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Abstract

Local damage models with softening needs localization limiters to preserve the mathematical
and physical consistency. In this paper we compare the properties of strain-gradient and
damage-gradient regularizations. Gradient-damage models introduce a quadratic dependency
of the dissipated energy on the gradient of the damage field and are nowadays extensively used
as phase-field approximation of brittle fracture. Their key feature is to provide a smeared
approximation of a crack as a band of localised damage with a finite energy dissipation per
unit of surface, that can be identified with the fracture toughness of the Griffith model. Strain
gradient models introduce a quadratic dependence of the elastic energy on the gradient of the
strain field. A similar term can be physically interpreted as the presence in the material of
linear, but nonlocal, stiffnesses, that can be eventually be affected by damage. Despite this
attractive interpretation, we have found that strain-gradient regularized models can hardly
be used to approximate brittle fracture, because smeared cracks with non-vanishing and finite
dissipated energies are hardly obtained. Our analysis is based on variational models and focuses
on the one-dimensional traction problem.

1. Introduction

Damage models describe material failure by an additional internal variable modulating
the elastic stiffness and inducing an internal energy dissipation in the material. In order to
model material failure observed in quasi-brittle materials, damage models must include stress-
softening, i.e. the reduction of the admissible stress domain for increasing damage. It can be
shown that this constitutive property is associated to the loss of the uniqueness of the solu-
tion and the appearance of localized states, a key aspect of the behavior of real structures.
It is widely recognized that in order to preserve the mathematical consistency and the ca-
pability of formulating mesh-independent numerical approximation, strain-softening damage
models must be regularized by introducing some sort of non-local effects, [2]. Among the sev-
eral regularization strategies proposed in the literature, we may first distinguish between those
based on the introduction of smoothed variables in the form of convolution integrals of the
local variables (nonlocal damage models, see e.g. [7]) and those penalizing extreme localisa-
tions through gradient terms (gradient damage models). One can further classify the possible
approches between those introducing the regularization through nonlocal terms in the dam-
age variable (damage-regularized damage models, see e.g. [11]) or in the elastic strain variable
(strain-regularized damage models, see e.g. [19, 20, 21, 22, 23]). In [15] the authors perform a
throughout analysis of the possible nonlocal regularization strategies. They conclude that only
a very small subset of the models proposed in the literature are really effective in providing
mathematically well-posed and thermodynamically consistent problems. They suggest the use
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of gradient approches. In the present paper, we will focus on gradient-type regularizations and
compare the properties of strain-gradient (SG) and damage-gradient (DG) models, discussing
their appropriateness to model fracture of brittle solids.

Failure often manifests in the form of cracks, i.e. surfaces of discontinuity of the displace-
ment field, where the material “breaks”. Damage models are often regarded as smeared crack
models smoothing out this discontinuity in bands of finite length. They are opposed to discrete
approaches, which models the sharp discontinuities and the possible jumps of the displacement
field explicitly. The most widely accepted discrete crack model is the Griffith model, which
assumes that the creation of the crack is done at expenses of an energy dissipation proportional
to the crack surface, and that the crack propagation is not possible if this energy is larger than
the elastic energy rewarded during a virtual crack propagation. In the end of the nineties,
this energetic theory has been put in a precise mathematical setting by [10], allowing for the
generalization to the case of cracks of arbitrary shapes and with complex evolution in time.
The key advantage of the Griffith model with respect to the damage model is its simplicity
when the crack path is postulated in advance. Vice-versa, damage models are much more
practical when considering cracks of unknown and possibly complex shapes, because they do
not require the explicit description of the crack geometry: the damage field is treated as a
standard field modulating the stiffness and the cracks are identified a posteriori as the regions
where the elastic stiffness vanishes. Another fundamental advantage of damage models is to
be able to retrieve crack nucleation, i.e. the creation of a crack from a intact material with
smooth boundaries.

The so-called phase-field models of fracture are gaining an increasing popularity because
they combine the advantages of the smeared and the discrete approaches and give a precise
meaning to the idea of using damage models to approximate sharp cracks, or vice-versa1. These
models have been independently developed in different contexts. In applied mathematics and
theoretical mechanics, they arise through the transposition [5] of the regularized models for
image segmentation [18] to the variational formulation of fracture mechanics [10] . In physics
they derive from the application to fracture [14, 12] of the Ginzburg-Landau theories of phase
transformations. Phase-field models of fracture are also a special type of the DG models
presented in [11].

Previous studies [24, 28] analyzed in depth the properties of DG models, showing that they
can be regarded as a regularized version of the variational theory of brittle fracture, where the
regularization parameter, the internal length, can be set to recover crack nucleation in agree-
ment with experimental observations [30]. In this paper we analyse whether a strain-gradient
(SG) model can be similarly used to approximate brittle fracture à la Griffith. In particular,
is it possible to recover with SG models the energetic equivalence with brittle fracture?

Our analysis relies on a variational approach and focuses only on a one-dimensional trac-
tion problem. Specifically we consider strain-gradient damage model where the elastic energy
density is quadratic in both the strain and the strain-gradient. The corresponding local E(α)
and nonlocal G(α) stiffnesses are assumed to depend on the damage variable α with the local
stiffness vanishing for α = 1. In a one dimensional traction problem, we identify cracks as
solutions with vanishing stress and a smeared displacement jump. We show that two funda-
mentally different qualitative behaviors are possible, depending on whether the limit value of
the nonlocal stiffness G(α = 1) is vanishing or not:

1. when G(1) = 0 the regularizing term is not effective and the SG-model shows pathologies
similar to the non regularized case, e.g. the creation of cracks with vanishing energy
dissipation, resulting in mesh-dependence of numerical approximations;

1If one regards the phase-field model as a damage model with an internal length, the damage model is richer
the Griffith model and one should regard the damage model as the true physical model and the Griffith model as
an approximation. This view is opposite to that of Gamma-Convergence, where the damage model is regarded
as a regularized approximation of the Griffith model.
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2. when G(1) > 0 cracks, the creation of cracks requires to fully damage the whole bar and,
hence a dissipation proportional to the bar length.

In both cases, and differently from DG models, it is not possible to recover an energetic equiv-
alence with the Griffith model where the energy dissipation to produce a crack is a finite
material constant Gc, the fracture toughness. Our theoretical results are supported by nu-
merical illustrations. The reader is referred to Section 7 for a more detailed summary of our
findings.

The paper is organized as follows. In Section 2 we introduce the variational setting of
the local damage model and discuss why regularizing terms are needed. Section 3 recalls the
features of the DG models, whilst the SG regularization are introduced in Section 4. The core
of the paper is contained in Sections 5 and 6 where both families of SG models are studied in
details. Section 7 is devoted to draw our conclusions.

For the sake of reproducibility, open-source implementations of the strain-gradient dam-
age models used to obtain the numerical results of this paper are provided as supplementary
material.2

2. Local damage models with strain softening

We introduce here the basic ingredients of the local model at the basis of the regularizations
discussed in the rest of the paper. We illustrate the response of the material element of a
bar under uniaxial traction in a one-dimensional setting, denoting by σ, ε, and α the scalar
stress, strain, and damage field, respectively. We consider the strain as a loading parameter,
and assume that its parametrisation with the time, t 7→ εt, to be monotonically increasing.
When there is no risk of confusion, the explicit reference to the the variable time t is omitted.
Superimposed dots will denote derivatives with respect to t, α̇ = dαt/dt, whilst a prime will
denote a derivative of a function with respect to its argument, e.g. E′(α) = dE(α)/dα.

2.1. Formulation
We follow the presentation proposed by [16] in the spirit of Generalized Standard Materials

[13]. Specifically, we consider a damage model characterized by the total energy density

W0(ε, α) = 1
2E(α)ε2 + w(α), (1)

sum of the elastic energy and the dissipated energy. Here ε denotes the strain and α denotes
the scalar damage variable which is chosen in such a manner that it grows from 0 to 1, α = 0
corresponding to the undamaged state and α = 1 to the completely damaged state. The
smooth monotonically decreasing state function α 7→ E(α) gives the evolution of the Young
modulus of the material with its damage state. We assume that

E(0) = E0 > 0, E′(α) < 0, ∀α ∈ [0, 1), E(1) = 0. (2)

Accordingly, we adopt the following hypotheses in terms of the compliance state function
α 7→ S(α) = 1/E(α):

S(0) = 1/E0 > 0, S′(α) > 0, ∀α ∈ [0, 1), S(1) = +∞. (3)

As we will see below, the smooth monotonically increasing state function α 7→ w(α) gives the
evolution of the dissipated energy density by the material with its damage state. We assume
that

w(0) = 0, w′(α) > 0, ∀α ∈ [0, 1), w(1) = w1 < +∞. (4)

2https://bitbucket.org/cmaurini/gd-sd-damage-models-codes
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The damage evolution problem is characterized by the following items

Stress-strain relation : σ = ∂W0/∂ε = E(α)ε, (5)
Irreversibility condition : 0 ≤ α ≤ 1, α̇ ≥ 0, (6)

Damage yield criterion : ∂W0/∂α = 1
2E′(α)ε2 + w′(α) ≥ 0, (7)

Consistency equation : (∂W0/∂α) α̇ = 0. (8)

The damage law is standard in the sense that the damage yield criterion is stated in terms
of the elastic energy release rate − 1

2E′(α)ε2. This type of criterion can be justified in a full
three-dimensional setting by invoking Drucker-Ilyushin postulate, see [17]. In our uniaxial
context, (7) can also read as

|ε| ≤ εD(α) :=

√
2w′(α)
|E′(α)| . (9)

Accordingly, the set of admissible strain states is an interval which depends on the damage
state. We will assume that this interval grows when the damage grows. This leads to the
following

Strain hardening condition : α 7→ w′(α)
|E′(α)| is monotonically increasing. (10)

This condition will allow us to obtain a unique response in uniaxial test under controlled strain
path.

The damage yield criterion (7) can be expressed in terms of the stress σ and read as

|σ| ≤ σD(α) :=

√
2w′(α)
S′(α) . (11)

Since we are only interested to softening behaviors, i.e. the case when σD(α) is a monotonically
decreasing function of α, we adopt the following

Stress softening condition : α 7→ w′(α)
S′(α) is monotonically decreasing. (12)

Note that, by virtue of (3)-(4), σD(1) = 0 and hence the material cannot sustain any stress
when it is completely damaged.

2.2. Response of the volume element
We examine the response of a volume element submitted to a monotonically increasing

strain ε = t, using Eqns. (5)–(8). This solution maybe also be interpreted as the homogenous
response of a bar of length L submitted to end displacements u(±L/2) = ±εL/2.

The stress-strain relation reads as

σ = E(α) ε, (13)

and the damage criterion gives:

α = αH(ε) :=


0, |ε| ≤ εC(

w′

−E′

)−1(
ε2

2

)
, εC < |ε| < εL

1, |ε| ≥ εL

, (14)
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where the function (−w′/(E′))−1 denotes the inverse function of α 7→ −w′(α)/E′(α), which is
well-defined by virtue of the strain hardening condition (10). The material constants εC and
εL are given by

εC = εD(0), εL = lim
α→1

εD(α), (15)

with εD defined in (9). These correspond, respectively, to the elastic limit strain and to the
strain required to reach the fully damaged state; εL may be finite or not depending on the
model.

Substituting (14) in (13), one gets the stress in the bar and hence the stress-strain relation
for the homogenous response:

σ = σH(ε) = E(αH(ε)) ε. (16)

The total energy density for the homogeneous solution is given by

WH(ε) = E(αH(ε)) ε
2

2 + w(αH(ε)). (17)

Because of the damage criterion, the derivative of the energy density with respect to the strain
ε gives the stress-strain response:

WH
′(ε) =

(
E′(αH(ε)) ε

2

2 + w′(αH(ε))
)
α′H(ε) + E(αH(ε)) ε = σH(ε). (18)

Hence we can identify the strain energy with the area of the region bounded by the graph of
the stress-strain response σH(ε).

The stress is limited by an elastic limit stress σC

σH(ε) ≤ σC := E0εC =

√
2w′(0)
S′(0) , (19)

the response being linear elastic with the stress increasing from 0 to σC for ε ≤ εC and with
softening for ε > εC where the stress decreases monotonically from σC. Indeed:

σ′H(ε) = WH
′′(ε) = σ′D(α)α′H(ε) < 0, (20)

because of the stress softening (12) and strain hardening (10) assumptions.
We require as a constitutive assumption that the elastic energy in the fully damaged state

is vanishing:

lim
ε→∞

E(αH(ε)) ε
2

2 = lim
α→1

E(α)w′(α)
−E′(α) = 0, (21)

which is verified in particular if εL = εD(1) < ∞ or if E′(1) = 0 and ε′D(1) < ∞. With this
assumption, a fortiori σ∞ = limε→∞ σH(ε) = 0, and we get that the limit value of the total
energy for large strains is:

W∞H = lim
ε→∞

WH(ε) = lim
α→1

WH(εD(α)) = w1, (22)

which justifies the definition of w1 as the specific fracture energy (see also [28]).
For the following developments, it is useful to explicitly distinguish between the two qual-

itatively different behaviours obtained depending if the deformation εL = εD(1) required to
reach the fully damaged state is finite or not. Examples of the two different behaviours are
given in Figure 1, which reports the homogenous stress-strain responses for the two models

(LS) : E(α) = 1− α
1 + (k − 1)α, w(α) = w1 α, (23)

(NS) : E(α) = (1− α)2, w(α) = w1 α. (24)
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These are characterised by a linear elastic phase followed by a Linear Softening (LS) or a
Nonlinear Softening (NS) phase, respectively.

For w(α) = w1 α, the strain-hardening and stress-softening condition simplifies into:

E′′(α) > 0, E′(α)2 − E′′(α)E(α) > 0, ∀α ∈ [0, 1), (25)

and we get εL → ∞ if and only if E′(1) = 0. In this case, the condition of vanishing elastic
energy (21) is verified if E′(1) < 0 or if E′(1) = 0 and E′′(1) > 0.

Figure 1: Homogeneous responses for the (LS), left, and (NS), right, models, for which εL = kεC and εL = ∞,
respectively.

2.3. Need for a regularization
Let us consider a traction problem on a one-dimensional bar of length L submitted to

monotonically increasing end displacements. The quasi-static evolution of damage can be
formulated as a minimality condition for the energy functional

E(u, α) =
∫ L/2

−L/2

(
W0(u′(x), α(x))

)
dx. (26)

where u denotes the displacement and ε(x) = u′(x).
In a time-discrete setting3, let ±tiL/2 be the displacements imposed on the ends ±L/2 of

the bar at the time step i ≥ 0 and let (ui, αi) be the current state of the bar. We assume
that, at time t0 = 0, the bar is undamaged and stress free, and hence that u0(x) = 0 and
α0(x) = 0 everywhere in the bar. Let us denote respectively by Ci and Di the sets of admissible
displacements, u(±L/2) = ±ti L/2, and damage fields 1 ≥ α ≥ αi−1 ≥ 0. The current
displacement and damage field (ui, αi) are the elements of Ci ×Di which are local minimizers
of the energy E in the following sense4:

∃hi > 0, ∀(u, α) ∈ Ci ×Di such that ‖(u, α)− (ui, αi)‖ ≤ hi, E(ui, αi) ≤ E(u, α). (27)

If (ui, αi) is a local minimum in the sense of (27) such that αi(x) < 1 everywhere in the
bar, then (ui, αi) must verify the following first order optimality conditions{

E ′(ui, αi)(u− ui, 0) = 0, ∀u ∈ Ci,
E ′(ui, αi)(0, α− αi) ≥ 0, ∀α ∈ Di,

(28)

3We refer the reader to [25, 26] for a time-continuous formulation of the evolution problem. Here we prefer
to adopt the time-discrete setting to reduce the theoretical technicalities.

4We voluntary refrain here from giving a precise definition of the functional setting. The question is subtle
because the local damage model with softening is intrinsically ill-posed. Let us simply note that the condition
of having a finite value of the energy functional functional (26) does not prevent the damage field to be
discontinuous and the displacement to jump wherever α = 1.
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where E ′(ui, αi)(v, β) denotes the directional derivative of the energy functional E at (ui, αi)
in the direction (v, β). In particular,

E ′(ui, αi)(v, 0) =
∫ L/2

−L/2

∂W0
∂ε

v′(x) dx, E ′(ui, αi)(0, β) =
∫ L/2

−L/2

∂W0
∂α

β(x) dx. (29)

By standard arguments of calculus of variations, one can show that (28)1 implies the equilibrium
equation σ′ = 0 with σ defined in (5). The variational inequality (28)2 yields as Kuhn-Tucker
conditions the damage yield criterion (7) and the time-discrete versions of the consistency
equation (8) and irreversibility condition (6), where α̇ ' (αi − αi−1)/(ti − ti−1).

The following proposition, proven in AppendixA, demonstrates that such a local damage
model is mathematically ill-posed and it is not satisfactory from a physical point of view.

Proposition 1. For the local model (26), every state (ui, αi) satisfying (28)2 as equality on a
set with non-vanishing measure is unstable.

This fact implies a pathological mesh-dependence when trying to numerically minimize the
functional (26) and call for its regularization, see e.g. [2, 3]. Indeed, when using finite-element
discretizations, the deformations and damage completely localize in bands whose width depends
on the mesh. Hence, the dissipated energy goes to zero when refining the mesh size. In 2D
and 3D problems mesh dependency implies also the inability to predict the crack shape.

We illustrate this pathology, reporting the finite-element results of a traction test on an
bar based on the local model (26). The bar is clamped at the left-end, it has a varying
elastic stiffness, see Fig. 2d, and it is loaded by an imposed end-displacement u(L) = t L. Due
to the non-homogeneous stiffness, we expect the damage criterion to be satisfied at first at
the middle of the bar. We solve the evolution problem obtained when increasing from 0 the
end displacement by minimising at each time step the corresponding energy functional (26)
under the irreversibility constraint on the damage. The minimisation is performed using the
alternate minimisation algorithm [4] and using a finite element discretization. For the energy
functional to be defined, we use a linear interpolation for the displacement and piecewise
constant approximation for the damage field. This choice for the discretisation appears as the
natural one because the damage field can be discontinuous in absence of any control on its
derivative in the energy.

Figure 2a shows that the damage field localizes in a band of one or two elements width. Fig-
ure 2a illustrates the evolutions of the elastic and dissipated energy with the loading. Figure 2c
reports the dissipated energy after failure as a function of the mesh size for both (NS) and (LS)
models. The results clearly prove the pathological, and well-known, mesh-dependence: in local
damage model with softening the dissipated energy depends on the mesh size and vanishes
when decreasing the mesh size. This issue persists even when trying different discretisation
strategies.

3. Damage-Gradient (DG) regularization

We briefly review the regularization of the local damage model with softening (26) based on
the penalization of the gradient of the damage field [11, 26]. This kind of models is extensively
used as a regularized phase-field approach to brittle fracture [5, 24]. As before, we present this
model in a simplified one-dimensional setting considering the same traction test as in Section 2.

3.1. Formulation
Rate-independent damage-gradient models can be formulated in a variational framework

by introducing the total energy functional

E(u, α) =
∫ L/2

−L/2

(
W0(u′(x), α(x)) + 1

2w1`
2α′(x)2

)
dx, (30)
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Figure 2: Numerical results for the non-homogenous traction test with the local model characterized by E(α) =
(1− α)2E0 and w(α) = w1α. Figure 2a shows the damage and displacement fields after failure, emphasising the
discretisation (markers correspond to nodes in the finite element mesh). Figure 2b reports the evolution of the
energy with the loading t. Before failure (t ' 1.0), the elastic energy is quadratic in t (elastic response) and
the dissipated energy is zero. After failure, the elastic energy vanishes and the dissipated energy is strongly
dependent on the mesh size. The damage localizes in a zone of a one or two elements and the dissipated energy
scales linearly with the mesh size, as shown in Figure 2c for both the (LS) and (NS) models in (24). Here
the dashed lines are the energy values for damage localized in one (w1h) or two elements (2w1h). Figure 2d
illustrates the initial stiffness used in the simulations: E0(x) = {1 for |x| ≥ d/2; 1− 0.05 (2x/d)2 for |x| < d/2}.

where W0 is the energy density associated with the local mode. The second term in the integral
is the regularizing gradient damage term, which forbids any discontinuity of the damage field,
penalises sharp damage variations, and introduces an internal length `, see e.g. [25, 26].

At each time step ti, the displacement and damage fields (ui, αi) are defined as local mini-
mizers of the energy (30) in the sense (27), where now the admissible spaces Ci and Di areCi =

{
v ∈ H1(−L/2, L/2) : v(−L/2) = −tiL/2, v(L/2) = tiL/2

}
,

Di =
{
α ∈ H1(−L/2, L/2) : αi−1(x) ≤ α(x) < 1, ∀x ∈ [−L/2, L/2]

}
.

(31)

and ‖·‖ denotes the natural H1 norm of Ci×Di. Note that Di contains the unilateral constraint
requiring that the damage field can only increase with time, which constitutes the condition of
damage irreversibility.

In a series of recent works [24, 27, 28] the key properties of quasi-static evolutions verifying
(27), are studied performing bifurcations and stability analysis for the 1D traction problem.
We briefly recall the main results in the next subsection.

Remark 1. As far as w is monotonically increasing, by a suitable change of variables, one can
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always set w(α) = β to rewrite (30) in the following equivalent form, as done in [28]:

Ẽ(u, β) =
∫ L/2

−L/2

[
E0

Ẽ(β)
2 u′2 + w1 β + w1

`2 F̃(β)
2 β′2

]
dx, (32)

where the new constitutive functions Ẽ and F̃ can be univocally computed from the definition
of E and w in (30).

3.2. Main properties
Throughout this subsection, we consider a given time step i ≥ 1 and we drop the index i

in (almost) all the current quantities at that time. If (u, α) is a local minimum in the sense of
(27) such that α(x) < 1 everywhere in the bar (which means that there exists no fully damaged
point), then (u, α) must verify the first order optimality conditions (28).

After integration by part and use of the classical argument of the calculus of variations one
can show that (28)1 implies the mechanical equilibrium and that the stress field is constant
throughout the bar,

σ = E(α(x))u′(x), (33)

whilst (28)2 gives the following Kuhn-Tucker complementary conditions at every point x:
f(α(x), u′(x), α′′(x)) ≥ 0,
α(x)− αi−1(x) ≥ 0,
f(α(x), u′(x), α′′(x))(α(x)− αi−1(x)) = 0

(34)

with
f(α, u′, α′′) = 1

2E′(α)u′2 + w′(α)− w1`
2α′′. (35)

Equation (34) represents the damage evolution criterion. Writing the deformation u′ in terms
of the stress σ, (34)1 reads in the usual form in terms of the compliance:

1
2S′(α)σ2 ≤ w′(α)− w1`

2α′′. (36)

The analysis of the first order optimality conditions for the uniaxial traction problem gives
the fundamental results for understanding the properties of the model [24, 27, 28]:

1. Elastic limit: The bar can support loading without damage (α = 0) for stress values
up to the elastic limit σC given by (19).

2. Fully localised solutions (cracks): In the case of materials with stress softening, see
(12), there exist solutions with vanishing stress and with damage localised in a band of
width ∆0. Within this band α varies from 0 (undamaged material) to 1 (broken material)
with an energy dissipation Gc. Both the width of the localization bands and the energy
dissipation are explicitly given in term of the model constitutive parameters as:

∆0 = `

∫ 1

0

1√
2w(β)

dβ, Gc = 2 w1`

∫ 1

0

√
2w(β) dβ. (37)

One can assimilate these solutions with cracks, energetically equivalent to those encoun-
tered within the Griffith fracture model, where Gc stands for the fracture toughness.

The results above are derived in a one-dimensional setting. The variational approach to
fracture [5, 9, 10] introduces the functional of the class (30) as a regularized approximation of
the brittle fracture in arbitrary dimensions. In particular, exploiting the methods developed in
the variational theory of free-discontinuity problems [6, 1], it can be shown that, in the limit
` → 0, the global minimisers of (30) converges towards the global minimisers of the energy of
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a Griffith fracture model. We remark that the energy (30) together with the assumptions (24)
constitute a modification of the classical Ambrosio-Tortorelli assumption, [5], used in most of
the mathematical literature on phase-field models of fracture:

(AT) : E(α) = (1− α)2, w(α) = α2. (38)

The main motivation to use (LS)/(NS) instead of (AT) is to have a non vanishing elastic limit,
as can be immediately deduced by replacing (38) in (19).

To illustrate the behaviour of the DG model, we report in Figure 3 the result of the same
traction test described in Section 2. These are obtained minimizing (30) after a finite element
discretization with piecewise linear basis functions both for displacement and damage fields,
which is the simplest one for respecting the H1 regularity of the displacement and the damage
fields that guarantees a finite energy value. The key conclusions are the following:
• After failure the damage localises in a band whose width is independent of the mesh size,

for sufficiently small mesh sizes.

• After failure, the dissipated energy (t ' 1) is independent of the loading t, and the elastic
energy is vanishing.

• The dissipated energy converges to a value independent of the mesh size for the mesh size
going to zero. This value corresponds to the one calculated analytically in Eq. (37) and
defines a well-definite fracture energy for creating a crack, which is the fracture toughness
Gc equal to π√

2`w1 for the (NS) model and 4
√

2
3 `w1 for the (LS) model.

• Numerically we observe good and smooth convergence of the alternate minimisation
algorithm.

4. Strain-Gradient (SG) regularization

We discuss in the present section and the next one a regularized variational damage model
where damage gradients are replaced by strain gradients (SG), as in [29]. To this aim we study
the evolution problem for a one-dimensional traction of a bar. We remark that our analysis does
not include the damage models proposed in [19, 23], where the strain-gradient regularization
is introduced through an additional non-local equivalent strain.

4.1. Variational formulation
In the one-dimensional traction problem, the linearized strain is ε(x) = u′(x) and its gradi-

ent gives ε′(x) = u′′(x). Replacing in (32) the damage gradient regularization term by a strain
gradient term, one obtains an energy functional in the following form:

E(u, α) =
∫ L/2

−L/2

E0

2 E(α)u′2 dx︸                        ︷︷                        ︸
Elastic energy E1

+
∫ L/2

−L/2

E0

2 η
2G(α)u′′2 dx︸                            ︷︷                            ︸

Elastic energy E2

+
∫ L/2

−L/2
w1 αdx︸              ︷︷              ︸

Dissipated energy G

, (39)

where η is a characteristic length and G(α) a constitutive function. The energy above allows for
an attractive physical interpretation of the regularization term as a nonlocal stiffness. Indeed,
(39) can be regarded as the energy of second gradient continuum with a local damage variable
affecting the local and nonlocal stiffness through the functions E and G, respectively. As for
DG models, we require E to be a monotonically decreasing smooth function of α, with E(0) = 1
and E(1) = 0, and to satisfy the stress-softening condition and the strain-hardening condition
E′′(α) > 0 for each α ∈ [0, 1), see (25). Setting a damage dissipation function linear in α is not
a restrictive hypothesis (Remark 1 explains how this form can be always obtained through a
suitable redefinition of the damage variable).

The variational formulation of the corresponding rate-independent time-discrete evolution
problem is still ruled by a local minimality condition for the energy functional.

10
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Figure 3: Damage-Gradient model: numerical results for the traction test for the (LS) and (NS) models in (24).
The results are for ` = 0.1L and a small imperfection on the Young modulus in x = 0.6L. The width of the
localisation zone and the dissipated energies converge to well-defined finite values, see (37), when decreasing the
mesh size. The dissipated energies after failure do not depend on the loading. Hence it is possible to associate
a well-definite constant dissipated energy to a crack and the model is energetic equivalent with the Griffith
fracture model.

4.2. The two fundamental families of SG models
For α 7→ G(α), we can distinguish two families of functions that give rise to fundamentally

different behaviors:

1. The first family (SG1) consists in functions G that are positive and bounded from below
by a strictly positive constant for any value of α ∈ [0, 1]. For such functions the strain-
gradient stiffness never disappears. To simplify the presentation we will only consider, in
the present section, the particular case where G(α) is a constant.

2. The second family (SG0) contains the functions G that vanish at α = 1 and hence that
lead to a loss of any stiffness at α = 1, the material being unable to sustain any stress.
This family will be studied in the next section.

The first family of SG models forces an additional regularity of the strain field but a priori
allows for less regular damage fields. Indeed, having a finite value of the functional (43) requires
the strain to have square integrable first derivatives. On the other hand, the condition of finite
energy allows the damage field to be discontinuous, in contrast with the case of DG models.
Hence, we consider the following sets of admissible displacement and damage fields at time i:Ci =

{
v ∈ H2(−L/2, L/2) : v(−L/2) = −tiL/2, v(L/2) = tiL/2

}
,

Di =
{
β ∈ L∞(−L/2, L/2) : αi−1 ≤ β ≤ 1 in (−L/2, L/2)

}
,

(40)
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which differ from their homologue (31) of the DG models by the new regularity assumptions
dictated by the finite energy condition. The linear space associated with the affine space Ci is

C0 = {v ∈ H2(−L/2, L/2) : v(±L/2) = 0}. (41)

The local minimality condition for the displacement and damage fields (ui, αi) can still read as
(27), but the natural norm entering in the statement is now the H2 norm for the displacements
fields and the L∞ norm for the damage fields.

For the second family of models, where G(1) = 0, the discussion of the regularity is subtler.
In all the points where α = 1 the regularizing effect of the strain-gradient term vanishes and
displacement jumps become possible.

The following sections 5 and 6 are devoted to the analysis of the two families of models.

5. SG models with constant strain-gradient stiffness

We consider here the case in which the nonlocal stiffness G(α) is a constant, independent
of α. Without loss of generality, we take

G(α) = 1, (42)

and let η determine the magnitude of the nonlocal stiffness. Let us note that η has the dimension
of a length and thus can be seen as the characteristic length of the SG model. Accordingly,
throughout all the present subsection, the energy functional reads as

E(u, α) =
∫ L/2

−L/2

(
E0

2 E(α)u′2 + E0

2 η
2 u′′2 + w1 α

)
dx. (43)

To illustrate the behaviour of this class of models, we extend the analysis of the previous
sections by deducing from the local minimal principle the first order optimality conditions that
any solution must satisfy and determining the analytical solutions at fixed loading that are
either homogeneous or localised in space.

5.1. First order optimality conditions.
5.1.1. Case of solutions with no fully damaged points.

Let us first consider a local minimum in the sense of (27), denoted (ui, αi), such that αi < 1
everywhere in the bar. Then (ui, αi) must still verify the first order optimality conditions (28),
but because of the change of the energy functional, these conditions lead now to∫ L/2

−L/2
E0

(
E(αi)u′iv′ + η2 u′′i v

′′
)
dx = 0, ∀v ∈ C0 (44a)

and to ∫ L/2

−L/2

(
E0

2 E′(αi)u′2i + w1

)
(β − αi) dx ≥ 0, ∀β ∈ Di. (44b)

For smooth solutions, applying classical arguments of the calculus of variations, condition
(44a) implies the equilibrium equation and the natural boundary conditions{

σ′i = 0, in (−L/2, L/2),
u′′i = 0 at ± L/2,

(45)

where the stress σi is now given by

σi = E0
(
E(αi)u′i − η2 u′′′i

)
, (46)
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which includes the term −E0η
2 u′′′i coming from the by parts integration of the strain-gradient

term in (44a).
In the case of non smooth solutions, (45) and (46) remain valid provided that the deriva-

tives are interpreted in a weak sense. Accordingly, recalling that one assumes that αi < 1
everywhere, at a generic non-regular point in (−L/2,+L/2) where one investigates possible
jump discontinuities, one deduces that the following continuity conditions must hold:

JuiK = 0 Ju′iK = 0, Ju′′i K = 0, JσiK = 0. (47)

In (47) J·K denotes the jump of the function · at the considered point. Therefore the stress is
necessarily uniform all along the bar:

σi(x) = σi, ∀x ∈ (−L/2, L/2).

Let us note that the continuity of the strain field and the uniformity of the stress field will
induce (in general) the continuity of the damage field. In other words, the optimality conditions
force the regularity of the real damage field.

Still classical arguments of the calculus of variations show that the first order optimality
condition (44b) is equivalent to the following set of local Kuhn-Tucker conditions at each point
x where αi(x) < 1 (hence, at that point αi−1(x) < 1):

0 ≤ E0E′(αi(x))u′i(x)2 + 2w1

0 ≤ αi(x)− αi−1(x)
0 =

(
E0E′(αi(x))u′i(x)2 + 2w1

)(
αi(x)− αi−1(x)

) (48)

which are nothing but the damage evolution law at a not fully damaged point.

5.1.2. Case of solutions with fully damaged points.
Even if the solution contains fully damaged points, the Kuhn-Tucker conditions (48) remain

valid at each point which is not fully damaged, i.e. at each x such that αi(x) < 1.
Let us now consider a point x0 which is already fully damaged at step i− 1, i.e. such that

αi−1(x0) = 1. The irreversibility condition imposes that αi(x0) = 1 and then, since every test
field β ∈ Di must be such β(x0) = 1, the optimality condition (44b) is automatically satisfied.

Finally, let x1 be a point fully damaged at step i but which was not fully damaged at step
i− 1:

αi−1(x1) < αi(x1) = 1. (49)

Then, by considering admissible test fields β such that β(x1) < 1, the optimality condition
(44b) gives

u′i(x1)2 ≥ 2w1

E0 |E′(1)| (50)

which can be seen as the necessary condition for a point to become fully damaged.

5.2. Homogenous solutions and their bifurcation analysis
The homogenous response presented above satisfies the first order minimality conditions

(44) for the energy functional. During the elastic phase, the damage criterion is not attained
and the condition (44b) is a strict inequality for any non vanishing variation β of damage.
This implies that for ε < εC the homogenous solution is a local minimum of the energy. For
ε ≥ εC, the damage criterion is satisfied as an equality everywhere in the domain. In this
case, assessing the stability of the homogenous response requires the study of the sign of the
second derivative of the energy functional near u(x) = ε x and α(x) = αH(ε). After relative
cumbersome, but standard, calculations which are presented in AppendixC, one can show
that the second derivative of the energy is positive definite for any admissible variation of
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displacement and damage if and only if the bar is sufficient short with respect to the internal
length of the material, namely

L

η
< π

√
E′′(αH(ε))

2E′(αH(ε))2 − E(αH(ε))E′′(αH(ε)) =

(LS) model : π
√
k − 1,

(NS) model : π
4
√

3
ε

εC

(51)

The condition above on the sign of the second derivative of the energy gives a criterion of
non-bifurcation (or local uniqueness) for the homogeneous solution as a function of the ratio
L/η and the strain level ε. It also provides a sufficient condition for stability; to establish a
necessary condition for stability would require the same analysis to be performed under the
constraint of positive variations of the damage variable, β ≥ 0 in AppendixC. We refer the
interested reader to [28] for further details on such an issue.

For the constitutive choices of E(α) given in (24), Figure 4 reports the regions in the
plane (L/η, ε) where the homogeneous response is (locally) unique. For the (LS) model, the
homogenous response is always unique for short bars (L/η < π

√
k − 1) but it could bifurcate

for ε > εC for long bars (L/η > π
√
k − 1). Instead for the (NS) model the homogenous

solution turns out to be (locally) unique at large strains, even for long bars. Even if not
explicitly reported here, the stability analysis would give qualitatively similar results.

Figure 4: Conditions for the local uniqueness of the homogenous response as a function of the loading (ε/εC)
and the normalized bar length (L/η). Light gray indicates regions where the homogeneous response is locally
unique, hence stable. Left: (LS) model; right: (NS) model.

5.3. Non-homogenous solutions at fixed loading.
5.3.1. Assumptions

For sufficiently long bars, the homogenous solutions can become unstable and solutions with
damage localization could emerge. We study here the properties of non-homogenous solutions
of the traction problem in which the damage is non-null in a single non-vanishing interval.
Specifically we make the following set of assumptions, see also Figure 5:

(1) To simplify the presentation we will only consider infinitely long bars, L = +∞. Ac-
cordingly, the boundary conditions are replaced by the conditions that the strain field εi
must tend at infinity to a given constant ε̄i,

lim
x→±∞

εi(x) = ε̄i. (52)

(2) The construction of the localized solution starts at time t1 such that the bar is entirely
undamaged but the strain is just at the elastic limit:

ε1(x) = εC, α1(x) = 0.

(3) At time step i > 1, by a suitable choice of the coordinates, damage is localized in an
interval Ii = (−Di, Di), centered at 0 and the size of which, 2Di, has to be determined.
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(4) In the (possibly empty) part Ji ⊂ Ii the bar is fully damaged : αi = 1.
(5) In the remaining part of Ii, the bar is damaging but remains partially damaged: 0 ≤

αi−1 < αi < 1.

Figure 5: Sketch of the damage field in the considered non-homogenous solution.

5.3.2. Optimality conditions
Equipped with these assumptions and all the first order optimality conditions obtained in

Subsection 5.1, let us formulate the conditions that the non-homogeneous solution must satisfy
in each part of the bar at the time step i > 1.

(i) All along the bar, by the equilibrium condition, the stress is constant: σi(x) = σi.
(ii) In the undamaged part of the bar R \ Ii, the stress-strain relation, the damage criterion

and the conditions at infinity read as
E0(εi(x)− η2ε′′i (x)) = σi,

|εi(x)| ≤ εC,

limx→±∞ εi(x) = ε̄i.

Solving the first differential equation, we deduce that εi(x) decades exponentially as
x→ ±∞ and that

σi = E0ε̄i. (53)

Note that the damage criterion requires ε̄i to be less than εC, necessary condition that
we adopt henceforth:

0 < ε̄i < εC. (54)

(iii) In the fully damaged part Ji, when it exists, E(1) = 0 and the stress-strain relation and
the damage criterion read as 

−η2ε′′i (x) = ε̄i,

|εi(x)| ≥ εL,

αi(x) = 1.
(55)

(iv) In the partially damaged part Ii \ Ji, the stress-strain relation and the damage criterion
read as 

E(αi(x))εi(x)− η2ε′′i (x) = ε̄i,

E′(αi(x))εi(x)2 = E′(0)ε2
C,

0 ≤ αi−1(x) < αi(x) < 1.
(56)

Let us first deduce some continuity properties for the localized solution. Since εi is continuous
everywhere, αi is continuous in Ii\Ji. Moreover, |εi|must be equal to εC at the boundary points
x = ±Di of Ii, and |εi| must be equal to εL at the boundary of Ji. Therefore αi(±Di) = 0,
αi = 1 at the boundary of Ji and the damage field is continuous everywhere.
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Let us now determine the non-homogeneous solution. Let us remark that, at any point x,
the damage is related to the strain by

αi(x) = αH(εi(x)), (57)

with αH given by (14). Inserting that relation into the stress-strain relation leads to the following
second order differential equation in terms of the strain field:

E(αH(εi(x)))εi(x)− η2ε′′i (x) = ε̄i, ∀x ∈ R (58)

with the conditions at infinity εi(±∞) = ε̄i. Accordingly, it suffices to solve this differential
equation for the strain field to obtain the damage field and hence the parts Ii and Ji.

The determination of the solution of (58) is based on the two following properties the proofs
of which are reported in AppendixB.

5.3.3. Qualitative properties of the solutions

0

Figure 6: Qualitative behavior of the function Fi(ε).

Proposition 5.1 (First integral). For a given ε̄i ∈ (0, εC), the differential equation (58) with
the condition at infinity (52) for the strain field εi admits the first integral

η2 ε′i(x)2 = Fi(εi(x)), ∀x ∈ R, (59)

where
Fi(ε) = 2WH(ε)

E0
− 2ε̄iε+ ε̄2

i . (60)

Moreover the function Fi verifies the following properties, as illustrated in Figure 6:

P1. For |ε| ≤ εC, Fi(ε) = (ε− ε̄i)2.
P2. There exists a unique ε∗∗i ∈ (εC, εL) such that F ′i (ε∗∗i ) = 0.
P3. There exists a unique ε∗i > εC such that Fi(ε∗i ) = 0.
P4. The value of ε∗i increases monotonically from εC to ∞ when ε̄i decreases from εC to 0.

The first integral allows us to establish the most important qualitative properties of the
strain and damage fields at a given time step. Those properties are given in the following
Proposition and illustrated in Figure 8.

Proposition 5.2 (Qualitative properties of the non-homogenous solutions). At time step i > 1
where ε̄i < εC, there exists a unique strain field solution to (59) and the associated damage field
is given by (14) and (57). This solution is symmetric with respect to the origin and enjoys the
following properties:

(i) The strain and damage fields are maximal at x = 0, their maximum value being ε∗i defined
in Proposition 5.1 and αH(ε∗i ), respectively. Then they are monotonically decreasing with
respect to |x|.

16



(ii) The size Di of the damaged zone Ii is given by

Di = η

∫ ε∗
i

εC

1√
Fi(ε)

dε. (61)

(iii) Outside the damaged zone, the strain field is given by

εi(x) = ε̄i + (εC − ε̄i) exp
(
− |x| −Di

η

)
when |x| ≥ Di. (62)

(iv) Inside the damaged zone Ii, the strain εi(x) at the point x is given by the implicit relation

Di − |x| = η

∫ εi(x)

εC

1√
Fi(ε)

dε when |x| < Di. (63)

(v) The existence of a fully damaged zone Ji depends both on εL and ε̄i. Specifically, one has
(a) If εL = +∞, then there exists no fully damaged point whatever the value of ε̄i

Ji = ∅;

(b) If εL < +∞, then there exists fully damaged points provided that ε̄i is small enough
so that ε∗i > εL. In such a case the fully damaged zone is a closed interval:

Ji = [−D̄i, D̄i] with D̄i = η

∫ ε∗
i

εL

1√
Fi(ε)

dε. (64)

0

Figure 7: Plot of the localised solution curve ηε′i = ±
√
Fi(εi) in the (ε, ηε′) plane when ε∗i > εL. The color

bar at the top of the plot gives the value of the damage field αi calculated as a function of εi using (14). The
qualitative properties of this curve are given in Proposition 5.1.

Example. We consider the (LS) model under its form (24). Using the definitions introduced
previously, we get

εC =
√

2w1

kE0
, εL = k εC. (65)

Since εL is finite, there exists a critical value εM of the applied strain at infinity under which a
fully damaged zone exists. That value is given by

εM =
(
k −

√
k (k − 1)

)
εC. (66)

17



For a given applied strain at infinity ε̄i ∈ (0, εC), using Proposition 5.2 leads after some cal-
culations to the following expressions for the maximal strain and the size of the damaged
zones:

• When εM ≤ ε̄i < εC,
ε∗i = εL −

(
εL

εM
− 1
)

(ε̄i − εM),

Di = Dc := 2η
√
k − 1 arctan

(√
k +
√
k − 1

)
,

D̄i = 0,

(67)

where we can note that the size of the damaged zone is fixed, independent of ε̄i.

• When 0 < ε̄i < εM,

ε∗i = εL + 1
2

(
εLεC

εMε̄i
− 1
)

(εM − ε̄i)

Di = Dc − 2η
√
k − 1 arcsin

√
1− ε̄i/εM

2(1− ε̄i/εC) + D̄i,

D̄i = η

√(
εLεC

εMε̄i
− 1
)(

εM

ε̄i
− 1
)
.

(68)

In both cases, the strain field in the undamaged zone is exponentially dependent on |x| and
given by (62). In the partially damaged zone, since σH(ε) depends linearly on ε,

σH(ε) = σc
k − 1

(
k − ε

εc

)
,

the differential equation (58) for εi is linear and therefore both the strain field and the damage
fields are arcs of sinusoid as one can see on Figure 8. In the fully damaged zone, when it exists,
the strain field is an arc of parabola as one can check directly from (55).

Figure 8: Evolution of the strain and damage fields for the LS model with k = 2 (Left) and for the NS model
(Right) when ε̄i is decreasing from εC to 0.

5.3.4. Asymptotic behavior when the stress goes to 0.
For the applications it is relevant to study the behaviour of the solution when ε̄i → 0 (or

equivalently when σi → 0). Indeed, the solution with vanishing stress is the one that can be
associated to a crack in the Griffith fracture model.
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Proposition 5.3 (Asymptotic behaviour for vanishing stress). When ε̄i → 0 the non-homogenous
solutions show the following asymptotic behaviour:

• The maximum strain value grows to infinity:

lim
ε̄i→0

ε∗i = +∞. (69)

• The size of the damaged interval grows to infinity:

lim
ε̄i→0

Di = +∞. (70)

• The dissipated energy also tends to infinity:

lim
ε̄i→0

Gi =∞, Gi :=
∫ Di

−Di

w1αi(x) dx. (71)

Proof. In the case of the (LS) model, these properties are straightforward consequences of (68).
They remain valid for the general family of SG models studied in the present section and the
proof is essentially based on Propositions 5.1 and 5.2.

• The property (69) is nothing but P4 of Proposition 5.1.

• To prove (70), let us start from the expression (61) of Di. When εC ≤ ε ≤ ε∗i , since
0 ≤ Fi(ε) ≤ Fi(ε∗∗i ) ≤ w1 , one has 1/

√
Fi(ε) ≥ 1/√w1 and, since the domain of

integration goes to infinity, one gets (70).

• When εL <∞, by the same argument, (64) gives limε̄i→0 D̄i = +∞ and (71) follows.
The case εL = ∞ is more subtle since we need to bound from below αi(x). From (61)
and (63), one gets

|x|
η

=
∫ ε∗

i

εi(x)

dε√
Fi(ε)

≥ ε∗i − εi(x)
√

w1
when |x| > Di.

Therefore, for a given x ∈ R, since limε̄i→0 ε
∗
i = +∞ and limε̄i→0Di = +∞, one gets

limε̄i→0 εi(x) = +∞. But, since αi(x) = αH(εi(x)), one gets also limε̄i→0 αi(x) = 1 and
hence (71).

Let us note that the last estimate on the damage field says that every point of the bar tends
to a fully damaged state when the stress goes to 0.

6. SG models with generic strain-gradient stiffness

We extend here the results of the previous Section by considering the generic case where
the strain-gradient stiffness can vary with the damage field, namely G = G(α). We focus on
the case in which G(α) is monotonically decreasing5 with α and distinguish two fundamentally
different behaviour whether G(1) > 0 or G(1) = 0. In particular, we study the global minimum
of the energy and we show that it is either infinite or zero. The consequences of this fact are
illustrated in the numerical solution of the traction test on a bar with finite length.

5While it is physically reasonable to assume that the damage cannot increase the local and nonlocal stiff-
nesses, the case of a generic G(α) can be considered without additional difficulties.
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6.1. SG1: the generic case with G(1) > 0.
This case can be easily reduced to the case studied in Section 5 with a constant strain-

gradient stiffness. Indeed, denoting by Ḡ := min{G(α), α ∈ [0, 1]}, we have∫ L/2

−L/2
G(α) (u′′)2 dx ≥

∫ L/2

−L/2
(u′′)2 Ḡ dx, ∀u, ∀α. (72)

Hence, the total energy (39) of the model with constant strain-gradient stiffness G(α) = Ḡ can
be used as a lower bound for the generic case with a monotone decreasing G(α). Using the
results of Proposition 5.3, we conclude that, as for G(α) = Ḡ, creating a crack or obtaining
a solution with vanishing stresses in a bar with infinite length requires an infinite amount of
energy, even if G(α) is not constant but G(1) > 0.

6.2. SG0: the generic case with G(1) = 0.
The functional (39) to minimize is not convex and can admit multiple local and global

minimizers. To characterise these minima, in Sections 3-4 we solved the first order optimality
conditions (28). Here we follow a different approach based on the direct method of the calculus
of variations, which is particularly effective to determine the properties of global minimizers of
the energy.

We consider the minimization problem for

E(u, α) =
∫ L/2

−L/2

[
E0

2
(
E(α) (u′)2 + η2G(α) (u′′)2)+ w1 α

]
dx, (73)

with E(1) = 0, G(1) = 0, the boundary conditions u(±L/2) = ±t L/2 and the unilateral
constraint α(x) ≥ 0. For any value of the end-displacement it is possible to define the following
admissible test field (see Figure 9):

uδ(x) =


t L

2

(
1 + 2x

δ
+ sin(2π x/δ)

π

)
−δ/2 ≤ x ≤ +δ/2,

0, otherwise
(74)

αδ(x) =
{

1, −δ/2 ≤ x ≤ +δ/2,
0, otherwise

(75)

for which

εδ(x) = u′δ(x) =


2 t L
δ

(cos(πx/δ))2, −δ/2 ≤ x ≤ δ/2,
0, otherwise

(76)

It is immediate to verify that uδ, εδ, and ε′δ are continuous functions of x, while α jumps in
x = ±δ/2. Being ε′δ(±δ/2) = 0, all the jumps conditions (47) are verified in x = ±δ/2. Hence
(uδ, αδ) is an admissible test field for (73), for which the energy (73) is evaluated to be

E(uδ, αδ) = w1δ, lim
δ→0
E(uδ, αδ) = 0. (77)

Since E(u, α) ≥ 0 for any admissible state, (uδ, αδ) is a minimising sequence attaining the global
minimum of the energy for δ → 0, for any loading t. We conclude that for E(1) = G(1) = 0,
the global minimum of the energy is 0, and this global minimum can be obtained through
solutions localizing the damage field in a zone of vanishing width, where all the deformations
are concentrated, without any energy dissipation.
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Figure 9: Minimising sequence (74) for the SG0 model with E(1) = G(1) = 0. Black solid line: displacement uδ;
dashed line: damage αδ; gray solid line: strain εδ.

Remark 2. If G(1) > 0, the energy of the sequence (74) is given by

E(uδ, αδ) = w1δ + E0η
2G(1)π

2t2 L2

δ3 . (78)

This expression emphasizes the crucial role played by the nonlocal stiffness at full damage and
shows that the reasoning above cannot be applied for the models where G(1) > 0.

The fact that the global minimum of the energy is 0 for any loading lead us conclude that
the strain gradient regularization is not effective when G(1) = 0, even if G(α) > 0 for α < 1.
Indeed, even if there could be still meta-stable states that are local minima of the energy (an
example of these is the elastic solution for t < εC), there are not stable states (in the sense of
global minimization) that can sustain a finite stress.

6.3. Numerical illustrations
To confirm the theoretical results we consider two specific classes of models, giving the

cases of gradient stiffness decreasing to zero with the damage and of constant gradient stiffness,
respectively:

(SG0)-models : G(α) = E(α) ⇒ G(1) = E(1) = 0, (79)
(SG1)-models : G(α) = 1. (80)

Hence we will denote by NS-G0 the model obtained when choosing E(α) = G(α) = (1−α)2 and
by NS-G1 when E(α) = (1−α)2 but G(α) = 1. Similar notations are used for the LS models as
in (24).

The numerical solution is obtained by using an augmented lagrangian formulation keeping
as primal variables the displacement u, the strain ε, and the damage field α. The compatibility
between the displacement and the strain is enforced by using a scalar Lagrange multiplier field
τ . Hence, we use linear Lagrange finite elements for ε and α, quadratic Lagrange elements
for the displacement u, and elements with piecewise constant interpolation functions for τ .
The energy functional is minimised by finding at each time step a fixed point of an alternate
minimization algorithm where we solve iteratively the linear system for u, α, τ at fixed α,
and the complementary system (a variational inequality) for α at fixed u, α, τ . The code is
implemented using the FEniCS library. We refer the reader to the sources6 for further details
about the implementation.

6See the in src/sgdam.py in https://bitbucket.org/cmaurini/gd-sd-damage-models-codes
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We consider a traction test on a bar which is completely clamped at the two end, by
imposing to 0 the variations of the displacement and the strain fields. The loading is given by
an imposed end-displacement u(L) = t. Figure 10 reports the numerical results obtained using
the NS-G1 model. In particular, in Figure 10a the evolution of the damage and strain fields
are respectively reported by solid and dashed lines for different values of the load parameter.
Figure 10b plots the relevant energetic contributions in (39): the elastic energy (E1, dotted),
the nonlocal elastic energy (E2, dashed) and the dissipated energy (G, black solid) are shown.
The analogous results for the LS-G1 model are given in Figure 11.

These results are coherent with their analytical counterparts shown in Figure 8 and with
Proposition 5.3: as the load increases the width of the damaged region progressively increases
to cover the whole bar and the dissipated energy grows towards its maximal value (w1L ≡ 1 in
the numerical simulations on a bar of finite length).
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Figure 10: Strain-Gradient model NS-G1:numerical results for the traction test. The simulation is without
imperfection for η/L = 0.2 and n = 100 elements.
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Figure 11: Strain-Gradient model LS-G1: numerical results for the traction test. The simulation is without
imperfection for η/L = 0.2 and n = 300 elements.

Figure 12 reports the dissipated energy at the end the load process for models from both
the families (SG0 and SG1) of Strain-Gradient models. The NS-G1 and LS-G1 models with
constant strain-gradient stiffness show a limit value of the dissipated energy which corresponds
to the full damage of the whole bar; this value is independent of the mesh size. Instead, the
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dissipation in the NS-G0 and LS-G0 models are strongly mesh-dependent. Being G(1) = 0 the
regularization is not effective. As in the local models, see Figure 2, the damage localizes in few
elements and the dissipated energy is actually determined by the mesh-size h and vanishes when
h→ 0. In general the numerical results of the NS-G0 and LS-G0 models are not reliable, being
extremely sensitive to the mesh, imperfections, and the parameters of the numerical solvers.
This point is further illustrated by the snapshots of the damage and strain fields reported in
Figure 13.
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Figure 12: Strain-Gradient models: dissipated energies vs. mesh size at the end of the loading process. Markers
are data from numerical simulations. The dashed and continuous lines serve as reference giving the dissipated
energies corresponding to the full damage of few elements or of the whole bar.
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Figure 13: Strain-Gradient models SG0: the results of the numerical simulations show uncontrolled localization
of the damage ans strain fields and are extremely sensitive to the mesh, imperfections and solver parameters.
The figures show a snapshot of the damage and strain field at t = 2.0 for η/L = 0.2 and n = 50 elements.

7. Conclusions

In brittle fracture models the energy required to create a crack of unit length is a material
property, the fracture toughness. It is finite, non-null, and independent on the structural size
(at least for large enough structures). In damage models a crack can be defined as a solution
with vanishing elastic energy, obtained after a softening phase. Depending on the adopted
damage model, the internal energy dissipation required to create a crack may be null or mesh-
dependent, constant, or infinite. However, establishing an energetic equivalence of a damage
model with brittle fracture models requires to fulfil the following requirements:
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P1 The dissipated energy is mesh-independent, for sufficiently refined mesh.
P2 The dissipated energy is non-vanishing.
P3 The dissipated energy is finite and independent of the structural size, for sufficiently large

structures.
Table 1 resumes the fulfilling of these properties for the damage models considered.

LOC DG SG1 SG0
P1 X X
P2 X X
P3 X X X

Table 1: Résumé of the main properties for the damage models under consideration.

In local damage model (LOC), the dissipated energy is proportional to the mesh size h, see
Figure 2c, and therefore vanishing for h→ 0. Regularization techniques are aimed to overcome
this drawback. We have shown that the damage-gradient DG models can be effective to this
aim and verify all the desidered properties P1-P3, see Figure 3c. In DG models the toughness
has a well defined nonvanishing value independent of the mesh-size and the bar length, see
(71), that can be used to the identify the fracture toughness with the material parameters of
the damage model.

We have shown that a similar identification is not possible for strain-gradient (SG) models
in the form (39).

If the nonlocal stiffness function G(α) is bounded from below by a strictly positive constant,
we have found that the stress vanishes only when the whole bar is fully damaged, see NS-G1
and LS-G1 curves in Figure 12. As the toughness is evaluated to be w1L, SG1 models fail to
satisfy condition P3. For a bar of infinite length, we have proved that an infinite amount of
energy is needed to create a crack, see Proposition 5.3.

If the nonlocal stiffness vanishes when the damage reaches its maximum value, G(α = 1) = 0,
the dissipated energy can be mesh-dependent as in local models, see Section 6.2 and NS-G0
curve in Figure 12 (SG0 models).

These results are valid under the choice of a quadratic cost of the strain-gradient fields.
This choice was regarded as the simplest since leading, at given damage, to a linear elastic
constitutive relation between the effective stress and the gradient of strain. If other subtler
choices to penalize the strain-gradients, see for instance [8, 19, 20], are possible and lead to
satisfactory properties of the resulting regularized model is not known to the authors.

AppendixA. Ill-posedness of local damage model

Proof. By hypothesis there is a set S ⊂ [−L/2, L/2] =: Ω of non-vanishing measure where the
damage criterion is satisfied as an equality:

E ′(ui, αi)(v, ϕ) = 0, ∀v, ∀ϕ ≥ 0 in S, ϕ = 0 in Ω/S. (A.1)

The perturbed energy E(ui + hv, αi + hϕ) can be expanded with respect to h as:

E(ui + hv, αi + hϕ) = E(ui, αi) + h2

2 E
′′(ui, αi)(v, ϕ) + o(h2).

The stability depends on the sign of the second derivative of the energy, namely

E ′′(ui, αi)(v, ϕ)
E0

=
∫

Ω
Eiv′2 dx+

∫
S

(
2E′i u

′
i v
′ϕ+ 1

2E′′i (u′i)2ϕ2 + ϕ2w′′i

)
dx

=
∫

Ω
Eiv′2 dx+

∫
S

(
2E′i u

′
i v
′ϕ+ (w′′i − w′iE

′′
i /E
′
i)ϕ2) dx (A.2)
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with Ei = E(αH(ti)), E′i = E′(αH(ti)), E′′i = E′′(αH(ti)), w′i = w′(αH(ti)) and w′′i = w′′(αH(ti)). The
second derivative is minimized at given ϕ with respect to v; using the boundary conditions
v(±L/2) = 0 we obtain

v′(x) = C

Ei(x) −
E′i(x)u′i(x)

Ei(x) ϕ(x), C :=

∫
S

ϕ(ξ)E′i(ξ)u′i(ξ)
Ei(ξ)

dξ∫
Ω

1
Ei(ξ)

dξ

. (A.3)

Substituting in (A.2), the energy second derivative reads

E ′′(ui, αi)(v, ϕ)
E0

=
∫

Ω

C2

Ei(ξ)
dξ +

∫
S

[w′′i − w′i (E′′i /E′i − 2E′i/Ei)]ϕ2(ξ) dξ. (A.4)

By virtue of the stress softening condition (12), the following inequality holds

w′′i − w′i (E′′i /E′i − 2E′i/Ei) < 0.

The second integral in (A.4) is negative for every perturbation ϕ and is linearly proportional
to the measure, say θ, of the support set of ϕ. The first integral in (A.4) is instead positive
but it is a quadratic function of the measure θ. Hence, choosing a ϕ with a sufficiently small
measure of its support will produce a negative value of the energy second derivative. Therefore
the unstable character of every solution (ui, αi) verifying (A.1), and the need for regularizing
terms.

AppendixB. Proof of Propositions 5.1 and 5.2

Sketch of the proof of Proposition 5.1. Throughout the proof, ε denotes the strain and accord-
ingly ε(x) = u′(x). Multiplying (58) by ε′(x), integrating with to respect to x, and using
equations (16)-(18) one obtains:

η2 ε′(x)2 = 2WH(ε(x))
E0

− 2ε̄iε(x) + c, (B.1)

where c is an integration constant. Evaluating (B.1) at infinity with the boundary condition
(52) and using (17) give the constant c:

c = 2ε̄2
i − 2WH(ε̄i)/E0 = ε̄2

i .

Inserting that expression of c into (B.1) leads to (59)-(60).
The function ε 7→ Fi(ε) is continuously differentiable everywhere and is twice differentiable

everywhere except at ε ∈ {±εC,±εL}. Denoting the derivative with respect to ε by a prime
and using (16)–(18) lead to

F ′i (ε) = 2E(αH(ε))ε− 2ε̄i. (B.2)

(i) If |ε| ≤ εC, then αH(ε) = 0, 2WH(ε) = E0ε
2 and P1 follows.

(ii) If εC < ε < εL, then σH(ε) is a decreasing function of ε by virtue of the softening condition
(20) and hence F ′i is also decreasing. Since F ′i (εC) = 2(εC− ε̄i) > 0 and F ′i (εL) = −ε̄i < 0,
then there exists a unique ε∗∗i ∈ (εC, εL) such that F ′i (ε∗∗i ) = 0.

(iii) By virtue of the previous property, Fi is increasing in the interval (εC, ε
∗∗
i ). Since Fi(εC) =

(εC − ε̄i)2 > 0, one gets Fi(ε∗∗i ) > 0. We have also shown that Fi is decreasing in the
interval (ε∗∗i , εL). Moreover, if εL < +∞ and ε ≥ εL, then αH(ε) = 1 and F ′i (ε) = −2ε̄i < 0.
Therefore, Fi is decreasing in the interval (ε∗∗i ,+∞). Under the assumption (21), one
gets limε→∞WH(ε) = w1 <∞. Therefore limε→∞ Fi(ε) = −∞ and there exists a unique
ε∗i > εC such that Fi(ε∗i ) = 0.
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(iv) Let us consider Fi(ε) as a function of (ε̄i, ε), say

F (ε̄i, ε) := 2WH(ε)
E0

− 2ε̄iε+ ε̄2
i .

By construction, ε∗i satisfies ε∗i > εC > ε̄i and F (ε̄i, ε∗i ) = 0. By the implicit function
theorem, we get

dε∗i
dε̄i

= −
∂F
∂ε̄i

(ε̄i, ε∗i )
∂F
∂ε (ε̄i, ε∗i )

.

Therefore, since ∂F
∂ε̄i

(ε̄i, ε∗i ) = 2(ε̄i − ε∗i ) > 0 and since, as we have shown in the previous
property, ∂F

∂ε (ε̄i, ε∗i ) < 0, ε∗i is increasing when ε̄i is decreasing.
We immediately deduce from property P1 that F (εC, εC) = 0 and hence ε∗i = εC when
ε̄i = εC. The proof of the asymptotic behavior of ε∗i when ε̄i → 0 is given in Proposition
5.3. All these properties can be easily retrieved by geometrically intepreting Fi(ε) as the
algebric sum of the shaded areas reported in Figure B.14. For instance, chosen a level
of stress σ < σC, the critical strain ε = ε∗i is the one leading to the equality between the
areas marked as ⊕ and 	.

Sketch of the proof of Proposition 5.2. The localized solution must obey

ηε′i(x) = ±
√
Fi(εi(x)), (B.3)

which, by virtue of the properties of the function Fi for ε̄i < εC, corresponds in the phase plane
(ε, ε′) to the unique curve shown Figure 7. Since the damage is maximal where the strain is
maximal and since we assume that the damage is maximal at x = 0, the strain is maximal at
x = 0 where it takes the value ε∗i . Accordingly, ones has

ηε′(x) = −sign(x)
√
Fi(εi(x))

from which we deduce that

|x| = η

∫ ε∗
i

εi(x)

dε√
Fi(ε)

.

The damage criterion dictates that α = 0 for ε ≤ εC and α > 0 for ε > εC. Therefore the
length of the damage zone is given by (61).

By virtue of the definition (14) of αH(ε), the fully damaged zone, when it exists, corresponds
to the points x where εi(x) ≥ εL. Therefore its length is given by (64). The remaining properties
are easily established.

AppendixC. Bifurcation analysis of homogeneous states for SG models

This appendix is devoted to the study the bifurcation of homogeneous solutions for SG
models. The definition of stability of a state that we adopt here corresponds to the condition
of local minimality of the energy (27) introduced in Section 2. We merely give the main steps
of the calculation and the reader interested by a more detailed presentation should refer to [28]
where a comprehensive analysis of a similar case is performed.

In the case of a SG model with G(α) = 1, the energy of the state (u, α) is given by

E(u, α) =
∫ L/2

−L/2

(
E0

2 E(α)u′2 + E0

2 η
2 u′′2 + w1 α

)
dx (C.1)
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Figure B.14: Geometrical interpretation of the energetic contents defining the function Fσ(ε). Upper left:
(WH(ε) + σ2/(2E0)). Upper right: (σε). Bottom: the difference of the terms above, namely (E0Fσ(ε)/2).

and its first and second directional derivatives respectively read as

E ′(u, α)(v, β)
E0

=
∫ L/2

−L/2

(
E(α)u′v′ + η2u′′v′′ +

(
1
2E′(α)u′2 + w1

E0

)
β

)
dx, (C.2)

E ′′(u, α)(v, β)
E0

=
∫ L/2

−L/2

(
E(α)v′2 + η2v′′2 + 2E′(α)u′ v′β + 1

2E′′(α)u′2β2
)
dx. (C.3)

Let ti be the given time step (which corresponds to the prescribed average strain) and let us
consider the associated homogenous solution

u(x) = tix, α(x) = αH(ti) with αH(ti) given by (14).

We only consider the case when εC < ti < εL so that 0 < αH(ti) < 1.
Let (v, β) be an admissible direction of perturbation of the homogeneous state at that time

step: v must belong to C0 = {v ∈ H2(−L/2, L/2) : v(±L/2) = 0} and β must belong to
L∞(−L/2, L/2) so that (u + hv, α + hβ) belongs to Ci × Di for h positive and small enough.
The homogeneous state (u, α) is a local minimum of the energy only if there exists h̄ > 0 such
that the following inequality holds true:

E(u+ hv, α+ hβ) ≥ E(u, α), ∀h ∈ [0, h̄].

Accordingly, let us expand the perturbed energy E(u+ hv, α+ hβ) with respect to h up to the
second order:

E(u+ hv, α+ hβ) = E(u, α) + hE ′(u, α)(v, β) + h2

2 E
′′(u, α)(v, β) + o(h2).

A straightforward calculation shows that the first derivate of the energy at (u, α) vanishes
in any admissible direction of perturbation, i.e. E ′(u, α)(v, β) = 0. Therefore the stability
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of (u, α) depends on the sign of the second derivative of the energy. That derivative in the
direction of perturbation (v, β) can read as

E ′′(u, α)(v, β) = E0

∫ L/2

−L/2

(
Eiv′2 + η2v′′2 + 2E′iti v

′β + 1
2E′′i t

2
iβ

2
)
dx, (C.4)

where Ei = E(αH(ti)), E′i = E′(αH(ti)) and E′′i = E′′(αH(ti)).
In order to find under which condition the second derivative is positive for all admissible

directions of perturbations, let us first minimize it with respect to β at given v. We immediately
get that the minimum is obtained when

β(x) = − 2E′i
tiE′′i

v′(x).

Inserting into (C.4), the second derivative becomes the following quadratic form of v

E ′′(u, α)(v, β) = E ′′i (v) := E0

∫ L/2

−L/2

(
η2v′′2 −

(
2E′i

2

E′′i
− Ei

)
v′2

)
dx.

Therefore, since by virtue of the strain hardening and stress softening conditions, the following
inequalities hold

E′′i > 0, 2E′i
2 − EiE′′i > 0,

the quadratic form E ′′i (v) is the difference of two positive terms. Then, using the following
classical result (the verification of which is left to the reader)

min
v∈C0

∫ L/2
−L/2 v

′′2dx∫ L/2
−L/2 v

′2dx
= π2

L2 ,

one immediately obtains that the second derivative of the energy is positive in any non trivial
direction of perturbation if and only the following inequality holds

L

η
< π

√
E′′(αH(ti))

2E′(αH(ti))2 − E(αH(ti))E′′(αH(ti))
. (C.5)

This inequality constitutes the stability condition of the homogeneous solution at time ti.
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Comptes Rendus Mécanique, 338(4):191–198, 2010.

[26] K. Pham and J.-J. Marigo. The variational approach to damage: II. The gradient dam-
age models [Approche variationnelle de l’endommagement: II. Les modèles à gradient].
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