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ABSTRACT
Biogenic reefs provide a wide spectrum of ecosystem functions and
services, such as biodiversity hotspot, coastal protection, and fishing
practices. Honeycomb worm (Sabellaria alveolata) reefs, in the Bay of
Mont-Saint-Michel (France), constitute the largest intertidal biocon-
struction in Europe but undergo anthropogenic pressures (aquacul-
ture-stemmed food/space competition and siltation, fishing-driven
trampling). Very high-resolution (VHR) airborne optical data enable
cost-efficient biophysical measurements of reef colonies, strongly
expected for conservation approaches. A synergy of remotely sensed
airborne optical imagery, calibration/validation photoquadrat ground-
truth (202/101, respectively), and artificial neural network (ANN) mod-
elling is first used to map S. alveolata relative abundance, over the
largest bioconstruction in Europe. The best prediction of S. alveolata
abundance was reached with the infrared–red–green (IRRG) spectral
combination and ANN model structured with six neurons (R2 = 0.72,
RMSE = 0.08, and r = 0.85). The six hyperbolic tangent formulas were
applied to the three input spectral bands (IRRG) in order to build six
hidden neuronal images, resulting in VHR digital S. alveolata abun-
dancemodel (6547 × 6566 pixels with 0.5 m pixel size). The innovative
model revealed undescribed spatial patterns, namely a reef polariza-
tion (perpendicular to the shoreline) of S. alveolata abundance: high
abundance on forereef and low abundance on backreef.
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1. Introduction

Coastal reef builders are able to primarily shape the ecology of local environment through the
sediment reworking. By trapping and binding carbonate sands, some cyanobacteria and
diatoms produce the stromatolites (Andres and Reid 2006), crustose coralline algae form
coatings (Gherardi and Bosence 2001), molluscan vermetidae build bioconstructions
(Donnarumma et al. 2017), and cnidarian corals create large barriers (Mumby et al. 2004).
Less renown despite their very high productivity, annelids (i.e. worms) can create substantial
reefs along tropical and temperate coasts (terebellidae: Degraer et al. 2008; serpulidae: Moore
et al. 2009; and sabellariidae: Naylor and Viles 2000).
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Honeycomb worm reefs erected by the gregarious tube-building polychaete Sabellaria
alveolata (Linnaeus, 1767) in themegatidal Bay ofMont-Saint-Michel (BMSM, France) consist
of the largest intertidal bioconstruction in Europe (Noernberg et al. 2010; Desroy et al. 2011).
Contrary to more common encrusting veneers or hummocks on rocky shores, the Sainte-
Anne population in the BMSM develops on soft sediment. It is currently structured as three
extensive reef entities within the tidal flats. Such biogenic reefs largely contributes to
ecosystem functioning and provide a wide panel of ecosystem services: (1) support, with
the significant amount of ecological niches (Dubois, Retière, and Olivier 2002; Jones et al.
2018); (2) regulation, through the sediment stabilization and trapping (Dubois et al. 2005);
and (3) culture, bymeans of recreational shore fisheries (Plicanti et al. 2016). As a biodiversity
hotspot and a rare biological and patrimonial heritage, BMSM worm reefs benefit from the
European Habitats Directive (Council Directive 92/43/EEC) focusing on the protection and
‘Conservation of Natural Habitats’ (‘biogenic reefs of open seas and tidal areas,’ habitat type
1170). However, Sainte-Anne reefs are threatened by local anthropogenic activities, such as
seaward intensive Pacific oyster (Magallana gigas) and mussel (Mytilus edulis) aquaculture,
which increases organic and mineral (silt) seston concentration (Dubois, Barillé, and Cognie
2009), interspecific competition for food and space by oyster and mussel that colonize reef
surface (Dubois et al. 2006), and shell fishing on reefs, that cause fragmentation by
trampling and destructive fishing techniques (Plicanti et al. 2016). Pressure synergy has
led to a strong reduction in reef health state between 1970 and 2007, as revealed by
diachronic estimates of a spatial ‘Reef Health Status Index’ (Desroy et al. 2011).

The previous index is the combination of a set of biological (e.g. epibiont covers) and
physical (e.g. fragmentation) features of the reef, aimed at quantifying the health (Desroy
et al. 2011). A consortium of European coastal scientists, devoted to honeycomb worm
reef conservation, indicates that this index is ‘a complex time-consuming assessment of
the condition of reefs only, that is not widely applicable’ (website: honeycombworms.org).
Moreover, they advocate that ‘the usefulness of . . . a generic health index for S. alveolata
reefs . . . should not involve laboratory experimentation, complex measurements or time-
consuming processing.’ Remote-sensing techniques hold great promises to address this
issue given their non-intrusiveness, ease to use, and cost-effectiveness per surface unit
(large extent at high resolution). Spaceborne multispectral and hyperspectral, as well as
airborne light detection and ranging (lidar) and unmanned vehicle (UAV) imageries were
successfully utilized for mapping coral reefs (Collin, Hench, and Planes 2012; Kutser, Miller,
and Jupp 2006; Collin et al. 2018a; and Casella et al. 2017) but are still lacking for other
reefs, such as annelids, whereas worm reefs were remotely sensed by side-scan sound
detection and ranging (Moore et al. 2009; Degraer et al. 2008; Raineault, Trembanis, and
Miller 2012; Pearce et al. 2014) and aerial visible (red–green–blue, RGB) photograph
interpretation (Brown and Miller 2011; Godet et al. 2011), only two studies used optical
data (including infrared, IR). Satellite multispectral imagery (SPOT-4) enabled S. alveolata
reefs to be mapped at 20 m pixel size (Marchand and Cazoulat 2003), and airborne
combination of RGB photointerpretation and IR lidar elevation data at 2 m pixel size
were used to delineate S. alveolata reefs’ extent and estimate their volume (Noernberg
et al. 2010). However, the application of both studies into a generic health index is
challenging insofar as their spatial resolution is too coarse to account for ecophysiology
and reef-building activity. More recent high to very high-resolution (VHR) spaceborne
optical data are not yet available over emerged reefs (lying between 2 and 4 m elevation
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above the national tidal datum epoch), since they are immersed most of the time. The
Ortholittorale V2 product, collected by the French Ministry for Ecology, Sustainable
Development and Energy at low tide, remains, to date, the only VHR optical imagery
(0.5 m pixel size) available over the honeycomb worm reefs.

Here we created a method for mapping emerging biogenic reefs at VHR using airborne
optical image and selected field data, by focusing on S. alveolata relative abundance (Saa).
The passive, optical imagery (ranging from IR to blue wavebands at 0.5 m pixel size),
acquired from a small aircraft, constitutes the remotely sensed predictors, and an array of
RGB photoquadrats (0.5 × 0.5 m2) is processed to retrieve the Saa relative abundance, as the
ground-truth response. Following comparisons of model performance, the artificial neural
network (ANN) is implemented to provide a non-linear regression between both data sets.
Our study takes place over Sainte-Anne reefs (Figures 1(a)–(c)), in the heart of BMSM,
provided with a maximum tidal range of 14 m. Despite the interest on a single parameter,
the Saa open tubes (Figure 1(d)) is deemed as a good proxy for the reef state, given the
threats related to silt sedimentation, oyster and mussel colonization, as well as man-made
physical degradation. This novel approach has a great potential to contribute to
the mapping of worldwide emerging biogenic reefs, aiming at some health indices. Two
methodological issues are raised: what are the best spectral predictors? What is the
optimized model complexity, featured by the number of neurons? Once the Saa accurately
mapped, we examine the spatial patterns of this reef state proxy. Findings are then
discussed from the perspective of stakeholders tasked with management of the conserva-
tion of intertidal biogenic species adversely affected by anthropogenic activities.

2. Materials and methods

2.1. Study site

Sainte-Anne reefs, composed of three adjacent reefs, are situated on the central part
(48° 38′ 50′′ N, 1° 40′ W) of the megatidal (14 m tidal range) BMSM. Lying between 2
and 4 m elevation (Noernberg et al. 2010) over the French hydrographic zero (i.e.
national tidal datum epoch), the Sainte-Anne reefs are spreading over 2.23 km2 with an
estimated volume of 96 301 m3 (Noernberg et al. 2010). They face massive mussel
farming, structured by rows of wooden piles, lying from 0 to 2 m elevation. As the
largest intertidal bioconstruction in Europe, the Sainte-Anne reef dynamics can occur
in three main morphological shapes (Dubois, Retière, and Olivier 2002): isolated
hummocks (ball-shaped structures), coalescent hummocks forming mounds, then plat-
forms. These three stages are modulated by transitional and degraded intermediate
stages. Each stage is associated with various sessile species assemblages (M. gigas, M.
edulis, Crepidula fornicata, green, brown, and red macroalgae) and specific demo-
graphic patterns of S. alveolata. Sediment grain-size is essentially composed of gravel,
sand, and silt classes.

2.2. Ground-truth S. alveolata abundance (Saa) response

Fieldwork was carried out on 26 June 2017 using two quadrats (0.5 × 0.5 m2, Figure 2(a)),
framing RGB photographs, collected with two cameras (Olympus Stylus TG). A series of
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Figure 1. (a) Natural-coloured (red–blue–green) airborne imagery (6547 × 6566 pixels with 0.5 m
pixel size) collected on 10 September 2014, over the location of Sainte-Anne three honeycomb
worm reefs (Sabellaria alveolata), within Bay of Mont-Saint-Michel (Brittany-Normandy, France). Red
spots represent photoquadrat locations. (b) Natural-coloured airborne UAV oblique imagery over a
portion of the Sainte-Anne reefs. (c) Natural-coloured handborne imagery inside the Sainte-Anne
reefs. (d) 3D-model of a honeycomb worm hummock colony draped with natural-coloured imagery.
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303 photoquadrats, geolocated in the WGS84 datum with Global Navigation Satellite
System (GNSS) devices (Garmin eTrex®), were taken, by foot, at spring low tide between
UTC 13:00 and 15:00 (14:51 – 1.3 m water level elevation). Photoquadrats were sampled to
encompass the greatest reef health variability revealed by the most recent mapping work
(Rollet et al. 2015). Each photoquadrat was standardized by the following procedure: (1)
correction for the geometry acquisition through a distortion method carried out with
Photoshop® (Figure 2(b)), (2) cropping the image within the frame (Figure 2(c)), and
superimposition of a 5 × 5 grid to analyse independently the 25 image cells (Figure 2(d)).

The standardized photoquadrat enabled the relative abundance (relative area covered by
various classes in the 0.25 m2 plot) of two polychaetes (S. alveolata and Lanice conchilega),
three bivalves (M. gigas, M. edulis and C. fornicata), fleshy macroalgae, dead bivalves, gravel,
sand, slit, and water classes to be quantified. The spatially dominant class in each of the 25
cells ‘wins’ the cell, and then the relative abundance was computed as the sum of the 25 cells
divided by 25. We only exploited the relative abundance of S. alveolata (Saa), by means of
open tubes’ recognition. For the sake of visual interpretation, eight relative abundances of Saa
were visually represented by photoquadrats along with their ecological assemblage and reef
morphology stage, according to Dubois, Retière, and Olivier (2002) (Table 1).

2.3. Optical imagery predictors

The airborne optical survey was conducted on 10 September 2014 (UTC 14:00; 0.36 m water
level elevation) using two full frame charge coupled device multispectral cameras: one
(UltraCam-Xp, 33 mm focal length) acquiring red, green, and blue wavebands (RGB,
Figure 3(a)), and the other one (UltraCam-XpWA, 23 mm focal length), collecting IR, red,

Figure 2. Standardization procedure applied to the (a) original photoquadrat, (b) to correct for the
distortion, (c) to crop at the frame scale (0.5 × 0.5 m2), and (d) to apply a 5 × 5 grid.
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and green wavebands (infrared–red–green [IRRG], Figure 3(b)). Spectral responses of the four
optical wavebands are summarized in Table 2. Analogue image data are recorded at 12 bits,
converted to digital numbers at 14 bits, stored without compression at 16 bits, and finally
delivered at 8 bits (United States Geological Survey 2010). The freely availableOrtholittorale V2
product (see hyperlink in ‘Acknowledgements’ section) has covered all French coastlines, in
2014, with a rigorous acquisition protocol but does not provide spectral specificities of both
sensors. The six wavebands, captured with 8 bit radiometric resolution, were orthorectified at

Table 1. Ecological description of the georeferenced photoquadrats (N = 303, 0.5 × 0.5 m2) from
which the abundance of Sabellaria alveolata open tubes were retrieved, as a proxy for the
honeycomb worm reef state.

Photoquadrat-
based class Ecological assemblage

Sabellaria alveolata
relative abundance

Worm reef morphology stage
(Dubois, Retière, and Olivier

2002)
Colour
ramp

Sand/silt with dead bivalves
(shells)

0.0 No S. alveolata presence

M. gigas/M. edulis/C. fornicata/
fleshy macroalgae/sand/silt/S.
alveolata

0.1 Degraded isolated S. alveolata
hummock

S. alveolata/sand/silt/M. gigas/M.
edulis/C. fornicata/fleshy
macroalgae

0.2 Isolated S. alveolata hummock

S. alveolata/sand/silt/shells 0.3 Isolated S. alveolata hummock

S. alveolata/sand/silt/shells 0.4 Isolated S. alveolata hummock

S. alveolata/silt/shells 0.5 Coalescent S. alveolata
hummock

S. alveolata/silt/shells 0.6 S. alveolata mound

S. alveolata 0.7 S. alveolata platform
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0.5 m spatial resolution in the RGF93 datum (GRS80 spheroid) projected with Lambert93
(conformal conic), the referential French system. Spectral wavebands were highlighted using
four spectral signatures associated with four primary features (water, sand, reef, and algae),
easily discriminated through image-based inspection (Figure 3(c)).

Insofar as the objective of this study is to target submeter Saa, a thorough registration of
coarsely geolocated photoquadrats onto spectral layers was carried out. First, the geo-
graphic coordinates of ground-truth were converted into the RGF93 datum, then projected
in Lambert93. Second, the converted geolocations were refined by adding the horizontal
offset derived from the GNSS measurements and imagery geolocations of eight isolated
hummocks, clearly distinctive over imagery. Third, the submeter registration was achieved

Figure 3. (a) Natural-coloured (red–blue–green) and (b) infrared-coloured (infrared–red–green) air-
borne imageries (6547 × 6566 pixels with 0.5 m pixel size) collected on 10 September 2014, over the
location of Sainte-Anne reefs. (c) Four rectangles were selected by visual inspection for determining
spectral signatures based on Ortholittorale V2 of seawater (blue), sand (yellow), reef (red), and algae
(green).

Table 2. Spectral sensitivity (in nm) of the airborne optical cameras (UltraCam-Xp and UltraCam-
XpWA provided with focal lengths of 33 and 23 mm, respectively).
Blue Green Red Infrared

410–540 480–630 580–700 690–1000

INTERNATIONAL JOURNAL OF REMOTE SENSING 7



by translating, where necessary, the refined geolocations onto the correct features using an
ultra-high-resolution UAV-stemmed imagery (0.08 × 0.08 m2, Collin et al. 2018b).

2.4. Artificial neural network modelling

Preliminary comparisons of three main regression learners (ordinary least squares, gen-
eralized linear model, and ANN) were carried out, resulting in the ANN selection (Table 3),
corroborating another comparison study (Collin, Etienne, and Feunteun 2017). The ANN
was selected to develop a robust model to link the discrete Saa response with continuous
multispectral predictors.

Based on non-linear modelling, h, the ANN minimizes least squares using a fully con-
nected single-layer perceptron feedforwardworkflow to predict the Saa response, h(X), from
an activated (hyperbolic tangent function, k) sum of the i (ranging from 1 to 7) appropriately
weighted, wi, neurons, ni, resulting themselves from an appropriate weighting of the
multispectral predictors, X (Heermann and Khazenie 1992):

hðXÞ ¼ k
X

i
winiðXÞ

� �
(1)

Constrained by a single hidden layer, ANN models were developed to test how relevant
are the number of neurons, jointly with the implemented spectral combination.

2.5. Accuracy assessment

Ground-truth data set was first sorted according to the Saa values and second stratified into
202 calibration and 101 validation subsets (Holdout method) in order to test the accept-
ability of the modelling. The calibration data set was subject to 1000 computation runs to
reach convergent results and therefore avoid stochastic influences, such as the weight
initialization. The matching between observed and predicted Saa, based on the validation
data set, was quantified using the coefficient of determination (R2) and the root mean
square error (RMSE) of the corresponding linear regression, as well as the corresponding
Pearson product-moment correlation coefficient (r).

3. Results

3.1. Spectral combination and model complexity

The 101 validation values of Saa were negatively correlated with all spectral wavebands
(rRed = −0.70, rGreen = −0.76, rBlue = −0.74, rInfraRed = −0.58, rRed = −0.68, rGreen = −0.74).

Table 3. Preliminary results of the performance (coefficient of determination, R2) of three regression
models predicting the validation data set of Sabellaria alveolata abundance (N = 101), in respect to
the spectral combination inputs.
Spectral data sets Ordinary least squares Generalized linear model (Poisson) Artificial neural network (3 neurons)

RGB 0.66 0.57 0.69
IRRG 0.65 0.36 0.70
RGB + IRRG 0.63 0.37 0.70

RGB: Red–green–blue; IRRG: infrared–red–green.
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The influence of the spectral combinations along with the ANN complexity, by interest in
the number of neurons in the hidden layer, was tested using the performance metrics of
both high R2 and low RMSE (Figure 4(a)). Overall the agreement between observed and
predicted Saa was satisfactory, ranging from a R2 of 0.67 to 0.72 (Figure 4(a)). The best
spectral combination was averagely the IRRG (R2 = 0.71), followed by RGB + IRRG
(R2 = 0.70), and finally RGB (R2 = 0.68) (Figure 4(a)). The ANN complexity was optimized
with six neurons in the intermediate hidden layer (R2 = 0.71) (Figure 4(a)). The best ANN
model was built using the IRRG spectral combination with the six neurons (R2 = 0.72,
RMSE = 0.08, and r = 0.85, Figure 4(b). The architecture of the selected ANN model was
represented in order to make explicit the doubling number of neurons, compared to the
number of input layers (Figure 5).

3.2. Spatially explicit modelling of S. alveolata abundance (Saa)

The six hyperbolic tangent formulas were applied to the three input spectral bands
(IRRG) in order to build six hidden neuronal bands, in turn, implemented into the
output linear formula, leading to VHR digital Saa model (Figure 6, 6547 × 6566 pixels
with 0.5 m pixel size).

4. Discussion

4.1. Spectral detection of S. alveolata abundance (Saa) and socioecology

The use of the airborne optical imagery (available over all French metropolitan and most
overseas coastal fringes, ≈18,000 km, at low spring tide) has enabled the accurate
mapping of the most extended biogenic reef in Europe (i.e. the Sainte-Anne reefs).
Enriching the RGB first product of Ortholittorale (2000) by IRRG, the second version

Figure 4. (a) Bar and line plot of the performance (coefficient of determination, R2, and root mean
square error, RMSE, respectively) of the 21 artificial neural network (ANN) models predicting the
validation data set of Sabellaria alveolata abundance (N = 101), as functions of spectral combination
inputs and number of hidden neurons. (b) Scatterplot of the validation versus predicted S. alveolata
abundance based on the best ANN model (IRRG as input layers and six neurons within hidden layer).
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(2014) has leveraged the informational IR waveband. In a broadened context of coastal
biogenic reef mapping, some spectral and spatial lessons can be drawn. The interpreta-
tion of the visible aerial photography, likely to be constrained by the analyst experience
(Brown and Miller 2011; Godet et al. 2011), can be augmented by machine learning
procedures (our ANN and cellular automata modelling from Marchand and Cazoulat
2003). Contrary to submerged coral reefs, the emerging biogenic reefs can be better
mapped using the IR, strongly absorbed by water and reflected by plant pigment.
Enriching the passive RGB data set, IR-derived lidar topography can measure the volume
of emerging reefs (Noernberg et al. 2010), even if the lidar IR intensity has not been used
yet, contrary to salt marshes (Collin, Long, and Archambault 2010). The integration of the
active lidar IR and G backscatters with the passive RGB imagery is strongly advocated to
refine the emerging reefs and will be soon possible given the current airborne topo-
bathymetric lidar mapping of French coastal fringe (Litto3D® website: diffusion.shom.fr/
pro/risques/altimetrie-littorale.html). The 0.5 m resolution encountered in our study
outperformed terebellidae and sabellariidae works (100 m in Godet et al. 2011; 75 m
in Rollet et al. 2015; Desroy et al. 2011; 20 m in Marchand and Cazoulat 2003; and 2 m in
Noernberg et al. 2010).

Figure 5. Conceptual flow chart of the artificial neural network modelling based on the infrared, red,
and green input layers, the hidden layer provided with six neurons to be able to predict the
Sabellaria alveolata abundance.

10 A. COLLIN ET AL.



Despite the coarse spectral bandwidths, the signature of the reef indicates a low reflec-
tion in the visible spectrum, with a slight increase from green (G) to IR (Figure 3(c)).
Increasingly negative correlations between Saa and IR, red (R), blue (B), and G show that
the reef health proxy might be described by a differential variation occurring between IR
and G. Likewise, the normalized difference water index ratioed the G and IR Landsat
Thematic Mapper (TM) wavebands (McFeeters 1996). Further spectral investigations, using
a portable hyperspectral sensor, are needed to conclude about the key role played by water
(moisture) in the reef health mapping. The precise spectral signature of Saa and neighbour-
ing features will also enable a VHR spaceborne proxy to be developed for worm reefs, as
successfully done for coral reefs using WorldView-2 imagery (Collin and Planes 2012; Collin,
Hench, and Planes 2012). The strong negative correlation between reef health with G might
also match the low presence of green macroalgae (e.g. Ulva spp.), as highlighted by a long-
term survey of the Sainte-Anne reefs health status (Desroy et al. 2011). In this respect, BMSM
combines high levels of nutrients, as the junction of landward agricultural runoff and
seaward intensive mussel aquaculture, thus favouring the opportunistic seaweed coloniza-
tion at the expense of S. alveolata open tubes. Such a calibrated ANN approach should draw
attention to focus on the mapping of green macroalgae. Those fleshy macroalgae have
been evidenced not only to affect recruitment patterns (Dubois et al. 2006) but also to
potentially contribute to the suspension-feeders’ diets, including S. alveolata (Lefebvre et al.
2009; Dubois and Colombo 2014). While eutrophication impacts on S. alveolata reefs have
not been investigated, recent studies emphasized adverse effects on coral reefs (Prouty et al.
2017). In a context of ocean acidification, influence on lower pH on this carbonate-rich reef
(made of 60–80% of calcium carbonate grains, Caline et al. 1992) or on biogenic cement

Figure 6. Digital Sabellaria alveolata abundance model derived from artificial neural network model
with airborne infrared, red, and green bands as input layers and six neurons within hidden layer
(6547 × 6566 pixels at 0.5 m pixel size).
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polymerization (Fournier, Etienne, and Le Cam 2010) consist of relevant research avenues.
Other competitors for space have been targeted, such as farmed M. gigas (Desroy et al.
2011),M. edulis but also naturally presentMytilus galloprovincialis (Jones et al. 2018), whose
spatial distribution could importantly explain reef patterns. Based on the occurrence derived
from our ground-truth, we greatly recommend taking the invasive gastropod C. fornicata
mapping into account, due to its trophic competition as a massive population of suspen-
sion-feeders.

4.2. A VHR method to monitor S. alveolata abundance (Saa) patterns

Our spatial modelling has enabled the mapping of Saa at VHR using a reliable method.
Fieldworks conducted in April 2015 by Rollet et al. (2015) required 15 persons during
2 days to survey 307 stations using a regular 75 m × 75 m grid mapping (as described in
Desroy et al. 2011 for 2001 and 2007 similar survey). Even though such in situ studies
have led a comprehensive data set (sediment, epifauna, and health status), the spatial
scale at stake conspicuously mismatched the fine-scale patterns of S. alveolata ecology.

Our outcomes, based on airborne imagery and two persons during 1 day for 303
calibration/validation stations allow reef ecomorphology to be sharply examined,
gaining insights into reef responses to exogeneous drivers (Figure 7). The digital
Saa model distinctly elucidates a strong polarization of Saa values: highest Saa at
the front of reefs, first exposed to sea hydrodynamics and potentially higher coarse
sediments and bioclast resuspension (hence increased tube-building activity), contrary

Figure 7. Synthetic conceptual diagram proposing explanation factors of polarized Sabellaria alveo-
lata abundance in Sainte-Anne reefs, based on the model derived from artificial neural network
model with airborne infrared, red, and green bands as input layers and six neurons within hidden
layer (6547 × 6566 pixels at 0.5 m pixel size).

12 A. COLLIN ET AL.



to the back of reefs with lowest Saa, lying on more sheltered and muddier environ-
ments (Bonnot-Courtois et al. 2008). The back-reef is subject to finer grained
resources, which hamper filtration activity as tentacular filaments of S. alveolata are
clogged and gut contents are more rapidly filled by poor-quality suspended food
sources due to an increase in inorganic content (Dubois et al. 2005). Moreover,
apparently unhealthy state of the back-reef might be due to the higher occurrences
of oysters, hence leading to higher trampling and destructive shell fishing techniques
(Plicanti et al. 2016). In addition to the characterization of the reef polarization
perpendicular to the shoreline, the VHR Saa mapping feature five separated reefs
composing Sainte-Anne (unlike the three main parts identified in Desroy et al. (2011):
a central front barrier reef with a vigorous front core and northern small seaward
elongations, a northern crescent reef with developed seaward elongations, a southern
crescent reef, two massive intermediate (between sea and land) coalescent reefs.
Further examinations of landscape connectivity (using dedicated software, such as
Graphab) may facilitate modelling of ecological networks and ultimately help stake-
holders to include biodiversity conservation into coastal spatial planning.

5. Conclusion

This novel research shows that airborne optical imagery, ranging from green to IR,
brings enough information to robustly map emerging biogenic reefs at VHR. The original
findings derived from the largest bioconstruction in Europe (honeycomb worm reefs)
can be summarized as follows.

(1) S. alveolata relative abundance (Saa) of emerging reefs can be fully surveyed by
airborne RGB and/or IRRG cameras at the colony-scale (0.5 m) during low spring tide.

(2) IRRG are better predictors of Saa than RGB (R2 = 0.71 and 0.68, respectively).
(3) Adding RGB to IRRG reduce the prediction performance of Saa (R2 = 0.70).
(4) ANN, as a robust non-linear model, is optimized with a hidden layer provided with

six neurons in order to predict Saa (R2 = 0.71).
(5) The best prediction of Saa was reached with the IRRG spectral combination and

ANN model structured with six neurons (R2 = 0.72, RMSE = 0.08, and r = 0.85).
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