N

N

Trapped modes in thin and infinite ladder like domains.
Part 2: asymptotic analysis and numerical application

Bérangere Delourme, Sonia Fliss, Patrick Joly, Elizaveta Vasilevskaya

» To cite this version:

Bérangere Delourme, Sonia Fliss, Patrick Joly, Elizaveta Vasilevskaya. Trapped modes in thin and
infinite ladder like domains. Part 2: asymptotic analysis and numerical application. Asymptotic
Analysis, In press. hal-01822437v1

HAL Id: hal-01822437
https://hal.science/hal-01822437v1
Submitted on 25 Jun 2018 (v1), last revised 5 Dec 2019 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01822437v1
https://hal.archives-ouvertes.fr

Trapped modes in thin and infinite ladder like domains. Part 2 :
asymptotic analysis and numerical application

Bérangere Delourme? Sonia Fliss?, Patrick Joly? Elizaveta Vasilevskaya¥

June 25, 2018

Abstract

We are interested in a 2D propagation medium obtained from a localized perturbation of a reference
homogeneous periodic medium. This reference medium is a “thick graph”, namely a thin structure (the
thinness being characterized by a small parameter ¢ > 0) whose limit (when ¢ tends to 0) is a periodic
graph. The perturbation consists in changing only the geometry of the reference medium by modifying
the thickness of one of the lines of the reference medium. In the first part of this work, we proved that
such a geometrical perturbation is able to produce localized eigenmodes (the propagation model under
consideration is the scalar Helmholtz equation with Neumann boundary conditions). This amounts to
solving an eigenvalue problem for the Laplace operator in an unbounded domain. We used a standard
approach of analysis that consists in (1) find a formal limit of the eigenvalue problem when the small
parameter tends to 0, here the formal limit is an eigenvalue problem for a second order differential operator
along a graph; (2) proceed to an explicit calculation of the spectrum of the limit operator; (3) deduce
the existence of eigenvalues as soon as the thickness of the ladder is small enough. The objective of the
present work is to complement the previous one by constructing and justifying a high order asymptotic
expansion of these eigenvalues (with respect to the small parameter €) using the method of matched
asymptotic expansions. In particular, the obtained expansion can be used to compute a numerical
approximation of the eigenvalues and of their associated eigenvectors. An algorithm to compute each
term of the asymptotic expansion is proposed. Numerical experiments validate the theoretical results.
Keywords: spectral theory, periodic media, quantum graphs, matched asymptotic expansion

1 Summary of Part 1 and Main results of Part 2

This article is the sequel of [6] and we refer the reader to its introduction for the motivation of the study
and related bibliographical comments. We choose to go directly to the heart of the subject and to give
below a brief recap about the problem under consideration, then to give a summary of the main results
of [6] in Sections 1.1 and 1.2. Finally, we state the main result of the present paper in Section 1.3.

Let Q. be a homogeneous periodic domain consisting of the infinite band {(z,y) € R x (—L/2,L/2)}
of height L > 0 minus an infinite set of equispaced similar rectangular obstacles (see Figure 1). The
domain €2, is 1-periodic with respect to the variable x. The distance between two consecutive obstacles
is equal to the distance from the obstacles to the boundary of the band and is denoted by e.
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Figure 1: The unperturbed periodic ladder

Starting from the periodic domain )., we introduce a local perturbation by changing the distance be-
tween two consecutive obstacles from & to ue, p > 0 (i.e by modifying the size of two consecutive
obstacles of (1 — u)e/2) see Figure 2 in the case where p € (0,1)). It corresponds to modify the width of
the vertical rung of the ladder from |z| < /2 to |z| < ue/2. The corresponding domain is denoted by Q~.

We wonder whether such a perturbation creates so called localized modes, that is to say harmonic in
time functions of the form

w(z,y,t) =v(z,y) e, veLx(Q), weR, (1)
that satisfy the wave equation
0%u
5z Au =0, Ohu=0 on 09, (2)

and homogeneous Neumann boundary condition on the boundary of the domain:

Ophu=0 on 09.. (3)
LN Y
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Figure 2: The Perturbed ladder

1.1 Mathematical formulation of the problem

1.1.1 The operator A*

Injecting (1) into (2), one can easily see that the construction of localized modes turns out to solve the
following eigenvalue problem for the function v:

—Av=w?v inQ.,
{ (4)

Opv =0 in 09)..



It consequently leads us to investigate the spectrum (and more precisely the eigenvalues) of the self-
adjoint and positive operator A¥, acting in the space L2(Q2¥) :

Alu=—Au,  D(AY) = {u € HA(QL), Onulsor =0}.
Here HA(QY) = {u € H' (), Aue L2(Q)}.

Based on an asymptotic approach, the spectrum of the operators A¥ is investigated in [5]. In particular,
it is shown that for p € (0,1), and for € > 0 sufficiently small, the operator A% has eigenvalues. The
objective of the present paper is to complement the aforementioned work by constructing a high order
asymptotics of these eigenvalues.

1.1.2 The decompostion of the operator A" into its symmetric and antisymmetric
components

To study the operator A, it is convenient to decompose it as the sum of its symmetric and antisymmetric
parts. Denoting Lo (%) and L2, (2Y) the subspaces of L2(2Y) consisting of functions respectively
symmetric and antisymmetric (with respect to the axis y = 0),we have

La(Q2) = L2,s(QF) ® L2,a(Q2).
The operator A% is then decomposed into the orthogonal sum

Al = AL @ AL, with AL = AL , and AL, = Af ;
’ ’ ’ L2,S<Qg> ’ L2,Q<Qg)

where AL, and AL, are both self-adjoint and positive.

In this paper, we shall restrict ourselves to the study of the spectrum of the symmetric operator A% ;.
Naturally, we could study the antisymmetric one as well.

1.2 The limit problem: spectral problem on the graph

As might be expected, the investigation of the spectrum of AZ  relies on the investigation of the spectrum
of a limit operator denoted by A% defined on a graph G obtained as the geometrical limit of the domain Q¥
as € tends to 0. In this section, we define the limit operators A%, and we remind important characteristics
of its spectrum, established in [5].

1.2.1 The limit operators A*, A" and A"
The limit periodic graph G
Let us first introduce some notation associated with the limit periodic graph G = (.., Q¢ represented
on Figure 3. We denote by e; the vertical edge e; = {j} x (—L/2,L/2). The edge eg corresponds to the
limit of the perturbed rung {|z| < pe/2}. For all j, the upper end of the edge e; is denoted by M;r and
the lower one by M. The set of all the vertices of the graph is then
M = {M}jez.
The horizontal edge joining the vertices Mji and Mﬁ_l is denoted by eil = (j,7+1) x {£L/2}. The
2
set of all the edges of the graph is
&= {ejyeﬁ%}jez

and we denote by £(M) the set of all the edges of the graph containing the vertex M.
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Figure 3: Limit graph G

Weighted functional spaces on G

If w is a function defined on G we will use the following notation

u'i :u(Mji)7 u](y) :u‘ﬁjv

; () = ul =

ot
s 1
itz i+ d

Then, let w* : £ — R be a weight function defined by
wh(eo) = p, w'(e)=1, Ve€&, e#eo. (5)
Let us now introduce the following functional spaces

Ly(9) = {U/U € La(e), Ve € & lullZpg = D w"(e)ulll,e < OO} ; (6)

ecf&

Hl(g)—{u€L‘z‘(g)/u€C(g); ue H'(e), Ve € & lullinig =Y lluline <cop,  (7)

ec€

H*(G) = {U €LL(G) /ueC(G); ueH (), Vee& |ulfzg = llullfze < OO} ,(8)
e€f
where C(G) denotes the space of continuous functions on G:

Definition of the limit operators A*, A* and A"

As known since the work of [8, 3, 18], the limit operator A" acting on L5(G) is defined as follows:
denoting by wu. the restriction of u to e,

(Atu)e = —uy, Ve € €, (9)
DA ={ue H*G)/ Y w'(e)u(M)=0, VM e M}, (10)
ecE(M)

where u, (M) stands for the derivative of the function u. at the point M in the outgoing direction. The
vertex relations in (10) are called Kirchhoff’s conditions. Note that they all have an identical expression
except at the vertices Moi. We remark that the perturbation, which results from a geometrical modifica-
tion of the domain for the initial operator, is taken into account at the limit by means of the Kirchhoff’s
conditions at the vertices M.

As for the ladder, denoting Lf (G) and L ,(G) the subspaces of L4 (G) consisting of functions respectively
symmetric and antisymmetric (with respect to the axis y = 0) we have

L5(G) = L5 ((9) & L} ,(9).
Then again, the operator A" can be decomposed into the orthogonal sum

A=At o AL, with AN = A and A4 = A"

L4 (9’ L4 (@)

Naturally, A", A% and A¥ are self-adjoint positive operators (cf. [17, Section 3.3]).



1.2.2 The spectrum of A#

The operator A% being self-adjoint, its spectrum consists of its essential spectrum oess (A% ) and its discrete
spectrum oq(A~%). It is well-known that oess(A%) coincides with the spectrum of the purely periodic
operator A; = A=! (see e.g. [2, Theorem 4, Chapter 9]) and has a band-gap structure [7, 24, 16]:

JESS(Ag) = U(AS) = U [a”ﬂ7 b’ﬂ]v

neN

where ag > 0, for any n € N, a,, < an+1 and a, < b,. Note that in general, the segments [an, b,] might
overlap. If, for some n € N, b, < an+1, the open interval ]b,, any1] is referred to as a gap of the essential
spectrum operator A~ .

The following proposition, based on explicit characterizations of gess(A%) and oq(A%), is proved in [5,
Proposition 5 and Theorem 1]:

Proposition 1.

1. The essential spectrum of the operator A% has infinitely many gaps whose ends tend to infinity.

2. For pu > 1, the discrete spectrum of the operator A% is empty, while for u € (0,1), the operator A%
has exactly one or two eigenvalue(s) in each of its gaps, each eignevalue being simple.

To show the last item, we use the characterization of the spectrum

(VA -1
(9(VA) + cos V/A)?

A€ oa(AY) < |g(VA)]>1 and M—l—\/

where )
Yw >0, g¢(w)=—cos(w)+ w. (12)

An associated eigenvector u is given, on the horizontal edges e].i+1/2 (j € ), by

il sin (VA(L — s)) sin (V/As) .
s)= (r(vVA A (V) ) si=x—7j€0,1], 13
(5) (())(Smﬁ (VR =L jelon,  a3)

while, on the vertical edges e; (j € Z), it is given by

usy) = (rvn)” (%% yel-L/2,L/2, (14)

where 7(v/A) is the unique root in (—1,1) of the following characteristic equation

4+ 29(VN)r +1=0. (15)

1.3 Main result

Before stating the main result of this paper, let us remind first the result, already proven for instance in
[18], which states the convergence of the essential spectrum of the operator A% ; to the essential spectrum
of A%. More precisely, let (a,b) be a gap of the operator A% on the limit graph G then, there exists
€0 > 0 such that if ¢ < go the operator A% ; has a gap (a°,b°) whose extremities satisfy

a®=a+0() and b =b+O(e). (16)
This means that for some C; > 0 and for any € < &g
Oess(AL ) Na+Cie, b—Cie] =0. (17)

In [5, Theorem 1], we have shown that for p € (0,1), and for £ > 0 sufficiently small the discrete
spectrum of A~ ; is not empty. More precisely, for u € (0, 1), the discrete spectrum of A% is not empty



and if \(© ¢ (a,b) is an eigenvalue of this operator, then there exists 0 < €1 < o such that if ¢ < e1 the
operator AY ; has an eigenvalue A° inside the gap (a®, b%). Moreover,

A =29 L oe). (18)
The present paper complements the result of [5] by obtaining and constructing an asymptotic expansion

of these eigenvalues at any order with respect to the parameter e.

Theorem 1. Let A? ¢ (a,b) be an eigenvalue of the operator AY and for € small enough, A° the unique
eigenvalue of the operator AL . satisfying (18). Then, there exists a real sequence A®)) ken+, which is
contructed inductively with the help of an algorithm that is presented in detail in Section 5, such that

VneN, X =>"A\®ioeEth). (19)

k=0

Remark 1. Note that as every eigenvalue of the operators A% is simple (as established in Prop. 1),
for € small enough, A° is a simple eigenvalue of AY , see [23]. As soon as one obtains such asymptotic
expansions for these simple eigenvalues, it is also possible to deduce an asymptotic erpansion for a
prescribed associated eigenvector (see for instance [19, Part 4]).

2 Methodology of the proof and asymptotic expansion ansatz

2.1 Methodology of the proof

The proof of Theorem 1 relies on the following lemma.

Lemma 1. Let \¥ ¢ (a,b) be an eigenvalue of the operator AL. Suppose that, for any m € N, there
exists a symmetric function u®™ € H'(QY) and a sequence ()\U“))keN* such that, for every symmetric
function v € H* (%)

| [ umve -t a e | < € e o ol (20)
ar

where the positive constant C' does not depend on &,

AT =AW, (21)
k=0
and (om)men s a sequence such that
am <m-+1 and lim a,, = +oo. (22)
m—+4o00

Then there exists at least one eigenvalue \* of AL such that

VneN, M=) 1o0E").
k=0

Proof. Assume that the sequences (4™ )men and (A*™)men satisfying (20) are constructed and let
n € N. First, let us choose m,, € N such that a,,, > n+1 (this is possible because of (22)). By adapting
the Lemma 4 for [21] (see the Appendix A in [4] for a proof in a general case), (20) provides an estimate
of the distance from A*"™" to the spectrum of AZ ;:

E,m)

dist(a(AL ), A*™) < C e*mn < Ce™, (23)
with some constant C' which is related to C' but does not depend on e. Of course,

(23) = U(Ag,s) n [)\s,mn _ 6 8n+17 A& 5 entl ] + 0.



Since A ¢ (a,b), for £ small enough, the interval [)\e’m” - C gt Asmn 4 C ent! ] (which tends to
A® when e goes to 0) is included in [a 4 Cie,b — Cie] (which tends to [a,b]) and thus does not intersect
Oess(AL ) according to (17) again. As a consequence of (23), o4(A¥ ;) denoting the discrete spectrum of
AL s

oa(AL )N [ AT — C ™A™ 4 C e ] £0,
In other words, for € small enough, there exists at least one eigenvalue \. of A% ; at a distance to A="™"

of order ™!, ie.

Ae — A& < O™t
The end of the proof of (19) then follows directly from the triangular inequality since

Mn
SCP = AT+ >0 B < et
k=n+1

|AE _ As,n| S ‘/\E _ /\a,mn‘ + |)\s,mn _ )\s,n

O

The function u®™ is called a pseudo-mode. This pseudo-mode and the associated expansion A*" are

constructed thanks to a formal asymptotic expansion of an eigenpair (u®,A®) solution of the following

eigenvalue problem
Find (u®, %), u® € H'(Q), \* € RT,

Au + Au® =0 in QY
Onu® =0 on 00,
u(z,y) = u(z,—y) V(z,y) € QF

(24)

This asymptotic expansion will be constructed by induction starting from an eigenvalue A¥) € (a,b) of
the operator A% and an associated eigenvector u(©,

Due to the multiscale nature of the problem, it is not possible to construct a simple asymptotic ex-
pansion of u® that would be valid in the whole domain QY. We need to distinguish two asymptotic
expansions of u°. The first one, describing the overall behaviour of u® far from the junctions, is ex-
pressed by means of the the longitudinal coordinate s (s = x — j for the j-th horizontal thin slit and
s = y for the vertical thin slits) and is called the far field expansion. The second one is the near field
expansion and is used to approximate u° in the neighborhood of each junction. Thus, it is expressed by
means of the fast variables ((z — j)/¢, (y + L/2)/e) near the j-th junction and is defined on a normalized
unperturbed junction for j # 0 and a normalized perturbed junction for j = 0. Since both expansions are
meant to be two approximations of the same function u®, they have to satisfy some matching conditions
in some intermediate zones. This method is often called Matched Asymptotic Expansion. For complete
and detailed descriptions of the method, we refer the reader to [26], [11] and [19] (cf. Part IV dedicated
to eigenvalue problems). See also [1] for a recent application of the method to a spectral problem.

In Section 2.2, we give the ansatz for the far field and the near field expansions as sums of far field
and near field terms indexed by n € N and derive the problems (defined inductively on n) satisfied by
these far field and near field terms. We give the matching conditions in Section 2.3. We study in Sections
3.1-3.2 and in Section 3.3 the well posedness of the problems satisfied by the near field terms and the far
field terms respectively. We explain the algorithm of construction of each term in Section 4 and finally
prove Theorem 1 by establishing (20-21) in Section 5.

Before entering the details, let us introduce some notations. The function u® being even in y, it suffices
to construct an asymptotic expansion of u° on the lower half part Q%= of Q¥ (comb shape domain):

QYT ={(z,y) € QY st y<0}.
As represented on Figure 4, we denote by 5;_’;1 , J € Z, the horizontal slits of the domain Q4 ~
3

€= +en/2,G+1) —enj/2) x (=L/2,=L/2 +¢€),

ity
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Figure 4: The domain 4~

by £ its vertical slits

ET =(J —eni/2,j +epi/2) x (=L/2+¢,0),
and by K5~ the junctions
K5~ = (J - eps /2 + eps/2) X (—L/2,—L/2 +¢)
where for all j € Z, p; = 1if j # 0 and po = p.

2.2 Asymptotic expansions : ansatz and equations

0)

Until the end of the paper, A(¥ € (a,b) is an eigenvalue of the operator A% and u® is an associated

eigenvector :

u® e DY), AL u® =\ O (25)
i.e. denotingVj e Z u'”, = u(0)| + and u!” = u(0)| _ (using the notations of Section 1.2.1)
itz €it1/2 J €j
0 k ;
afu;._g%(s)Jr)\(O)u;:%(s) =0, s=x—j€0,1],
us” () + X (y) =0, y € [~L/2,0,
vieZ, § 0w (0)=0, (26)
(0) — 2,0 )]
Uj_%(l) =u; (=L/2) —“]-_,_%(0):
0:u', (0) — 0sul” , (1) + p; By (~L/2) = 0.
2 2

where we denote 9s (resp. 9y) the derivative with respect to s (resp. to y).

0)

To start the construction of the asymptotic expansion, we have to fix u®. We have chosen ¢(*) such

that u\” (—L/2) = 1, namely, V j € Z,

© (g _ ol SMVAO = 5)) iy sin (VA©s) —e—jeo1 o7
'LL]__’_%(S) r sin A(O) +7‘ sin )\(0> ) S X ] € [ ) ]7 ( )
© ¢,y _ 11 _cos (VA y)

WO (y) =1 : ye[-L/2,L/2. 28
= CLaL(es)

Here 7 stands for the quantity r (v'A()) defined in (15). Note that u(? is exponentially decaying with |z|.

Remark 2. Choosing another eigenvector u® leads obviously to the asymptotic expansion of a different
ue but this does not change the asymptotic expansion of \° (see Remark 7).



We propose an asymptotic expansion for A° and u® solution of (24) constructed by induction starting
from A® and 49, In the following, O(¢*) will always denote a remainder that (formally) decays more
rapidly that any power of e. We first suppose a formal power series expansion for the eigenvalue:

A=Y A L o). (29)
keN

Remark 3. Throughout the rest of the paper, we shall extend the above convention : any quantity indexed
by k with k < 0 is automatically 0.

Mimicking the approach of [14, 13, 25], we use the following ansatz (see Figure 5 for a schematic illus-
tration of this ansatz).

ILE
FE NF FE NF FE NF K NF

Figure 5: Schematic representation of the asymptotic expansion (NF: near field, FF: far field)

e Far field asymptotic expansion: in the horizontal thin slits £5°7,, j € Z, we assume that

+17
u®(z,y) %uj Z € u(k) s)+0(E™), s=z—3, (z,9) 65;’[1. (30)
2

keN

In the same way, in the vertical thin slits 5;’_, j € Z, we assume that

u®(z,y) ~ uj(z,y) Z € u(k) ) +O0(E™), (z,y)e&. (31)
keN

With the ansatz (30) and (31), we anticipate that, for small €, in each slit, the field is essentially a
1D field in the longitudinal variable, except maybe close to the junctions, the transerve variations
being contained in the O(£°°) remainders. The 1D functions appearing in the above expansions are
defined on the edges of the half graph G~ = G N {y < 0}. More precisely

k - k _

ul)y refy =101 R, w rej =[-L/2,0] > R
These functions are independant of € and given by (27-28) for kK = 0. In what follows, for any k,

collecting these functions over the index j, we define a function v® : G= — R (by definition the
far field of order k)

u® = ui’i)% on €j_+%v u® = u;k) on e, (32)
to which we shall impose
¥ € Hy(G7),
where H{,.(G™) is the Hilbert space
HL(GT) = {u ELLGT) JueH (e),Vec& > lulling < oo} . (33)
ecé
If we denote H'(G™) = {u’g , u € HY(G)}, we have H'(G™) C H},.(G™). The larger space Hy,.(G™)

differs from the smaller space H'(G™) by the fact that we removed the continuity condition (see
the definition (7) of H'(G). As we shall see, except for k = 0, all u®) will be discontinuous on G.



Substituting (29-30-31) into the eigenvalue problem (24), and separating formally the different
powers of &, we get the following set of problems for the far field terms uv®, k € N*: Vj € Z,

k—1
2, (k) (0) (k) (k—m) (m)
8Suj+1()+)\ (s) 7)\ U1 (s), se€(0,1).
" "f’o (34)
0yul® (y) + AVu (y zw mu™M(y), ye(=L/2,0),  du(0)=0.

The far field terms «*) are still not completely defined by (34). More precisely, we need to prescribe
transmission conditions at each node M; of the graph G to link the functions

GO
(uj+%,uj7%7uj )

These transmission conditions will result from the so-called matching conditions.

Near field asymptotic expansion: in the neighborhood of the junctions ICE’*, j € Z, we assume
that the following expansion holds

W) ~ U e = ot U (L R, (35)
keN
where the near field terms U ;k) do not depend on € and are defined on ”infinite T-shaped junctions”:
UM .7, =R, jei,
where the junctions are defined by (see also Figure 6)
J;i = K; UB;j - UB; 1 UB,jo. (36)
where
Bji = (5, 4+00) x (0,1), Bj— = (=00, ) x (0,1), Bjo= (-5, B x(1,400), jeZ
while
K; = —% %] 0,1, jeZ (38)

Note that all the junctions J;,j # 0 are identical. ~
In what follows, for any k, we denote by U®) (near field of order k) the set of the near field functions

(k) ._ (k)
U ={U;"} ., (39)
As usual (see [13], [14]), we look for near field terms that belong to
UM ev;:={UeHL.(T), w;UeH (J;)} where w)
wij(X,Y)=1in K;, e VEEFri/Din B,y e V¥~1in Bj,.

which prevents an exponential growth but authorizes a polynomial growth. Note that, for j # 0, J;
can be identified to J1, V; can be identified to V1. Substituting the expansions (29-35) into (24) and
separating formally the different powers of €, we find a set of problems for the near field functions
UM keN:

AU(k) — _ 2 )\(k—m—Q) U(m) in J; .
Viez ’ 2, ;0 T, (9 )
J ) m=
9.UM =0 ondg;. (i4)

As for the far field terms, near field terms U are not completely defined by (41) (for instance,
any constant function satisfies Problem (41) for & < 1 or more generally any harmonic function

10
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Figure 6: The jonctions J; (perturbed for j = 0 and unperturbed for j # 0)

that belongs to V;). We need to prescribe their behavior at infinity (in the three infinite branches
Bjs5, 6 € {+,—,0}), which here again results from the matching conditions.

To make the matching conditions more explicit, we need to describe the form of of the near field
terms in the three infinite branches Bj s of J;, which relies on a modal expansion. To do so, for
any § € {0,4, —}, we denote by (t,s) the transversal and longitudinal variables of B, s, i.e.

(= X in Bj,o7 6= Y in Bj,07
Y in B4, | X in B+
and we introduce the two following bases of L?(—pu; /2, uu;/2) and L*(—1/2,1/2) and

Vi,o(f) = \/% cos (ﬁ—’;(t—&— uj/Q)) and Vfé’i(t) = v(t) := V2 cos(frt), (42)

which are nothing but the eigenfunctions of the corresponding 1D Neumann laplacians.

We begin with some recaps about solution of homogeneous Laplace equations in bands. More
precisely, we are interested in the problem

—Au?(go) =0 in Bjs, u?(ap) =@ on Xj;s, anuf-(w) =0ondBjs\Xjs. (43)

where ¢ is the Dirichlet data belonging to Hz (3j,5), with 6 € {0, +, —}. It is well-known that this
problem has a unique solution in the space

HY(B,s) == {v € H-.(Bj5), ——

VT L*(Bjs), Vv € L*(B;s)} D H'(Bjs) (44)

and that the mapping
@ + u3(p) is an isomorphism from Hz (3,,6) into the space Harm(Bs,;) (45)

where we have defined
Harm(Bs,;) == {U € H'(Bs;), AU =0 in Bsj, 0,U =0 on 9Bs; \ Zs.; } - (46)

The well-posedness of (43) classically follows from Lax-Milgram’s lemma and Hardy’s inequality
(see for instance [22, Lemma 2.5.7]). Moreover, it can be solved by separation of variables in (s,t),
yielding

+oo

T@) =" Brre ™Ivi(t) inBjx,  Bex=(p, V)i, )
=0 (47)

L

—+o0
AL . ;
uj(@) =D Broe "7 vig(t) inBjo, Bro=(#Vig)ias, 0
£=0
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where, we see that ug tends exponentially fast to a constant as |s| tends to +oo. We are now ready
to give the structure of the near field terms in the bands Bj s.

Proposition 2. Assume that there exists a sequence of near field terms {U® k> 0} (see (39)),
with U;k) €V for each j € Z, satisfying (41). Then, for any k € N, for any j € Z, there exists 1D

polynomials
(U32.050) € Pryr and {(U}) .U ) € Prajoy, €21}

such that the function Uj admits the following decomposition in the bands Bj s

UM =08 (s Z U%) (s)e ™ Ivi(t) inBj+.
o (48)
~Lrel .
UM =00 )+ Y 0% e o) inBjo.
/=1

where the above series converge in H},.(B;s). A more detailed description of U;k) in each band is

UM =allls + 23 (te) + UL 2 (ts) in By (49)

J,0,part

k) .
where a§ 5) is a real constant and

- ?/j(f;) belongs to Harm(Bj,5) (see Definition (46), in particular A%E? = 0), thus of the form
(see (47))

%(m ﬁ(k> +Z ,B(m e trlsl ve(t) in Bj+

(50)
_lm
k k k i )
](,0) = ( ) + Z ﬂg( z)o e M é,o(") in Bjo.
;y’i;gt € H}..(Bj,s) is the only particular solution of
k—2
AUL 2 = =N Ay i Bys, 0.U Y =0 on 0Bs; \ 5s (51)
m=0
that admits a decomposition of the form :
k—2) k—2 k—2 —tm
U]( + part U( == pazrt + Z j(E j:,>1.>art e o Ve (t)a
(52)
k—2) k—2) k—2 **\5\ j
U]< 0 part = U]< 0 part Z U]< 2,0 ;art 6 V%,O(O?
U](If;_pilt € Py and satisfies  (a) Uj(lfs;izt( ) = 0s J(If; pZt(O) =0,
with (53)
;Z:fp)art € Py and satisfies  (b) Uﬁ}i}art (0)=0.

Remark 4. The link between (48) and (49-52) is quite straightforward. In particular, one easily
checks that - )y -
Uj:5 (5) 5+5 U] 5part( )

(54)
URs(s) = ﬂ(e,s 0% 2 (5)

7,4,6,part
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In the decomposition (49), the label (k — 2) for the functions

g2 = o -2

j,0,part’ ~ j,8,part 7,£,8,part

is here to indicate that these functions are entirely determined by the coefficients \™ and the func-
tions U](m) form <k-—2.

In opposition, "the harmonic part” of U;k) in the band Bj s, namely the function
k) k
( s+ %J( 5>(t 5),

involves infinitely many ”free parameters”

(@, 8%)) and {85, 0> 1}

In the following, the decomposition (48) will be used for deriving the matching conditions in Section
2.8. On the other hand, we shall prefer to use the alternate formula (49) for the construction of
the terms of the asymptotic expansion (see in particular Section 8).
Remark 5. Integrating (52) with respect to t gives
k—2 k-2 k—2 (k=2
/ U;,i pezrt(5 t) U]( + pgrt( ) a‘nd / . U](,O,paz't (‘57 {) dt = lLLj U;,O,paz‘t (‘5)
0

Hj
2

as well as

/0 UM (s,0) dt = 0% (s)  and / UP (s,6) dt = puy; U5 (s).
Sketch of the proof of Proposition 2. We only give, for completeness, the main lines of one possible
proof for this result. More details can be found for instance in [14, p. 316]. This proof is done
by induction on k using separation of variables techniques. We treat here the case of the bands
Bj 4. One proceeds similarly in the band Bj,g. For each k, the near field can be decomposed along
the orthonormal basis v,. The coefficients of the decomposition are functions of the longitudinal
variable 5. For k = 0,1, the announced result simply follows from the fact that any harmonic
function in the space V; admits, in each branch, a decomposition of the form

—+oo
ajrs+Bix+ Y ajere ™v(t) inBj
=1
For k > 2, assuming that (48) holds up to k — 1 and substituting (48) (seen as a particular writing
of the modal expansion) into (41), we first see that the coefficient functions Uj(k:g (s) must satisfy
k—2
277 (k m—k—2) 1y(m
0,0 = -3\l YU, (55)

m=0

It means that (AJ;Q( ) is the sum of an affine function in s and a particular solution U I part of (55),
which can be chosen as the one that satisfies the Cauchy conditions (53)(a). It turns out that this
particular solution is a polynomial of degree k, that has no affine part.

In the same way, one sees that the functions U ;Iz) . satisfy

k—2
(02 F 2m ) UKL = =S A== g, (56)

m=0

The main difference with what preceeds is that a basis of the space of solutions of the homogeneous
equation associated with (56) is made of the constant function 1 and the function e2**|. The latter
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must be eliminated because U;k) is in V;.

4, % part
account that we exclude exponentially growing functions, we can only impose one condition to

”eliminate the constant”, by imposing (53)(b). As a matter of fact, as the right hand side of (56)
is a polynomial of degree [k/2] — 1, it is easily shown that, because ¢ # 0 the particular solution is
a polynomial of degree [k/2].

Therefore, U;’Z)i is a sum of a constant and a particular solution U;k&) of (56). Taking into

2.3 Matching conditions
2.3.1 Derivation of the matching conditions

To find the missing information (the transmission conditions at the vertices of the graph for the far
field terms and the behaviour at infinity for the near field terms), we shall write the so-called matching
conditions that ensure that far field and near field expansions coincide in some intermediate areas. Indeed,
far field and near field expansions are assumed to be both valid in some intermediate areas M35, j € Z,
localized at the left, right and above each junction K75,

M;m = M§,7 U M;7+ @] M;,O-

Then the matching zone M5 | corresponds to & — j — 0 for the far field and to X = (z — j)/e — 400
for the near field. Typically, we can choose for instance (see Figure 7 for this example), for any integer
J, the left and right intermediate areas M5 _ and M5 , of the form

M _=(0,6) x (j —2ve,j —Ve), ML =(0,6)x (j+Veij+2Ve),
and the vertical intermediate areas of the form

Mo = (J=55 555 x (=5 +VE 5 +2v).

jog
~Lj2+2VE :
) — .
~L/2+ e Mo
J—=2VE j—/E it VE j+2vE
FF : NF FF
ME‘,_ ‘/Mj.—O—

Figure 7: the matching area M5, = M5 _UM;S , UMS, for j # 0 (NF: near field, FF: far field).

Let us first explain how we proceed in the matching zone M3 . which involves the junction [J; (for the
near field) and the edge €1 (for the far field).
(k)

We first use the (formal) Taylor series expansion of the far field term u’"’

Jits
(*) fu® (o)
uy(5) = 3 o, 0) %
¢eN
so that the ansatz (30) can be (formally) rewritten as
€ k (k) (l‘ - ])l (%) .
w1 (@y) = Sty O} 1 (0) ===+ O(™),  jEL (57)

keN LeN
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On the other hand, using the expansion (48) for U;k) in Bj 4+, we remark that the ansatz (35) can be
rewritten as .
~ T — o .
Wiy =) & U}ffﬁ(Tj) + 0E™), jer (58)
keN

where we have noticed that, for s = (z — j)/e, (x — j) € (0,1), the terms in factor of e ™ £ > 1 can be
put into the O(¢°°) remainder.

Then, writing s = (z — j)/e, the identification of (57) and (58) leads to relate the two expansions :
¢

5 N .
ZZ €k+l aﬁui?% (0) ﬁ — Z gk Uj(fi)(ﬁ), jEZLL.

keN LeN keN

Finally, identifying the terms of the order £ leads to the equalities

k ¢
(ke k—£ 5 .
0" (s) = ;70 0§u;+%)(0) o keN, jer (59)

Obviously, we proceed in the same way for the matching areas M3 _ and M3, to obtain

SZ

k ¢ k

Fr(k k—2¢ 5 ok k—¢ .

052e) = 00 (1) gy, and Uj(s) =D 0u O (=5) 3, keN, ez (60)
£=0 £=0

Using the first equation of (54), the matching conditions (59, 60) are equivalent to

k 0
(k) _ (k—1) (k) _ (k) Fr(k—2) _ ¢ (k=) S
A+ = asuj+% 0); ﬁj,+ - uj+%(0)’ Uj,+,part(5) - ; asuﬂ-% (0) Vik
=2
k 54
k k—1 k k ~r(k—2 ¢ (k—¢
04;'71 = 83’“;7% )(1)7 /B](,_) = ILEJ% (1)7 U;,—,p;rt(s) = Z 35u;,7% )(1) ﬁ7 (61)
=2 :
k sg
k k—1 k k r(k—2 0 (k—¢
aff =0V (=5), A =uP (), Ul =) 0w (-5
£=0

2.3.2 A useful version of the matching conditions

Let us now anticipate here the way we shall exploit these matching conditions for the construction of the
asymptotic expansion by induction on k. In fact, these will be used for ”building conditions at infinity”
for the near field terms in addition to (41). If one assumes (A, Ur(f)) known for m < k — 2, we know
from Proposition 2 and Remark 4:

The functions U ](}f;_pil),t (in (49)) are known and considered as data. (62)

In view of the decompositions (49)-(50)-(52) of Proposition 2, the equations of the first two columns of
(61) can be rewritten as

U — (u;?% (0) + dsu’ 3" (0)s + UD€ Harm(Bis) N Ly (Bis), (1)
U = () 405+ U DL) € Harm By ) N L2, (B o). () (63)

U - (u;.“(_g) + 0l T (—L)s + U2 ) € Harm(Bj0) N L2,,(Bjo),  (iii)

J J,0,part

where the spaces Harm(Bj,5) are defined in (46) and the spaces L2,,(B;,s) are given by

12,(Bj2) = {v € LL(Ba), €lv € I3(Bi2) |,

Isl
LZ.p(Bjo) = {” € L,.(Bjo), e"iv e L2(Bja0)} :
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Note that the functions belonging to Harm(Bj,s) N L2,,(B;,s) have an expansion of the form (47) with
Bo.s = 0. As a result (see the definitions (42)),

Harm(Bj,s) N L2,p(Bjs) = {v € Harm(Bjs) , / vdo = 0}. (64)

Zj,6

On the other hand, using Remark 5, the condition of the last column of (61) can be reformulated as

k L
— S .
[ty a=3 ol P, ()
=2 ’
k 5
[ Ut a3 o P, (i) (65)
=2
Hj/2 k L
(k—2) o ¢ (k—£), L\9
/;Mj/ Uj,O,part(57t) dt = p; [z:; as“j (_5) n (dii)

However, these conditions are redundant, as explained in the following lemma, in the sense that at each
step k, they appears to be consequences of the matching conditions (63) for m < k — 1.

Lemma 2. Assume that (41)-(34) are satisfied (with m instead of k) for m < k and that the matching
conditions (61) (with m instead of k) are satisfied for m < k — 1. Then, (65) is satisfied.

Proof. The forthcoming proof is done for (65)-(%), but an entirely similar approach leads to (ii)-(%ii). As
already observed in the proof of Proposition 2 (see (55)), the function U J(k)(s) satisfies

k-2
850<k) Z )\(m)U(k 2— m)( ). (66)

m=0
But, since the matching conditions (61) are satisfied for m < k — 1, we have

k—2—m

k—2—m ¢ (k—2—m—¢
= S a0 )
£=0

As a result, inverting the roles of £ and m in the summations, (66) can be rewritten as

k=2 ,  k—2—¢ k—2

0000 == (X AV ETI0) ) =X 5 o)

£=0 m=0 =0

Here, we have used the far field equations (34) (with k —2 — £ instead of k) to obtain the second equality.
Solving explicitly the previous ordinary differential equation, we obtain (see Proposition 2, Remark 4
and Remark 5 for the notation)

k-2

42 k
77 (k) (k) 5 +2, (k—2—0) (k) (k) s 2 (k 5)
i+ (8) = s+ﬁj++; rra OO = a8 +; il ().
Finally, identifying the previous equality with (54) directly gives (65)-(%). O

In other words, under the hypotheses of the previous lemma, it suffices to satisfy (63) in order to satisfy
the matching conditions (61).

3 Analysis of far and near field equations

As usual in the method of asymptotic expansions, the construction of the terms {)\(k), u(k>7 U<k)} in the
formal expansions will be done by induction on k. The idea is, at each step of the induction process to
”eliminate” the near field U in order to formulate a problem in {/\U“), u(’“)} only, which is similar in its
form to the problem (2.2) for {A\(?, u(®}. To do so, in Section 3.1, we first derive transmission conditions
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on the far fields terms {u®} assuming that the whole sequence {\*) 4®) U®)} exists (Proposition 3).
The next two sections prepare the induction process which will be described in Section 4. In Section
3.2, we prove that the above mentioned transmission conditions are also sufficient conditions for the
construction of U™ assuming that the previous terms {)\(m>7u<m), U(m>}7m < k are known as well as
the far field term u*) (Proposition 4). Finally, in Section 3.3, we formulate the problem in (A*) 4(*))
and show the existence and uniqueness of the solution provided that {)\(’"), ™), U(m>}7 m < k are known
(Proposition 5). The step-by step construction of each term of the asymptotic expansion is conducted in
Section 4.

3.1 Necessary conditions for the existence of the near field terms

In this section, assuming the existence of the whole sequence {)\<k), u®) U(k>}keN, we derive non homo-
geneous transmission conditions for u(® (similar to those necessarily satisfied by for u(o)). To obtain
these conditions, several approaches are possible. We have chosen the one that consists in ”replacing”
the problem satisfied by each near field term (namely (41) plus the matching conditions (63)(65)) by
an ”equivalent” problem set in the bounded domain K; defined in (38) using the so called Dirichlet-to-
Neumann operators introduced in the next section. Beyond pure theoretical purposes, another interest
of this method is that it directly results into a numerical method that will be explained later.

3.1.1 Dirichlet to Neumann operators

Let 77 € f(H%(EM), Hfé(Z]-,,;)) be the DtN operator defined by

TFp=—0u; ()  on X, (67)

where u;t(go) € H'(B,s) is the unique solution of (43) and n denotes the unit normal vector to ¥, s
outgoing with respect to K;. Formula (47) allows us to put the operators TJ‘-S in diagonal form

+oo +oo e
" ) .
T p = E {r (SD:VZ)LZ(E]":E) Vo, TJQQO = E ITJ (s Vzo)L2<2_7~,0) Vz,(r (68)
=1 =1

Note that, by definition of the spaces Harm(Bs,;) and the operators T; (and some abuse of notation),

YU € Harm(Bs,;), 0.U+T U =0 on Xs;. (69)

3.1.2 Reduction to a bounded domain

We wish to characterize, for some j € Z and k € N, the restriction of U;k) to K, which we denote U](k)
for simplicity. We first introduce the notation

k—2

o = = N N ) (70)

J
m=0
where again the superscript (k — 2) is here to indicate that this function depends on the (Am,Um)’s for
m < k — 2 and is thus a data. Of course, we immediately infer from (41) that
(k) _ g (k=2) . )
AU;Y = @5 in Ky,
(71)
< (k
9.UM =0 on 9K\ (24 US;— US;0).
To close the problem, it remains to derive boundary conditions on the boundaries 3; s, 6 € {0,+,—}.
More precisely, we write non homogeneous DTN conditions on each boundary ¥; 5. Noticing that constant

functions belong to Harm(Bs,;), we deduce from the matching condition (63) and the property (69) that

&LUJ@) + Tj U;k) = g](vff;l) on Xjs (72)
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where

k—1 k—1 k—2 k—2 k—2

g§,+ ) = 85U;+% )(0) + gg(',+,pzrt’ g§,+,p31rt = (8” + Tg+) U;,+,p2rt on Ej7+7
k—1 k—1 k—2 k-2 —_ k-2

g§',— ) = —85U§7% )(1) + g](',f,pzﬂﬂ g_;,*,pzlrt = (a" + ij )U;,f,pa)mt on 2j7_7 (73)
k—1 k—1 k—2 k—2 k—2

g;',O ) = ayug )(_%) + g](',O,pa)rt7 g](',O,pa)rt = (8'” + TJO) U;,O,pait on 2j70'

Collecting (71) and (72) we see that, in Kj, UJ(M satisfies the boundary value problem

(k) _ 5 (k—2) : .
AU = of in K,
0.0 L TIOW = 5D onsy 50,4, (™)
anU;k) -0 on 0K\ (Ej,Jr UX;-U Zjvo) :

Note that, since the image of constant functions by any of the operators T]fS is 0, any constant is a solution
of the homogeneous boundary value problem corresponding to (74), which means that, at best, a solution
of (74) is defined up to an additive constant.

As a matter of fact, the study of (74) relies on Fredholm’s alternative (exactly as the Neumann Laplace
problem) and we let the reader prove the following result:

Lemma 3. For j € Z, let ® € L*(K;), gs € H */?(%;5). There exists a unique solution U € H*(K;)/R
to the problem

AU =d in Kj,
o0U+TU =g5 onYjs, 6=0,+,— (75)
o,U =0 on 8K]‘ \ (Ej,_;,_ U Z]',_ U ij) .

if and only if the following compatibility condition is satisfied:
(9D, + 93D, + oL, = [ @ (76)
J
where (-,-)s; ; is the duality bracket between H™Y2(%,5) and HY?(Z;5).

Of course, to define uniquely U from (75), we can add any affine constraint which is at our disposal.
As we shall see later, in the case of U ](k), this will not be an arbitrary choice but a consequence of the
matching conditions.

3.1.3 Necessary conditions on the far field

The main result of this section is Proposition 3 whose proof involves the following two ”profile functions”
/\/’jjE such that
- The function A is the unique function of H'(K;) solution to the problem (75) with
®=0, gy =0, g =1, go = —1/p; that satisfies / N dx =0. (77)
K;
- The function ./\/jJr is the unique function of H'(K}) solution to the problem (75) with

=0, g+ =—1, g- =0, go =1/u; that satisfies / ./\/;'dx =0. (78)
K
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Remark 6. Note that, according to the identification of the junctions J;,7 # 0 to the single junction
J1, all profile functions ./\/ji coincide with ./\fli As a consequence, we only have four profile functions

(NG, N
In addition, /\f]-Jr and ./\fjf are linked by the following symmetry property:
N7 (X,Y)=N(-X,Y) VjeN. (79)

Proposition 3. Assume the existence of a sequence {\® u® UMY satisfying (34), (41), (63) and
(65). Then, the far field u'® satisfies for any k € N the inhomogeneous generalized Kirchhoff conditions

asu;'i)% 0) - 85u§_k_)%(1) + 1 Byuy“)( Ly = ~(k o) (80)

as well as the inhomogeneous jump conditions

k k k 1 . .
ul? (1) —uf (-5) =AY, GeZ ()
(81)
k k k—1 . iy
g (=§) — ), 0 = A§,+ Loodez (@)
where
—(k—1 k—1 k—1 k—1 k—1 .
‘:‘g ): - <g](',+,pz>|rt7 1>Z‘ - <g](',7,pirt7 1>E - <g;70,pa)rt7 1>E + / ¢§ ) (Z)
3+ Js— 3,0 K
- (=D
(k—1) _ ¢ (k=0 L J 0,0
Aj- = Z(*a (=%) =5 Oeu 2(1))
(i1)
(k1) (k—2) /—
+ Z < N >E. - / @, ./\/'J . (82)
6€{+,—,0} 7.8 K;
k
(k—1) _ ¢ (k—0) k=0 (_L
Ajy"r - Z (2 Z a J+1 (0) £| 8’H J ( 5))
=1 (4id)
(k=1) rrt (h—2) \rt+
tX (o), - [ el
se{+,—,0} .8 K
<I>(vk), gj(l? and g](.g)}part being given by (70, 73).
Proof. The result will follow of the investigation of Problem (74) satisfied by U;k) and U;kﬂ).
First, we deduce from Lemma 3, that the compatibility condition (76) applied to (74) for U ;Hl) writes
(1), + (o), + (o), = el (59
5+ - £j.0

K

which is easily seen to be equivalent to the condition (80) thanks to (73) and (82)- (7).

Next, to obtain the jump condition (81)(i), we shall use a particular reciprocity result : let us mul-
tiplying equation (74) by ./\/'j_ and integrate the result over the domain Kj;. Using Green’s formula, we

get
[(ouaim0), — o), == [olny

se{+,—,0} ’ ’ K;j

which can be rewritten, using the symmetry properties of the DtN operators Tf

[(@n st o), (s mhodar), == [

K;

P
se{+,—,0} ?
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Using the DtN boundary conditions satisfied by U;k) (cf. (74)) and N~ (see (75) and (77)), we get

SO (k) (k=1) p/— _ (k=2) pr—
/ Uim = / o= > <9j,5 N >EN = _/‘bj Ni (84)
25—

12 ,
S se{+,—,0} K,

Finally, substituting (65) into (84) leads, after some easy computations, to the jump condition (81)-(3).

Proceeding in the same manner with A} instead of NV leads to the jump condition (81)- (ii). O

3.2 Towards the inductive construction of the near field terms

In this section, we assume that we are inside an induction process and wish to construct U™ for k> 1
assuming that

(H) The far field terms (u(™,A™) m < k and the near field terms U™ m < k — 1 have been
b constructed so as to satisfy (34), (80) and (81) on the one hand, (41), (61) on the other hand.

Proposition 4. Assume that (Hy) holds. Then, for each j, there exists a unique near field term U;k) ey,
satisfying (41) and (63).

Proof. We are going to construct the solution piecewise as
U =0" ink;, U =% inB;s §==0

according to the following lines:

1. We build U;k) in order that it satisfies the non homogeneous Laplace equation (74) in Kj.
2. We construct U;fs) in Bjs, § € {£,0} by extending U;k).
3. We check that Uj(k) satisfies the matching conditions (63).

Step 1. First, according to (74), we construct U }k) as a solution of

(k) _ ;5 (k—2) : .

AUJ_ = cI)J. in K,

.U+ TUM =gV onSis 6=0,%, (85)
&LUJ(k) -0 on 9K; \ (Z;,+UX;0).

which, in view of Lemma 3, is well-posed in H'(K;)/R (note that due to the assumption (Hy), @;k_g)

and gﬁ;—l) are known). Indeed, as explained in Section 3.1.3 (proof of Proposition 3), the condition (80)
(written for k — 1 instead of k) is a consequence of (Hj) and is nothing but the compatibility condition
for the well-posedness of (85). However, as this solution is defined up to an additive constant, we need
to adjust this constant appropriately.

This is where we use the fact that we want U ;M to satisfy also (63), which implies, as shown below,

k L
‘LL' — .

[ o =3 s ol P, (9
25+ =0 ‘ ’
' k e, ¢

(k) _ (=D w;" e (k-0 .
| u =3 S o, G (86)
S5 =
Js & 1

k k—e
/ U]( ) — 1t Z 7 851;5. )(—é), (417).
S =0
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Indeed, let us prove (86)-(i) (the proof is the same for the other two equalities). Using the mean value
property (64) for functions in Harm(Bj s) N L2,,(B;s), (63)-(i) implies

(k) (k) (k 1) (k—2) .
/Ev+Uj 7(’LL]_+2( )+au+1 () Uj+part)_0'
Js

However, Lemma 2, which we can apply thanks to (Hy), implies (65)-(z). It is then easy to verify that
the previous equality is nothing but (86)-(%).

A priori, imposing each of the equalities in (86) would lead to fix the missing constant. Fortunately,
there is no possible ambiguity thanks to the compatibility jump conditions (81):

Lemma 4. Assume that the conditions (81) hold. Then, if Uj(k) is a solution of (85), the three equalities
(86) (written with U](k) instead of U;k)) are equivalent.

Proof. For simplicity, let us adopt the notation

L= 3 (N, - [ el

s€{+.—.,0} * i

so that the jump condition (81)-(3), which is a consequence of (Hy), can be rearranged as

On the other hand, proceeding as we did to obtain (84), we deduce from (85) that

LN = / U;k)_i/U;k>
122}

i, - 3.0
so that (87) can be rewritten as
zk: ) s o'y (k e)(l) / 7 :zk: 1 6£u(‘k7[)(_£) 1 / 7®
= ! o 55 ’ = o ’ 'ujzjyo ’

which shows the equivalence between (86)- (%) and (86)-(4). In the same way, the jump condition (81)- (i)
implies the equivalence between (86)-(7i) and (86)- (7i3). O

As a consequence of the lemma, we fix the free constant in order that each of the conditions (86) (with

U;M instead of U;k) ) is satisfied.

Step 2. Next, we construct the extensions U;ff;) of U;k) in the bands Bjs (6 € {0,+,—}). Below, we
restrict ourselves to the case of Bj 4, the other bands being treated in the same way.

In Bj 4+, according to the desired matching condition (63)- (i), we need to take U;? in the form

k k—1 k k—2 k
) :85u§_+%)(0)5+u§.+) O +Ur2 + v (88)
where ”//(i) should belong to the space Harm(Bj ) N L2,,(Bj,+). As an element of Harm(Bj,+), ac-
cording to (45), 7; +) is necessarily of the form

“//J(lj_) = u; (cpﬁ)_) for some ga< ) e H? (Z54)

At this stage it only remains to choose w(k)
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In order to match the values of U;m and UW on X; 4, according to (88), we need to choose

M) (89)

This choice is in fact sufficient to ensure also the matching of the normal derivatives. In view of the DtN
boundary condition satisfied by U;k), it suffices to check that

(k) _ 77(k)
Pj+ = U

12 k—1 k k—2
- (B ol P+l 0+ U

g+

(On + Ty ) UL = g7 0.
But, using (88) and (69) for 7/]_51@'—)7 this is nothing but the definition of g](.f:__l)

Section 3.1.2).

(see the computations of

Step 3. It remains to check that U J(k) satisfies the matching conditions (63). In view of Lemma 2, it
suffices to verify that (63)-(3) is satisfied, i.e.

7% € Harm(Bj ) 0 L2, (Bj,1).

According to the characterization (64), this simply amounts to verifying that gp(k) has mean value 0
along ¥; 1. However, thanks to Lemma 2, (86) rewrites as

(k) MJ (k—1) (’V) (k—2) _
/ U Osu J+2 () /7+UJ+PaTt =0,
which, using again Lemma 2, is nothing but / gogk) =0 (see (89)). O
i+

3.3 The problem in (u® \(*),

Here we assume that {)\(m),u(’")7 U(m)} are known for m < k. Collecting the results of the previous
sections (far field equations (34), Kirchhoff conditions (80), and non-homogeneous jump conditions (81)),
we see that (u(k>, /\<k)) should satisfy the following problem:

Oully (5) + AVl (5) = =AW, (5) = £V (), s € (0,1), (i)
03us™ (y) + AOu (y) = —A® (y)*f}’“ V),  ye(=L/2,0), (i)
viez, { 0ul?0)=0, (@i)  (90)
W) (0) = 0 (1) + o (—5) ==, (iv)
u;‘?%u)—u;“ (%) =a57Y, w? (%) — ), 0) = AFTY. (v)

where the data at the right hand sides of last two equations are given by (82) and (73), and thus known
from {)\("L), u(™), U(m)}7 m < k, while

k—1 k—1
(k—1) _ (k=m) (m) (k=1) . _ (k—m)_ (m) :
fH% = A 't £ = A u™,  jEL (91)

m=1 m=1

Let E(Xo) :=span [u(¥] ¢ H(G™) C H.(G™) be the eigenspace of A associated to the eigenvalue Ao.

Proposition 5. Let k > 1. Assume that

FED e LG {"(’“ ”} € 1(Z) and {A(’“ ”} € 1»(2), (92)
then there exists a unique (v, X®) € HL (G7)/ E(Xo) x R solution of (90). Moreover
&) — [, —2 =(k—=1),_(0) (k—=1) _ (0)
A = [0l (2 20 B - () ). (93)
JEZ
Z(k-1) _ =(k—1) A (k—1) (k— INGTIN N
where =5 =5 — m (Aj“’lv_ A 1 + -+ cos A(O) (Aj,+ — Aj,— )) . (94)
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Proof. The proof of this theorem is an elementary application of the Fredholm’s alternative. A similar
proof can be found, for instance in [20] (see Theorem 4.10, Corollary 2.2 and Theorem 2.13). Note that
(93) is the necessary compatibility condition for the existence of a solution of (90) seen as a generalized
boundary value problem for u(*). O

Remark 7. In the solution of (90), the field u® is defined up to the addition of any element of E()o).
The uniqueness can be restored by imposing, for instance, any linear condition of the form Z(uk) =0,
where £ is a linear form of H{,.(G™) such that £(u®) # 0. The choice of £ will specify the construction of
a particular pseudo-mode. In Section 4 (see (120)-(144)), we shall precise our choice of £.

Besides, we can notice that the ezpression of A*®) given by (93) is homogeneous of degree 0 with re-
spect to the eigenvector u® so that one can check that it does not depend on its normalization. Indeed,

it can be shown by induction that f;kil) and é;kil) depend linearly on w0,

We conclude this section by a symmetry property (in the variable z) of the far field u®.

Lemma 5. Let k € N*. Assume that (92) holds and that condition (93) is fulfilled. Suppose also that
the following symmetry conditions hold: Vj € Z,

0 1A= =156 se o] . AP = Ak o
7 27
(k—1) _ p(k=1) L =(k=1) _ —=(k-1)
f—j (y) *fj (y) Y€ [_Ev ] =5 == -

Then, the solution u® of Problem (90) is symmetric, i.e., for any j € Z,

(k) o) — (k)
ul; 1 (1—3s)= uj+%(s) s €[0,1]

k k
() =¥ () yel-5.0
Proof. Let us introduce the function %) defined by
il () =u (1-5), sel01], @) =u)y), yel-50
2 2

(96)

Then, the function w® = 4®* — 4® solves the homogeneous problem (26). Consequently, there exists
a real constant ¢ such that
w® — oy

Since wi’;;(O) = u<_k1)/2(1) — uﬁ%(()) = Aé’tn + Aé’f;l) =0, we deduce that ¢ = 0 and w® = 0. O

4 The asymptotic expansion: existence and algorithm

By repeating applications of Proposition 5 and Proposition 4 (successively), we are able to define a re-
cursive procedure to construct all the terms of the different asymptotic expansions (far field expansion,
near field expansion and eigenvalue expansion) up to any order. The construction is done by induction.

Moreover, we can derive explicit formulas for the far field terms and semi-explicit expressions for the near

field terms, which are suitable for the numerical computations of the successive terms of the asymptotic

expansion. In particular, we point out two important features of the forthcoming construction:

1. First, by induction, all far field terms (uglj_)l /25 uik)) inherit of the symmetry property (96). More-
over, the near field term satisfy an analogous symmetry property

U (X, Y)=UM(-X,Y) VjeN. (97)

In practice, at each step k, it is consequently sufficient to compute u;i)lm, ug-k) and U;k) for j € N.

2. Secondly, an explicit dependance with respect to j can be proved by induction. This turns out to
be very useful from the numerical point of view.

This section is organized as follows. First, we initialize the induction process for k = 0 in Section 4.1.
Then, we proceed to the first induction step & = 1 in Section 4.2. This step has a pedagogical interest
for the understanding of the general induction step at any order k made in Section 4.3.
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4.1 Order 0 : initialization of the algorithm

We start from an eigenvalue A9 of the operator A% defined in the limit graph and the associated
symmetric eigenvector u(® given by (27-28).

For convenience in the forthcoming exposition, we shall use the following alternative expressions of

(ug 1, u;_o)) for j > 0, (completed by the symmetry property (96))
2
u;(_)gl (s) =1I (a(()o) cos(VAD s) + b sin(v A0)s)), s=xz—j€0,1],
2
(98)
uf® (y) = ef” cos(VAOIy), y € [-L/2,0].
_ s(v/ )\ (0) 1
where a,(()o) =1, b(()o) — L()\)’ C(0> - -
sin(VA©) cos(VAOIL/2)

According to Section 3 and more particularly Proposition 4, each near field terms U ;0), Jj € Z is then
defined as the unique solution of (41, 63) for k¥ = 0. Indeed, thanks to the convention of Remark 3, it

is easy to check that Assumption (Hp) (needed for applying Proposition 4) is nothing but the fact that
4 is an eigenvector associated to the eigenvalue )\(0>, which is precisely our starting point. Moreover,

since (V) = 0, it is then easy to see that for all j, U;O) is the constant function equal to “;(21 (0), i. e.
2
v® =+, vjez (99)

4.2 Order 1 : first induction step

We shall construct in turn

1. the coefficient A) and the far field terms u(!) by means of an explicit resolution (see Remark 8)
of (90) for k=1 . We prove that (! is symmetric (in the sense of (96)) and that
it+3

ulh (s) =17 ZO s (a,f,”(j) cos (v hos) + b5 (j) sin (ms)) , sel0,1], jeN,

u;”@):rf;w(cz”mcos(my)+dz”(j)sin(my)), ye[-3,0], jeN, (100)

1
uw () =3 o (ed cos (vAay) +df}ysin (Vo) ) ve[-5.0].
=0
where the coefficients (agl)(j),dgl)(j),cy)(j), dy)(j), cé}g, délg) are explicitly determined.

2. the near field term U | which is symmetric in the sense of (97) and is of the form
Wy — 0 (1) (5 ; *
UM () = (u () + P (])) Vj € N". (101)

with J; identified to J1, where u® ¢ Hlloc(J1) is a so-called profile function and the constant
PW(j) is a polynomial of degree 1 with respect to j. Note that (101) determines U;l)(X, Y) for
j # 0. The computation for j = 0 will be the object of a separate treatment.

Remark 8. To avoid a boring exposition of long and complicated formulas or expressions, we shall most
often restrict ourselves to explain how these explicit computations can be done, without giving the results
(this will be also the case in Section 4.3). Note however that these formulas are necessary and used in
the numerical method presented in Section 6, while the general form of these formulas will be used for
the error analysis of Section 5.

Remark 9. Note that it is natural that the vertical edge corresponding to j = 0 is treated in a separate
manner since it corresponds to the refined branch ot the thich graph QF~.
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4.2.1 Determination of \(').and (!
They are obtained by solving (90) for k = 1. Let us investigate the structure of the data

(0) (0 A0 A0) =(0)
(f]'+1/27fj ) ],+7A —r =3 )

of this problem. First of all, by definition, we know that
Viez, f9,,=r"= (102)

Concerning A;?j)t, we first notice that, from (73), (98) and Remarks 3 and 6,

vj>0, 9](?5) = r]g(o) and Vje€Z, gg))o = gj(f)) g(_0])7+ = gj(f)) (103)
where moreover
g = =g = b VA©, i = [ VAO sin (VIO L/2). (104)

Using the definition (82)(ii) and (iii) for A;Oi, we easily see, since (=1 = 0, that

A =0 (L) + B o, + % <g§f{g,/\f.—> 7
2 se{+,—,0} i

AR =50l ol (-5 + T (a0 M),

.6

se{+,—,0}
Therefore, as a consequence of (98) and (103)-(104), we can write
AL =rAY jeN (105)

where Af ) can be explicitly determined as a function of (aéo), béo), céo)) and A(®. Moreover, using the
symmetry properties of /\/']-i (see Remark 6), we can see that for j € Z,

A =AY and AY) =-A. (106)
In particular we deduce that {A(O) tiez € 12(Z). Finally, we prove below that
viez, = =0 (107)

Indeed, since ¢§0) = -0 U](O) (see (70)) and U;O) = 7l (the constant function), using definition
(82)(i), we obtain (we use also meas K; = p1;)

—(0 0 0 0 j
:.; >: <g](3»part’]‘> <g](2part7]‘> <gj(0)part71> — Uy )\(0) 7'|J\. (108)
i+ Xj,— 5.0
Using the definition (73) for g(-o) and the definition of T?, we have
7,0,part J
_ 0
= <6"U.7(,0)7P31’t7 1>E

0
<gj( ()),part’ 1>Z
Next, according to Proposition 2, U is obtained from the decomposition (49) of UJ@) for k =2 and
is solution of (51)-(52)-(53). It is then easy to see that

- <(an +THUY .. 1>E

3,0 3,0 3,0

s O ,part

0 0) 5 0 —Lr)s)
UJ( 0>part( ) - )\< |J| + Z ](Z)O,part Hi V;,O(t)
Then, since X;,o corresponds to s = 1, we find that

0 .
<g; (2 ,part’ 1>2j . = _>‘<0) le‘ M- (109)
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Proceeding in the same way in the bands Bj+ where 0,, = £ 05, we find that

0 i\ (0) 5 i\ (0) |5
<g§ipm,1>zj+ = AL (g0 1) = a0 (110)

The relations (109) and (110) enables to conclude that E;O) =0 for all j € Z.

Thanks to (102), (105) and (107), the assumptions of Proposition 5 are satisfied for k¥ = 1 so that we
can claim that there exists a unique (A"), u(*)), up to a normalization condition for u") (cf. Remark 7)
that we will specify below (see (120)). Moreover, according to (93), A1) is given by

1 _ (0)||—2 =(0).(0)
A= QHU“ ”Lg (g—)(z =5 Yy )7 (111)
jEL
where, according to (94) and (105), we compute that
~ - A/ \0) ~ . . .
Vj €N, E§.0) =—r — A)\(O) (r A0 _ -t Aﬁﬁn + cos V() (Af) — A(,O))) .
sin

We can also give an explicit formula for u‘V). First, from properties (106), we can claim that u) satisfy
the symmetry property (96), so that we can restrict ourselves in the following to j > 0.

Let us first consider the two linear ordinary differential equations of (90) for k = 1, namely:

2, (1) 0), (1) _ (1,0
(9Suj+%(8) + A uH%(s) =)\ uj+%(s), s €(0,1),

1 1 0 JeN. (112)
O () + 20wV () = AV UV ),y e (-1/2,0),
Using (98), we first compute a particular solution of (112), namely
ul? A0 ] (7 0) ¢ sin(VA©® (0) NSO )
J+z part(s) =Ar 2V A0 Ay~ S Sm(\//\is) + by’ s cos(VAOs) ),
1 jeN. (113)
(1) (1) g 0) .
uj,part(y) =A TJ 2\/@ (_ C Y Sll’l(my)) .

Therefore, there exists constants (a (1)( ), 13 )(j )) (j €N), (éél)(j),d“)( )) (j € N*) and (c(()l()),d(%())) such
that

M (s):dél)(j)cos(\/)\m)s)+l3(()1)(j)sin(\/)\(0)s)+u(1) (s), se€0,1], jEeN

j +2 3 5 ,part
um@:%Wﬁwwﬂ@w+ﬁth%Ww+%iA) yel0,1], jeN-  (114)
uf (y) = &' cos(VAOy) + dY) sin(VAOy) +ull),. (1), y € [0,1].

Let us now determine the coefficients in the previous expressions. First, (90)- (i) (the Neumann boundary
condition) leads to

d(j)=0, Viez d)=o0.
Next, (90)-(v) (the jump conditions for j € N*) give, after some manipulations,

L1 1 S, j . " .

G () =—r———4a5 ' (j)+car’, VjeN i

o) cos(VAD L/2) e . (115)
BV =l (+1) —— —af(j) ——+ b 1), WEN, (i)

’ 0 sin(VA©) 0 tan(VA(©) ' ’

where the constants b1 and ¢; are explicit functions of A(*) (whose expression is omitted on purpose). To
be more precise, (115)-(4) directly follows from the first jump condition while (115)-(iz) is deduced from
the second jump condition at j + 1 taken into account (115)-(3).
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Finally, substituting (115) in the fourth equation in (90) (the Kirchhoff condition) yields to
asV (G + 1) +29(VA® ) aP () +aV (G —1) =1 a1, VjeN (116)

where, again, a; is an explicit function of A\(* and g is defined in (15). Using that r?+2g(VA(©) r+1 =0,
a direct computation shows that a particular solution of the difference equation (116) is given by

. . Ta .q .
aO,part(j) = 2 711 Vi ’I“J, v_] € N. (117)

As a result a(j) := al" (j) — o pare(j) satisfies

a(j +1) +2g(VA©@) a(j) +a(j —1) =0 VjeN’

whose general solution in ¢2(N) has the form oz(()l) rJ. In other words, we have then proved that

aV(g) =r'aV(), with alV(j) = oV + 1l ViEN, (118)

Tas
7.2 —

Substituting (118) into (115) and (114), we obtain the formulas of the first two lines of (100) where we
observe that

ay)(j), b&l)(j), c&l)(j) and dy)(j) are polynomials of degree < 1 — ¢ with respect to j. (119)

Except the constant coefficient of a(()l) (j) (coefficient of the polynomial a(()l) (j) associated with the mono-
mial of degree 0), these polynomials are explicitly determined by formulas (115)-(118). It is consistent
with the fact that Problem (90) has a solution up to a multiple of u®. At this stage, we can choose

where by definition agl)(O) = ugl/)Q (0) as our normalisation choice (see Remark 7 with £: u + w;/2(0)).

Finally, it remains to compute 688. This is where we use the jump conditions and the Kirchhoff condition

for 7 = 0. A priori, this gives 3 linear equations in éé%g. However, these three equations reduce to one

single linear equation allowing us to compute éé{()) explicitely. The verification of this property can be

done by hand using the symmetry properties together with the fact that A(!) is given by (111). However,
this property is a consequence of Proposition 5, that ensures that there exists a unique solution to (90)
(for k = 1) satisfying the normalisation condition (120).

4.2.2 Determination of U

We already know that (u(®, A(?)) satisfy (34), (80) and (81). In the same way, as solutions of (90) for
E=1, (u®,AD) also satisfy (34), (80) and (81).

Since U, made of the constant functions U;O) (see (99)) satisfies (41), (61), we have checked that the
assumption (H,) is satisfied. In view of Proposition 4, we can thus assert that,

vjez, 3! U;l) € V; solution of (74) for k = 1 satisfying the matching conditions (59-60). (121)
Moreover, U;l) is shown to be symmetric in the sense of (97) by using the symmetry of u(® and v,
At this stage, we distinguish between the computation of Ué1> and the computation of U}l) for j # 0.
The computation of Uél) is obtained by solving (74), for k = 1 and j = 0, which provides the restriction

of Uél> to the bounded junction Ky. Then, it is extended to the whole domain 7, as in the proof of
Proposition 4, Section 3.2.
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Let us now consider the case j # 0 and prove (101) by showing that there exists a profile function
UY ey, =V (with K; identified with K;) and a constant P (), that is a polynomial of degree 1
with respect to j, such that the decomposition (101) holds.

We first establish this decomposition inside K; and then extend it to the domain J; as in the proof
of Proposition 4, Section 3.2. As for UJ@), this (straightforward) second step will be omitted.

For j € N*, according to Section 3.2 and (103), we know that U]Q), the restriction of U;l) in K satisfies

AU;“ =0 in K,
GHU;I) +1 0N =176 on¥;s, §=0,4, (122)
ant“ =0 on 0K, \ (Z;+U%j0).

as well as the following condition (that is nothing but (86)- (4ii)
) _ D (0)
JRCAE I C R C R
7,0

Using formulas (98)-(100), it is easily seen that there exists a polynomial P of degree 1 that we can
compute explicitly such that

/ U® =9 pO(j), (123)
2j.0

According to the identification of K; with K for j # 0, this suggests of course to introduce the profile
function 4V as the unique solution in H'(K;) of (note that the well-posedness of (122) ensures the one
of (124)))

AUD =0 in K7y,
UMY + Tf[;{(l) = gg) onYjs, 6=0,+,— (cf (104))
. (124)
AU =0 on 0K; \ (%;+UX;0),
fELO U(l) = 07

so that, using (123), by linearity U;l) = U® 4 pA(j).

4.3 Order k : the general induction step

The previous reasoning can be repeated for any k& > 2. As for k = 1, we shall construct in turn

1. the coefficient A®®) and the far field terms ©® by means of an explicit resolution of the far field
problem (90) (see Section 3.3). In particular, we prove that 4™ is symmetric and

ut® (s) =17 zio s (agk)(j) cos (vVAos) + bgk)(j) sin (\/Es)> , s€[0,1], jeN,

it+3

W) = 3yt (0 cos (Va) + dP Gsin (Va) ) ve [-5.0], jeN ()

k
w’ W) =3 o (elfd cos (VAoy) + dify sin (vAoy) ) ve[-50].
=0
the dependence with respect to the parameter j being fully exhibited.

2. the near field term U®) (Section 4.3.3). We show that U®) is symmetric (cf. (97)) and that

v ) =r (if U () + 7><’“><j>> jeN". (126)

£=0
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where Hék) € V; =V (see (40)) are profile functions independent of j and P*)(5) is a polynomial
of degree k with respect to j and constant with respect to (X,Y) € J;.

We emphasize that the following construction, although more technical, is similar to the one for k = 1.

4.3.1 Induction Assumptions

First, we assume that the numbers A, the far field terms u™ and the near field terms U™ are known

up to order n = k — 1, satisfy (34), (80), (81), (41) and (61) (with n instead of k) and are symmetric in
the sense of (96) and (97) respectively.

We also assume that for all n < k — 1, there exist polynomials (aé”)(), bg")(-)7 cgm(-), dén)()) of de-

gree n — £, 0 </ < n, and constants (CE’TLO), dgg)), 0 < £ < n such that

u;i)l (s) =17 Xn: st (aén)(j) cos (\/Es) + bék)(j) sin (ms)) , s€0,1], jeN,

2 i=0
u§”)(y) =7l g:oyl (cgn)(j) cos (Voy) + d&")(j) sin (\/Ey)) , ye[-%£,0], jeN, (127)
W) = 35 o (e on (vIon)+ 5 s (V3a)). ve -],

Finally, we assume that there exists profile functions Uén) cVj=V,for0<n<k—-1land0 </l <n—-1
and constants 77<")(j), 0 <n <k —1, that are polynomials of degree less than n in j, such that

Uy () =’ (Z iU )+ P“”m) jeN". (128)
£=0

4.3.2 Determination of \*) and u(®)

They are obtained by solving (90). Let us investigate the structure of the data of this problem. First,
using (73), one can verify that, for any j € Z,

k—1 k—1 k—1 k—1 k—1 k—1 k—1 k—1
g(,m) = a(',o : §,+ ):g(ﬂ‘,—)’ and ga(',o,palt :ggj,o,l)oart 9§,+,pirt:9(fj,f?partv (129)

and, thanks to (127), for any 6 € {0,+, —}, there exists a family of k functions (explicit) géf“[l), inde-
pendent of j, such that

k-1
g5 =Yg vieN. (130)
£=0
In the same way, the fields @;’%2) have the symmetry property (97) and of the form

k—2 k-2
oD =3 e, e, with 6P =3 Ak Ay (131
£=0

m=0

where the profile functions functions L{;m) are the ones appearing in (128). Then, using (82), we deduce

from (130) and (131) that, for any j € Z,

=(h—1) _ =(k—1) (k=1) _ A (k=1)

N G N (132)
and there exist polynomials 2*~1(.) and Afﬁl)() of degree at most k — 1 such that

D = 260 G), AETY =0T ARV, vienn (133)
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Finally, it is easily seen that f*~1) satisfies the symmetry property (95)(i) and that

f;f_ll)( s) =17 [:Os ( (k= 1)( ) cos (fs) +b<k 1)( ) sin (\/75)) s€[0,1], jEN,

(=1 () 3 S~ (20 (k—1) L R
;) =7 Z:Oy( (4) cos (VAoy) + 9, ()Sm(\ﬁy)) ye[-%,0], jeN, (134
R0 = 5 ot (85 con (vVaoy) + 857 sin (Vaow) ). ve 5.0,

where the coefficients a(k D), b(k V), A(k_l)(j), ﬁgk_n(j), E/(_,fco_l) and 62?0—1) are explicitly computed
in function of the coeflicients appearing in (127) for n < k — 1.

Formulas (133) and (134) ensure that
(2 ez € (@), {AJE"}jez € 12(Z) and f*7 € L5(G7).

The assumptions of Proposition 5 are satisfied, so that there exists a unique ()\(k), u(k))7 up to a normal-
ization condition for u®) (see Remark 7) that we will specify below (see (144)). Moreover, A*) is given
by (93). Because of the symmetry properties (132), Lemma 5 ensures that u® is symmetric.

Next, we prove (125). The first two equations of (90) are non homogenenous linear second order or-
dinary differential equations that we are able to solve explicitly.

First, we determine the unique particular solutions u;i) 1 part and ug p)an of (90) that have the form
oh

k . .

;:z,part( s) =77 Z ( ( cos (VA s)+b( )( )sm(\/)\os)), s€0,1], je€N,

*) 55 gt (o) ) (1 o L e N
Wee) = 0 3" (V) cos (V) + 4V G)sin (VAw)) . we [-E.0), jEN, (139)

k

ugfgart (y) = 2 (CZ o COS (\/ y) dé o sin (\/)\gy)) , y € [—%, 0] ,

where the constants a( )(5), bEk)(j) <k)( /) and d< )(4), with 1 < £ < k are polynomials in j of degree at
most k — £. The computation of the coefficients in (135) is straightforward but quite tedious. It will be
omitted here but can be found in [27].

Therefore, there exists constants (& <k)( ),b( '(j),j € N), (@ (k)( i), d(k)( ),j € N*) and (cé’%,d“i%) such
that

u'®) (s):a(()k)(j)cos(\/MO)s)+Bék)(j)sin(\/)\(°>s)+u(k) (s), s€[0,1], jEeN

]+1 3 -part
ul® (y) = & (j) cos(VAOy) + d§¥ (5) sin(VA® y>+u<’13m(> yel0,1], jeN*  (136)
ul? (y) = &5 cos(VA©y) + d sin(VAOy) + uf) . (y), y € [0,1].

Now, we determine the coefficients in (136). First, (90)-(ii:) (the Neumann boundary condition) leads to

(k) k i (k) - . x 3k k
46" () = — () (0) = d (), Vi €N', and difg = —(ufpere) (0), (137)
where d(()k)(j) is a polynomial of degree at most k — 1, computed from the agk)(-), bﬁk)(-), cgk)(), d;m(-)
for 1 < ¢ < k. Next, after the same manipulations as in the case k = 1, equations (90)-(v) (the jump
conditions for j € N*) give

&) 5y — 1 a® c j P ;
() o OL () +er(i)r?, VieN 0) .
B =aP G +1) —— —a () ——— + () 7, ViEN, (i)

sin(v A(@) o U tan(v A(0)
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where ci(j) and by (j) are polynomials in j of degree at most k—1 that, again, can be explicitly computed.
The formulas can be found in [27]. Let us simply point out here that these polynomials are deduced from
the particular solution (136), i. e.

The polynomials ci(-) and bx(-) are explicitly defined as explicit (and linear) (139)
139
functions of the polynomials aﬁk)(), b(gk)()7 CEH(-), dﬁ,k)(‘) for 1 <¢<k.
Finally, substituting (138) in the fourth equation in (90) (the Kirchhoff condition) yields to
06" (G +1) +20(VAO) ai” () + a7 (G — 1) = ar(j), Vi EN, (140)

where ay(j) is a polynomial with respect to j of degree at most k — 1.

Using that 72 + 2g(VA©)r + 1 = 0, a direct computation shows that there exists a particular solu-
tion of the difference equation (140) of the form

k
(7)) =77y ¢ VjEN (141)
=1

where the coefficients aEk)

are left to the reader).

can be computed by solving a square invertible linear system of size k (details

As a result a(j) := aé’”@) —al®) () satisfies

a(+1)+29(VIO)a(j)+a(j —1)=0 VjeN"

whose general solution in £2(N) has the form ao(k)r? for any j € N. Thus, we have then proved that
i () =r'al? () with o (5 )+ Zag’%f, VjieN, VjeN. (142)

Collecting (137)-(138)-(142) proves the first two lines of (125) with, according to (138)

o 1 o , N -
C =—q +c , VjeN )
b (@) =ral? G+ 1) —— —al?(j) +hu(j) T, VjEN. (i)

sin(VA©) tan(vV' A(©))

Except the constant coefficient of aék)(j) (seen as a polynomial in j), these polynomials are explicitly
determined by formulas (137)-(138)-(142) . Here again, we choose

aP0)y=0 (144)

where a"(0) = ui%(O) as our normalisation choice (see Remark 7 with £ : u — u;,2(0)).. To complete
the determination of u®), it only remains to compute éé’fg, (and thus c(()lfg = é[()kg as it follows from
comparing (125) with (135)-(136)). As for k = 1, it is entirely determined by the Kirchhoff condition

(90)-(iv) for j = 0.

4.3.3 Determination of U®)

In the same way, as solutions of (90), (u®, A\®) also satisfy (34), (80) and (81). Joined to the recurrence
assumptions, this shows that the assumption (Hy) is satisfied and Proposition (4) allows us to say that

vjez, 3! U;k) € V; solution of (41) satisfying the matching conditions (63)-(65). (145)

(k)

It is easy to see that, using the symmetry properties (129)-(132), U;™ is symmetric in the sense of (97).
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As for k =1, the computation of Uék) is done independently proceeding as in Section 4.2.

Next we show (126). As in Section 4.2, we first establish such a decomposition inside K; before ex-
tending it to the domain J; as in the proof of Proposition 4, Section 3.2.

For j € N*, according to Section 3.2 and (130), we know that Uj(k)’ the restriction of U;k) in Kj
satisfies

AU](k) -0 in Kj,
k—1

0.0 + 17 UM =07 37 3047 onSs, 5=0,4, (146)
£=0

anUJ(k) =0 on aK] \ (Ej,i U 27}0) .

as well as the following condition (86)-(i7). Using Formulas (98)-(100), it is easily seen that there exists
a polynomial P%*) of degree k that we can compute explicitly such that (86)-(iii) rewrites

/ P =+ PR (). (147)
50

Then, we introduce the (k — 1) profile functions Z/?Z(k), 0 < ¢ <k —1 as the unique solutions (see Lemma
6 below) in H' (K1) of the following problems

AUP =0 in K71, (i)
Ol +TIU® = gD onx;s, §=0,%, (cf (104)) (id)
) (148)
BnZ/IZ =0 on 6Kj \ (Ejyi U ijo) . (HZ)
Js, U =0 (iv)

Then by linearity, it is straighforward to check that (126) holds in K, thus in the whole junction J; too.

To conclude, we need to come back to the well-posedness of (148), which is not as straightforward as the
one of (124).

Lemma 6. FEach of the problems (148), 0 < ¢ < k — 1, admits a unique solution.

Proof. Instead of verifying the compatibility condition (76) of Lemma 3), we give an indirect proof that
aims at exploiting the fact that the problems (122)- (123) for j € Z are well posed.

For this, we shall exploit the k fields U](k), 1 < j <k and look for the solution Z;Iék) in the form

o

u® — Z (k) (U](k) g P(k)(j)). (149)

By construction Z;Ie(k) satisfies (148)-(%), (148)-(4ii) and (148)-(iv). Only, (148)-(4i) needs to be checked.
Substituting (149) into (148)- (%), it is readily seen that this equation is satisfied as soon as

k—1
VO<e<k—1, Zaz Zj o =357 "

This defines uniquely the coefficients (a,;, 0 < €<k —1,1 < j < k) if and only if the matrix
r T r
P2 9p2 ... gk—1.2
A =
P kR gRTLpR
is invertible. The determinant of A can be computed easily det A :=1r 2 H (j—9) #£0. O
1<i<j<k
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5 Justification of the asymptotic expansion

The existence of the (formal) asymptotic expansion being proved, we now prove Theorem 1 by first
constructing (Section 5.1) pseudo-modes as defined in Section 2.1. Then we prove that (20) holds with
(22). This is based on error estimates of Sections 5.2 and 5.3. This allows to conclude (Section 5.4).

5.1 Construction of pseudomodes and related properties

Roughly speaking, given n > 0, we construct the approximate far and near fields ”of order n” by trun-
cating the expansions (30), (31) and (35). More precisely, for the far field, we define :

ugp : Q¥ — R, such that ugy (z,y) = 0in K™, j € Z and

e,n — E&n o D (k) I .

ugy (T,y) =u ]+1(x y)~*]§05 UﬁL%(S), s=x—7j, (=, )€5+1, jEeZ, (150)
n

uRF (@ y) = 0 @y) = X uP ), , (wy)e& e, jeL

In each ”thick edge”of ¥, the couple (upp, A>™)(A™ defined in (21), see also below) does not exactly
satisfy the desired eigenvalue equation because of the truncation process. More precisely, combining
adequately the equations (34) for 0 < k < 2n, one finds that (the computations are tedious but straight-
forward, the details are left to the reader)

AUl + X" ugh =" gk, in OF = U (5 :1 ué&; ’5> A5 = Z b Ak, (151)

JEZL

where the so-called ”far-field remainder” rpy is such that rpp = 0 in £~ and

—n—1 .

rEg (2, 9) Z+15 ri(@y), (@Y €€y, JeL,

p=n
T (@, Y) Z T (yy), (wy) €E7°, jEL, (152)

p=n-+1

k) ; n k) (e

Py = Y AP ) s=e—i ey = Y AP

(k.£)eTe™ (k,)ezrm

where we have defined, with ZP" = {(£,k) € {0,--- ,n}* / L+ k = p}.
On the other hand, we define the sequence of truncated near fields
Ui Tf = (0 +e T — R, jET,
(153)

:L'—] y+L/2)

U;"™(z,y) = ZsU .

Again, the couple (U ; AS™) does not exactly satlsfy the desired eigenvalue equation in J;. Combining
adequately the equations (41) for 0 < k < 2n, we get (see remark 10)

AUS™ + A" U ="' RS™, inJ;, jEL (154)
where, reminding that ZP'™ = {(Z, E)ye{0,---,n}?/L+k= p}, the "near-field remainder” Rj’n is

2n

(- —j y+L/2
Ry = Y @0 (I VR e
p=n-—1 (155)
Rer= > AWMU in g
(k,0)eZP:m
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Remark 10. The computations that lead to (154) and (155) are of course quite similar to the ones that
lead to (151) and (152). The reader will notice that the power of € that appears as the multiplying factor
in the right hand sides of (151) and (154) passes from n+ 1 in (151) to n — 1 (154). Accordingly, there
is a difference in the numbers of terms in the sums that define the remainders which passes from n — 1
in (152) to n+ 1 in(155). These changes are due, one on hand to the differences that already occur in
equations (34) and (41) respectively, on the other hand to the e-scaling that appears in the definition
(153) of the truncated near fields.

Next, we want to construct a pseudomode that will coincide with ugn outside some small neighborhood
of the junctions K_ ; and with U;’" in a neighborhood of K_ ;. This will be done in a smooth way with
the help of cut-off functions and a partition of unity.

Let us first introduce a cut off function x € C*°(R) such that
0< x(x) <1, VxeR, x(z)=0,z <1, x(x)=1,z>2,
from which we define the 2D cut-off functions
X5 (@,y) = x((x—35)/e*) x((y+ L/2)/e%), jeZ

where « is a real parameter to be fixed later but needs to satisfy 0 < o < 1: since a > 0, the x; have
disjoint supports for € small enough, while, since o < 1, the support of x5 is an e*-neighborhood of IC;’_.
This allows us to define

XT=)%5

JEL
that coincides which x5 on its support. By construction {(1 -x){x,j € Z}} form a partition of
unity in R?. The properties of the cut-off functions are illustrated on Figures 8 and 9. Multipying by
(1 — x°) localizes outside the junctions, while multiplying by x° (resp. xj5) localizes near the junctions

(resp. the gth— junction). In practice, the forthcoming analysis shows that it is advantageous to take «
as close as possible to 1 (see estimates (174) and (184)), the case o = 1 being excluded (cf. (164)) though.

This leads us to define the pseudo-mode of order n as follows

ut = (1= x0) ugp Y X U (156)
JEL

AUy J LU

Figure 8: Support of the function x¢ (left) and 1 — x* (right). White corresponds to 0, black to 1

According to Section 2.1, our goal will be to get an estimate of the quantity
57 (0) = / (VU™ Vo — A=) | (157)
Qb
To obtain a tractable expression Z°"(v), we first compute that

Ausm 4+ A5 = (1= x°) (Au;;f + As‘"ug’;) —2VX°® - Vugp — Ax® upp

+ Y DS AUPT XS UST) 429G - VU + A U

jez
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&
5,0

Q| 5|

2e%

Figure 9: Support of the function x; . (left) and of its gradient (right).

Using (151), (154) and the fact that, in supp x5, x° = x5, this can be rearranged as

Aus™ 4 XS = () e e Z X; R
JEZ
- 2 Z Vx5 -V uFF UE" —Z AXG (uig —U;’").
JEL JEL

Multiply the above equality by —v € H*(Q¥) and integrate over Q¥. Using Green’s formula, we get:
7" (v) = —Tgg (v) — Ip (v) = Iy (v), (158)

where by definition

Liw = [ e Tpe =T [ e rt
Q-
£ JEL
@ = [ Ve - U, (159)
JEZ
T (0) = T () + T o),
T =30 [ VNV -0
JEZL

In formula (158), we say that :

Igw (v) is the far field consistency error : it measures how much (u®™, A*™) fails to satisfy the desired
eigenvalue equation inside the support of 1 — x*,

Ixp (v) is the near field consistency error : it measures how much (u®™,A\*") fails to satisfy the
desired eigenvalue equation inside the support of x*,

Zy;i" (v) is the matching error: it gathers the mismatch between ugy and U;" in supp x5 for all j.

5.2 Estimation of the matching error.

In an obvious manner, each open set O;E = supp Vxj N Q" can be decomposed as (see Figure 9,
center picture),
»+ = ,0
O =05 u0s U0l
so that we can decompose Ii’" (v),q = 1,2 accordingly (with obvious definitions non explicited here)

IS/IT;( v) = IEIT;Jr( )"‘I/[q, (v )+I§/L7;,O(,U)7 qg=12

Estimate of Z;"; (v). We explain below how to estimate Zy;"; | (v), the two other terms being treated
similarly. We have

=Y L), L) = /ow VNG -V (uy ~ U (160)

JEZ Je
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By Cauchy-Schwartz inequality,
VieZ, |Iyi"(v)| < Hujf% - U;v"”Lw(o;):r) ||VX§||L2(O;,E+) HV’UHLg(O;j) (161)

According to (150) and (153), we have

n

[u o —UE"](s,y): e ( ul?, (s) - U(k)(j,“L/Q)). (162)
k=0

Next, we use

(k)

e a truncated Taylor expansion (at order n — k) of Uy
3

e the modal expansion (48) of the functions Uj(k),

and the information about the dependence of these functions with respect to j (see Section 4), to write

n—k 0 n " ) . e
ul)) () = 3 Ll (0) 5 + sult ) (s), |ul Y (5)| < Crom ()" [l s[5,
’ =0 ’ ’ (163)

U(k)( s y+L/2) pgkj:( )+5U(k)( s erL/Q)7 |5U(k)( s erL/2 ’ < Crom <]>k 7|9 677‘-%,

e

where (j) := (1 +j2)5, the Cy,»’s are positive constants independent of j and |r| < 1.

k ‘
From the matching conditions (59), we recall that p(k) (s) = E 8§u;i_f)(0) 2—'
2 .
=0

With this property, it is easy to check (details are left to the reader) that the following equality holds
(as a matter of fact, it suffices more or less to reproduce the computations of Section 2.3, where the
matching conditions have been precisely built in order that this equality holds)

L Za’z Zé‘ Py (2

k=0

Exploiting this equality, we deduce from (162) and (163) that

[y (s) = U, w)| < 30 & ([oUfP (2, 2582) |+ |aul P (s)] ).
k=0

Therefore, since, in O, * < s = —j < 2%, we deduce from (163) that, with C, := max Cion,
<n

ng >

n

\n \n k ay(n—k+1 —me@— 1
ISy = U5 ™l poe oy < O ()" I D2 % [ (2670 7™
' k=0

Since a < 1, we can "forget” the term e~ "*(®~1 and get, using Og}cig [a(n—k+1)+k] = (n+1)a

sy = U™ e omty < Cam G It £+ (164)

—

where Co,n blows up when av — 1. On the other hand, since |Vx§| < C €™, we observe that

1—0

1
”VX;HH(o;‘j) < Ce “meas(O¥ )2 <Ce (165)

Finally, substituting (164) and (165) in (160) and (161), and using the discrete Cauchy-Schwartz inequal-
ity (for the sum over j), we obtain

o (nt+d 1 A\ 2n N
T S Can e e (306 1) (L IVela o)

j€T j€T (166)

W=

< Ca,n e” <n+%> E% HV(U”L2(Q?)
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Estimate of Zy;",(v). We only treat Zy;" | (v) and point out the difference with Zy;", , (v). We have

s (0) = ) T (), Lisl (v) == / L VX  V(ugE —UST) v (167)
€L 05
Then, we estimate each Iﬁl’gﬂ_(v) as

iz, TP O] S IV U on s 19 Doty lolaoes, (168

Similarly to (164), we prove that (the reader will note that, with respect to (164), we loose an £ term
because we have to differentiate the formulas in (163))

||V(ujf% - U;v")HLOQ(o;g) < Coam ()" |r[ ™ (169)

Therefore, prodceeding as for obtaining (166), we get

N

n a(n—2% 1 2
ITai's + (V)] < Cam e ("=2) ez (Z HUHL%O?’j)) (170)

JEL

To pursue, we use the following estimate, that aims at exploiting the smallness of the domainis (9;-" j’j and
the H' regularity of v

1
2 2 o
(X olaoer))” < Cae Iollmsqar, - (171)
J€T ©

The proof of this estimate is easily deduced from the following lemma:

Lemma 7. Let Q := (0,a) x (0,b) and Q,, = I, x (0,b) C Q with meas I,, = 1, then there ezists C > 0
independent of n such that

VQiCQ VueH'Q) [vlia@, < Cn* Iolme, (172)
Proof. Let v be smooth enough, from the embedding H*(0,a) C L*(0,a), we have
Ve fuwnl <0 [ (0m(En) +up)l) de.
We obtain (172) by integrating the above inequality over @, and conclude with a density argument. [OJ
Using (171), we conclude from (170) that
i+ (0)] < Con €2 ™ ol o - (173)

’

Regrouping the estimates (166) and (173), and their equivalent for Z\;"} ;(v) and Zy" 5(v) , 0 € {—,0},
we obtain the main result of this section (note that (173) is worse than (166)).

Lemma 8. The matching error I3, (v) defined by (158) satisfies the estimate:

n 1 an
73" () < Can €2 €™ [0l (az)- (174)

5.3 Estimation of the consistency errors.

By definition (see (159)) of Zgy (v) and Cauchy-Schwartz inequality, we get, since |1 — x°| < 1,

|Zex ()] < Cn €™ Ireg 2oy 10122 ) (175)
According to the definition (152) of rgw, it is easy to see that ||r;’§\|L2(Qu,_> < Cp €'/2, s0 that
|5 (v)| < Cn ent3 lvll 2o (176)
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In the same way, using the definition (see (159)) of Zyr (v) as well as continuous and discrete Cauchy-
Schwartz inequalities, we have, since |x°| < 1,

1
2

1
_ 2
TR @) < Co e (YIRS W2t x00) (DM ) (177)
JEZ JEZ

The most technical step for the estimation of the near field consistency error lies in the following lemma

Lemma 9. One has the estimate

RS ™ 22y 0y < Cn (G)" [ €T D@05, (178)
Proof. By definition (see (155)) of R;"™ and since ¢ < 1
2n
1B 2 i) € 22 TV IS 2 ) S (0 42) SUD (RS 2 eupn ) (179)
p=n—1 n—1<p<2n

We decompose supp x; = K?’f UQ5+UQ5_UQ5, (see Figure 9-(Right)). Using the decay properties

in j of the U]@’s (see Section 4), after rescaling, we get

/ R R [ dady = € / |RE™? < Co ()" [ €. (180)
K K;
On the other hand, using the same change of variable, we have
2e71 p1
/Qa |RD™ (224, L2 |2 dedy = 2 /1 /O |RP™M(X,Y)|* dXdY. (181)
it

The estimate then relies on one hand on the exponential decay of Rf "™ with respect to j, on the other
hand on the polynomial growth with respect to X of R} ,(X,Y).

The formula (48) of Proposition 2, with X instead of s, says that U]@ (X,Y) grows proportionnally to
X*. Thus from the definition (155) of R?™ and the decay propery in j, we infer that
n AT (n,p)
RYM(XY) < Cn ()" || | X707

where g(n,p) = max{{ / (k,£) € ZP"}, that is to say ¢(p,n) = n for p > n and ¢q(p,n) = n — 1 for
p = n — 1. Therefore, we obtain from (181), since |X| < 27! in the integral at the right hand side,

[ IR (e R <oy P 2 e SO o<y < ()
G+
’ (182)
/ |R;L—1,n(a;%j’ y+£/2)‘2 < Cn <J>2n ‘7’"2]' 52 Ea—l 62(04—1)(71—1)7 (b)
o

Here, we have used that meas(]1,2¢* [x]0,1[) < 2e*~'. Comparing (180) with (182) (and corre-
sponding estimates for the integrals over Q5 _ and Q5 ), and retaining the smallest power of € in the
corresponding right hand sides, which corresponds to (182)(a) since a < 1, we get

RS ™| L2 (supp xj.0) < Cn (4)

Substituting these estimates into (179) leads to the announced result. O

" |r)? () a—1)+1

Subtituting (178) in (177) then gives

1
e,n (n+L)a-1% 2 2
!INF (U)| S CTL € 2 2 (ZHU|IL2(supp X;))
JEZ
Finally, since, using again Lemma 7, we have
1
2 2 [-3
(Dol x5)) * S Ca e ol ey, (183)
JEL

we deduce our final estimate, namely

T35 (0)] < G ™72 o (184)

1 -
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5.4 Completion of the proof of Theorem 1

Using (with m instead of m) the estimates (174) (Lemma 8), (176) and (184) (previous section), we

deduce from (158) (with m instead of n) that the estimate (20) holds with o = am+a— %. According

to Lemma 1, the proof of theorem 1 is thus complete.

6 A numerical approach based on asymptotics expansions.

6.1 Description of the method

Following the iterative construction described in Section 4, we derive a numerical method to compute
successively the terms of the asymptotic expansion (up to a given order prescribed by the user). Let
us give here the main steps of the algorithm, that relies of course about an initial choice of the limit
eigenvalue AR

A- Initialization step : k=0
1. Pick a A by solving numerically (via a Newton method) equation (11).

2. Explicit construction of «(®) by formulas (98).
3. Construction of U using formula (99).

B- Construction of the terms of order k, k € N*

0. Preliminary computations of
(a) the quantities gf;f“[l), 0<¢<k-1and @Ekd), 0 < ¢ <k —1so that (130-131) hold true
for gj(vﬂkg_l) and @;k_m defined by (73) and (70) repectively.
(b) the quantities A", 257" via (82) for j = 0.
(c¢) the polynomials Z*~(.), A(ik*l)(-) so that (133) holds for Aiﬁg”, Eékil) defined by (82).

1. Computation of A*) using Formula (93).
2. Explicit determination of .

a) Computation of the polynomials al® (- , e , ™ () and d (- , 1 < £ <k in order that
‘ [ ‘ ¢
Formulas (135) provide a particular solution of (90).

(b) Computation of the coefficients cé{co) and dé?g, 1 < ¢ <k in order that (125) holds ué’fgam.

(c) Computation of the polynomials by (-) and c(-) in order that the equations (90)-(v) become
(138) taking (136) into account. This can be done from step (a) (see (139)).

(d) Computation of the polynomial d(()k)(~) using (137). This can also be done from step (a

).
(e) Computation of the coefficients ozgk), 1 < ¢ < k in order that af,’:ﬁt (j) defined by (141) be
a particular solution of (140).

(f) Computation of the polynomial a(()k)(-) via (142) with af)k) =0 (see (144)) .
(g) Computation of the polynomials bék>(-) and cék)(~) from (143).
(h) Computation of c(()kg = é(()k()) from (90)- (3v) for j = 0.

3. Semi-Explicit determination of U®.

a umerical determination o assoclated to the perturbed junction.
Numerical determination of US* iated to th bed juncti
(b) Explicit computation of the polynomial P*)(;) in order to satisfy (123).
C umerical determination of the £ profile functions solution o .
Numerical d ination of the k profile functions U* solution of (148
)

(d) Computation of U;k) for j € N* using formula (126).
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As already mentioned, in the above algorithm, except for points B-3.(a) and B-3.(c), all the steps are
achieved through hand computations that can be found detailed in [27]. At stage k, the steps B-3.(a) and
B-3.(c) require finite element computations, requiring two meshes, one of the rectangle Ko, one of the
rectangle K, for the solutions of problems (123). Another approximation parameter is the truncation
order N of the series in the definition of the DtN operators T5,6 = 0,+. Even though the the finite
element calculations of Uék) (resp. the profiles L{[(k)) are done inside the rectangle Ko they can be
extended analytically, as in the proof of Proposition 4, in the whole junction Jo (J1) up to the same
series truncation issue as for the DtN operators. Once the meshes and N has been chosen, we only have
two (symmetric positive definite) finite element matrices to be inverted : Ag (for Ko) and A (for K1),
of which a Cholesky factorization can be done at the beginning of the algorithm. At stage k, we have to
solve

e one linear system with Ay, for computing Uék>

e k+ 1 linear system with A; (and different right hand sides) for computing UZ("”, 0<m<k

6.2 Numerical results

In the following section, we choose L = 2. In that case, the essential spectrum of the limit operator A%
is given by (see Proposition 4 and Figure 9 in [6])

Oess(AY) = {X = WweRM we U I} where Ij, = [— arccos(%) + km, arccos(%) + kn] Vk €N,
kEN
while, for any pu < 1, the discrete spectrum of A% is
oa(AY) = {)\ =w?we [J(n) + b, —A(n) + kw}},
kEN

where A.(p) denotes the unique root of the equation (11-right) in [0, 5]. To obtain o4(A%), we used
Theorem 1 in [6] ensuring that A% has exactly two eigenvalues in each of its gaps together with the fact
that if A = w? is a solution of (11), both X = (w 4 k7)? and A\’ = (kn — w)?, for any k € N are also
solutions of (11). We notice that the spectrum of A% is the image by the function  — 2 of a m-periodic
subspace of R. A graphic illustration of o(A%) is presented in Figure 10.

RS Tess(AL)

o w? € ag(An)

'_I t t h t t
0 '-|-' B '-I-' 2 37

Vi=Van V= Vs - )
Figure 10: The spectrum of o(A#) in the case L = 2.

Computation of eigenvalues and numerical validation of the method. In the following ex-
periments, we take 4 = 1/4 and we focus on the first and fourth eigenvalues Ay = A*(i) ~ 1.80 and

A4 &2 24.43, located respectively in the first and second gaps of the operator AL (see Figure 10). The
associated limit eigenvectors (defined on the graph by (27-28)) are represented on Figure 11.

The numerical results associated with the first eigenvalue A\; are represented on Figure 12. In the left
part, we compute the evolution of

AT =) AW (185)
k=0
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Figure 11: Representation of two limit eigenvectors associated with A\; and A,

with respect to e for n varying between 1 and 5 and ¢ between 0.02 and 0.6. To compute the near field
terms (part 3-(c) of the algorithm described in Section 6.1), we first truncate the junctions Jp and J1
at a distance T'=5 and we use a first order approximation of the Dirichlet-to-Neumann operator. The
problem is then numerically solved by a P;-finite element method using a uniform mesh of mesh-size
h = 0.002. We compare A\*" with a reference value of A\* obtained by computing numerically the first
eigenvalue of the full two dimensional operator A% ; using the method developed in [10]. In a nutshell,
this method permits us to rewrite the initial eigenvalue problem, posed in the unbounded domain Q¥, as a
non linear eigenvalue problem posed in a bounded domain. This is done by computing the (approximate)
Dirichlet-to-Neumann operators for periodic domains (see [12, 9]), which requires to solve periodic cell
problems (discretized here again using the standard P; finite element methods) and a stationary Ricatti
equation. By contrast to the initial problem, the reduced problem (posed in a bounded domain) is a non
linear eigenvalue problem (since the DtN operators depend on the eigenvalue) of a fixed point nature. It
is solved using a Newton-type procedure, each iteration needing a finite element computation, see [10]
for more details.

We notice that the approximation of A* by A*™ is qualitatively good, especially when adding high order
terms in the truncated series (185). Surprisingly, the approximation remains accurate even for a rather
large € (the geometry of the domain Q¥ for € = 0.6 does not really looks like a graph-like structure).

To verify the accuracy of our asymptotic expansion, we represent on Figure 12b the evolution of the
errors e, = |A®" — A°| with respect to €, € varying between 0.02 and 0.6. For the first two orders, the
experimental convergence rates (2.1 for e; and 2.9 for e2) coincide with the theoretical ones. Unfortu-
nately, this is not the case for the higher order ones. It might be due to the fact that the ’exact’ solution
\° is computed with a limited precision of 1073. The use of a second order finite element method for the
different numerical computations may confirm this point but is beyond the scope of this paper.

The same experiment is reproduced for the fourth eigenvalue (A4 ~ 24.43) on Figure 13. Here again, the
approximation of A* by A\*'" is qualitatively good, especially for high orders. However, we observe that
for a given € the error is bigger for A4 than for A1. We point out that we are not able to compute A° for
e > 0.25. In that case, we do not know if the eigenvalue is close to the essential spectrum or does not
exist anymore.

To summarize, from a computational point of view, the main advantage of the asymptotic method is that

it suffices to make one computation in order to obtain an approximation of A° for an arbitrary value €.
Moreover, the approximation is highly-accurate when ¢ is small (the accuracy depending of the numerical

41



L L L L L L 10~ L
0 0.1 0.2 0.3 0.4 05 0.6 0.1

(a) A>™ wrt e (b) Error w.r.t e.
Figure 12: Results for the first eigenvalue.
error made in the computation of the near field terms). Nevertheless, by nature, the asymptotic method

fails to predict the possible disparition of the eigenvalue into the essential spectrum as € becomes large.
In that case, a high order direct method would be preferable (see e.g [15]).
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Figure 13: Results for the fourth eigenvalue.

Example of near field terms.

To end this part, let us give a few examples of near field terms obtained when computing the first eigen-
value A1 (see Fig 10). We shall focus on the junctions Jo (j = 0, perturbed junction) and Ji (j=1, first
unmodified junction) as represented on Figure 14.

In Figures 15 and 16, we display the near fields terms Uél) and Uéz), that is to say the near field terms
of order 1 and 2 in the junction Jy. A zoom on the central part of the junction is represented on the
right part of the two pictures. We remark that these two fields are symmetric with respect to = = 0.
Moreover, they tend to grow inside the branches of the junction. To quantify this growth, we plot on
Figure 17 the representative curves of the two fields along the horizontal cut y = 1/2 and the vertical

cut x = 0. As expected, Uél) is linearly increasing while USQ) has a quadratic growth.
Then, numerical results associated with the junction J; are displayed on Figures 18-19-20. As previously,

we present the near field terms of order 1 and 2, namely U1(3) and U1(5). As expected, the fields are not
symmetric anymore. However, they are still polynomial growing in the junctions (degree 1 for Ul(l) and
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Figure 15: the near field terms Uél) (right part: zoom of the area inside the black rectangle)

Figure 16: the near field terms Uéz)
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Figure 17: Representative curves of the near fields Uél) and Uéz) along the cuts y = % and x =0 in Jy

order 2 for U1(2))7 the polynomials being different in the left (z < 0) and right part (z > 0) of the junction.
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Figure 18: the near field terms Ul(l)
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