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ON ω-CATEGORICAL GROUPS AND RINGS OF FINITE BURDEN

JAN DOBROWOLSKI AND FRANK O. WAGNER

Abstract. An ω-categorical group of finite burden is virtually finite-by-abelian; an ω-
categorical ring of finite burden is virtually finite-by-null; an ω-categorical NTP2 ring is
nilpotent-by-finite.

1. Introduction

A structure M is ω-categorical if its theory has a unique countable model up to isomor-
phism. Basic examples include the pure set, the dense linear order, the random graph, and
vector spaces over a finite field. A fundamental theorem by Ryll-Nardzewski [25] (proven
independently by Svenonius [27] and Engeler [11]) states that a structure is ω-categorical
if and only if in any arity there are only finitely many parameter-free definable sets, up
to equivalence.
There is a long history of study of ω-categorical groups. In the general case, the main

result is Wilson’s classification of characteristically simple ω-categorical groups as either
elementary abelian, certain groups of functions from Cantor space to some finite simple
group, or perfect p-groups (see Fact 8.1); he conjectured that the third possibility is
impossible (but this is still open). While a complete classification of all ω-categorical
groups (and rings) appears out of reach at present, the question seems accessible under
some model-theoretic tameness assumptions, giving rise to the following meta-conjecture
(where a ring is associative, but need not be commutative or have an identity):

Meta-Conjecture. (1) A tame ω-categorical group or ring is virtually nilpotent.
(2) A supertame ω-categorical group is virtually finite-by-abelian; a supertame ω-

categorical ring is virtually finite-by-null.

(Recall that a group/ring is virtually P if it has a finite index subgroup/-ring which is
P ; it is finite-by-P if it has a finite normal subgroup/ideal I such that it is P modulo I;
and a ring is null if multiplication is trivial: a · b = 0 for all a, b.) Of course, one has to
specify the precise meaning of tame.
We shall prove a general theorem about ω-categorical bilinear quasi-forms of finite bur-

den, and deduce Conjecture (2) in the finite burden case; moreover, we show (1) for rings
with NTP2. Here, NTP2 is a combinatorially defined very general model-theoretic tame-
ness condition currently under intense investigation in neostability theory, and burden,
also called inp-rank, is a cardinal-valued rank well defined (i.e. not assuming value ∞)
precisely on the class of NTP2 theories, thus providing a hierarchy inside of this class (see
Definition 2.1). The principal examples of structures of burden 1 are real closed fields (and
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2 JAN DOBROWOLSKI AND FRANK O. WAGNER

expansions thereof with (weakly) o-minimal theories), the valued fields of p-adic numbers
for any prime p, valued algebraically closed fields, Presburger arithmetic (Z, 0,+, <), as
well as the random graph (and any other weight one simple theory, by [1, Proposition 8]).
By sub-multiplicativity of burden [8, Theorem 2.5], finite burden structures include all
structures interpretable in inp-minimal ones, e.g. algebraic groups over the fields of real,
complex and p-adic numbers. For more details on burden and related topics see [8] or [1].

History of results. If tame is read as stable, then (1) has been shown for groups by Felgner
[13] and for rings by Baldwin and Rose [5]; (2) has been shown by Baur, Cherlin and
Macintyre [7]; if tame means simple, then the group case of (2) has been shown by Evans
and Wagner [12], and if tame means NSOP (so, in particular, if it means simple), the
group case of (1) has been shown by Macpherson [21]. If tame is taken as dependent, then
(1) has been shown by Krupiński [20], assuming in addition finitely satisfiable generics
for the group case. Moreover, building on work of Baginski [4], Krupiński proves that the
versions of (2) for nilpotent groups and for rings are equivalent [19] (in fact he does not
explicitly cover the case with finite normal subgroups/ideals, but his proof adapts), and
the group version of (1) implies that for rings. In particular, (1) also holds for NSOP rings.
Finally, Kaplan, Levi and Simon [17] show (1) for dependent groups of burden 1. Note
that extraspecial p-groups [14] yield an example showing that the finite normal subgroup
cannot be avoided in (2), unless one assumes the existence of connected components
(which holds, for instance, in dependent theories [6]).
An earlier version of this paper [10] obtained the same results under the stronger hy-

pothesis of burden 1; virtually the only consequence used was that any two definable
groups are comparable with respect to almost inclusion. For the generalisation to the
finite burden case, we use essentially the same proof; considerable work is being spent to
show that all the relevant groups are still comparable with respect to almost inclusion in
a minimal counterexample of finite burden.
The paper is organized as follows: In Section 2, we recall the definition of burden,

and deduce some algebraic consequences when the burden is finite. In section 3, we
introduce additive relations and the ring of quasi-endomorphisms; in Section 4, we study
the properties of quasi-homomorphisms under the assumption of ω-categoricity. In Section
5, we generalize the notion of a bilinear form using quasi-homomorphisms instead of
homomorphisms, and in Section 6 we define a the notion of a principal subgroup-generic
sequence which generalizes a Morley sequence in a principal generic type. In section 7,
we prove our Main Theorem, Theorem 7.5, about virtual almost triviality of bilinear
quasi-forms. This is applied in Section 8 to obtain the results about groups and rings. In
Section 9, we state some questions and we prove that ω-categorical rings with NTP2 are
virtually nilpotent.
We would like to thank the anonymous referee for his careful reading, and for pointing

out a missing assumption in what is now Lemma 4.2.

2. Burden

Throughout the paper we will work in a monster model of the relevant complete theory
(i.e. a κ̄-saturated, κ̄-homogeneous model, where κ̄ is a sufficiently big cardinal number).
Definability of a set is with parameters, and includes imaginary sets, i.e. definable sets
modulo definable equivalence relations (as we shall want to talk about the quotient of a
definable group by a definable normal subgroup). For the basic notions of model theory,
the reader may want to consult [16], [24] or [28].
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Definition 2.1. (1) Let κ be a cardinal number. An inp-pattern of depth κ in a
partial type π(x) is a sequence 〈ϕi(x, yi) : i < κ〉 of formulas and an array 〈ai,j :
i < κ, j < ω〉 of parameters such that:
(a) For each i < κ, there is some ki < ω such that {ϕi(x, ai,j) : j < ω} is

ki-inconsistent; and
(b) For each η : κ→ ω, the partial type

π(x) ∪ {ϕi(x, ai,η(i)) : i < κ}

is consistent.
(2) The burden (or inp-rank) of a partial type π(x) is the maximal κ such that there

is an inp-pattern of depth κ in π(x), if such a maximum exists. In case there
are inp-patterns of depth λ in π(x) for every cardinal λ < κ but no inp-pattern
of depth κ, we say that the burden of π(x) is κ−. We will denote the burden of
π(x) by bdn(π(x)). By the burden of a type-definable set we mean the burden
of a type defining this set (this, of course, does not depend on the choice of the
type). A theory T is called strong, if the burden of any partial type in finitely
many variables is bounded by (ℵ0)−; it is NTP2 if the burden is bounded by |T |+

(or equivalently, if it is bounded by some cardinal).

Note that the formulas ϕi can be taken parameter-free, as we may incorporate eventual
parameters into the āi,j. Clearly, burden does not depend on the base parameters; if V
and W are type-definable and f : V → W is a definable surjective map, then bdn(W ) ≤
bdn(V ).

Remark 2.2. Suppose k = bdn(π(x)) and l = bdn(ρ(y)) are finite, where x and y are
disjoint. Then bdn(π(x)∪ ρ(y)) ≥ k+ l. In other words, for type-definable sets V and W
of finite burden we have: bdn(V ×W ) ≥ bdn(V ) + bdn(W ).

Proof. This is clear, as the concatenation of an inp-pattern in π(x) with an inp-pattern
in ρ(y) is an inp-pattern in π(x) ∪ ρ(y). �

Remark 2.3. Suppose f : V → W is definable and all fibres of f have size at most k,
where k < ω. Then bdn(V ) ≤ bdn(W ).

Proof. Suppose 〈ϕi(v, yi) : i < κ〉 together with 〈aij : i < κ, j < ω〉 form an inp-pattern
in V . We may assume that 〈aij : j < ω〉 are pairwise distinct for any i < κ. Put
ψi(w, y) := (∃v)(ϕi(v, yi)∧f(v) = w) for i < κ. We claim that these form an inp-pattern in
W (with the same parameters). Indeed, for any i < κ, if ℓi is such that {ϕi(v, ai,j) : j < ω}
is ℓi-inconsistent, then by the pigeonhole principle {ψi(w, ai,j) : j < ω} is (ℓi − 1)k + 1
inconsistent. Also, for each η : κ→ ω, if v0 ∈ V satisfies ϕi(v, ai,η(i)) for each i < κ, then
f(v0) ∈ W satisfies ψ(w, ai,η(j)) for each i ∈ κ. �

For the next results we introduce some notation for subgroups H and K of a group G.
We say that H is almost contained in K, denoted H . K, if H ∩K has finite index in H .
If H . K and K . H , the two groups are commensurable, denoted H ∼ K. The almost
centraliser of H is defined as

C̃G(H) = {g ∈ G : H . CH(g)},

and the almost centre of G is Z̃(G) = C̃G(G). Note that if K . H , then C̃G(H) ≤ C̃G(K).
The following fact is a special case of [15, Theorem 2.10]. Recall that the ambient

model should be sufficiently saturated. So we cannot just add predicates for H and K.
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Fact 2.4. If H and K are definable, then H . C̃G(K) if and only if K . C̃G(H).

In particular H . C̃H(C̃G(H)), as clearly C̃G(H) . C̃G(H).
We now turn to the consequences of finite burden we use.

Fact 2.5 ([9, Corollary 2.3]). Let G be an abelian group with NTP2 and 〈Hi : i ∈ I〉 a
family of uniformly definable subgroups. Then there is n such that for all I0 ⊆ I of size
at least n there is i0 ∈ I0 with

⋂
i∈I0\{i0}

Hi . Hi0. In particular, this holds if G has finite
burden.

Thus any irreducible intersection
⋂

i<nHi (meaning that
⋂

j 6=iHj 6. Hi for all i < n)
of uniformly definable groups has its size n bounded as a function of the formula used to
define the Hi.

Lemma 2.6. Let G be an abelian group of finite burden, and 〈Hi : i < n〉 definable
subgroups of G. If the sum

∑
i<nHi is irreducible (meaning that Hi 6.

∑
j 6=iHj for all

i < n), then n ≤ bdn(G).

Proof. Let ϕi(x, y) be the formula x − y ∈
∑

j 6=iHj , and choose 〈ai,j : j < ω〉 to be

representatives in Hi for distinct cosets of Hi ∩
∑

j 6=iHj. Then 〈ϕ(x, ai,j) : j < ω〉 is

2-inconsistent, and consistency of any path σ ∈ ωn is witnessed by
∑

i<n ai,σ(i). So we
obtain an inp-pattern of depth n. �

3. Additive relations and quasi-endomorphisms

We extend the construction of the definable quasi-endomorphisms ring from [7, Section
3.2] to non-connected groups.

Definition 3.1. Let G and H be abelian groups. An additive relation between G and
H is a subgroup R ≤ G × H . We call π1(R), the projection to the first coordinate, the
domain domR and π2(R) the image imR of R; the subgroup {g ∈ G : (g, 0) ∈ R} is the
kernel kerR, and {h ∈ H : (0, h) ∈ R} is the cokernel cokerR. If domR has finite index
in G and cokerR is finite, the additive relation R is a quasi-homomorphism from G to H
(not to be confused with quasi-homomorphism in the sense of metric groups). A quasi-
homomorphism R induces a homomorphism domR → H/cokerR. If G = H we call R a
quasi-endomorphism or endogeny. Particular additive relations are idG = {(g, g) : g ∈ G}
and 0G = G× {0}.

Remark 3.2. Let g ≤ G×H be a quasi-homomorphism. Then |G : ker g| is finite if and
only if im g is finite. More precisely, |G : ker g|+ |coker g| = |G : dom g|+ |im g|.

Proof. Clearly g induces an isomorphism dom g/ ker g ∼= im g/coker g. The result follows.
�

Definition 3.3. • If R ≤ G × H is an additive relation, g ∈ G and K ≤ G, put
R(g) = {h ∈ H : (g, h) ∈ R} and R[K] =

⋃
g∈K R(g).

• If R,R′ ≤ G×H are additive relations, put

R +R′ = {(a, b+ b′) ∈ G×H : (a, b) ∈ R, (a, b′) ∈ R′}.

This is again an additive relation. If moreover R and R′ are quasi-homomorphisms
from G to H , so is R + R′. Note that R + R′ (as additive relations) is different
from the sum when R and R′ are considered as subgroups. Clearly dom (R+R′) =
domR ∩ domR′.
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• We call R,R′ ≤ G × H equivalent, denoted R ≡ R′, if there is a subgroup G1 of
finite index in G and a finite group F ≤ H such that

R + (G1 × F ) = R′ + (G1 × F ).

This is clearly an equivalence relation. Note that it implies G1 ∩ domR = G1 ∩
domR′.

• If R ≤ G×H and R′ ≤ H ×K are additive relations, define a multiplication ◦ by

R′ ◦R = {(a, c) ∈ G×K : ∃b [(a, b) ∈ R and (b, c) ∈ R′]}.

This is again an additive relation between G and K. If R and R′ are quasi-
homomorphisms, so is R′ ◦R. We shall usually just write R′R instead of R′ ◦R.

• For an additive relation R ≤ G×H put

−R = {(g,−h) : (g, h) ∈ R} and R−1 = {(h, g) ∈ H ×G : (g, h) ∈ R}.

Note that −R is again an additive relation between G and H , and R−1 is an
additive relation between H and G.

Remark 3.4. If imR has finite index in H and kerR is finite, then R−1 is a quasi-
homomorphism from H to G. In general,

• R + (−R) = 0domR + (G× cokerR),
• R−1R = iddomR + (G× kerR), and
• RR−1 = idimR + (H × cokerR).

In particular, if cokerR is finite, then R + (−R) ≡ 0domR; if both kerR and cokerR are
finite, then RR−1 ≡ idimR and R−1R ≡ iddomR.

Lemma 3.5. Addition is associative and commutative, multiplication is associative, 0G
and idG are additive and multiplicative identity elements, respectively (for the appropriate
G). Moreover, addition is well-defined modulo equivalence. The distributive laws hold
for quasi-homomorphism modulo equivalence, and multiplication is well-defined modulo
equivalence for quasi-homomorphisms. The collection of (definable) quasi-endomorphisms
forms an associative ring with unit.

Proof. The first two sentences are basically [7, Lemmas 27 and 29] — note that the
product in [7] is defined the opposite way. For the distributive laws, let R,R′ be quasi-
homomorphisms from G to H , and S, S ′ be quasi-homomorphisms from H to K. Let
H0 = domS ∩ domS ′ and G0 = R−1[H0] ∩ R′−1[H0]. Then the indices |G : G0| and
|H : H0| are finite, and R,R

′ restrict to quasi-homomorphisms R̄, R̄′ from G0 to H0 in the
sense of [7] (i.e. defined on all of G0), and S, S

′ restrict to quasi-homomorphisms S̄ and
S̄ ′ from H0 to K in the sense of [7] (i.e. defined on all of H0). By [7, Lemma 31], we have

S̄R̄ + S̄ ′R̄ ≡ (S̄ + S̄ ′)R̄ and S̄R̄ + S̄R̄′ ≡ S̄(R̄ + R̄′),

which implies SR + S ′R ≡ (S + S ′)R and SR+ SR′ ≡ S(R +R′). Thus the distributive
laws hold modulo equivalence. Finally, multiplication is well-defined modulo equivalence
as in [7, Lemma 32]; it follows that (definable) quasi-endomorpisms form an associative
ring with unit. �
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4. Quasi-homomorphisms of ω-categorical groups

Recall that a complete first order theory in a countable language is said to be ω-
categorical if it has only one countable model up to isomorphism, and a structure M is
ω-categorical if Th(M) is. By the Ryll-Nardzewski Theorem, this is equivalent to the
following statement: for every n < ω there are only finitely many complete n-types over
∅. Hence, for any finite set A in an ω-categorical structure M there are only finitely many
definable sets over A, and ω-categorical structures are uniformly locally finite (i.e. there
if a function f : ω → ω such that, for any n ∈ ω, each substructure of M generated by n
elements has at most f(n) elements) [16, Corollary 7.3.2].

Lemma 4.1. Let G and H be abelian groups, and let g ≤ G×H be an additive relation.

(1) If coker g is finite, |H : im g| is finite, and H1 ≤ H has infinite index in H, then
|dom g : g−1[H1]| is infinite.

(2) If ker g is finite, |G : dom g| is finite, and G1 ≤ G has infinite index, then |im g :
g[G1]| is infinite.

(3) If H1 ≤ H, then |dom g : g−1[H1]| ≤ |im g : im g ∩H1|.

Proof. (1) Let 〈hi : i < ω〉 be such that hi−hj /∈ H1+coker g for i 6= j. Since |H : im g|
is finite, we may assume that all gi are in the same coset of img, so without loss
of generality they are all in img. For each i let gi ∈ G be such that hi ∈ g(gi).
If gi − gj ∈ g−1[H1] for i 6= j, then there is h ∈ H1 such that h ∈ g(gi − gj), so
h− (hi−hj) ∈ coker g, a contradiction. Hence all gi are in pairwise distinct cosets
modulo g−1[H1].

(2) Follows from (1) applied to g−1.
(3) If elements 〈gi : i ∈ I〉 are pairwise distinct modulo g−1[H1] elements in dom g,

and hi ∈ g(gi), then the elements 〈hi : i ∈ I〉 are in pairwise distinct cosets
modulo H1. �

Lemma 4.2. Let G and H be definable abelian groups in an ω-categorical structure, and
f, g ≤ G ×H definable additive relations such that ker f and coker g are finite, im g has
finite index in H, and dom f has finite index in G. Then ker g and coker f are finite, imf
has finite index in H and dom g has finite index in G.

Proof. Let A be a finite set over which all the above objects are definable.

Claim. Suppose that H1 < H2 ≤ H are such that H1 has infinite index in H2. Then
f [g−1[H1]] has infinite index in f [g−1[H2]].

Proof. As im g has finite index in H , the index of H1 ∩ im g in H2 ∩ im g is infinite. Now,
g−1[H1] has infinite index in g−1[H2] by Lemma 4.1(1) applied to g ∩ (g−1[H2] × H2),
so f [g−1[H1]] is a subgroup of infinite index in f [g−1[H2]] by Lemma 4.1(2) applied to
f ∩ (g−1[H2]× f [g−1[H2]]). �

Suppose for a contradiction that ker g or coker f is infinite. Put K0 = {0} ≤ H and
define inductively Kn+1 = f [g−1[Kn]]. Then K1 is infinite; by the claim Kn is a subgroup
of infinite index in Kn+1 for all n < ω, contradicting ω-categoricity (as this implies there
are infinitely many disjoint definable sets 〈Kn+1 \Kn : n < ω〉 over A in H).
Now suppose that imf has infinite index in H or dom g has infinite index in G. Put

K0 = H and define as before Kn+1 = f [g−1[Kn]]. Then K1 has infinite index in K0; by
the claim Kn+1 is a subgroup of infinite index in Kn for all n < ω, again contradicting
ω-categoricity. �
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Remark 4.3. Note that commutativity was not used in the proof. An analogous lemma
holds for arbitrary groups, and multiplicative relations (with the obvious definition adapt-
ing Definition 3.1 to non-commutative groups).

Lemma 4.4. Let G and H be abelian groups definable in an ω-categorical structure, and
f, g ≤ G × H definable quasi-homomorphisms. If ker f . ker g and im f . im g, then
im g ∼ imf and ker g ∼ ker f .

Proof. Suppose ker f . ker g and im f . im g. Let f1, g1 ≤ G/(ker f ∩ ker g) × im g be
the additive relations induced by f and g, namely

f1(x+ (ker f ∩ ker g), y) ⇐⇒ f(x′, y) for some/all x′ ∈ x+ (ker f ∩ ker g),

and likewise for g1. Then ker f1 is finite since ker f . ker g, and coker g1 = g[ker f∩ker g] =
coker g is finite, too.
Now imf ∩ img has finite index in imf , so f−1[im g ∩ imf ] has finite index in G by

Lemma 4.1(3); it follows that dom f1 = f−1[im g ∩ imf ]/(ker f ∩ ker g) has finite index
in G/(ker f ∩ ker g). Moreover im g1 = im g. Thus imf1 = imf ∩ im g has finite index
in im g and ker g1 = ker g/(ker f ∩ ker g) is finite by Lemma 4.2. Thus imf ∼ im g and
ker f ∼ ker g. �

Corollary 4.5. Let G and H be abelian groups definable in an ω-categorical theory,
f ≤ G × G a definable quasi-endomorphism of G, and g ≤ G × H a definable quasi-
homomorphism.

(1) ker f is finite if and only if |G : imf | is finite.
(2) If G ≤ H and |H : im g| is finite, then |H : G| and ker g are finite.

Proof. For (1), apply Lemma 4.4 to f and idG for the implication, and to idG and f for the
converse. For (2) consider the inclusion i ≤ G×H . As the assumptions imply im i . im g
we may apply Lemma 4.4 and obtain H . im g ∼ im i = G and ker g ∼ ker i = {0}. �

Lemma 4.6. Let G be an ω-categorical abelian group and f a definable quasi-endomorphism
of G. Then there is n < ω such that G decomposes as an almost direct sum of imf ◦n and
ker f ◦n (i.e. G ∼ imf ◦n + ker f ◦n and imf ◦n ∩ ker f ◦n is finite).

Proof. The f ◦n[G] form a descending chain of subgroups, all definable over the same
finite set of parameters. By ω-categoricity there is some n such that f ◦n[G] = f ◦n+1[G] =
f ◦2n[G]. Consider g ∈ dom f ◦n. There is h ∈ f ◦n[G] such that f ◦n(g) ∩ f ◦n(h) 6= ∅. But
this means g − h ∈ ker f ◦n, so

G . dom f ◦n ≤ imf ◦n + ker f ◦n.

As f ◦n[imf ◦n] = imf ◦2n = imf ◦n, the intersection imf ◦n ∩ ker f ◦n must be finite by
applying Corollary 4.5(2) to imf ◦n ≤ imf ◦n and g = f ◦n. �

5. Bilinear quasi-forms

We shall now introduce a generalization of the notion of a bilinear form. As before,
definability will be with parameters in a monster model.

Definition 5.1. Let G, H and K be abelian groups. A bilinear quasi-form is a partial
function λ : G × H → K such that for every g ∈ G and h ∈ H the partial functions
λg : H → K given by x 7→ λ(g, x) and λ′h : G → K given by λ′h(y) = λ(y, h) are quasi-
homomorphisms with trivial cokernel (i.e. partial homomorphisms defined on a subgroup
of finite index).
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We shall call λ definable if G, H , K and λ are definable.

Remark 5.2. In Definition 5.1 we require λg and λ′h to be quasi-homomorphisms for all
g ∈ G and h ∈ H . An alternative (and more general) definition would only require them
to be quasi-homomorphisms for g and h in some subgroups of finite index in G and H ,
respectively. We shall not need this added generality, though.

Definition 5.3. Let λ : G×H → K be a bilinear quasi-form. For g ∈ G (or h ∈ H) the
annihilator of g (or of h) is the subgroup

annH(g) = {h ∈ H : λ(g, h) = 0} = ker λg ≤ H and

annG(h) = {g ∈ G : λ(g, h) = 0} = ker λ′h ≤ G.

If ḡ is a finite tuple from H and ḡ is a finite tuple from G (we shall write ḡ ∈ G and
h̄ ∈ H even though these are tuples), put

annG(h̄) =
⋂

h∈h̄

annG(h) and annH(ḡ) =
⋂

g∈ḡ

annH(g).

Remark 5.4. Of course the annihilators depend on the bilinear quasi-form; if it is not
obvious from the context, we shall indicate this by a superscript: annλ.

Suppose λ : G×H → K is a bilinear quasi-form. For any g, g′ ∈ G, we shall consider the
additive relation λg,g′ = λ−1

g′ ◦λg ≤ H×H given by {(h, h′) ∈ H×H : λ(g, h) = λ(g′, h′)}.
Clearly ker λg,g′ = annH(g) and coker λg,g′ = annH(g

′).

Lemma 5.5. If annH(g
′) . annH(g) and imλg . imλg′, then λg,g′ induces a quasi-endo-

morphism λ̄g,g′ of H/annH(g
′) given by

λ̄g,g′(x+ annH(g
′), y + annH(g

′)) ⇔ λg,g′(x
′, y) for some x′ ∈ x+ annH(g

′).

Proof. Note first that this does not depend on the choice of y in the coset y + annH(g
′),

as annH(g
′) = coker λg,g′. Second, domλg has finite index in H , so

dom λ̄g,g′ = domλg,g′/annH(g
′) = λ−1

g [imλg ∩ imλg′]/annH(g
′)

has finite index in H/annH(g
′) by Lemma 4.1(3). Third,

coker λ̄g,g′ = {h ∈ H : ∃ h′ ∈ annH(g
′) λ(g, h′) = λ(g′, h)}/annH(g

′)

= λ−1
g′ [λg[annH(g

′)]]/annH(g
′)

is finite, as λg[annH(g
′)] is finite due to annH(g

′) . annH(g). So λ̄g,g′ is indeed a quasi-
endomorphism. �

Definition 5.6. For A ≤ G and B ≤ H put

ãnnH(A) = {h ∈ H : A . annG(h)} and ãnnG(B) = {g ∈ G : B . annH(g)},

the almost annihilators of A and B.

As for the annihilators, the almost annihilators depend on the bilinear quasi-form λ,
which will be indicated as a superscript if needed: ãnnλ.

Remark 5.7. We have

ãnnH(A) = {h ∈ H : λ′h[A] is finite} and ãnnG(B) = {g ∈ G : λg[B] is finite}.

Proof. This follows from Remark 3.2. �
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If A . annG(h) and A . annG(h
′) then A . annG(h) ∩ annG(h

′) ≤ annG(h ± h′); if
B . annH(g) and B . annH(g

′) then B . annH(g) ∩ annH(g
′) ≤ annH(g ± g′). Thus

the almost annihilators are subgroups of G and of H . Moreover, if G, H , λ, A and B
are definable, the almost annihilators are given as a countable increasing union of sets
definable over the same parameters, and will be definable in an ω-categorical theory.
The next proposition is an adaptation of Fact 2.4 to bilinear quasi-forms.

Proposition 5.8. Let λ : G×H → K be a definable bilinear quasi-form, and A ≤ G and
B ≤ H be definable subgroups. Then B . ãnnH(A) if and only if A . ãnnG(B).

Proof. We may assume that G, H , A and B are defined over ∅. Suppose that B 6.
ãnnH(A). Consider a sequence 〈hi : i < ω〉 in B representing different cosets of ãnnH(A).
Then hi − hj /∈ ãnnH(A) for i 6= j, so the index |A : annA(hi − hj)| is infinite. By
Neumann’s Lemma [22] no finite union of cosets of the various annA(hi − hj) can cover
A. By compactness and sufficient saturation of the monster model, there is an infinite
sequence 〈gk : k < ω〉 in A such that λ(gk − gℓ, hi − hj) 6= 0 for all i 6= j and k 6= ℓ. It
follows that |B : annB(gk − gℓ)| is infinite, whence gk − gℓ /∈ ãnnG(B) for all k 6= ℓ. Thus
A 6. ãnnG(B).
The other direction follows by symmetry. �

Definition 5.9. A bilinear quasi-form λ is almost trivial if there is a finite subgroup of
K containing imλ. It is virtually almost trivial if there are finite index subgroups G0 in
G and H0 in H such that the restriction of λ to G0 ×H0 is almost trivial.

Proposition 5.10. Let λ : G × H → K be a definable bilinear quasi-form. Then λ is
almost trivial if and only if there is a finite integer which bounds the indices of annH(g)
and annG(h) in H and G, respectively, for all g ∈ G and h ∈ H.

Proof. Suppose imλ generates a finite group K0. Since λ is a definable bilinear quasi-form,
by compactness there is a finite bound on the indices of domλg in H and of domλ′h in
G. As the indices |domλg : annH(g)| and |domλ′h : annG(h)| are bounded by |K0|, the
implication follows.
Conversely, suppose there is a finite bound ℓ for the indices of annH(g) and annG(h) in

H and in G for all g ∈ G and h ∈ H . Then ℓ bounds the size of λg[H ] and of λ′h[G], for all
g ∈ G and h ∈ H , by Remark 3.2. Note that this implies that 〈imλ〉 has finite exponent,
as nλ(g, h) = λ(g, nh) ∈ λg[H ] for all g ∈ G, h ∈ H and n < ω. So it is enough to show
that imλ is finite.
Consider g ∈ G with λg[H ] maximal, and choose h0, . . . , hn ∈ H with λg[H ] =

{λ(g, hi) : i ≤ n}. Then for g′ ∈ g +
⋂

i≤n annG(hi) we have λ(g′, hi) = λ(g, hi), whence
λg′[H ] ⊇ λg[H ], and λg′[H ] = λg[H ] by maximality. Note that

⋂
i≤n annG(hi) is a sub-

group of boundedly finite index in G (i.e. bounded independently from g). It follows that
there can only be finitely many maximal sets of the form λg[H ] for g ∈ G, and imλ is
finite. �

Corollary 5.11. Let λ : G × H → K be a definable bilinear quasi-form. The following
are equivalent:

(1) G . ãnnG(H).
(2) H . ãnnH(G).
(3) λ is virtually almost trivial.

Moreover, in this case ãnnG(H) and ãnnH(G) are definable.



10 JAN DOBROWOLSKI AND FRANK O. WAGNER

Proof. Conditions (1) and (2) are equivalent by Proposition 5.8.
Suppose (1) and (2) hold. Put An = {g ∈ G : |H : annH(g)| ≤ n}. Then each An is

definable, and ãnnG(H) =
⋃

n<ω An. By compactness and (1), there are n, k < ω such
that there are no k disjoint translates of An by elements in G. Let A =

⋃
i ai + An

be a maximal union of disjoint translates of An by elements of ãnnG(H). So for any
a ∈ ãnnG(H) we have (a + A) ∩ A 6= ∅, whence a ∈ A − A. Thus ãnnG(H) = A − A is
definable; it follows that there is a finite bound on |H : annH(a)| for all a ∈ ãnnG(H),
as otherwise by sufficient saturation we could find a ∈ ãnnG(H) such that |H : annH(a)|
is infinite, a contradiction. By symmetry, the same holds for ãnnH(G). Proposition 5.10
now implies that λ restricted to ãnnG(H) × ãnnH(G) is almost trivial, so λ is virtually
almost trivial.
Conversely, if λ is virtually almost trivial as witnessed by G0 and H0, then annH0

(g)
has finite index in H0 for g ∈ G0, so annH(G) has finite index in H . Thus G0 ≤ ãnnG(H),
whence G . ãnnG(H). Similarly H . ãnnH(G). �

6. Genericity and principality

In the following, cosets could be left or right cosets.

Definition 6.1. Let G be an infinite definable group and A a set of parameters. A
complete type p ∈ SG(A) is subgroup-generic if p is in no definable coset of a subgroup
of infinite index in G which has only finitely many images under automorphisms fixing
A (so it is acleq(A)-definable). A sequence 〈(gi, āi) : i ∈ I〉 is subgroup-generic over A if
tp(gi/A, {gj, āj : j < i}) is subgroup-generic for all i ∈ I.

Remark 6.2. As a left coset of a subgroup H of finite index is a right coset of a conjugate
of H , it is sufficient to verify subgroup-genericity for left or for right cosets. Thus, if
tp(g/A) is subgroup-generic, so are tp(g−1/A), as well as tp(hg/A) and tp(gh/A) for any
h ∈ acl(A) ∩G.

Note that by Neumann’s Lemma [22] the group G is not in the ideal of definable sets
covered by finitely many cosets of definable subgroups of G of infinite index. By a standard
construction (as, for example, in [18, Fact 2.1.3]), G has a subgroup-generic complete
type over any set of parameters. By Ramsey’s Theorem and compactness, indiscernible
subgroup-generic sequences of any order type exist.
Recall that if G is a type-definable group over some parameters A, the A-connected

component G0
A is the intersection of all relatively type-definable subgroups of finite index

in G. If G0
A does not depend on A (for instance in a dependent theory [6]), it is just called

the connected component G0 of G. The following notion provides a useful replacement
for principal generic types in a context where connected components need not exist.

Definition 6.3. Let G be an infinite definable group and A a set of parameters. An
A-indiscernible sequence 〈(gi, āi) : i ∈ I〉 with gi ∈ G for all i ∈ I is principal indiscernible
if for any i ∈ I and Ai = A ∪ {gj, āj : j 6= i}, whenever C is an Ai-definable coset of
some subgroup H and gi ∈ C, then gi ∈ H0

Ai
. The sequence is principal subgroup-generic

if moreover tp(gi/A, {gj, āj : j < i}) is subgroup-generic for all i ∈ I.

Note that if C is a left coset, then H = C−1C; if C is a right coset, H = CC−1. In
either case H is Ai-definable.

Proposition 6.4. Principal subgroup-generic sequences exist. More precisely, let ǫ > 0
be infinitesimal, let 〈(gi, āi) : i ∈ Q ∪ (Q + ǫ)〉 be an A-indiscernible sequence, and put
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hi = g−1
i+ǫgi. Then 〈(hi, āiāi+ǫ) : i ∈ Q〉 is principal indiscernible over A; if moreover

tp(gi/A, {gj, āj : j < i}) is subgroup-generic for all i, then 〈(hi, āiāi+ǫ) : i ∈ Q〉 is
principal subgroup-generic over A.

It follows by compactness and indiscernibility that there are principal subgroup-generic
sequences of any order-type.

Proof. Let C be an (A ∪ {āj āj+ǫ : j 6= i})-definable coset of some subgroup H , such
that hi ∈ C. Choose a finite set J ⊂ Q \ {i} such that C is definable over AJ =
A ∪ {gj, gj+ǫ, āj , āj+ǫ : j ∈ J}; take m < i < M in Q with ]m,M [∩ J = ∅ and put
I = ]m,M [∩ (Q ∪ (Q + ǫ)). Let H0 be an AJ -definable subgroup of finite index in H .
Since hi = g−1

i+ǫgi ∈ C we have g−1
k gj ∈ C for all j < k in I by indiscernibility of 〈gj : j ∈ I〉

over AJ . By Ramsey’s Theorem there is an infinite set of indices I ′ ⊆ I such that all
g−1
k gj with j < k in I ′ are in the same coset C0 modulo H0. Choose j < k < ℓ in I ′ for
left cosets, and ℓ < j < k in I ′ for right cosets. Then

g−1
k gj = g−1

k gℓg
−1
ℓ gj = (g−1

ℓ gk)
−1g−1

ℓ gj ∈ C−1
0 C0 = H0 for left cosets

= g−1
k gℓ (g

−1
j gℓ)

−1 ∈ C0C
−1
0 = H0 for right cosets.

By indiscernibility again g−1
k gj ∈ H0 for all j < k in I. In particular hi = g−1

i+ǫgi ∈ H0.
As this is true for all finite J ⊂ Q \ {i} and all AJ -definable subgroups H0 of H of finite
index, and since Ai ⊆ dcl(AJ : J ⊂ Q \ {i} finite), we get hi ∈ H0

Ai
.

Moreover, if tp(gi+ǫ/A, {gj, āj : j ≤ i}) is subgroup-generic, so are tp(g−1
i+ǫ/A, {gj, āj :

j ≤ i}) and tp(g−1
i+ǫgi/A, {gj, āj : j ≤ i}). Thus tp(hi/A, {gj, āj : j ≤ i}) is subgroup-

generic, and 〈(hi, āiāi+ǫ) : i ∈ Q〉 is subgroup-generic over A. �

Remark 6.5. Definitions 6.1 and 6.3 as well as Proposition 6.4 could also have been
formulated using the A-type-definable connected component H00

A or the A-invariant con-
nected component H000

A instead of H0
A, with similar proofs but using a more highly sat-

urated dense linear order instead of Q, and the Erdős-Rado theorem instead of Ramsey.
As we work in the ω-categorical context, we do not need this added generality.

7. Virtual almost triviality

In this section, we shall consider an ∅-definable bilinear quasi-form λ : G × H → K
in an ω-categorical theory. Clearly, if A ≤ G, B ≤ H and C ≤ K are definable, then
the restriction of λ to A× B composed with the quotient map K → K/C is a definable
bilinear quasi-form A× B → K/C.

Definition 7.1. The reduced burden of G and of H with respect to λ is

rbdnλ(G) = sup
h̄∈H finite

bdn(G/annG(h̄)) and rbdnλ(H) = sup
ḡ∈G finite

bdn(H/annH(ḡ)).

We define the burden of λ to be bdn(λ) = rbdnλ(G) + rbdnλ(H) + bdn(K).

Definition 7.2. A definable bilinear quasi-form λ̄ : A × B → D/C is induced from λ if
A ≤ G, B ≤ H and C ≤ D ≤ K are definable subgroups such that the map λ̄, obtained
by composing the restriction of λ to (A×B)∩ λ−1[D] with the quotient map D → D/C,
is still a bilinear quasi-form.

Remark 7.3. λ̄ is an induced bilinear form if λa[B] . D for all a ∈ A and λ′b[A] . D for
all b ∈ B.
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Lemma 7.4. If λ̄ : A × B → D/C is induced from λ, then rbdnλ̄(A) ≤ rbdnλ(G),
rbdnλ̄(B) ≤ rbdnλ(H) and bdn(D/C) ≤ bdn(K).

Proof. This is immediate for bdn(D/C); moreover

rbdnλ(G) = sup
h̄∈H finite

bdn(G/annG(h̄)) ≥ sup
h̄∈B finite

bdn(G/annG(h̄))

≥ sup
h̄∈B finite

bdn(A/annA(h̄)) = rbdnλ̄(A) ,

similarly rbdnλ(H) ≥ rbdnλ̄(B). �

The aim of this section is to prove:

Theorem 7.5. Let λ : G × H → K be a bilinear quasi-form of finite burden definable
in an ω-categorical theory. Then λ is virtually almost trivial. If G and H are connected,
then λ is trivial.

The following preliminary lemmas are trivially true if λ itself is virtually almost trivial.
Of course they hold for any dense linear order as index set; we chose Q for convenience.

Lemma 7.6. Suppose bdn(λ) is finite, and any induced bilinear quasi-form of strictly
smaller burden is virtually almost trivial. Let 〈yi : i ∈ Q〉 be a principal indiscernible
sequence in G over ∅. Then imλyi and imλyj are .-comparable for all i < j, as are
annH(yi) and annH(yj).

Proof. By Lemma 2.6 there is a minimal 1 ≤ ℓ ≤ bdn(K) such that the sum
∑ℓ

i=0 imλyi
is reducible (in the sense of Lemma 2.6). Note that if ℓ = 1 we are done. In any case
there is i0 ≤ ℓ such that with I = {0, 1, . . . , ℓ} \ {i0} we have

imλyi0 .
∑

i∈I

imλyi =: C.

Consider induced bilinear quasi-form λ̄ : G×H → K/C, and put

A = {g ∈ G : imλg . C} = {g ∈ G : λ̄g[H ] . {0̄}} = ãnnλ̄
G(H) and

B = {h ∈ H : λ′h[A] . C} = {h ∈ H : λ̄′h[A] . {0̄}} = ãnnλ̄
H(A).

They are {yj : j ∈ I}-definable by ω-categoricity, and H . B by Lemma 5.8. Thus B has
finite index in H .
By definition of A and B we have λg[B] ≤ λg[H ] . C and λ′h[A] . C for all g ∈ A and

h ∈ B, so B . λ−1
g [C] and A . λ′−1

h [C] by Lemma 4.1(3) applied to the additive relations
λg ↾B and λ′h ↾A. Hence the restriction λ : A×B → C is an induced {yj : j ∈ I}-definable
bilinear quasi-form, as is

λi : A× B → C/imλyi

for every i ∈ I.
By irreducibility of the sum

∑
j∈I imλyj , the quotient imλyi/(imλyi ∩

∑
j∈I,j 6=i imλyj ) is

infinite for all i ∈ I. Hence, as

(imλyi/(imλyi ∩
∑

j∈I,j 6=i

imλyj))× (
∑

j∈I,j 6=i

imλyj/(imλyi ∩
∑

j∈I,j 6=i

imλyj ))
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embeds definably into C/(imλyi ∩
∑

j∈I,j 6=i imλyj), Remark 2.2 implies the following strict
inequality:

bdn(C/imλi) = bdn(
∑

j∈I,j 6=i

imλyj/(imλyi ∩
∑

j∈I,j 6=i

imλyj))

< bdn(C/(imλyi ∩
∑

j∈I,j 6=i

imλyj )) ≤ bdn(K).

Thus bdn(λi) < bdn(λ) by Lemma 7.4, so λi is virtually almost trivial by assumption.

By Corollary 5.11 the almost annihilator ãnnλi

A (B) of B with respect to the quasi-form λi
is an {yj : j ∈ I}-definable subgroup of A of finite index. Now imλyi0 . C by choice of
i0, so yi0 ∈ A by definition of A and

yi0 ∈ A0
{yj :j∈I}

≤ ãnnλi

A (B)

by principal indiscernibility. Thus λyi0 [B] . imλyi; as B has finite index in H we also
have imλyi0 . imλyi. By indiscernibilty, imλyj and imλyi are .-comparable for all i 6= j.

For the second assertion, Lemma 2.5 yields a minimal ℓ ≥ 1 such that the intersection⋂ℓ
i=0 annH(yi) is reducible (and again we are done if ℓ = 1). So there is i0 ≤ ℓ such that

B :=
⋂

i∈I

annH(yi) . annH(yi0),

where I = {0, 1, . . . , ℓ} \ {i0}. By ω-categoricity, the subgroup

A := {g ∈ G : B . annH(g)}

is {yj : j ∈ I}-definable. For every i ∈ I consider the restricted bilinear quasi-form
λi : A × annH(yi) → K. Note that for any finite ḡ ∈ A we have B . annH(ḡ), so by
Remark 2.3

rbdnλi
(annH(yi)) = sup

ḡ∈A finite
bdn(annH(yi)/annannH (yi)(ḡ)) ≤ bdn(annH(yi)/B)

< bdn(annH(yi)/B) + bdn(
⋂

j∈I,j 6=i

annH(yj))/B)

≤ bdn((annH(yi) +
⋂

j∈I,j 6=i

annH(yj))/B)

≤ bdn(H/B) = bdn(H/ann(yi : i ∈ I) ≤ rbdnλ(H),

where the strict inequality holds as (
⋂

j∈I,j 6=i annH(yj))/B is infinite by minimality of ℓ,
and the second weak inequality follows from Remark 2.2.
Thus bdn(λi) < bdn(λ); by assumption λi is virtually almost trivial. By Corollary 5.11

the almost annihilator ãnnλi

A (annH(yi)) is a subgroup of A of finite index definable over
{yj : j ∈ I}. Since yi0 ∈ A by definition of A and B, we have

yi0 ∈ A0
{yj :j∈I}

≤ ãnnλi

A (annH(yi))

by principal indiscernibility, whence annH(yi) . annH(yi0). By indiscernibility annH(yj)
and annH(yi) are .-comparable for all i 6= j. �

Lemma 7.7. Suppose bdn(λ) is finite, and any induced bilinear quasi-form of strictly
smaller burden is virtually almost trivial. Let 〈yi : i ∈ Q〉 be a principal indiscernible
sequence in G over ∅ such that tp(yi) is subgroup-generic. Then, for any j ∈ Q, any
definable quasi-endomorphism f of H/annH(yj) is invertible or nilpotent.



14 JAN DOBROWOLSKI AND FRANK O. WAGNER

Proof. By Lemma 4.6, we have an almost direct decomposition H/annH(yj) ∼ imf ◦n +
ker f ◦n for some n < ω. Put A = {g ∈ G : annH(yj) . annH(g)}, a definable subgroup by
ω-categoricity, and let B1, B2 ≤ H be the preimages of imf ◦n and ker f ◦n, respectively,
under the quotient map H → H/annH(yj). Then annH(yj) has finite index in B1 ∩ B2,
so annH(yj) = annBi

(yj).
If f were neither invertible nor nilpotent, then both summands are infinite. For i = 1, 2

consider the restriction λi of λ to A×Bi, again a bilinear quasi-form. By the definition of
A we have annH(yj) . annH(ḡ) for all finite ḡ ∈ A, so by Remarks 2.3 and 2.2 we obtain

rbdnλi
(Bi) = sup

ḡ∈A finite
bdn(Bi/annBi

(ḡ)) ≤ bdn(Bi/annBi
(yj)) = bdn(Bi/(B1 ∩ B2))

< bdn((B1 +B2)/(B1 ∩B2)) = bdn(H/annH(yj)) ≤ rbdnλ(H).

Thus bdn(λ1), bdn(λ2) < bdn(λ); by assumption λ1 and λ2 are almost trivial, and so
is the restriction

λ′ : A×H = A× (B1 +B2) → K.

By Lemma 7.6 we have yi ∈ A either for i < j or for i > j, so yi ∈ A0
yj

≤ ãnnA(H) ≤

ãnnG(H) by principal indiscernibility. By indiscernibility yj ∈ ãnnG(H), so H/annH(yj)
is finite, and any quasi-endomorphism of it is equivalent to zero. �

Proof of Theorem 7.5. Let λ : G × H → K be a counter-example with bdn(λ) mini-
mal possible. Adding finitely many parameters to the language, we may assume that
everything is ∅-definable. Let ǫ > 0 be infinitesimal, let 〈(xi, x

′
i) : i ∈ Q∪(Q+ǫ)〉 be an ∅-

indiscernible subgroup-generic sequence in G×H , and put yi = xi−xi+ǫ and y
′
i = x′i−x

′
i+ǫ.

Then 〈(yi, y
′
i) : i ∈ I〉 is principal indiscernible over {yi, y

′
i : i ∈ Q \ I} for any interval

I ⊆ Q by Proposition 6.4 (in G for the first coordinate, in H for the second one).

Claim 1. For i < j we have annH(yj) . annH(yi), and if B ≤ H is definable over
{yk, y

′
k : k /∈ [i, j]}, then λyi[B] . λyj [B]. In particular imλyi . imλyj .

Proof of Claim. By ω-categoricity ãnnH(G) is definable, and the index |G : annG(h)|
takes only finitely many finite values; let n be the maximal one. Choose h realizing a
subgroup-generic type for the group ãnnH(G) over x0, . . . , xn. Then xi − xj ∈ annG(h)
for some 0 ≤ i < j ≤ n, whence h ∈ annH(xi − xj). By subgroup-genericity of h over
x0, . . . , xn, the group annH(xi−xj)∩ ãnnH(G) must have a finite index in ãnnH(G). Thus
ãnnH(G) . annH(xi − xj); by indiscernibility ãnnH(G) . annH(x0 − xǫ) = annH(y0).
Suppose annH(y0) . annH(y1). Then y1 ∈ ãnnG(annH(y0)); as y1 is subgroup-generic

over y0 we have G . ãnnG(annH(y0)). By Proposition 5.8 we obtain annH(y0) . ãnnH(G).
It follows that annH(yi) ∼ ãnnH(G) for all i ∈ ω, and annH(y1) ∼ annH(y0).
If annH(y0) 6. annH(y1), then annH(y1) . annH(y0) by Lemma 7.6. In either case

annH(yj) . annH(yi) for all i < j by indiscernibility.
For the second assertion, let J ⊂ Q \ [i, j] be a finite set such that B is definable

over {yk, y
′
k : k ∈ J}, and I ⊂ Q \ J an open interval containing [i, j]. If λ′ is the

restriction of λ to G × B, then bdn(λ′) ≤ bdn(λ), and the sequence 〈yk : k ∈ I〉 is
principal indiscernible over {yk, y

′
k : k ∈ J}. Hence λyi [B] . λyj [B] or λyj [B] . λyi [B]

by Lemma 7.6 applied to λ′. In the first case we are done; in the second case, since
annB(yj) = annH(yj) ∩ B . annH(yi) ∩ B = annB(yi) by the first part of the claim, we
obtain λyi[B] ∼ λyj [B] by Lemma 4.4, and we are done again. �

Claim 2. If i < j and C ≤ K is definable over {yk, y
′
k : k /∈ [i, j]}, then λ−1

yj
[C] . λ−1

yi
[C].
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Proof of Claim. Let J ⊂ Q \ [i, j] be a finite set such that C is definable over {yk, y
′
k :

k ∈ I}, and I ⊂ Q \ J an open interval containing [i, j]. The induced bilinear quasi-form
λ̄ : G × H → K/C satisfies bdn(λ̄) ≤ bdn(λ), and 〈yk : k ∈ I〉 is principal indiscernible
over {yk, y

′
k : k ∈ J}. As λ−1

y [C] = annλ̄
H(y), Lemma 7.6 yields .-comparability of λ−1

yi
[C]

and λ−1
yj
[C].

If λ−1
yj
[C] . λ−1

yi
[C] we are done. So suppose λ−1

yi
[C] . λ−1

yj
[C]. Then λyi and λyj induce

quasi-homomorphisms from B := λ−1
yi
[C] to C. As annH(yj) . annH(yi) by Claim 1 and

λyj [B] . λyi[B] = C, Lemma 4.4 implies λyj [B] ∼ C. Thus

λ−1
yj
[C] ∼ B + annH(yj) . B + annH(yi) = B = λ−1

yi
[C]. �

We shall now study λyi,yj for i < j. By Claim 1 and Lemma 5.5 it induces a quasi-

endomorphism λ̄yi,yj of H/annH(yj).

Claim 3. For i 6= j we have annH(yi) 6∼ annH(yj).

Proof of Claim. Suppose otherwise, and put H̄ = H/annH(y0). Note that H̄ is infinite: if
annH(y0) had finite index in H , then ãnnG(H) would contain y0 and have finite index in
G by subgroup-genericity of y0, so λ would be virtually almost trivial by Corollary 5.11.
Now by indiscernibility, for all i, j ∈ Q and k < ℓ in Q ∪ (Q+ ǫ) we have

annH(yi) ∼ annH(yj) ∼ annH(xk − xℓ).

By Lemma 4.4, Claim 1, and indiscernibility again,

imλyi ∼ imλyj ∼ imλxk−xℓ
,

so any λxk−xℓ
induces a quasi-isomorphism between H̄ and imλy0 . It follows that for

g, g′, g′′ ∈ {xi − xj : i < j} we have λ̄g,g′′ ≡ λ̄g′,g′′ ◦ λ̄g,g′, and this is a quasi-automorphism
of H̄.
Let R be the ring of definable quasi-endomorphisms of H̄ modulo equivalence. By

Lemma 7.7 any r ∈ R is nilpotent or invertible. It follows that the subset I ⊆ R of
nilpotent definable quasi-endomorphisms (modulo equivalence) of H̄ is an ideal: it is
clearly invariant under left and right multiplication; if f and g are nilpotent but f + g
is not nilpotent, there is invertible h with h(f + g) = hf + hg = id. So hf = id − hg is
nilpotent. But

(id− hg)(id + hg + (hg)2 + (hg)3 + · · · ) = id

(note that the sum is finite, as hg is nilpotent), so hf = id− hg is invertible, a contradic-
tion. Thus R/I is a division ring.
If r̄ is a finite tuple of quasi-endomorphisms definable over a finite set A of parameters,

then by ω-categoricity there are only finitely many A-definable additive relations on H̄2;
it follows that r̄ generates a finite subring of R. Thus R is locally finite, as is R/I; by
Wedderburn’s Little Theorem R/I is a locally finite field.

Let λ̂y,y′ ∈ R be the equivalence class of λ̄y,y′ . By local finiteness and indiscernibility,

λ̂yi,yj + I ∈ R/I has a fixed finite multiplicative order N independent of i < j, and must

be one of the finitely many primitive N th roots of unity. By the pigeonhole principle
and indiscernibility, this root ζ = λ̂yi,yj + I does not depend on i < j. But then ζ2 =

λ̂yj ,yk · λ̂yi,yj = λ̂yi,yk = ζ for i < j < k, whence λ̂yi,yj +I = ζ = idH̄+I. By indiscernibility,

λ̂xi−xj ,xk−xℓ
∈ idH̄ + I for all 0 < i < j < k < ℓ in ω.

Consider
λ̂x1−x3,x2−x3

= λ̂−1
x2−x3,x4−x5

· λ̂x1−x3,x4−x5
∈ idH̄ + I.
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Since λ̂x1−x3,x2−x3
− idH̄ ∈ I is nilpotent, B := im(λx1−x3,x2−x3

− idH) is a definable
subgroup of infinite index in H almost containing annH(y0). Then for all

h ∈ H0
x1,x2,x3

≤ domλx1−x3,x2−x3

there is b ∈ B with h+ b ∈ λx1−x3,x2−x3
(h). Hence λx2−x3

(h+ b) = λx1−x3
(h), that is

λ(x1 − x3, h) = λ(x2 − x3, h+ b) = λ(x2 − x3, h) + λ(x2 − x3, b),

whence

λ(x1 − x2, h) = λ((x1 − x3)− (x2 − x3), h) = λ(x1 − x3, h)− λ(x2 − x3, h) = λ(x2 − x3, b).

But this means that imλx2−x3
∼ imλx1−x2

. λx2−x3
[B]. But B has infinite index in H and

ker λx2−x3
. B, so λx2−x3

[B] has infinite index in λx2−x3
[H ] = imλx2−x3

, a contradiction.
�

Claim 4. For i < j < k < ℓ and B ≤ H definable over {ys, y
′
s : s /∈ [j, k]} we have

λyj ,yℓ[B] . λyk,yℓ[B] and λyi,yk [B] . λyi,yj [B].

Proof of Claim. We have λyj [B] . λyk [B] by Claim 1, whence

λyj ,yℓ [B] = λ−1
yℓ
[λyj [B]] . λ−1

yℓ
[λyk [B]] = λyk,yℓ[B].

Moreover, λyi,yk [B] = λ−1
yk
[λyi [B]] . λ−1

yj
[λyi [B]] = λyi,yj [B] by Claim 2. �

Claim 5. If i < j < k < ℓ and B ≤ H is definable over {ys, y
′
s : s /∈ {i, j} ∪ [k, ℓ]} then

λyi,yj [B] and λyk,yℓ [B] are .-comparable.

Proof of Claim. Suppose λyi,yj [B] 6. λyk,yℓ [B]. Put

A = {g ∈ G : λg[B] . λyk [B]} and B′ = {h ∈ B : λ′h[A] . λyk [B]}.

Then A = ãnnλ̄
G(B) and B′ = ãnnλ̄

B(A), where λ̄ : G × B → K/λyk [B] is the induced
bilinear quasi-form. Then B . B′ by Lemma 5.8, so B′ has finite index in B.
Consider the induced bilinear quasi-form

λ̃ : A× B′ → λyk [B]/(λyk [B] ∩ λyℓλyi,yj [B]).

As λk[B] . λℓ[B] and

annH(yℓ) . annH(yj) ∩ annH(yℓ) ≤ λyi,yj [B] ∩ λyk,yℓ [B]

by Claim 1, we have

bdn(λyk [B]/(λyk [B] ∩ λyℓλyi,yj [B])) = bdn(λyℓλyk,yℓ [B]/(λyℓλyk,yℓ[B] ∩ λyℓλyi,yj [B])

≤ bdn(λyk,yℓ[B]/(λyi,yj [B] ∩ λyk,yℓ[B]))

< bdn((λyi,yj [B] + λyk,yℓ [B])/(λyi,yj [B] ∩ λyk,yℓ[B]))

≤ bdn(H/annH(yℓ)) = bdn(imλyℓ) ≤ bdn(K).

Hence λ̃ is virtually almost trivial by induction. Since yk′ ∈ A0
yi,yj ,yk,yℓ

for all j < k′ < k

such that B is definable over {ys, y
′
s : s /∈ [k′, ℓ] ∪ {i, j}} by Claim 1 and principal

indiscernibility, it follows that

λyk′ [B] . λyℓλyi,yj [B].

Hence λyk′ ,yℓ [B] . λyi,yj [B] + annB(yℓ) . λyi,yj [B], and λyk,yℓ [B] . λyi,yj [B] by indiscerni-
bility. �
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Claim 6. ker λ̄yi,yj and ker λ̄yk,yℓ are .-comparable for all i < j < k < ℓ, where λ̄y,y′ is
the quasi-homomorphism from H to H/annH(yj) induced by λy,y′.

Proof of Claim. We have ker λ̄yi,yj = annH(yi); put B = ker λ̄yk,yℓ = λ−1
yk,yℓ

[annH(yj)] and
suppose annH(yi) 6. B. Let A = {g ∈ G : annH(yi) . annH(g)} and consider the
restricted bilinear quasi-form

λ̄ : A×B → K.

Since annB(yi) . annB(ḡ) for all finite ḡ ∈ A and annH(yk) . B ∩ annH(yi), we have

rbdnλ̄(B) = max
ḡ∈A finite

bdn(B/annB(ḡ)) ≤ bdn(B/annB(yi))

< bdn((B + annH(yi))/(B ∩ annH(yi))) ≤ bdn(H/annH(yk)) ≤ rbdnλ(H).

By induction, λ̄ must be virtually almost trivial. Since ys ∈ A0
yi,yj ,yk,yℓ

for s < i, we have

ker λ̄yk,yℓ = B . annH(ys) for all s < i; the claim now follows from indiscernibility. �

Claim 7. For i < j < k we have λyi,yk ≡ λyj ,yk ◦ λyi,yj .

Proof of Claim. Since coker λg is trivial, λg ◦ λ
−1
g = idimλg

for any g ∈ G by Remark 3.4.
As imλyi . imλyj by Claim 1,

λyj ,yk ◦ λyi,yj = λ−1
yk

◦ λyj ◦ λ
−1
yj

◦ λyi = λ−1
yk

◦ idimλyj
◦ λyi

is a restriction of

λyi,yk = λ−1
yk

◦ λyi = λ−1
yk

◦ idimλyi
◦ λyi

to a subgroup of H of finite index. The claim follows. �

Claim 8. If imλy0,y1 . imλy2,y3 then imλy0,yj . imλ◦nyi,yj for all 0 < i < j and 1 ≤ n < ω.

Proof of Claim. We proceed by induction on n. For n = 1 this is clear, as imλy0,yj .
imλyi,yj by Claim 4. Assume it holds for some n. Choose 0 < k < ℓ < i. Then

imλy0,yj ∼ im(λyi,yj ◦ λy0,yi) = λyi,yj [imλy0,yi] . λyi,yj [imλy0,yk ]

. λyi,yj [imλyℓ,yj ] . λyi,yj [imλ
◦n
yi,yj

] = im(λyi,yj ◦ λ
◦n
yi,yj

) = imλ◦(n+1)
yi,yj

(the first inequality follows by Claim 4, the second inequality follows by the assumption
of the claim, and the last one by the inductive assumption). �

Claim 9. If imλy2,y3 . imλy0,y1 then imλy0,yk . imλ◦nyi,yj for all 0 < i < j < k and
1 ≤ n < ω.

Proof of Claim. The case n = 1 follows from Claim 4, so assume the statement holds
for some n. Choose 0 < i < j < ℓ < m < k. Let λ̄y,y′ be the quasi-homomorphism
from H to H/annH(yj) induced by λy,y′ . By the assumption and indiscernibility we have
imλ̄ym,yk . imλ̄yi,yj . Hence, Claim 6 and Lemma 4.4 imply ker λ̄yi,yj . ker λ̄ym,yk , so the
same holds for the restrictions to B := imλy0,yℓ. But now by Lemma 4.4 and Claim 5 we
have λym,yk [B] . λyi,yj [B]. Then

imλy0,yk ∼ im(λym,yk ◦ λy0,ym) = λym,yk [imλy0,ym ] . λym,yk [imλy0,yℓ]

. λyi,yj [imλy0,yℓ ] . λyi,yj [imλ
◦n
yi,yj

] = im(λyi,yj ◦ λ
◦n
yi,yj

) = imλ◦(n+1)
yi,yj

(last inequality follows by inductive hypothesis and indiscernibility). �

Claim 10. imλyi,yk . annH(yj) for all i, j < k.
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Proof of Claim. By Claim 3, the quasi-endomorphism λ̄yi,yj of H/annH(yj) induced by
λyi,yj is not invertible, so it must be nilpotent by Lemma 7.7. The assertion now follows
from Claims 5, 8 and 9. �

Of course, all of the previous claims also hold with the roles of G and H exchanged.

Claim 11. For any i 6= j we have imλyi . imλ′
y′j

or imλ′yj . imλyi.

Proof of Claim. Suppose imλ′yj 6. imλyi. Put A = {g ∈ G : imλg . imλyi}, and consider
the induced bilinear quasi-form

λ̄ : A×H → imλyi/(imλyi ∩ imλ′y′j).

As

bdn(imλyi/(imλyi ∩ imλ′y′j )) < bdn((imλyi + imλ′y′j )/(imλyi ∩ imλ′y′j )) ≤ bdn(K),

the quasi-form λ̄ must be virtually almost trivial. But yk ∈ A0
yi,y

′

j
for j 6= k < i by Claim 1

and principal indiscernibility. Hence imλyk . imλ′y′j
, a contradiction, as there is j 6= k < i

with yk ≡y′j
yi. �

By Claim 11 and symmetry we may assume that imλ′
y′i
. imλyj for all i < j. Fix i 6= k,

and choose i < j < ℓ and k < ℓ < m with k /∈ {i, j}. Then imλyj ,yℓ . annH(yk) by Claim
10, whence

imλyj . λyℓ [annH(yk)].

Then, as ym ∈ G0
y′i,yj ,yk,yℓ

, we have

λ(ym, y
′
i) ∈ (imλ′y′i)

0
y′i,yj ,yk,yℓ

≤ (imλyj)
0
y′i,yj ,yk,yℓ

≤ λyℓ [annH(yk)].

Moreover, λyℓ [annH(yk)] . λym [annH(yk)] by Claim 1. By principal indiscernibility,

y′i ∈ λ−1
ym
[λyℓ [annH(yk)]]

0
yk,yℓ,ym

≤ λ−1
ym
[λyℓ [annH(yk)]

0
yk,yℓ,ym

] ≤ λ−1
ym
[λym [annH(yk)]].

Thus, by principal indiscernibility,

y′i ∈ (annH(yk) + annH(ym))
0
yk,ym

≤ annH(yk),

and λ(yk, y
′
i) = 0 for all i 6= k. Hence, as 〈(yi, y

′
i) : i ∈ Q〉 is a subgroup-generic sequence,

annG(y
′
0) has finite index in G and annH(y0) has finite index in H . Since (y0, y

′
0) is

subgroup-generic, ãnnH(G) and ãnnG(H) have finite index in H and G respectively. So
λ is virtually almost trivial by Corollary 5.11.
Finally, if G and H are connected, then λ is almost trivial. But then for every g ∈ G

and h ∈ H the annihilators annH(g) and annG(h) have finite index in H and in G, and
must be equal to H and G, respectively, by connectedness. Thus λ is trivial. �

8. On groups and rings

As in the introduction, rings are associative, but need not be commutative or have an
identity element.
Since any characteristic (i.e. invariant under the automorphism group) subgroup of a

countable ω-categorical group is ∅-definable, each countable, ω-categorical group has a
finite series of characteristic subgroups in which all successive quotients are characteris-
tically simple groups (i.e. they do not have non-trivial, proper characteristic subgroups).
On the other hand, Wilson [29] proved (see also [2] for an exposition of the proof):
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Fact 8.1. For each infinite, countable, ω-categorical, characteristically simple group H,
one of the following holds.

(i) For some prime number p, H is an elementary abelian p-group (i.e. an abelian
group, in which every nontrivial element has order p).

(ii) H ∼= B(F ) or H ∼= B−(F ) for some non-abelian, finite, simple group F , where
B(F ) is the group of all continuous functions from the Cantor space C to F , and
B−(F ) is the subgroup of B(F ) consisting of the functions f such that f(x0) = e
for a fixed element x0 ∈ C.

(iii) H is a perfect p-group for some prime number p (perfect means that H equals its
commutator subgroup).

It remains a difficult open question whether there exist infinite, ω-categorical, perfect
p-groups.

Remark 8.2. The groups B(F ) and B−(F ) above have TP2 (in particular, they do not
have finite burden).

Proof. Let f ∈ F be a non-central element, and let 〈Ai : i < ω〉 be pairwise disjoint
clopen sets in C. Let gi ∈ B(F ) be given by gi[Ai] = {f} and gi[C\Ai] = {0} for each
i. Then the centralizers of the gi do not satisfy the conclusion of [9, Theorem 2.4], hence
B(F ) has TP2. The argument for B−(F ) is analogous. �

Fact 8.3 ([23, Theorem 3.1]). There is a finite bound of the size of conjugacy classes in
a group G if and only if the derived subgroup G′ is finite.

This implies in particular that if the almost centre Z̃(G) of a group G is definable (in
an ℵ1-saturated model), then it is finite-by-abelian, as definability plus saturation yields
a finite bound on the index |G : CG(a)| for a ∈ Z̃(G).

Lemma 8.4. If G is a virtually finite-by-abelian group, then Z̃(G) is characteristic, de-
finable, finite-by-abelian and of finite index in G. A virtually finite-by-solvable/nilpotent
group has a characteristic definable solvable/nilpotent subgroup of finite index. A virtually
finite-by-null ring has a definable subring R0 of finite index which is finite-by-null.

Proof. Let G be a virtually finite-by-abelian group, and consider a subgroup H of finite
index whose derived subgroup H ′ is finite. Then, for any g ∈ G,

|G : CG(g)| ≤ |G : H| · |H : CH(g)| ≤ |G : H| · |H ′| =: n.

Put X = {g ∈ G : |G : CG(g)| ≤ n}. Then X is definable, H ⊆ X ⊆ Z̃(G), and if ḡ is

a system of representatives of Z̃(G)/H , then Z̃(G) = ḡ · X . Thus Z̃(G) is definable; if
m = max{|G : CG(g)| : g ∈ ḡ}, then |G : CG(g)| ≤ nm for all g ∈ Z̃(G). Hence Z̃(G)′ is

finite. Clearly Z̃(G) and Z̃(G)′ are characteristic in G.
If G is virtually finite-by-solvable/nilpotent, let H be a finite-by-solvable/nilpotent

subgroup of finite index, and let F ≤ H be a normal finite subgroup of H such that H/F
is solvable/nilpotent. Replacing H by the intersection of its conjugates, which still has
finite index in G, we may assume that H is normal in G.
Suppose that the derived length/nilpotency class of H/F is n. We may then replace F

by the nth derived subgroup H(n), or the nth lower central subgroup Hn, which must be
contained in F , and assume that F is characteristic in H , whence normal in G. Now F
is finite normal in G, so CG(F ) has finite index in G and is still normal in G; moreover
F ∩ CG(F ) is central in CG(F ). It follows that F ∩ CG(F ) ∩H is central in CG(F ) ∩H ,
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so CG(F ) ∩ H is solvable/nilpotent of derived length/nilpotency class n + 1. Thus G
has a normal solvable/nilpotent subgroup of finite index; as the product of two normal
solvable/nilpotent subgroups is still solvable/nilpotent, G has a unique maximal normal
solvable/nilpotent subgroup R of finite index, which must be characteristic. If m is its
derived length/nilpotency class, R is definable by the formula

[. . . [[xG, xG], [xG, xG]], . . . , [[xG, xG], [xG, xG]] . . .] = 1 in the solvable case

[xG, xG, . . . , xG] = 1 in the nilpotent case,

with 2m occurrences of xG in the solvable case and n + 1 in the nilpotent case: clearly,
any x ∈ R satisfies the formula; conversely, any x satisfying the formula generates a
solvable/nilpotent normal subgroup and must be contained in R.
If R is a virtually finite-by-null ring, let S0 be a finite-by-null subring of finite (additive)

index, and I a finite ideal of S0 containing S0 · S0. Then S :=
⋂

s∈S0
{r ∈ R : rs ∈ I}

is an additive subgroup of R containing S0, with S · S0 ⊆ I; it is definable as a finite
conjuction of size at most |R : S| ≤ |R : S0| of formulas xs ∈ I for suitable s ∈ S0. Now
R0 := S ∩

⋂
s∈S{r ∈ R : sr ∈ I} is again a definable additive subgroup of finite index

containing S0. Since R0 · R0 ⊆ I ≤ R0, this is as required. �

Fact 8.5. An atomless boolean algebra is not NTP2.

Proof. Let B be the monster model of the theory of atomless boolean algebras. We can
easily construct a Boolean algebra with elements (ai,j)i,j<ω such that ai,j1 ∧ ai,j2 = 0 for
each i and j1 6= j2, and for any η : ω → ω there is x 6= 0 such that x ≤ ai,η(i) for each i < ω.
As every Boolean algebra embeds in an atomless Boolean algebra, we may find such ai,j
in B. Then putting φi(x, y) = φ(x, y) = (x 6= 0 ∧ x ≤ y), we get that 〈φi(x, y) : i < ω〉
together with parameters (ai,j)i,j<ω is an inp-pattern of depth ℵ0. As we use only the
formula φ in it, by compactness we can obtain an inp-pattern of arbitrarily large depth
in a single variable x. �

We will use the following variant of Proposition 2.5 from [17]. As in our context we
cannot use connected components, we have to modify the proof slightly.

Lemma 8.6. Let C be a class of countable, ω-categorical NTP2 (pure) groups, closed
under taking definable subgroups and quotients by definable normal subgroups. Suppose
that every infinite, characteristically simple group in C is solvable. Then every group in
C is virtually nilpotent.

Proof. Let G ∈ C. If G is finite, there is nothing to show. Otherwise, let us first show
that G is virtually soluble.
Let {1} = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G be a chain of ∅-definable subgroups of G of maximal

length, each normal in its successor. Then every quotient Gi+1/Gi for i < n is char-
acteristically simple, whence either finite or soluble by assumption. By Lemma 8.4, if
Gi is virtually finite-by-soluble, it has a definable characteristic soluble subgroup Si of
finite index. So Si is normal in Gi+1, and Gi+1/Si is virtually finite-by-soluble, whence
virtually soluble by Lemma 8.4. It follows that Gi+1 is virtually soluble. As G1 is finite or
soluble, this shows that Gn is virtually soluble, and has a definable soluble characteristic
subgroup N .
Finally, since N is NTP2, it does not interpret the atomless boolean algebra by Fact

8.5, so by ω-categoricity and [3, Theorem 1.2] it is virtually nilpotent, and so is G. �
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Proposition 8.7. A nilpotent ω-categorical group of finite burden is virtually finite-by-
abelian.

Proof. Let G be a counter-example; we may assume it is nilpotent of minimal class pos-
sible. Then G/Z(G) is virtually finite-by-abelian; as G is not virtually finite-by-abelian,
Z(G) must be infinite. By Lemma 8.4 there is a definable subgroup G0 of finite index and
a finite normal subgroup F/Z(G) of G0/Z(G) such that G0/F is abelian. Clearly we may
assume F = G′

0Z(G), a characteristic finite definable extension of Z(G). As any orbit gF

has finite size ≤ |F : Z(G)| for g ∈ F ≤ G, the derived subgroup F ′ is finite by Fact 8.3;
replacing G by G0/F

′ we may assume that F ′ is trivial. Consider a definable subgroup
G1 of finite index in G such that |G′

1 : G
′
1 ∩ Z(G)| is minimal possible. Further replacing

G by G1, we obtain that |G′ : G′ ∩ Z(G)| = |H ′ : H ′ ∩ Z(G)| for any definable subgroup
H of finite index (†).
As F/Z(G) is finite, CG(F/Z(G)) = {g ∈ G : [g, F ] ⊆ Z(G)} has finite index in G,

and we can replace G by CG(F/Z(G)). Then for any g ∈ G the map x 7→ [g, x]Z(G) is a
definable homomorphism from G to G′/Z(G); its kernel H must have finite index. Then
x 7→ [g, x] is a definable homomorphism from H to Z(G) with abelian image; its kernel
must hence contain H ′Z(G). As H ′Z(G) = G′Z(G) by (†), we see that G′ ≤ CG(g). This
holds for all g ∈ G, so G′ ≤ Z(G).
Now commutation is a definable bilinear form from G/Z(G) to Z(G). By Theorem

7.5 it is virtually almost trivial. But this means that G is virtually finite-by-abelian,
contradicting our assumption. �

Proposition 8.8. An ω-categorical group of finite burden is virtually nilpotent.

Proof. If the proposition does not hold, there is an infinite non-soluble ω-categorical char-
acteristically simple group G by Lemma 8.6; it must be a perfect p-group for some prime
p by Fact 8.1 and Remark 8.2. We choose such a G of minimal possible burden k. Then
every interpretable group of strictly smaller burden is soluble, as its characteristically
simple sections are soluble by minimality of k.
Note that Z̃(G) is characteristic; by ω-categoricity it is definable and there is a finite

bound on the indices |G : CG(g)| for g ∈ Z̃(G). Hence Z̃(G) is finite-by-abelian by Fact
8.3, whence soluble (as it is a p-group). Thus it cannot be the whole of G and must be
trivial. As any finite normal subgroup is contained in Z̃(G), there are no non-trivial finite
normal subgroups, and all non-trivial conjugacy classes are infinite.

Claim 1. The soluble radical R(G) of G is trivial.

Proof of Claim. For 1 6= a ∈ G consider the normal subgroup Aa generated by the con-
jugacy class aG. Then the Aa are infinite, and uniformly definable by ω-categoricity. If
R(G) is non-trivial, we can choose a in the last non-trivial derived subgroup of some
normal soluble subgroup of G. Then Aa is abelian. Let A = {Aa : a ∈ G, Aa abelian}.
This is a definable invariant non-empty collection of uniformly definable abelian normal
subgroups.
For A,B ∈ A the product AB is definable and nilpotent, whence virtually finite-by-

abelian by Proposition 8.7. Then Z̃(AB) has finite index in AB by Lemma 8.4, and

Z̃(AB)′ is finite characteristic in AB, whence finite normal in G, and therefore trivial.
Thus

A . Z̃(AB) ≤ C̃G(AB) ≤ C̃G(B),

whence
B . C̃B(C̃G(B)) ≤ C̃B(A) = C̃B(AB) ≤ Z̃(AB).
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So
C̃A(C̃G(A)) · C̃B(C̃G(B)) ≤ Z̃(AB),

which is abelian. Thus A′ = {C̃A(C̃G(A)) : A ∈ A} is an invariant family of pairwise
commuting abelian groups, and generates a characteristic abelian subgroup, which must
be the whole of G. This contradiction finishes the proof of the claim. �

Suppose every centraliser of a non-trivial element is soluble. Then by compactness (or
ω-categoricity) there is a bound s on the derived length of any proper centraliser. Since
G is a locally finite p-group, every finite subset of G is contained in a centralizer of a
nontrivial element. But then G must be soluble of derived length s, a contradiction.
Hence there is 1 6= n ∈ G such that H := CG(n) is non-soluble. Put N = 〈nG〉, an infinite
normal subgroup, which is definable by ω-categoricity.
Since C̃G(N) ∩ N is normal and finite-by-abelian (by Fact 8.3 and ω-categoricity),

whence soluble, it must be trivial.

Claim 2. C̃G(N) = {1} .

Proof. Suppose C̃G(N) is nontrivial, whence infinite, and bdn(C̃G(N)) > 0. Then

k = bdn(G) ≥ bdn(N) + bdn(C̃G(N)) > bdn(N)

by Remark 2.2. So N is soluble by minimality of k, a contradiction. �

Claim 3. Any definable normal subgroup M of G with M . H is trivial.

Proof. If M . H = CG(n), then n ∈ C̃G(M); by normality of M we get nG ⊆ C̃G(M),

and hence N ≤ C̃G(M). Then M . C̃G(N) = {1} by Fact 2.4. �

Consider a nontrivial definable normal subgroup M of G. Since M ∩H is normalized
by H , we have a definable injection

M/(M ∩H)×H/(M ∩H) → G/(M ∩H)

given by multiplication. As M/M ∩H is infinite by the claim, we conclude that

bdn(H/M ∩H) < bdn(G/(M ∩H)) ≤ bdn(G) = k.

So H/(M ∩ H) is soluble by minimality of k. If M runs through the family M of 1-
generated normal subgroups, the family {H/(M ∩ H) : M ∈ M} is uniformly definable
by ω-categoricity, and by compactness there is d < ω such that H/(M ∩H) has derived
length at most d for all M ∈ M. But this means that H(d) is contained in M for all
M ∈ M, and thus is contained in all nontrivial normal subgroups.
Since H is not soluble, H(d) generates a non-abelian minimal normal subgroup L. But

then L is finite by [2, Theorem D], a contradiction. This completes the proof. �

Theorem 8.9. An ω-categorical group of finite burden is virtually finite-by-abelian.

Proof. This follows immediately from Propositions 8.7 and 8.8. �

Corollary 8.10. An ω-categorical NIP group of finite burden is virtually abelian.

Proof. Let G be an ω-categorical NIP group of finite burden. By Baldwin-Saxl [6], the
connected component G0, i.e. the intersection of all definable subgroups of finite index,
exists and is an intersection of ∅-definable groups. By ω-categoricity it is itself ∅-definable
and has finite index in G, so we may assume that G is connected. Then G is finite-by-
abelian by Remark 8.4. Thus, the centralizer of any element in G has finite index in G,
hence, by connectedness, is equal to G. This means that G is abelian. �
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Theorem 8.11. An ω-categorical ring of finite burden is virtually finite-by-null.

Proof. This is immediate from Theorem 7.5, as multiplication is a definable bilinear map.
�

As in the group case, we get a corollary for NIP rings:

Corollary 8.12. An ω-categorical NIP ring of finite burden is virtually null.

Proof. Let R be such a ring. We may again assume that R is connected (in the sense of
the additive group). Then R is finite-by-null by Remark 8.4. Hence, the left annihilator
of any element in R has finite index in R, and must be equal to R by connectedness. This
shows that R is null. �

9. Questions and concluding remarks

One can ask various questions about generalizations of the above results to more general
contexts, such as strong or NTP2 theories. For example, one can ask:

Question 9.1. Are ω-categorical strong groups
(1) virtually nilpotent-by-finite?
(2) virtually abelian-by-finite?

An analogue of Question 9.1(1) for rings has positive answer by Theorem 9.3 below.
As to the stronger version, we do not know:

Question 9.2. Are ω-categorical strong rings null-by-finite?

The proof below is a modification of the proof of Theorem 2.1 from [20], generalizing
that result from the NIP to the NTP2 context.

Theorem 9.3. Every ω-categorical NTP2 ring is nilpotent-by-finite.

Proof. As in [20], it is enough to show that a semisimple ω-categorical NTP2 ring R is
finite, and we can assume that R is a subring of

∏
i∈I Ri, where each Ri is finite, and

|{Ri : i ∈ I}| < ω. Let πi be the projection onto the i-th coordinate. For i0, . . . , in ∈ I
and r0 ∈ Ri0 , . . . , rn ∈ Rin , we define

Rr0,...,rn
i0,...,in

=

{
r ∈ R :

n∧

j=0

πij (r) = rj

}
.

Suppose for a contradiction that R is infinite. Again as in [20], we get the following claim:

Claim 1. For any N ∈ ω there are pairwise distinct i(0), . . . , i(N − 1) ∈ I and non-
nilpotent elements ri ∈ Ri for i < N such that the sets

Rr0,0...,0
i0,...,iN−1

, R0,r1...,0
i0,...,in

, . . . , R
0,0...,rN−1

i0,...,in

are all non-empty.

Notice that, by ω-categoricity, the principal two-sided ideals RxR for x ∈ R are uni-
formly definable. Hence, by [9, Theorem 2.4] and compactness, we obtain in particular
that in order to contradict NTP2 it is enough to find for any n,m < ω elements b0, . . . , bn−1

such that

(*)
∣∣ ⋂

j∈n\{j0}

RbjR :
⋂

j∈n

RbjR
∣∣ ≥ m
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for any j0 < n (where n = {0, 1, . . . , n − 1}). So fix any n,m < ω, and for N = nm
choose ij and rj as in the claim. Let (ij,k)j<n,j<m be another enumeration of (ij)j<N ,
and let (rj,k)j<n,k<m be the corresponding enumeration of (rj)j<N and (πj,k)j<n,k<m the
corresponding enumeration of (πj)j<N . For any j0 < n, k0 < m let sj0,k0 ∈ R be such that
πj,k(sj0,k0) = 0 for (j, k) 6= (j0, k0) and πj0,k0(sj0,k0) = rj0,k0. Put bj =

∑
j′ 6=j,k<m sj′,k for

all j < n.

Claim 2. |
⋂

j∈n\{j0}
RbjR :

⋂
j∈nRbjR| ≥ m for any j0 < n.

Proof. Fix any j0 < n and put b = b0b1 . . . bj0−1bj0+1bj0+2 . . . bn−1. Notice that for any
r ∈

⋂
j∈nRbjR and k < m we have that πj0,k(r) = 0. On the other hand, for distinct

k1, k2 < m we have that

πj0,k1(sj0,k1b− sj0,k2b) = πj0,k1(sj0,k1b) = πj0,k1(sj0,k1)πj0,k1(b) = rj0,k1r
n−1
j0,k1

= rnj0,k1 6= 0.

Hence the elements
sj0,0b, sj0,1b, . . . , sj0,m−1b ∈

⋂

j∈n\{j0}

RbjR

are in pairwise distinct cosets of
⋂

j∈nRbjR. �

By the claim and (∗) we obtain a contradiction. �
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