 5 are satisfied, so that there exists a unique (/1("), u(k)), up to a
normalization condition for u® (see Remark 7) that we will specify below (see (139)). Moreover, A0

is given by (88). Because of the symmetry properties (127), Lemma 5 ensures that u*) is symmetric.

Next, we prove (120). The first two equations of (85) are non homogenenous linear second order or-
dinary differential equations that we are able to solve explicitly.

First, we determine the unique particular solutions uﬁi) 1oart and u%art of (85) that have the form
5-par
k
uﬁﬁlpart(s):rfz f( ( )cos(\/>s)+b ( )sm(fs)) s€[0,1], jeN,
2’ =1
k
uggart(y) =7 K;yl ( )(j) cos (v A0y) +d )(j) sin (fy)) ye [-5.0], j#0, (130)
(0) S (o 0 L

Uppare (V) = Z;y (Cfo cos (VAoy) + djg sin (\//TO)’)) ) ye [-5.0],

where the constants a( ) (), bt(; )( J)s cgk)( /) and d( )( ), with 1 < € < k are polynomials in j of degree

at most k — €. The computation of the coefﬁ01ents in (130) is stralghtforward but quite tedious. It will be
omitted here but can be found in [27]. Next, we know that there are new coefficients (indexed by 0 and
indicated with a tilde) such that

u(k)l(s):'(k)()cos(\//W)—i—b(k)()sm(\//W)—l—u() (s), sel0,1], jeN

jt+3 J+2 Jpart
ulg.k)(y) = ) cos(V A0)y) + d j)sin(vVA0)y) + usp)art(y) y€[0,1], jeN* (131
(k)( = (VAOy) + doo sin(v A0)y) + uék;art y € [0, 1].
Now, we determine these coefficients. First, (85)-(iii) (the Neumann boundary condition) leads to
d(j) =~ )(0) = PdP(j), VieN, and df)=—(uf)...)0), (132)
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(k) _ (k) (k) (K) (k)
where d;;’ (j) is a polynomial of degree at most k — 1, computed from the a,”’(-), b, (-), ¢, ' (-).d; ' ()
for 1 < ¢ < k. Next, after the same manipulations as in the case k = 1, equations (85)-( v) (the jump
conditions for j € N*) give

MO 1 LK), N : . .
¢y (J) —cos(\/mL/Q) ay’ (j)+ (i)', VjeN (i) .
ACYEN OV 1 OV 1 N : .
bO (]) ap (]+ ) Sln(m) —4ay (]) tan(m) +bk(.]) r, V.] € N’ (”)

where ¢ () and by (j) are polynomials in j of degree at most k—1 that, again, can be explicitly computed.
The formulas can be found in [27]. Let us simply point out here that these polynomials are deduced from
the particular solution (131), i. e.

The polynomials ¢, (-) and b, (-) are explicitly defined as explicit (and linear)
funct R TR YR YD) (134)
unctions of the polynomials a, (), b, (-),c; ' (:).d; ' (-) for 1 < € < k.
Finally, substituting (133) in the fourth equation in (85) (the Kirchhoff condition) yields to
ay) (j+1) +28(Va) a) (j) +ay) (j - 1) = ra(j). VjeN, (135)

where a; () is a polynomial with respect to j of degree at most k— 1. Using that r242g(v/ 1) r+1 = 0,
a direct computation shows that there exists a particular solution of (135) which is of the form

k
all ()=rY aPj vjeN (136)
=1

where the coefficients a/gk) can be computed by solving a square invertible linear system of size k (details

are left to the reader).
() a® -
As aresult a(j) := ag ' (J) — dpare (J) satisfies

a(j+1) +26(VA)a(j) +a(j—1) =0 VjeN*

whose general solution in 2(IN) has the form aq(k) 7/ for any j € N. Thus, we have then proved that
) (R (k) : .
ay’(j) =ray’ (j) withag’( —ao +Za/€ i, VieN, VjeN. 137)

Collecting (132)-(133)-(137) proves the first two lines of (120) with, according to (133)

K, 1 ®) : R, :
¢y (J) = —cos(mL/Q) ay’(j) +a(j), VjeN (i) .
®), . (k) r O 1 N . ..
by (j) =ray (j+1) (Vo) (/) (VD) +bi(j) ', VjeN. (i)
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Except the constant coefficient of a(()k) (j) (seen as a polynomial in j), these polynomials are explicitly

determined by formulas (132)-(133)-(137) . Here again, we choose
a0y =0 (139)

where a((]k) (0) = ug% (0) as our normalisation choice (see Remark 7 with € : u +— u1/2(0)).

To complete the determination of u®), it only remains to compute éék()), (and thus c(()k()) = ég% as it

follows from comparing (120) with (130)-(131)). As for k = 1, it is entirely determined by the Kirchhoff
condition (85)-(iv) for j = 0.

4.3.3. Determination of U®
As solutions of (85), (u(k), /l(k)) also satisfy (31), (75) and (76). Joined to the recurrence assumptions,
this shows that the assumption (H;) is satisfied and Proposition (4) allows us to say that

Vjez, 3! UJ(-k) € V; solution of (36) satisfying the matching conditions (58)-(60). (140)

It is easy to see that, using the symmetry properties (124)-(127), U](-k) is symmetric in the sense of (92).

As for k = 1, the computation of U (()k) is done independently proceeding as in Section 4.2.

Next we show (121). As in Section 4.2, we first establish such a decomposition inside K; before ex-
tending it to the domain J; as in the proof of Proposition 4, Section 3.2.

For j € N*, according to Section 3.2 and (125), U (-k), the restriction of UJ(-k) in K; satisfies

A “’j(k) = O in K],
k—1
~ ~ i £ o~(k—1
UM +1700 =13 j gl on®s 6 =0, (141)
=0
anU](k) =0 on aK/ \ (Ej,i U E.jyo) .

as well as the following condition (81)-(iii). Using Formulas (93)-(95), it is easily seen that there exists
a polynomial P®) of degree k that we can compute explicitly such that (81)-(iii) rewrites

/ UJ(k) — P PW(j), (142)
S0
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Then, we introduce the (k — 1) profile functions Z;ltgk), 0 < ¢ < k—1 as the unique solutions (see Lemma
6 below) in H'(K7) of the following problems

AU =0 inKj, (i)

aU® + 1o = g% onsy 5 =0,4, (cf. (99)) (ii) .

oY =0 on 9K;\ (X4 US,0) . (i) (14
S5, U =0 (iv)

Then by linearity, it is straighforward to check that (121) holds in K, thus in the whole junction J; too.
To conclude, we need to come back to the well-posedness of (143), which is not as straightforward as
the one of (119).

Lemma 6. Each of the problems (143), 0 < € < k — 1, admits a unique solution.

Proof. Instead of verifying the compatibility condition (71) of Lemma 3), we give an indirect proof that
aims at exploiting the fact that the problems (117)- (118) for j € Z are well posed.

For this, we shall exploit the k fields Uj(.k), 1 < j < k and look for the solution Z;{(gk) in the form
k
19 =35 o) (U](_/o _ i p) (j))' (144)
j=1

By construction Lvltgk) satisfies (143)-(i), (143)-(iii) and (143)-(iv). Only, (143)-(ii) needs to be checked.
Substituting (144) into (143)-(ii), it is readily seen that this equation is satisfied as soon as

VO<l< Za”rf Z e = o

This defines uniquely the coefficients (@, 0 < £ < k — 1, 1 < j < k) since the k x k Van der Monde
matrix A withentries (rj J),1<j<k0<m<k—1is 1nvert1ble (its determinant is, up to a strictly
positive multiplicative constant, the product of (j — i) for1 <i< j<k. O

5. Justification of the asymptotic expansion

The existence of the (formal) asymptotic expansion being proved, we now prove Theorem 1 by first
constructing (Section 5.1) pseudo-modes as defined in Section 2.1. Then we prove that (19) holds with
(18). This is based on error estimates of Sections 5.2 and 5.3. This allows to conclude (Section 5.4).

5.1. Construction of pseudomodes and related properties

Roughly speaking, given n > 0, we construct the approximate far and near fields "of order n" by
truncating the expansions (27), (28) and (32). More precisely, for the far field, we define :
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upg : % — R, such that ugy: (x,y) = 0in K5, j € Z and
&.n _ &n L & k (k) o —& .
upp (x,y) = uj+%(x,y) = k;) £ uj+%(s), s=x—j (xy)€ 5j+%, JEZ, (145)
en &n " k —c .
i (6y) = " () = 30 e ul ), . ()€, jeL
k—

In each "thick edge"of €%, the couple (ugy, A°")(A%" defined in (19), see also below) does not exactly
satisfy the desired eigenvalue equation because of the truncation process. More precisely, combining
adequately the equations (31) for 0 < k < 2n, one finds that (the computations are tedious but straight-
forward, the details are left to the reader)

Augg+ 22 g = &g, im0k = (€30877), =0 b, (146)
2
JEZ =
n _&n

where the so-called "far-field remainder" g is such that rgg = 0in K7 and

(

i (x.y) = Z &N (), () €EN, JEL
p= n+1 2
rig (x,y) == Z gh1 M (xy), (xy) €& jEL, (147)
p=n-+1
= > aWd)) s=x—i A= Y a¥ulw)
(k,0)ezrn (k.£)ezprn

where we have defined, with 77" = {(£,k) € {0,--- ,n}? / {+ k = p}.

On the other hand, we define for j € Z the truncated near fields Uf’": Ji= (L0)+eJ =R,

L/2
U (x.y) = ZE u® (X x—J y+8/ ). (148)

Again, the couple (U‘J9 ", A%") does not exactly satisfy the desired eigenvalue equation in J7. Combining
adequately the equations (36) for 0 < k < 2n, we get (see remark 10)

AU?’" + /ls,n U]g,n — 8"71 Rj’n, in L7;:, jE 7. (149)
where, reminding that 79" = {(¢,k) € {0,--- ,n}* / €+ k = p}, the "near-field remainder" R5" is

2n

&,n L —(n—1 N X—j y+L/2 . &
e = p_zn_l SIS (150)
R = Y AWy, g,
(k,£)eZrn
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Remark 10. The computations that lead to (149) and (150) are of course quite similar to the ones that
lead to (146) and (147). The reader will notice that the power of € that appears as the multiplying factor
in the right hand sides of (146) and (149) passes from n + 1 in (146) to n — 1 (149). Accordingly, there
is a difference in the numbers of terms in the sums that define the remainders which passes fromn — 1
in (147) to n 4+ 1 in(150). These changes are due, one on hand to the differences that already occur in
equations (31) and (36) respectively, on the other hand to the e-scaling that appears in the definition
(148) of the truncated near fields.

Next, we want to construct a pseudomode that will coincide with ufy: outside some small neighborhood
of the junctions K_; and with U%" in a neighborhood of K_ ;. This will be done in a smooth way with
the help of cut-off functions and a partition of unity. Let us first introduce y € C*°(R) such that

0<x(x) <1, VxeR, x(x)=0,x <1, xx)=1,x2>2,
from which we define the 2D cut-off functions (« is a real parameter to be fixed later)
Xi(xy) =x((x = )/e) x(v+L/2)/e%), jeL,

where we impose 0 < @ < 1: since @ < 1, the support of x% is an &”-neighborhood of ICj’_ and, since
a > 0, these supports are disjoint for &£ small enough. This allows us to define

X=X

Jj€z
that coincides which x4 on its support. By construction {(1 —X°)s {/yj, S Z}} form a partition of unity
in R2. The properties of the cut-off functions are illustrated on Figures 7 and 8. Multipying by (1 — x*)
localizes outside the junctions, while multiplying by x* (resp. x%) localizes near the junctions (resp. the

j™— junction). In practice, the forthcoming analysis shows that it is advantageous to take a as close as
possible to 1 (see estimates (155) and (170)-(ii)), the case @ = 1 being excluded though (cf. (160))).
This leads us to define the pseudo-mode of order n as follows

u = (1= x°) ugg + ) X5 US™ (151)
Jj€z
According to Section 2.1, our goal will be to get an estimate of the quantity
" (v) = / (Vu®"Vv — 2 "u®"v) . (152)
O
To obtain a tractable expression Z"(v), we first compute that

Au 4+ 25" = (1 — x®) (Au?’é’ + /lg’”uﬁ’l:") — 2Vx® - Vugr — Ax® ugy

+ 3 [ (AU 2 Ust) + 2V - VU 4 Ay U5,
JEZ
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/T .

Fig. 7. Support of the function y* (left) and 1 — y® (right). White corresponds to 0, black to 1

@,

&G K| %

WL
2e” O

Fig. 8. Support of the function y . (left) and of its gradient (right).

Using (146), (149) and the fact that, in supp x4, x* = x4, this can be rearranged as

At 4 25" = " (1 — %) it + &t Z X5 RY"
JEZ

—2 3 VNS V(i - U =AY (ufg - UST).
JEZ JEZ
Multiply the above equality by — v € H' (%) and integrate over (. Using Green’s formula, we get:
%' (v) = =L (v) = Tng(v) = Ty (v), (153)

where by definition

o) =t [ 0o o=t Y [ Ry
Q2 JEZ
HHOEDY / VXS - Vv (ufE — U5"), (154)
£,1 £, £,1 JEZ
Iy (v) =Ty (v) + Lyh (v),
T == |V Vi - vy
JEZ Qe

In formula (153), we say that :

i (v) is the far field consistency error : it measures how much (u®", 2%") fails to satisfy the desired

eigenvalue equation inside the support of 1 — y?,

T (v) is the near field consistency error : it measures how much (u*", 2°") fails to satisfy the desired
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eigenvalue equation inside the support of y?,
Zyi'(v) is the matching error: it gathers the mismatch between ugy: and U%" in supp x for all j.
5.2. Estimation of the matching error.
Lemma 7. The matching error Iy;" (v) defined by (154) satisfies the estimate:

T ()] < Can 82 8" V] ot (155)
Proof. In an obvious manner, each open set O’; ¢ 1= supp Vx; N Q™ can be decomposed as (Fig. 8),

O, =0 U0 o)
so that we can decompose Zy;',(v), ¢ = 1,2 accordingly (with obvious definitions non explicited here)
Tig(V) = Ty (V) + T - (V) + Ljgo(v), ¢ =1,2.

Estimate of Zy;", (v). We explain how to estimate Z', , (v), the other terms are treated similarly. We have

T ) = 3 Tl ), Tl ) = /O LV (i, — Us), (156)
JEZ JE
By Cauchy-Schwartz inequality,
VieZo |TH0)| <, = Ul eon 19K haons, I9920n) (157)
According to (145) and (148), we have
en o ¢ k (k) (k) (s y+L/2
{ ! -U? }(s,y) = Z g (uH%(s) - U; (g,yT)) (158)

k=0
(resp.) U; O Taylor expansion (at order n — k) (resp. the modal expansion (43)).

Next, we use for u 1
+3

With the information about the j-dependence of these functions (see Section 4), we can write

) (5) = zaf <> o (), Lol (s)| < Cun (DF I [s R,
f+2 5 2 /+§ ’

(159)

SUW (2 2H2) | < Cu ()H 1T e,

J g’

U(_k)(i }’+L/2) :p()( )—|—(5U()(Y }+L/2),

J g’ &

where (j) := (1 + jZ)%, the Cy,,’s are positive constants independent of j and |r| < 1.
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From the matching conditions (54), we recall that p H + Z 85 (k [)

With this property, it is easy to check (details are left to the reader) that the following equality holds (as a
matter of fact, it suffices more or less to reproduce the computations of Section 2.3, where the matching
conditions have been precisely built in order that this equality holds)

€ n
> oS o)1 0) =3 & P (2)
k=0 =1 k=0

Exploiting this equality, we deduce from (158) and (159) that

n

i) - U] < 32 (JoufP (2. 282) |+ 16 ).

k=0

Therefore, since, in (’)’; ; , ¥ < s =x— j < 2&% we deduce from (159) that, with C,, := max Cy,,
<n

en _ rprEn 7 RN k a\(n—k+1) —ne? 1
s = U3 oy < Ca ()" 7Y & [ (26070 47",

Since @ < 1, we can "forget" the term e~"*(®~1) and get, using 0mig [a(n —k+1)+ k] =(n+1)e,

kN

4y = U5 limqorry S Com ()" It 87020 (160)

where C,,, blows up when @ — 1. On the other hand, since \V/\/ﬂ < C &79, we observe that

1—a

1
\|VX§HL2(%+) <Ce " meas(0)i<Cez . (161)

Finally, substituting (160) and (161) in (156) and (157), and using the discrete Cauchy-Schwartz in-
equality (for the sum over j), we obtain

1
T )< Ca o053 3 (32 G 1) (1991 o)

JEZ JEZ (162)

< Can ga(n—i-%) ‘9% ||vv||L2(in)

N

Estimate of Zj", (v). We only treat Zy;", , (v) and point out the difference with Z', , (v). We have

T 0= 30 T 00 Tk == [ G-Vt - U (163
JEZ &
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Then, we estimate each Z75', (v) as
Vi€Z |Tuz 0| < IV@L = Uil onn) 1VXG 20 IV]2(0nr) (164)

Similarly to (160), we prove that (the reader will note that, with respect to (160), we loose an &* term
because we have to differentiate the formulas in (159))

92y = U5l oty < Con )" 1/ (165)

Therefore, prodceeding as for obtaining (162), we get

1
&,n (07 l’l*l 1 2
T W] < Can 6" 8 (3 W o)) (166)
jez ‘

To pursue, we use the following estimate, that aims at exploiting the smallness of the domains O’/f j:r and
the H' regularity of v

1
(ZIIV||§>((9¢,E+))2 < Ca &2 [[V]lgr(on - (167)

Jjez
The proof of this estimate is easily deduced from the following lemma:

Lemma 8. Let Q := (0,a) x (0,b) and Q,, = I, x (0,b) C Q with meas I,, = n, then there exists C > 0
independent of n such that

V0, C0 YveHYQ). IV, <Cn? i, (168)

Proof. Let v be smooth enough, from the embedding H'(0,a) C L>(o,a), we have

V) €0 luxn? <C [ (el + e de
We obtain (168) by integrating the above inequality over Q,, and conclude with a density argument. []
Using (167), we conclude from (166) that
T ()] < Can 2 & Wil e - (169)

Regrouping the estimates (162) and (169), and their equivalent for Z, ;(v) and Zy", 5(v) , 6 € {—,0},
wé-dbtain the result of Lemma 7 (note that (169) is worse than (162)).
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5.3. Estimation of the consistency errors.

Lemma 9. The consistency errors defined in (154) satisfy the estimates
) O] <CosE Dl @) O < G D ey (70
Proof. By definition (see (154)) of Zi# (v) and Cauchy-Schwartz inequality, we get, since |1 — x?| < 1,
| Ze# (v)] < Co &7 Iz gty Vll2(e)- (171)

According to the definition (147) of 7, we see that ||75 | 2y < Ca g2 which yields (170)-().
In the same way, using the definition (see (154)) of Zyg(v) as well as continuous and discrete Cauchy-
Schwartz inequalities, we have, since [y?| < 1,

1 1
2 n— &, 2 2
O] < e (IR ) (2 V12 ) (172)
JEL JjEL
The most technical step for the estimation of the near field consistency error lies in the following lemma

Lemma 10. One has the estimate

HR?”HLZ(WW/\/]-’S) < Cn <]>n |I"‘j 8("+%)(0_1)+1, (173)
Proof. By definition (see (150)) of Rj’” and since € < 1
2n
HR?’IHLQ(suprj,g) < Z 8[7_(”_1) ||R§‘)’n||L2(supp)(j,€) < (n + 2) lsgp ||R§,nHL2(supp)(j,€) (174)
p=n—1 n—1<p<2n
We use supp x* = IC?’_ UQ9, UQ%_ UQ%, (see Figure 8). Using the decay properties in j of the Uj(-{) ’s
(see Section 4), after rescaling, we get
x—j ¥ 2 712 N2 (2]
[ R Fay = et [ RE < G e 73
’Ci’7 Kj
On the other hand, using the same change of variable, we have
‘ ) 2e0~1 01 5
/ |[RP (51 L2 |2 iy = &2 / / |RP™(X,Y)|” dXa. (176)
Q. 1 0

The estimate then relies on one hand on the exponential decay of Rj-”" with respect to j, on the other
hand on the polynomial growth with respect to X of R} (X, Y).

The formula (43) of Proposition 2, with X instead of s, says that U}f) (X,Y) grows proportionnally to X’.
Thus from the definition (150) of R}" and the decay propery in j, we infer that

20 A\ n j n,
RI"(X,Y) < C, ()" |l [x]7)
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where g(n, p) = max{ ¢ / (k,£) € ZP"}, that is to say g(p,n) = nfor p > n and g(p,n) = n — 1 for
p = n — 1. Therefore, we obtain from (176), since |X| < 2 &1 in the integral at the right hand side,

/ RP" (3L, HE2Y 12 <, ()2 )Y &2 e 20 forn < p<2n, ()

" (177)
/ R P <0 () 8 e e, (b)
i+

Here, we have used that meas(]1,2s1[x]0,1[) < 2&*~!. Comparing (175) with (177) (and corre-
sponding estimates for the integrals over Q%_ and Qf), and retaining the smallest power of & in the
corresponding right hand sides, which corresponds to (177)(a) since @ < 1, we get

HRf’n|’L2(5uprj£) < Cn <,]>n ’r|] 8("‘1‘%)((171)4’1

Substituting these estimates into (174) leads to the announced result. [
1
Subtituting (173) in (172) then gives |Z5 (v)| < C, "F2)~2 ( 3 \\v\\;(swg_)) 2,
Jez !

Finally, since, using again Lemma 8, we have

1

2 a

(3 sty < €3 Mol ooy (178)
JEL

we deduce the estimate (170)-(ii). [

5.4. Completion of the proof of Theorem 1

Using (with m instead of n) the estimates (155) (Lemma 7) and (170) (Lemma 9), we deduce from
(153) (with m instead of n) that the estimate (19) holds with @, = am + a — % According to Lemma 1,
the proof of theorem 1 is thus complete.

6. A numerical approach based on asymptotics expansions.
6.1. Description of the method

Following the iterative construction described in Section 4, we derive a numerical method to compute
successively the terms of the asymptotic expansion (up to a given order prescribed by the user). Let
us give here the main steps of the algorithm, that relies of course about an initial choice of the limit
eigenvalue 1(%):

A- Initialization step : k = 0

1. Pick a 2(® by solving numerically (via a Newton method) equation (9).
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2. Explicit construction of u(®) by formulas (93).
3. Construction of U©) using formula (94).

B- Construction of the terms of order &, k € N*

0. Preliminary computations of
(a) the quantities ggf}‘l) and @gk‘z),o < € < k—1so that g%_l) and ¢§k—2) defined by (68)
and (65) respectively sasitfy (125-126) .
(b) the quantities AS{‘BI), E(()k_l) via (77) for j = 0.

(c) the polynomials Z¢=1) (), A%V (.) so that (128) holds for A, = defined by (77).

1. Computation of A% using Formula (88).

2. Explicit determination of u(®).

(a) Computation of the polynomials a{(,k) (), bgk) (), cg,k) (+) and dfp (1), 1 < € < k in order that
Formulas (130) provide a particular solution of (85).

(b) Computation of the coefficients Cg(()) and dgg, 1 < ¢ < kin order that (120) holds u(()?)art.

(c) Computation of the polynomials by (+) and ¢,(-) in order that the equations (85)-(v) become

(133) taking (131) into account. This can be done from step (a) (see (134)).
(d) Computation of the polynomial d(()k) (+) using (132). This can also be done from step (a).
(e) Computation of the coefficients a/gk), 1 < ¢ < kin order that Ezg;)rt (j) defined by (136) be a
particular solution of (135).
(f) Computation of the polynomial a(()k) (+) via (137) with a(()k) =0 (see (139)) .

(g) Computation of the polynomials b(()k) (+) and c(()k) (+) from (138).

(h) Computation of ¢l = &) from (85)-(iv) for j = 0.

3. Semi-Explicit determination of U®).

(a) Numerical determination of U, [()k) associated to the perturbed junction.
(b) Explicit computation of the polynomial ) () in order to satisfy (118).
(c) Numerical determination of the k profile functions Z/{ék) solution of (143).

(d) Computation of Uj(-k) for j € N* using formula (121).

As already mentioned, in the above algorithm, except for points B-3.(a) and B-3.(c), all the steps are
achieved through hand computations that can be found detailed in [27]. At stage k, the steps B-3.(a) and
B-3.(c) require finite element computations, requiring two meshes, one of the rectangle Ky, one of the
rectangle K, for the solutions of problems (118). Another approximation parameter is the truncation
order N of the series in the definition of the DtN operators T, = 0, £. Even though the finite element

calculations of U(()k) (resp. the profiles Z/{g(k)) are done inside the rectangle Ky they can be extended ana-
Iytically, as in the proof of Proposition 4, in the whole junction Jy (J1) up to the same series truncation
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issue as for the DtN operators. Once the meshes and N has been chosen, we only have two (symmet-
ric positive definite) finite element matrices to be inverted : Ag (for Kp) and A; (for K;), of which a
Cholesky factorization can be done at the beginning of the algorithm. At stage k, we have to solve

e one linear system with A, for computing Uék)

e k+ 1 linear system with A; (and different right hand sides) for computing L{;m), 0<m<k

6.2. Numerical results

In the following section, we choose L = 2. In that case, the essential spectrum of the limit operator Af
is given by (see Proposition 4 and Figure 9 in [1])

1 1
Tess(A) = {2 = W eRTwe U It} where I = [— arccos(g)—l—kﬂ, arccos(g)—l-kﬂ] Vk € N,
keN

while, for any u < 1, the discrete spectrum of A% is

Ta( A = {/1 — e | () + ko — (1) + kn}},
kEN
where A, (u) denotes the unique root of the equation (9-right) in [0, 5]. To obtain oy(Af), we used
Theorem 1 in [1] ensuring that A% has exactly two eigenvalues in each of its gaps together with the fact
that if 1 = w? is a solution of (9), both ' = (w + kx)? and 1" = (kx — w)?, for any k € N are also
solutions of (9). We notice that the spectrum of 4 is the image by the function x — x? of a m-periodic
subspace of R. A graphic illustration of o-(.A%) is presented in Figure 9.

- € Togs(AY) B
Py S e
VA= VA V= Ver = ()

Fig. 9. The spectrum of o-(Af ) in the case L = 2.

Computation of eigenvalues and numerical validation of the method. In the following experiments,
we take 4 = 1/4 and we focus on the first and fourth eigenvalues 1; = A, ( %) ~ 1.80 and A4 ~ 24.43,
located respectively in the first and second gaps of the operator A/* (see Figure 9). The associated limit

eigenvectors (defined on the graph by (24-25)) are represented on Figure 10.

The numerical results associated with the first eigenvalue A; are represented on Figure 11. In the left
part, we compute the evolution of

A5 = Z ga® (179)
k=0

O 0 J o U w N

BB BB R DR W WWWWwWw W W NDNDNDNDNDDNDNDNDNDNND R R R R R R R R
o U w DR O VW 0o U WD O vV oY UWw D RO VW Yy W NP O



O 0 J o U w N

B s D D D W W W W W W W W W W NDNNNNNNNN R R R R R R e e e
o s W NP O WV ®Jd oS W R O WO Jd o0 W N P O W ®doUs W N R O

50 B. Delourme et al. / Trapped modes in thin and infinite ladder like domains. Part 2

o &

(@) 44 (b) A4

o = N oW

N

Fig. 10. Representation of two limit eigenvectors associated with 4; and A2

with respect to & for n varying between 1 and 5 and € between 0.02 and 0.6. To compute the near field
terms (part 3-(c) of the algorithm described in Section 6.1), we first truncate the junctions 7y and J;
at a distance 7 = 5 and we use a first order approximation of the Dirichlet-to-Neumann operator. The
problem is then numerically solved by a P;-finite element method using a uniform mesh of mesh-size
h = 0.002. We compare A>" with a reference value of A° obtained by computing numerically the first
eigenvalue of the full two dimensional operator A% ; using the method developed in [28]. In a nutshell,
this method permits us to rewrite the initial eigenvalue problem, posed in the unbounded domain €%, as a
non linear eigenvalue problem posed in a bounded domain. This is done by computing the (approximate)
Dirichlet-to-Neumann operators for periodic domains (see [29, 30]), which requires to solve periodic cell
problems (discretized here again using the standard P; finite element methods) and a stationary Ricatti
equation. By contrast to the initial problem, the reduced problem (posed in a bounded domain) is a non
linear eigenvalue problem (since the DtN operators depend on the eigenvalue) of a fixed point nature. It
is solved using a Newton-type procedure, each iteration needing a finite element computation, see [28]
for more details.

We notice that the approximation of 1° by 4*" is qualitatively good, especially when adding high order
terms in the truncated series (179). Surprisingly, the approximation remains accurate even for a rather
large & (the geometry of the domain €2 for € = 0.6 does not really looks like a graph-like structure).

To verify the accuracy of our asymptotic expansion, we represent on Figure 11 the evolution of the errors
e, = |1°" — A°| with respect to &, € varying between 0.02 and 0.6. For the first two orders, the exper-
imental convergence rates (2.1 for e; and 2.9 for e2) coincide with the theoretical ones. Unfortunately,
this is not the case for the higher order ones. It might be due to the fact that the "exact’ solution A° is
computed with a limited precision of 1073, The use of a second order finite element method for the
different numerical computations may confirm this point but is beyond the scope of this paper.

The same experiment is reproduced for the fourth eigenvalue (14 ~ 24.43) on Figure 12. Here again, the
approximation of A% by 4*" is qualitatively good, especially for high orders. However, we observe that
for a given & the error is bigger for A4 than for 4;. We point out that we are not able to compute A° for
€ > 0.25. In that case, we do not know if the eigenvalue is close to the essential spectrum or does not
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Fig. 11. Results for the first eigenvalue: 22l wrte (left), Error w.r.t & (right).

0 0.05 0.1 0.15 0.2 0.25 0.1

Fig. 12. Results for the fourth eigenvalue:: 22t wrte (left), Error w.r.t & (right).
exist anymore.

To summarize, from a computational point of view, the main advantage of the asymptotic method is
that it suffices to make one computation in order to obtain an approximation of A° for an arbitrary value
&. Moreover, the approximation is highly-accurate when ¢ is small (the accuracy depending of the nu-
merical error made in the computation of the near field terms). Nevertheless, by nature, the asymptotic
method fails to predict the possible disparition of the eigenvalue into the essential spectrum as £ becomes
large. In that case, a high order direct method would be preferable (see e.g [31]).

Example of near field terms. To end this part, let us give a few examples of near field terms obtained
when computing the first eigenvalue A; (see Fig 9). We shall focus on the junctions 7y (j = 0, perturbed
junction) and J; (j=1, first unmodified junction) as represented on Figure 13.

In Figure 14, we display the near fields terms U(gl) and Uéz), that is to say the near field terms of order
1 and 2 in the junction [Jy. A zoom on the central part of the junction is represented on the right part
of the two pictures. We remark that these two fields are symmetric with respect to x = 0. Moreover,
they tend to grow inside the branches of the junction. To quantify this growth, we plot on Figure 15 the
representative curves of the two fields along the horizontal cut y = 1/2 and the vertical cut x = 0. As
expected, the first near field is linearly increasing while the second one has a quadratic growth.

Then, the same near fields are represented in the junction J; are displayed on Figures 16-17. As ex-
pected, the fields are not symmetric anymore. However, they are still polynomial growing, bur the poly-
nomials are different in the left (x < 0) and right part (x > 0) of the junction.
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Fig. 13. Schematic representation of the domain under consideration
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Fig. 15. Cuts of the near fields U(()l) and U(()Q) alongy = % (left) and x = 0 in Jy (right)
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