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ON ω-CATEGORICAL GROUPS AND RINGS OF FINITE BURDEN

JAN DOBROWOLSKI AND FRANK O. WAGNER

Abstract. An ω-categorical group of finite burden is virtually finite-by-abelian; an ω-
categorical ring of finite burden is virtually finite-by-null; an ω-categorical NTP2 ring is
nilpotent-by-finite.

1. Introduction

The NIP property has recently been one of the most intensely studied subjects in
model theory (see for example [20] for an overview of the subject). Dp-rank is a cardinal-
valued rank well defined (i.e. not assuming value ∞) on the class of NIP theories, thus
providing a hierarchy inside of this class. The simplest in the sense of this hierarchy of
NIP structures are dp-minimal structures, that is, the structures of dp-rank one, which
include the field of real numbers (and its (weakly) o-minimal expansions), the valued
fields of p-adic numbers for any prime p, valued algebraically closed fields, Presburger
arithmetic (Z, 0,+, <), as well as any strongly minimal structure. An analogous rank
for NTP2 structures (a generalization of NIP, including all simple structures) is burden
(called also inp-rank). In fact, both ranks coincide as long as the dp-rank is well-defined,
i.e. under the NIP hypothesis. An example of an inp-minimal (i.e. burden one) structure
which is not dp-minimal is the random graph (and any other weight one simple theory,
by [1, Proposition 8]). By sub-multiplicativity of burden [6, Theorem 2.5], finite burden
structures include all structures interpretable in inp-minimal ones, e.g. algebraic groups
over the fields of real, complex and p-adic numbers. For more details on burden and
related topics see [6] or [1].
There is a long history of study of ω-categorical groups. In the general case, the main

result is the theorem of Wilson on characteristically simple ω-categorical groups (Fact
7.1). It is a hard open problem whether the possibility (iii) from that theorem can be
eliminated. A positive answer would yield a complete classification of characteristically
simple ω-categorical groups, but a complete classification of all ω-categorical groups (and
rings) seems to be out of reach at present. Yet the situation is clear under some model-
theoretic assumptions:

Fact 1.1 ([4]). Every ω-categorical superstable group is abelian-by-finite.

Fact 1.2 ([4]). Every ω-categorical superstable ring is null-by-finite (i.e. it has a null ideal
of finite index).

Fact 1.3 ([10]). Every ω-categorical supersimple group is virtually finite-by-abelian
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Extraspecial p-groups yield an example showing that the finite normal subgroup cannot
be avoided in the last fact ([11]). Many variants of these now-classical results have been
proven. In [16], it was shown that ω-categorical NIP rings are nilpotent-by-finite (we
generalize this to NTP2 setting in Theorem 8.3), and it was conjectured that ω-categorical
groups are nilpotent-by-finite as well. The latter conjecture remains open, yet a special
case of it was obtained in [14]: dp-minimal ω-categorical groups are virtually nilpotent.
It was asked in [14, Problem 2.18] whether they are actually virtually abelian-by-finite.
In this paper we answer the question affirmatively more generally for groups of finite
burden (Theorem 7.8 and Corollary 7.9). This also solves [14, Problem 2.21] in this
higher generality. To get the result, we prove that ω-categorical bilinear quasi-forms of
finite burden are virtually almost trivial, and, as a by-product, we obtain analogous results
for rings (Theorem 7.10, Corollary 7.11).
An earlier version of this paper [9] obtained the same results under the stronger hy-

pothesis of inp-minimality; virtually the only consequence of inp-minimality used was
that any two definable groups are comparable with respect to almost inclusion. For the
generalisation to the finite burden case, we use essentially the same proof; considerable
work is being spent to show that all the relevant groups are still comparable with respect
to almost inclusion in a minimal counterexample of finite burden.
The paper is organized as follows: In Section 2, we recall the definition of burden,

and deduce some algebraic consequences when the burden is finite. In section 3, we
introduce additive relations and the ring of quasi-endomorphisms; in Section 4, we study
the properties of quasi-homomorphisms under the assumption of ω-categoricity. In Section
5, we generalize the notion of a bilinear form using quasi-homomorphisms instead of
homomorphisms. In section 6, we prove our Main Theorem, Theorem 6.2, about virtual
almost triviality of bilinear quasi-forms. This is applied in Section 7 to obtain the results
about groups and rings. In Section 8, we state some questions and we prove that ω-
categorical rings with NTP2 are virtually nilpotent.
We should like to thank the anonymous referee for his careful reading, and for pointing

out a missing assumption in what is now Lemma 4.2.

2. Burden

Throughout the paper we will work in a monster model of the relevant complete theory
(i.e. a κ̄-saturated, κ̄-homogeneous model, where κ̄ is a sufficiently big cardinal number).

Definition 2.1. (1) Let κ be a cardinal number. An inp-pattern of depth κ in a
partial type π(x) is a sequence 〈ϕi(x; yi) : i < κ〉 of formulas and an array 〈ai,j :
i < κ, j < ω〉 of parameters (from some model of T ) such that:
(a) For each i < κ, there is some ki < ω such that {ϕi(x; ai,j) : j < ω} is

ki-inconsistent; and
(b) For each η : κ→ ω, the partial type

π(x) ∪ {ϕi(x; ai,η(i)) : i < κ}

is consistent.
(2) The burden (or inp-rank) of a partial type π(x) is the maximal κ such that there

is an inp-pattern of depth κ in π(x), if such a maximum exists. In case there are
inp-patterns of depth λ in π(x) for every cardinal λ < κ but no inp-pattern of
depth κ, we say that the inp-rank of π(x) is κ−. We will denote the burden of
π(x) by bdn(π(x)). By the burden of a type-definable set we mean the burden of
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a type defining this set. A theory T is called strong, if burden of any partial type
in finitely many variables is bounded by (ℵ0)−.

Remark 2.2. Suppose k = bdn(π(x)) and l = bdn(ρ(y)) are finite, where x and y are
disjoint. Then bdn(π(x)∪ ρ(y)) ≥ k+ l. In other words, for type-definable sets V and W
of finite burden we have: bdn(V ×W ) ≥ bdn(V ) + bdn(W ).

Proof. This is clear, as the concatenation of an inp-pattern in π(x) with an inp-pattern
in ρ(y) is an inp-pattern in π(x) ∪ ρ(y). �

Remark 2.3. Suppose f : V → W is definable and all fibres of f have size at most k,
where k < ω. Then bdn(V ) ≤ bdn(W ).

Proof. Suppose 〈ϕi(v; yi) : i < κ〉 together with 〈aij : i < κ, j < ω〉 form an inp-pattern
in V . We claim that 〈ψi(w, y) := (∃v)(ϕi(v; yi) ∧ f(v) = w), i < κ〉 together with 〈aij :
i < κ, j < ω〉 form an inp-pattern in W . Indeed, for any i < κ, if li is such that
{ϕi(v, ai,j) : j < ω} is li-inconsistent, then, by the pigeonhole principle, {ψi(w, ai,j) : j <
ω} is (k − 1)li + 1 inconsistent. Also, for each η : κ → ω, if v0 ∈ V satisfies ϕi(v, ai,η(i))
for each i < κ, then f(v0) ∈ W satisfies ψ(w, ai,η(j)) for each i ∈ κ. �

For the next lemma we introduce some notation for subgroups H and K of a group G.
We say that H is almost contained in K, denoted H . K, if H ∩K has finite index in H .
If H . K and K . H , the two groups are commensurable, denoted H ∼ K. The almost
centraliser of H is defined as

C̃G(H) = {g ∈ G : H . CH(g)},

and the almost centre of G is C̃G(G).

Theorem 2.4 ([12, Theorem 2.10]). If H and K are definable, then H . C̃G(K) iff

K . C̃G(H).

The following lemma is a special case of well-known facts (Proposition 3.3 from [8] and
Proposition 4.5 from [7]); we give a brief proof for convenience. It is the only consequence
of finiteness of burden we shall use.

Lemma 2.5. Let G be an abelian group of finite burden, and (Hi : i < n) definable
subgroups of G. If the sum

∑
i<nHi is irreducible (meaning that Hi 6.

∑
j 6=iHj for all

i < n), then n ≤ bdn(G). Similarly, if the intersection
⋂

i<nHi is irreducible (meaning
that

⋂
j 6=iHj 6. Hi for all i < n), then n ≤ bdn(G).

Proof. For the first assertion, let φi(x, y) be the formula x − y ∈
∑

j 6=iHj, and choose
(ai,j : j < ω) to be representatives in Hi for cosets of

∑
j 6=iHj.

For the second assertion, let φi(x, y) be the formula x−y ∈ Hi, and choose (ai,j : j < ω)
to be representatives in

⋂
j 6=iHj for cosets of Hi.

In either case we obtain an inp-pattern of depth n. �

3. Additive relations and quasi-endomorphisms

We slightly modify the construction of the definable quasi-endomorphisms ring from [4]
in order to be able to apply it to non-connected definable groups.

Definition 3.1. Let G and H be abelian groups. An additive relation between G and
H is a subgroup R ≤ G × H . We call π1(R), the projection to the first coordinate, the
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domain domR and π2(R) the image imR of R; the subgroup {g ∈ G : (g, 0) ∈ R} is
the kernel kerR, and {h ∈ H : (0, h) ∈ R} is the cokernel cokerR. If domR has finite
index in G and cokerR is finite, the additive relation R is a quasi-homomorphism from
G to H (not to be confused with quasi-homomorphism in the sense of metric groups). A
quasi-homomorphism R induces a homomorphism domR → H/cokerR. If G = H we
call R a quasi-endomorphism. Particular additive relations are idG = {(g, g) : g ∈ G} and
0G = G× {0}.

Definition 3.2. • If R ≤ G × H is an additive relation, g ∈ G and K ≤ G, put
R(g) = {h ∈ H : (g, h) ∈ R} and R[K] =

⋃
g∈K R(g).

• If R,R′ ≤ G×H are additive relations, put

R +R′ = {(a, b+ b′) ∈ G×H : (a, b) ∈ R, (a, b′) ∈ R′}.

This is again an additive relation. If moreover R and R′ are quasi-homomorphisms
from G to H , so is R + R′. Note that R + R′ (as additive relations) is different
from the sum when R and R′ are considered as subgroups.

• We call R,R′ ≤ G × H equivalent, denoted R ≡ R′, if there is a subgroup G1 of
finite index in G and a finite group F ≤ H such that

(R ∩ (G1 ×H)) + (G× F ) = (R′ ∩ (G1 ×H)) + (G× F ).

This is clearly an equivalence relation.
• If R ≤ G×H and R′ ≤ H ×K are additive relations, put

R′ ◦R = {(a, c) ∈ G×K : ∃b [(a, b) ∈ R and (b, c) ∈ R′]}.

This is again an additive relation between G and K. If R and R′ are quasi-
homomorphisms, so is R′ ◦ R. We denote the n-fold composition of R with itself
by R◦n.

• For an additive relation R ≤ G×H put

R−1 = {(h, g) ∈ H ×G : (g, h) ∈ R}.

Note that this is also an additive relation between H and G.

Remark 3.3. Note that

R−1 ◦R = iddomR + (domR × kerR) and R ◦R−1 = idimR + (imR× cokerR).

If imR has finite index in H and kerR is finite, then R−1 is a quasi-homomorphism from
H to G. If moreover R is a quasi-homomorphism, then R◦R−1 ≡ idH and R−1 ◦R ≡ idG.

Lemma 3.4. Let G be an abelian group. The sum, difference and product of definable
quasi-endomorphisms of G is again a definable quasi-endomorphism. The set of definable
quasi-endomorphisms of G modulo equivalence forms an associative ring.

Proof. As in [4], taking subgroups of finite index where needed. �

4. Quasi-homomorphisms of ω-categorical groups

Recall that a complete first order theory in a countable language is said to be ω-
categorical if it has only one countable model up to isomorphism, and a structure M is
ω-categorical if Th(M) is. By the Ryll-Nardzewski Theorem, this is equivalent to the
following statement: for every n < ω there are only finitely many complete n-types over
∅. Hence, for any finite set A in an ω-categorical structure M there are only finitely many
definable sets over A, and ω-categorical structures are uniformly locally finite (i.e. there
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if a function f : ω → ω such that, for any n ∈ ω, each substructure of M generated by n
elements has at most f(n) elements).

Lemma 4.1. Let G and H be abelian groups, and let g ≤ G×H be an additive relation.

(1) If coker(g) is finite, |H : im(g)| is finite, and H1 ≤ H has infinite index in H,
then |G : g−1[H1]| is infinite.

(2) If ker(g) is finite, |G : dom(g)| is finite, and G1 ≤ G has infinite index, then
|H : g[G1]| is infinite.

(3) If H1 ≤ H, then |dom(g) : g−1[H1]| ≤ |H : H1|.

Proof. (1) Let (hi : i < ω) be such that hi − hj /∈ H1 + coker g for i 6= j. We may
assume they are all in the same coset of im g, so without loss of generality they
are all in im g. For each i let gi ∈ G be such that g(gi, hi). If gi − gj ∈ g−1[H1] for
i 6= j, then there is h ∈ H1 such that g(gi − gj, h), so h − (hi − hj) ∈ coker g, a
contradiction. Hence all gi are in pairwise distinct cosets modulo g−1[H1].

(2) Follows from (1) applied to g−1.
(3) If elements (gi : i ∈ I) are pairwise distinct modulo g−1[H1] elements in dom g,

and hi ∈ g(gi), then the elements (hi : i ∈ I) are in pairwise distinct cosets
modulo H1. �

Lemma 4.2. Let G and H be definable abelian groups in an ω-categorical structure, and
f, g ≤ G ×H definable additive relations such that ker f and coker g are finite, im g has
finite index in H, and dom f has finite index in G. Then ker g and coker f are finite, imf
has finite index in H and dom g has finite index in G.

Proof. Let A be a finite set over which all the above objects are definable.

Claim. Suppose that H1 < H2 ≤ H are such that H1 has infinite index in H2. Then
f [g−1[H1]] has infinite index in f [g−1[H2]].

Proof. As im g has finite index in H , the index of H1 ∩ im g in H2 ∩ im g is infinite. Now,
g−1[H1] has infinite index in g−1[H2] by Lemma 4.1(1), so f [g−1[H1]] is a subgroup of
infinite index in f [g−1[H2]] by 4.1(2). �

Suppose for a contradiction that ker(g) or coker f is infinite. Put K0 = {e} ≤ H and
define inductively Kn+1 = f [g−1[Kn]]. Then K1 is infinite; by the claim Kn is a subgroup
of infinite index in Kn+1 for all n < ω, contradicting ω-categoricity (as this implies there
are infinitely many types over A in H).
Now suppose that imf has infinite index in H or dom(g) has infinite index in G. Put

K0 = H and define as before Kn+1 = f [g−1[Kn]]. Then K1 has infinite index in K0; by
the claim Kn+1 is a subgroup of infinite index in Kn for all n < ω, again contradicting
ω-categoricity. �

Remark 4.3. Note that commutativity was not used in the proof. An analogous lemma
holds for arbitrary groups, and multiplicative relations (with the obvious definition adapt-
ing Definition 3.1 to non-commutative groups).

Lemma 4.4. Let G and H be abelian groups definable in an ω-categorical structure, and
f, g ≤ G × H definable quasi-homomorphisms. If ker f . ker g and im f . im g, then
im g ∼ imf and ker g ∼ ker f .

Proof. Suppose ker f . ker g and im f . im g. Let f1, g1 ≤ G/(ker f ∩ ker g) × im g be
the additive relations induced by f and g, namely

f1(x+ (ker f ∩ ker g), y) ⇐⇒ f(x′, y) for some/all x′ ∈ x+ (ker f ∩ ker g),



6 JAN DOBROWOLSKI AND FRANK O. WAGNER

and likewise for g1. Then ker f1 is finite since ker f . ker g, and coker g1 = g[ker f∩ker g] =
coker g is finite, too.
Also, im g1 = im g, and dom f1 = f−1[im g∩ imf ] has finite index in G by Lemma 4.1(3)

and the assumption. Thus, by Lemma 4.2, imf1 = imf ∩ im g has finite index in im g, i.e.
im f ∼ im g and ker g1 = ker g/(ker f ∩ ker g) is finite, i.e. ker f ∼ ker g. �

Corollary 4.5. Let G and H be abelian groups definable in an ω-categorical theory,
f ≤ G × G a definable quasi-endomorphism of G, and g ≤ G × H a definable quasi-
homomorphism.

(1) ker(f) is finite iff |G : im(f)| is finite.
(2) |G : ker(g)| is finite iff im(g) is finite.
(3) If G ≤ H and |H : im(g)| is finite, then |H : G| and ker g are finite.

Proof. For (1), apply Lemma 4.4 to f and idG, and for (2), apply it to g and 0G (both ways,
in order to obtain both directions of the equivalence). For (3), apply Lemma 4.4 to the
inclusion i ≤ G×H and g; we obtain H . im g ∼ im i = G and ker g ∼ ker i = {e}. �

Lemma 4.6. Let G be an ω-categorical abelian group and f a definable quasi-endomorphism
of G. Then there is n < ω such that G decomposes as an almost direct sum of imf ◦n and
ker f ◦n (i.e. G ∼ imf ◦n + ker f ◦n and imf ◦n ∩ ker f ◦n is finite).

Proof. The f ◦n[G] form a descending chain of subgroups, all definable over the same
finite set of parameters. By ω-categoricity there is some n such that f ◦n[G] = f ◦n+1[G] =
f ◦2n[G]. Consider g ∈ dom(f ◦n). There is h ∈ f ◦n[G] such that f ◦n(g) ∩ f ◦n(h) 6= ∅.
But this means g − h ∈ ker f ◦n, so G . dom (f ◦n) ≤ imf ◦n + ker f ◦n. As f ◦n[imf ◦n] =
imf ◦2n = imf ◦n, the intersection imf ◦n∩ker f ◦n must be finite by Corollary 4.5(3), applied
to G = H = imf ◦n and g = f ◦n (where G, H and g are in the sense of Corollary 4.5). �

5. Bilinear quasi-forms

We shall now introduce a generalization of the notion of bilinear form.

Definition 5.1. Let G,H andK be abelian groups. A bilinear quasi-form is a multivalued
function λ : G × H → K (i.e. a subset of G × H × K) such that for every g ∈ G and
h ∈ H the multivalued functions λg : H → K given by x 7→ λ(g, x) and λ′h : G → K
given by λ′h(y) = λ(y, h) are quasi-homomorphisms.
For g ∈ G and h ∈ H the annihilator of g (or of h) are the subgroups

annH(g) = {h ∈ H : λ(g, h) = 0} = ker λg ≤ G and

annG(h) = {g ∈ G : λ(g, h) = 0} = ker λ′h ≤ H.

Remark 5.2. If λ : G × H → K is a bilinear quasi-form and λ(g, h) is defined, then
λ(g, h) is a coset of coker λg = λ(g, 0) and of coker λ′h = λ(0, h). So

coker λg = λ(g, h)− λ(g, h) = coker λ′h.

As for any g, g′ ∈ G there is h ∈ H such that λ(g, h) and λ(g′, h) are defined, this means

coker λg = coker λ′h = coker λg′.

It follows by symmetry that all cokernels are equal to K0 = λ(0, 0); dividing by K0 we
can always assume that λ has trivial cokernels.
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Suppose λ : G×H → K is a bilinear quasi-form with λ(0, 0) trivial (hence we can treat
it as a single-valued partial function). For any g, g′ ∈ G, we shall consider the additive
relation λg,g′ = λ−1

g′ ◦ λg ≤ H × H given by {(h, h′) ∈ H × H : λ(g, h) = λ(g′, h′)}.
Clearly ker λg,g′ = annH(g) and coker λg,g′ = annH(g

′). If annH(g
′) . annH(g) and

λ(g,H) . λ(g′, H), then λg,g′ induces a quasi-endomorphism λ̄g,g′ of H/annH(g
′) given by

λ̄g,g′(x+ annH(g
′), y + annH(g

′)) ⇔ λg,g′(x
′, y) for some x′ ∈ x+ annH(g

′).

Note that this does not depend on y inside y + annH(g
′), as annH(g

′) = coker λg,g′.
This is indeed a quasi-endomorphism, as

dom λ̄g,g′ = domλg,g′/annH(g
′) = λ−1

g [imλg ∩ imλg′]/annH(g
′)

has finite index in H/annH(g
′) by Lemma 4.1(3), and

coker λ̄g,g′ = {h ∈ H : ∃ h′ ∈ annH(g
′) λ(g, h′) = λ(g′, h)}/annH(g

′)

= λ−1
g′ [λg[annH(g

′)]]/annH(g
′)

is finite, as λg[annH(g
′)] is finite and ker λg′ = annH(g

′).

Definition 5.3. For A ≤ G and B ≤ H definable put

ãnnH(A) = {h ∈ H : A . annG(h)} = {h ∈ H : λ(A, h) is finite} and

ãnnG(B) = {g ∈ G : B . annH(g)} = {g ∈ G : λ(g, B) is finite},

the almost annihilators of A and B (the equalities above follow from Corollary 4.5(2)).

The almost annihilators are subgroups of G and H ; they are given as a countable
increasing union of definable sets (over the same parameters as G, H and A (respectively
B)). Thus, in an ω-categorical theory, they are definable.
The next proposition is an adaptation of [12, Theorem 2.10] to bilinear quasi-forms.

Proposition 5.4. Let A ≤ G and B ≤ H be definable subgroups. Then B . ãnnH(A) if
and only if A . ãnnG(B).

Proof. We may assume that G, H , A and B are defined over ∅. Suppose that B 6.
ãnnH(A). Consider a sequence (hi : i < ω) in B representing different cosets of ãnnH(A).
So hi−hj /∈ ãnnH(A) for i 6= j, and the index |A : annA(hi−hj)| is infinite. By Neumann’s
Lemma no finite union of cosets of the various annA(hi − hj) can cover A. Hence, by the
compactness theorem (and by the saturation of the monster model), there is an infinite
sequence (gk : k < ω) in A such that λ(gk − gℓ, hi − hj) 6= 0 for all i 6= j and k 6= ℓ. It
follows that |B : annB(gk − gℓ)| is infinite and gk − gℓ /∈ ãnnG(B) for all k 6= ℓ, whence
A 6. ãnnG(B).
The other direction follows by symmetry. �

Definition 5.5. A bilinear quasi-form λ is almost trivial if there is a finite subgroup of
K containing imλ. It is virtually almost trivial if there are subgroups G0 of finite index
in G and H0 in H such that the restriction of λ to G0 ×H0 is almost trivial.

Proposition 5.6. Let G, H and K be abelian groups and λ : G × H → K a bilinear
quasi-form. Then λ is almost trivial iff annH(g) and annG(h) have uniformly finite index
in H and G, respectively, for all g ∈ G and h ∈ H.

Proof. Clearly left implies right. So suppose annH(g) and annG(h) have uniformly finite
index in G and H for all g ∈ G and h ∈ H . Note that this implies that 〈imλ〉 has finite



8 JAN DOBROWOLSKI AND FRANK O. WAGNER

exponent. So it is enough to show that imλ is finite. Note that λ(g,H) and λ(G, h) are
uniformly finite for all g ∈ G and h ∈ H .
Consider g ∈ G with λ(g,G) maximal, and choose h0, . . . , hn ∈ H with λ(g,H) =

{λ(g, hi) : i ≤ n}. Then for g′ ∈ g +
⋂

i≤n annG(hi) we have λ(g′, hi) = λ(g, hi), whence
λ(g′, H) ⊇ λ(g,H), and λ(g′, H) = λ(g,H) by maximality. Note that

⋂
i≤n annG(hi) is a

subgroup of boundedly finite index in G (i.e. bounded independently from g). It follows
that there can only be finitely many maximal sets of the form λ(g,H) for g ∈ G, and imλ
is finite. �

Corollary 5.7. Let λ : G×H → K be a bilinear quasi-form. The following are equivalent:

(1) G . ãnnG(H).
(2) H . ãnnH(G).
(3) λ is virtually almost trivial.

Moreover, in this case ãnnG(H) and ãnnH(G) are definable.

Proof. Conditions (1) and (2) are equivalent by Proposition 5.4.
Suppose (1) and (2) hold. Put An = {g ∈ G : |H : annH(g)| ≤ n}. Then each An is

definable, and ãnnG(H) =
⋃

n<ω An. By compactness and (1), there are n, k < ω such
that there are no k disjoint translates of An by elements in G. Let A =

⋃
i ai + An

be a maximal union of disjoint translates of An by elements of ãnnG(H). So for any
a ∈ ãnnG(H) we have (a + A) ∩ A 6= ∅, whence a ∈ A − A. Thus ãnnG(H) = A − A is
definable; it follows by compactness that |H : annH(a)| is bounded for all a ∈ ãnnG(H).
By symmetry, the same holds for ãnnH(G). Proposition 5.6 now implies that λ restricted
to ãnnG(H)× ãnnH(G) is almost trivial, so λ is virtually almost trivial.
Conversely, if λ is virtually almost trivial as witnessed by G0 and H0, then G0 ≤

ãnnG(H) and H0 ≤ ãnnH(G). �

6. Virtual almost triviality

Definition 6.1. Let G be an infinite definable group. We shall say that a type p ∈
SG(A) is subgroup-generic if p is in no acleq(A)-definable coset of a subgroup of infinite
index in G (where a coset is acleq(A)-definable if it has only finitely many images under
automorphisms fixing A). A sequence (gi : i ∈ I) is subgroup-generic over A if tp(gi/A, gj :
j < i) is subgroup-generic for all i ∈ I.

Note that by Neumann’s Lemma the group G is not in the filter of definable sets
covered by finitely many cosets of definable subgroups of G of infinite index. By a standard
inductive construction G has a complete subgroup-generic type over any set of parameters.
By Ramsey’s Theorem and compactness, indiscernible subgroup-generic sequences of any
order type exist.

Theorem 6.2. Let G, H and K be abelian groups of finite burden definable in some
ω-categorical theory, and let λ : G ×H → K be a definable bilinear quasi-form. Then λ
is virtually almost trivial. If G and H are connected, then λ is trivial.

Proof. Let λ : G × H → K be a counter-example with bdn(G) + bdn(H) + bdn(K)
minimal possible. We may assume that λ(0, 0) is trivial, and hence we can treat λ as a
partial function G×H → K.
Let ǫ > 0 be infinitesimal, let ((xi, x

′
i) : i ∈ Q ∪ (Q+ ǫ)) be an indiscernible subgroup-

generic sequence in G×H , and put yi = xi−xi+ǫ and y
′
i = x′i−x′i+ǫ. Then (yi, y

′
i : i < ω)

is still an indiscernible subgroup-generic sequence.
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Claim 1. If A ≤ G is Y -definable where Y ⊆ (yj, y
′
j : j 6= i), then yi ∈ A implies

yi ∈ A0
Y , where A0

Y is the intersection of all supgroups of A of finite index which are
definable over Y .

Proof of Claim. Let X be a finite subset of {xj , x
′
j : j 6= i, i+ ǫ} such that A is definable

over X . Put

m = max{j < i : xj ∈ X} and M = min{j > i+ ǫ : xj ∈ X},

wherem = −∞ orM = ∞ if the relevant set is empty. Let A0 be anX-definable subgroup
of finite index in A. Since yi = xi − xi+ǫ ∈ A, by indiscernibility of (xi : m < i < M)
over X we obtain xj − xk ∈ A, so by Ramsey’s Theorem there is an infinite set of indices
I ⊆ (m,M) such that all xj − xk with j 6= k in I are in the same coset modulo A0. This
together with indiscernibility implies that xj − xk ∈ A0 for all m < j < k < M . In
particular yi = xi − xi+ǫ ∈ A0. As this is true for all finite X ⊆ {xj, x

′
j : j 6= i, i+ ǫ}, we

get yi ∈ A0
{xj ,x

′

j :j 6=i,i+ǫ}. Since Y ∈ dcl(xj , x
′
j : j 6= i, i+ ǫ), we obtain yi ∈ A0

Y . �

Claim 2. imλyi and imλyj are .-comparable for all i < j.

Proof of Claim. Suppose not. By Lemma 2.5 there is a minimal 2 ≤ ℓ ≤ bdn(K) such

that the sum
∑ℓ

i=0 imλyi is reducible (in the sense of Lemma 2.5). So there is i0 ≤ ℓ such
that with I = {0, 1, . . . , ℓ} \ {i0} we have

imλyi0 .
∑

i∈I

imλyi =: C.

Consider the {yj : j ∈ I}-definable subgroups

A = {g ∈ G : imλg . C} and B = {h ∈ H : λ′h[A] . C},

and note that A = ãnnλ̄
G(H) and B = ãnnλ̄

H(A), where the almost annihilators are taken
with respect to the bilinear quasi-form λ̄ : G×H → K/C induced by λ. Then H . B by
Lemma 5.4, so B has finite index in H .
For every i ∈ I there is a {yj : j ∈ I}-definable induced bilinear quasi-form

λi : A× B → C/imλyi

given by λi(a, b) = λ(a, b)+ imλyi if λ(a, b) is defined and belongs to C (otherwise λi(a, b)
is not defined). Note that for a ∈ A the domain dom (λi)a = λ−1

a [C ∩ imλa]∩A has finite
index in A by Lemma 4.1(3), and likewise for (λi)

′
b with b ∈ B, so λi is indeed a bilinear

quasi-form.
By irreducibility of the sum

∑
j∈I imλyj the quotient imλyi/(imλyi ∩

∑
j∈I,j 6=i imλyj) is

infinite. Hence, as

(imλyi/(imλyi ∩
∑

j∈I,j 6=i

imλyj))× (
∑

j∈I,j 6=i

imλyj/(imλyi ∩
∑

j∈I,j 6=i

imλyj ))

embeds definably into C/(imλyi ∩
∑

j∈I,j 6=i imλyj), Remark 2.2 implies the following strict
inequality:

bdn(C/imλi) = bdn(
∑

j∈I,j 6=i

imλyj/(imλyi ∩
∑

j∈I,j 6=i

imλyj))

< bdn(C/(imλyi ∩
∑

j∈I,j 6=i

imλyj )) ≤ bdn(K).
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Hence, the bilinear quasi-form λi is virtually almost trivial by induction, so the almost
annihilator ãnnλi

A (B) of B with respect to the quasi-form λi is an {yj : j ∈ I}-definable
subgroup of A of finite index. Since yi0 ∈ A0

{yj :j∈I}
by Claim 1, we obtain that yi0 ∈

ãnnλi

A (B). Thus λyi0 [B] . imλyi; as B has finite index in H we also have imλyi0 . imλyi.
The claim now follows from indiscernibility. �

Claim 3. annH(yi) and annH(yj) are .-comparable for all i < j.

Proof of Claim. Suppose not. By Lemma 2.5 there is a minimal 2 ≤ ℓ ≤ bdn(H) such

that the intersection
⋂ℓ

i=0 annH(yi) is reducible. So there is i0 ≤ ℓ such that

B :=
⋂

i∈I

annH(yi) . annH(yi0),

where I = {0, 1, . . . , ℓ} \ {i0}. Consider the {yj : j ∈ I}-definable subgroup

A = {g ∈ G : B . annH(g)}.

For every i ∈ I there is an induced bilinear quasi-form

λi : A× annH(yi)/B → K

given by λi(a, h) := λa[h + B] (note that λa[h + B] is finite, as a ∈ ãnnG(B)). As
(
⋂

j∈I,j 6=i annH(yj))/B is infinite by minimality of ℓ, we get by Remark 2.2

bdn(annH(yi)/B) < bdn((annH(yi) +
⋂

j∈I,j 6=i

annH(yj))/B) ≤ bdn(H).

Hence, the bilinear quasi-form λi is virtually almost trivial by induction, so

ãnnλi

A (annH(yi)/B)

is a subgroup of A of finite index definable over {yj : j ∈ I}. Since yi0 ∈ A0
{yj :j∈I}

by Claim

1, we get that annH(yi) . annH(yi0). The claim now follows from indiscernibility. �

Note that Claims 1.–3. do not use subgroup-genericity of the sequence, only indiscerni-
bility. We will use this observation to apply (the proofs of) these claims below to certain
forms induced by λ.

Claim 4. For i < j we have annH(yj) . annH(yi), and if B ≤ H is definable over
{yk, y

′
k : k /∈ [i, j]}, then λyi[B] . λyj [B]. In particular imλyi . imλyj .

Proof of Claim. By ω-categoricity there is a bound n on the index of annG(h) in G for
h ∈ ãnnH(G). Choose h ∈ ãnnH(G) subgroup-generic over x0, . . . , xn. Then xi − xj ∈
annG(h) for some 0 ≤ i < j ≤ n, whence h ∈ annH(xi − xj). By subgroup-genericity of h
over x0, . . . , xn, the group annH(xi − xj)∩ ãnnH(G) must have a finite index in ãnnH(G),
i.e. ãnnH(G) . annH(xi − xj); by indiscernibility ãnnH(G) . annH(x0 − xǫ) = annH(y0).
Suppose annH(y0) . annH(y1). Then y1 ∈ ãnnG(annH(y0)); as y1 is subgroup-generic

over y0 we have G . ãnnG(annH(y0)). By Proposition 5.4, annH(y0) . ãnnH(G). It
follows that annH(yi) ∼ ãnnH(G) for all i ∈ ω, and annH(y1) ∼ annH(y0).
The first assertion now follows from Claim 3.
For the second assertion, let {yk, y

′
k : k ∈ I} be the finitely many parameters needed to

define B. Put m = max I∩(−∞, i) andM = min I∩(j,∞). We can apply Claim 2 to the
restriction of λ to G×B and the sequences (xk : m+ ǫ < k < M) and (yk : m < k < M).
Hence λyi[B] . λyj [B] or λyj [B] . λyi [B]. But annB(yj) . annB(yi) by the first part, so
if the second option holds, then Lemma 4.4 yields λy0 [B] ∼ λy1 [B]. �
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Claim 5. If i < j and C ≤ K is definable over {yk, y
′
k : k /∈ [i, j]}, then λ−1

yj
[C] . λ−1

yi
[C].

Proof of Claim. Consider the bilinear quasi-form λ̄ : G × H → K/C, and note that
λ−1
y [C] = ker λ̄y. Then λ

−1
yi
[C] and λ−1

yj
[C] are.-comparable by Claim 3; suppose λ−1

yi
[C] .

λ−1
yj
[C]. Then λyi and λyj induce quasi-homomorphisms from B := λ−1

yi
[C] to C. As

annB(yj) . annB(yi) by Claim 4 and λyj [B] . λyi[B] = C, Proposition 4.4 implies
λyj [B] ∼ C. Thus

λ−1
yj
[C] ∼ B + annH(yj) . B + annH(yi) = B = λ−1

yi
[C]. �

We shall now study λyi,yj for i < j. By Claim 4 it induces a quasi-endomorphism
of H/annH(yj) (see the discussion after Remark 5.2). By Corollary 4.5, any definable
quasi-endomorphism of H/annH(yj) with finite kernel must be almost surjective, and
any definable almost surjective quasi-endomorphism must have finite kernel; these are
precisely the invertible quasi-endomorphisms.

Claim 6. If f is a definable quasi-endomorphism of H/annH(yj), then f is invertible or
nilpotent.

Proof of Claim. By Lemma 4.6, we have an almost direct decomposition H/annH(yj) ∼
imf ◦n + ker f ◦n for some n < ω. Put A = {g ∈ G : annH(yj) . annH(g)}. Then yi ∈ G
for i < j by Claim 1. If f were neither invertible nor nilpotent, then both summands are
infinite. Hence, by Remarks 2.2 and 2.3

bdn(imf ◦n) = bdn(imf ◦n/(imf ◦n ∩ ker f ◦n)) < bdn(H)

and
bdn(ker f ◦n) = bdn(ker f ◦n/(imf ◦n ∩ ker f ◦n)) < bdn(H),

so the induced bilinear quasi-form

λ̄ : A× (imf ◦n + ker f ◦n) → K

is virtually almost trivial on A × imf ◦n and on A × ker f ◦n, whence virtually almost
trivial. So for i < j the image imλyi is finite and yi ∈ ãnnG(H). By subgroup-genericity
of yi we get that ãnnG(H) ∼ G, and λ is virtually almost trivial by Corollary 5.7, a
contradiction. �

Claim 7. For i < j < k we have λyi,yk ≡ λyj ,yk ◦ λyi,yj .

Proof of Claim. Note that λg ◦ λ
−1
g ≡ idimλg for any g ∈ G by Remark 3.3.

λy0,yj = λ−1
yj

◦ λy0 = λ−1
yj

◦ idimλy0
◦ λy0

≡ λ−1
yj

◦ idimλyi
◦ λy0 ≡ λ−1

yj
◦ λyi ◦ λ

−1
yi

◦ λy0 = λyi,yj ◦ λy0,yi. �

Claim 8. For i 6= j we have annH(yi) 6∼ annH(yj).

Proof of Claim. Suppose otherwise. Then annH(yi) ∼ annH(yj) for all i, j ∈ Q. Let R be
the ring of definable quasi-endomorphisms of H̄ = H/annH(y0). Note that H̄ is infinite,
as annH(y0) has infinite index in H by assumption (otherwise, as above, we get that λ is
virtually almost trivial by Corollary 5.7).
It follows from Claim 6 that the set of nilpotent quasi-endomorphisms of H̄ is an ideal:

it is clearly invariant under left and right multiplication; if f and g are nilpotent but f+g
is not nilpotent, there is invertible h with h(f + g) = hf + hg = id. So hf = id − hg is
nilpotent. But (id− hg)(id + hg + (hg)2 + (hg)3 + · · · ) = id (note that the sum is finite,
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as hg is nilpotent), so hf = id− hg is invertible, a contradiction. Thus R/I is a division
ring, which is locally finite by ω-categoricity, whence a locally finite field by Wedderburn’s
Theorem.
Consider 0 < i < j. As annH(yi) ∼ annH(yj), the quasi-endomorphism λyi,yj has

finite kernel, and must be invertible. By local finiteness and indiscernibility, it has a fixed
finite multiplicative order N modulo I. Hence there are only finitely many possibilities for
λ̄yi,yj +I (where λ̄ is the equivalence class of λ in R). So, by indiscernibility, λ̄yi,yj +I does

not depend on i, j. But λ̄yj ,yk · λ̄yi,yj = λ̄yi,yk for i < j < k, so λ̄yi,yj = (λ̄yi,yi+(j−i)/N
)◦N ∈

idH̄ + I. By indiscernibility, λ̄xi−xj ,xk−xℓ
∈ idH̄ + I for all 0 < i < j < k < ℓ in ω. Now

λ̄x1−x3,x2−x3 = λ̄−1
x2−x3,x4−x5

· λ̄x1−x3,x4−x5 ∈ idH̄ + I.

Let B = im(λx1−x3,x2−x3 − idH), a definable subgroup of infinite index in H almost con-
taining annH(y0). Then for all h ∈ H0

x1,x2,x3
there is b ∈ B with (h, h + b) ∈ λx1−x3,x2−x3

(as domλx1−x3,x2−x3 is a {x1, x2, x3}-definable subgroup of H of finite index). Hence
λx2−x3(h+ b) = λx1−x3(h), that is

λ(x1 − x3, h) = λ(x2 − x3, h+ b) = λ(x2 − x3, h) + λ(x2 − x3, b),

whence

λ(x1 − x2, h) = λ((x1 − x3)− (x2 − x3), h) = λ(x2 − x3, b).

But this means that imλx1−x2 . λx2−x3 [B]. On the other hand, as λyi,yj is a quasi-
isomorphism of H̄ for i < j, so is λxi−xj ,xk−xℓ

for all i < j < k < ℓ. In particular

imλx2−x3 ∼ imλx4−x5 ∼ imλx1−x2 . λx2−x3[B].

But B has infinite index in H and ker λx2−x3 . B, so B/(ker λx2−x3 ∩B) has infinite index
in H/(ker λx2−x3∩B), and both of them are definably quasi-isomorphic to imλx2−x3 , hence
definably quasi-isomorphic to each other. This contradicts Corollary 4.5(3). �

Note that for i < j < k < ℓ and B ≤ H definable over {ys, y
′
s : s /∈ [j, k]} we have

λyj ,yℓ[B] . λyk,yℓ[B] by Claim 4, and λyi,yk [B] . λyi,yj [B] by Claim 5.

Claim 9. If i < j < k < ℓ and B ≤ H is definable over {ys, y
′
s : s 6= i, j, k, ℓ} then

λyi,yj [B] and λyk,yℓ [B] are .-comparable.

Proof of Claim. Suppose not, and put

A = {g ∈ G : λg[B] . λyk [B]} and B′ = {h ∈ B : λ′h[A] . λyk [B]}.

Then A = ãnnλ̄
G(B) and B′ = ãnnλ̄

B(A), where the almost annihilators are taken with
respect to the bilinear quasi-form λ̄ : G×B → K/λyk [B] induced by λ. Then B . B′ by
Lemma 5.4, so B′ has finite index in B.
Consider the induced bilinear quasi-form

λ̃ : A× B′ → λyk [B]/(λyk [B] ∩ λyℓλyi,yj [B]).

As

bdn(λyk [B]/(λyk [B] ∩ λyℓλyi,yj [B])) = bdn(λyℓλyk,yℓ [B]/(λyℓλyk,yℓ[B] ∩ λyℓλyi,yj [B])

≤ bdn(λyk,yℓ[B]/(λyi,yj [B] ∩ λyk,yℓ[B]))

< bdn((λyi,yj [B] + λyk,yℓ [B])/(λyi,yj [B] ∩ λyk,yℓ[B]))

≤ bdn(H/annH(yℓ)) = bdn(imλyℓ) ≤ bdn(K),
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the bilinear quasi-form λ̃ is virtually almost trivial. Since yk′ ∈ A0
yi,yj ,yk,yℓ

for some

j < k′ < k such that B is definable over {ys, y
′
s : s /∈ [k′, k] ∪ {i, j, ℓ}} by Claims 1 and 4,

it follows that

λyk′ [B] . λyℓλyi,yj [B].

Hence λyk′ ,yℓ[B] . λyi,yj [B] + annB(yℓ) . λyi,yj [B]. This contradicts indiscernibility. �

Claim 10. ker λ̄yi,yj and ker λ̄yk,yℓ are .-comparable for all i < j < k < ℓ, where λ̄y,y′ is
the quasi-homomorphisms from H to H/annH(yj) induced by λy,y′.

Proof of Claim. We have ker λ̄yi,yj = annH(yi); put B = ker λ̄yk,yℓ and suppose that they
are not .-comparable. Let A = {g ∈ G : annH(yi) . annH(g)} and consider the induced
bilinear quasi-form

λ̄ : A× B/(B ∩ annH(yi)) → K.

Since

bdn(B/(B ∩ annH(yi))) < bdn((B + annH(yi))/(B ∩ annH(yi))) ≤ bdn(H),

the bilinear quasi-form λ̄ must be virtually trivial. Since ys ∈ A0
yi,yj ,yk,yℓ

for s < i, we have

ker λyk,yℓ = B . annH(ys) for all s < i; the claim now follows from indiscernibility. �

Claim 11. If imλy0,y1 . imλy2,y3 then imλy0,yj . imλ◦nyi,yj for all 0 < i < j and 1 ≤ n < ω.

Proof of Claim. We proceed by induction on n. For n = 1 this is clear, as imλy0,yj .
imλyi,yj by Claim 4. Assume it holds for some n. Choose 0 < k < ℓ < i. Then

imλy0,yj ∼ im(λyi,yj ◦ λy0,yi) = λyi,yj [imλy0,yi] . λyi,yj [imλy0,yk ]

. λyi,yj [imλyℓ,yj ] . λyi,yj [imλ
◦n
yi,yj

] = im(λyi,yj ◦ λ
◦n
yi,yj

) = imλ◦(n+1)
yi,yj

(the first inequality follows by the second part of Claim 4, the second inequality follows
by the assumption of the claim, and the last one by the inductive assumption). �

Claim 12. If imλy2,y3 . imλy0,y1 then imλy0,yk . imλ◦nyi,yj for all 0 < i < j < k and
1 ≤ n < ω.

Proof of Claim. The case n = 1 follows from Claims 4 and 5, so assume the statement
holds for some n. Choose 0 < i < j < ℓ < m < k. Let λ̄y,y′ be the quasi-homomorphism
from H to H/annH(yj) induced by λy,y′ . By the assumption and indiscernibility we have
imλ̄ym,yk . imλ̄yi,yj . Hence, Claim 10 and Lemma 4.4 imply ker λ̄yi,yj . ker λ̄ym,yk , so the
same holds for the restrictions to B := imλy0,yℓ. But now by Lemma 4.4 and Claim 9 we
have λym,yk [B] . λyi,yj [B]. Then

imλy0,yk ∼ im(λym,yk ◦ λy0,ym) = λym,yk [imλy0,yℓ ] . λyi,yj [imλy0,yℓ ]

. λyi,yj [imλ
◦n
yi,yj

] = im(λ◦nyi,yj ◦ λyi,yj) = imλ◦(n+1)
yi,yj

. �

Claim 13. imλyi,yk . annH(yj) for all i, j < k.

Proof of Claim. By Claim 8, the quasi-endomorphism λ̄yi,yj of H/annH(yj) induced by
λyi,yj is not invertible, so it must be nilpotent by Claim 6. The assertion now follows from
Claims 9, 11 and 12. �

Of course, all of the previous claims also hold with the roles of G and H exchanged.

Claim 14. For any i 6= j we have imλyi . imλ′y′j
or imλ′yj . imλyi.
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Proof of Claim. Suppose not. Put A = {g ∈ G : imλg . imλyi}. Then yk ∈ A0
yi,y

′

j
for

j 6= k < i by Claims 1 and 4. Consider the induced bilinear quasi-form

λ̄ : A×H → imλyi/(imλyi ∩ imλ′y′j).

As bdn(imλyi/(imλyi ∩ imλ′y′j
)) < bdn(K), the quasi-form λ̄ must be virtually almost

trivial. But then imλyk . imλ′
y′j

for all k < i, a contradiction, as there is k < i with

yk ≡y′j
yi. �

By Claim 14 and symmetry we may assume that imλ′y′i
. imλyj for all i < j. Fix i and

k, and choose i < j < ℓ and k < ℓ < 1 with k /∈ {i, j}. By Claim 13 we get:

imλyj . λyℓ [annH(yk)].

Moreover, λyℓ [annH(yk)] . λy1 [annH(yk)] by Claim 4. Then

λ(y1, y
′
i) ∈ (imλ′y′i)

0
y′i,yj ,yk,yℓ

≤ (imλyj )
0
y′i,yj ,yk,yℓ

≤ λyℓ [annH(yk)].

Hence,
y′i ∈ λ−1

y1
[λyℓ [annH(yk)]

0
yk,yℓ,y1

] ≤ λ−1
y1
[λy1 [annH(yk)]].

Thus,
y′i ∈ (annH(yk) + annH(y1))

0
yk,y1

≤ annH(yk),

and λ(yk, y
′
i) = 0. As (yi, y

′
i)i<ω is a subgroup-generic sequence, annG(y

′
0) has finite index

in G and annH(y0) has finite index in H . Since (y0, y
′
0) is subgroup-generic, ãnnH(G) and

ãnnG(H) have finite index in H and G respectively. So λ is virtually almost trivial by
Corollary 5.7.
Finally, if G and H are connected, then λ is almost trivial. But then for every g ∈ G

and h ∈ H the annihilators annH(g) and annG(h) have finite index in H and in G, and
must be equal to H and G, respectively, by connectivity. Thus λ is trivial. �

7. On groups and rings

Recall that each countable, ω-categorical group has a finite series of characteristic (i.e.
invariant under the automorphism group) subgroups in which all successive quotients are
characteristically simple groups (i.e. they do not have non-trivial, proper characteristic
subgroups). On the other hand, Wilson [21] proved (see also [2] for an exposition of the
proof):

Fact 7.1. For each infinite, countable, ω-categorical, characteristically simple group H,
one of the following holds.

(i) For some prime number p, H is an elementary abelian p-group (i.e. an abelian
group, in which every nontrivial element has order p).

(ii) H ∼= B(F ) or H ∼= B−(F ) for some non-abelian, finite, simple group F , where
B(F ) is the group of all continuous functions from the Cantor space C to F , and
B−(F ) is the subgroup of B(F ) consisting of the functions f such that f(x0) = e
for a fixed element x0 ∈ C.

(iii) H is a perfect p-group (perfect means that H equals its commutator subgroup).

It remains a difficult open question whether there exist infinite, ω-categorical, perfect
p-groups.

Remark 7.2. The groups B(F ) and B−(F ) above have TP2 (in particular, they do not
have finite burden).
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Proof. Let f ∈ F be a non-central element, and let Di, i < ω be pairwise disjoint clopen
sets in C. Let gi ∈ B(F ) be given by gi[Ai] = {f} and gi[C\Ai] = {e} for each i. Then
the centralizers of the gi do not satisfy the conclusion of [7, Theorem 2.4], hence B(F )
has TP2. The argument for B−(F ) is analogous. �

The following is Theorem 3.1 from [17]:

Fact 7.3. There is a finite bound of the size of conjugacy classes in a group G if and only
if the derived subgroup G′ is finite.

This implies in particular that if the almost centre Z̃(G) of a group G is definable, then
it is finite-by-abelian.

Remark 7.4. If a group G is virtually finite-by-abelian, then there is a characteristic
definable finite-by-abelian subgroup G0 ≤ G of finite index; if a ring R is virtually finite-
by-null, there is a definable subring R0 which is finite-by-null.

Proof. Let G be virtually finite-by-abelian. Then Z̃(G) is characteristic and definable of
finite index (this does not even need ω-categoricity), and finite-by-abelian.
If R is virtually finite-by-null, let S0 be a finite-by-null subring of finite (additive)

index, and I a finite ideal of S0 containing S0 · S0. Then S :=
⋂

s∈S0
{r ∈ R : rs ∈ I}

contains S0 and must be a definable subgroup of finite index, with S · S0 ⊆ I. Now
R0 := S ∩

⋂
s∈S{r ∈ R : sr ∈ I} contains S0 and is again a definable subgroup of finite

index. Since R0 · R0 ⊆ I ≤ R0, this is a required subring. �

We will use the following variant of Proposition 2.5 from [14]. As in our context we
cannot use connected components, we have to modify the proof slightly.

Lemma 7.5. Let C be a class of countable, ω-categorical NTP2 (pure) groups, closed
under taking definable subgroups and quotients by definable normal subgroups. Suppose
that every infinite, characteristically simple group in C is solvable. Then every group in
C is nilpotent-by finite.

Proof. Let G ∈ C. Let {e} = G0 ≤ G1 ≤ · · · ≤ Gn = G be a chain of characteristic
subgroups of G of maximal length. We will show the assertion by induction n. Let i be
maximal such hat Gi is finite. Then CG(Gi) is a characteristic subgroup of G of finite
index, so we can replace G by CG(Gi)/Gi without increasing n. We can thus assume that
G1 is infinite. Now, as G1 is characteristically simple, it is solvable by the assumption.
By the inductive hypothesis, G/G1 is virtually nilpotent, so there is a normal definable
subgroup N of G of finite index such that N/G1 is nilpotent, so N is solvable. Since N
is NTP2, it does not interpret the atomless boolean algebra, so by [3, Theorem 1.2] it is
virtually nilpotent, and so is G. �

Proposition 7.6. A nilpotent ω-categorical group of finite burden is virtually finite-by-
abelian.

Proof. Let G be a counter-example; we may assume it is nilpotent of minimal class pos-
sible. Then Z(G) is infinite, and G/Z(G) is virtually finite-by-abelian. By Remark 7.4
there is a definable subgroup G0 of finite index and a finite normal subgroup F/Z(G)
of G0/Z(G) such that G0/F is abelian. Clearly we may replace G by CG0(F/Z(G)), a
definable subgroup of finite index. Then G′ ≤ F so G′/Z(G) is central in G/Z(G) (∗),
and F . Z(G). Thus F ′ is finite by Fact 7.3; we may assume it is trivial. Replacing G
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by a definable subgroup of finite index, we may assume that the index |G′ : G′ ∩Z(G)| is
not greater than |G′

0 : G
′
0 ∩ Z(G)| for any definable G0 ≤ G of finite index (†).

Consider g ∈ G. By (∗), the map x 7→ [g, x]Z(G) is a definable homomorphism from
G to G′/Z(G); its kernel H must have finite index. Then x 7→ [g, x] is a definable homo-
morphism from H to Z(G) with abelian image; its kernel must hence contain H ′Z(G).
As H ′Z(G) = G′Z(G) by (†), we see that G′ ≤ CG(g). This holds for all g ∈ G, so
G′ ≤ Z(G).
Now commutation is a definable bilinear form from G/Z(G) to Z(G). By Theorem

6.2 it is virtually almost trivial. But this means that G is virtually finite-by-abelian,
contradicting our assumption. �

Proposition 7.7. An ω-categorical group of finite burden is nilpotent-by finite.

Proof. If the proposition does not hold, there is a non-soluble ω-categorical characteristi-
cally simple group G by Lemma 7.5; it must be a perfect p-group for some prime p by Fact
7.1 and Remark 7.2. We choose such a G of minimal possible burden k. Note that Z̃(G)
is trivial, as it is characteristic and finite-by-abelian (so soluble, as it is a p-group). Hence
there are no finite normal subgroups, and all non-trivial conjugacy classes are infinite.

Claim 1. The soluble radical R(G) of G is trivial.

Proof of Claim. Suppose R(G) is non-trivial. Then there is some non-trivial a ∈ R(G)
such that aG generates an infinite (definable) abelian normal subgroup Aa of G. Let A =
{Aa : Aa abelian}, a definable invariant collection of definable abelian normal subgroups.
Any finite product S of groups in A is nilpotent, whence virtually finite-by-abelian by

Proposition 7.6. But then Z̃(S)′ is a finite characteristic subgroup of S, whence normal
in G, and thus trivial. So S is virtually abelian. It follows that for A ∈ A the almost
centraliser C̃G(A) almost contains A′ for all A′ ∈ A. Hence

A . C̃A(C̃G(A)) ≤ C̃A(A
′)

(the first inequality follows from Fact 2.4). But [C̃A(A
′), C̃A′(A)] is normal; aplying Propo-

sition 5.6 to the bilinear form (x, y) 7→ [x, y] from C̃A(A
′)× C̃A′(A) to A∩A′, we see that

it is finite, whence trivial. Hence A′ = {C̃A(C̃G(A)) : A ∈ A} is an invariant family
of pairwise commuting abelian groups, and generates a characteristic abelian subgroup,
which must be the whole of G. This contradiction finishes the proof of the claim. �

Suppose every centraliser of a non-trivial element is soluble. Then by compactness
there is a bound on the derived length of any proper centraliser. As every finite subset of
G is contained in a centralizer of a nontrivial element, this would imply that G is soluble,
a contradiction. Hence there is n ∈ G \ {1} such that H := CG(n) is non-soluble. Put
N := 〈nG〉, an infinite normal subgroup, which is definable by ω-categoricity.

Since C̃G(N) ∩ N is normal and finite-by-abelian (by Fact 7.3 and ω-categoricity),
whence soluble, it must be trivial.

Claim 2. C̃G(N) = {1} .

Proof. Suppose C̃G(N) is nontrivial, whence infinite. The map C̃G(N)×N → G given by

multiplication is a definable injection, so bdn(G) ≥ bdn(N) + bdn(C̃G(N)) by Remark
2.2. As C̃G(N) is infinite, bdn(C̃G(N)) ≥ 1, and bdn(N) < bdn(G) = k. By inductive
hypothesis N is nilpotent-by-finite, whence solvable, a contradiction. �

Claim 3. Any definable normal subgroup M of G with M . H is trivial.
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Proof. If M . H = CG(n), then n ∈ C̃G(M); by normality of M we get nG ⊆ C̃G(M),
and hence N ≤ C̃G(M). Then M . C̃G(N) = {1} by Fact 2.4. �

Consider a nontrivial definable normal subgroup M of G. Since M ∩H is normalized
by H , we have a definable injection

M/(M ∩H)×H/(M ∩H) → G/(M ∩H)

given by multiplication. As M/M ∩H is infinite by the claim, we conclude that

bdn(H/M ∩H) < bdn(G/(M ∩H)) ≤ bdn(G) = k.

By inductive hypothesis, H/(M ∩ H) is nilpotent-by-finite, whence soluble. If M runs
through the family M of 1-generated normal subgroups, the family {H/(M ∩H) : M ∈
M} is uniformly definable by ω-categoricity, and by compactness there is d < ω such that
H/(M ∩ H) has derived length at most d for all M ∈ M. But this means that H(d) is
contained in M for all M ∈ M, and thus is contained in all nontrivial normal subgroups.
Since H is not soluble, H(d) generates a non-abelian a minimal normal subgroup L.

But then L is finite by [2, Theorem D], a contradiction. This completes the proof. �

Theorem 7.8. An ω-categorical group of finite burden is virtually finite-by-abelian.

Proof. This follows immediately from Propositions 7.6 and 7.7. �

Corollary 7.9. An ω-categorical NIP group of finite burden is virtually abelian.

Proof. Let G be an ω-categorical NIP group of finite burden. By a result of Shelah,
the absolute connected component G00 (i.e. the smallest type-definable subgroup of G
of bounded index) exists (see [13, Theorem 6.1] for a proof). By ω-categoricity, G00 is
definable and hence of finite index in G, so we may assume that G is connected. Then G
is finite-by-abelian by Remark 7.4. Thus, the centralizer of any element in G has finite
index in G, hence, by connectedness, is equal to G. This means that G is abelian. �

Theorem 7.10. An ω-categorical ring of finite burden is virtually finite-by-null.

Proof. This is immediate from Theorem 6.2, as multiplication is a definable bilinear map.
�

As for groups, we get a corollary:

Corollary 7.11. An ω-categorical NIP ring of finite burden is virtually null.

Proof. Let R be such a ring. We may again assume that R is connected (in the sense of
the additive group). Then R is finite-by-null by Remark 7.4. Hence, the left annihilator
of any element in R has finite index in R, and must be equal to R by connectedness. This
shows that R is null. �

8. Questions and concluding remarks

One can ask various questions about generalizations of the above results to more general
contexts, such as strong or NTP2 theories. For example, one can ask:

Question 8.1. Are ω-categorical strong groups
(1) virtually nilpotent-by-finite?
(2) virtually abelian-by-finite?

An analogue of Question 8.1(1) for rings has positive answer by Theorem 8.3 below.
As to the stronger version, we do not know:
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Question 8.2. Are ω-categorical strong rings null-by-finite?

The proof below is a modification of the proof of Theorem 2.1 from [16], generalizing
that result from the NIP to the NTP2 context.

Theorem 8.3. Every ω-categorical NTP2 ring is nilpotent-by-finite.

Proof. As in [16], it is enough to show that a semisimple ω-categorical NTP2 ring R is
finite, and we can assume that R is a subring of

∏
i∈I Ri, where each Ri is finite, and

|{Ri : i ∈ I}| < ω. Let πi be the projection onto the i-th coordinate. For i0, . . . , in ∈ I
and r0 ∈ Ri0 , . . . , rn ∈ Rin , we define

Rr0,...,rn
i0,...,in

=

{
r ∈ R :

n∧

j=0

πij (r) = rj

}
.

Suppose for a contradiction that R is infinite. Again as in [16], we get the following claim:

Claim 1. For any N ∈ ω there are pairwise distinct i(0), . . . , i(N − 1) ∈ I and non-
nilpotent elements ri ∈ Ri for i < N such that the sets

Rr0,0...,0
i0,...,iN−1

, R0,r1...,0
i0,...,in

, . . . , R
0,0...,rN−1

i0,...,in

are all non-empty.

Notice that, by ω-categoricity, the principal two-sided ideals RxR for x ∈ R are uni-
formly definable. Hence, by [7, Theorem 2.4] and compactness, we obtain in particular
that in order to contradict NTP2 it is enough to find for any n,m < ω elements b0, . . . , bn−1

such that

(*)
∣∣ ⋂

j∈n\{j0}

RbjR :
⋂

j∈n

RbjR
∣∣ ≥ m

for any j0 < n (where n = {0, 1, . . . , n − 1}). So fix any n,m < ω, and for N = nm
choose ij and rj as in the claim. Let (ij,k)j<n,j<m be another enumeration of (ij)j<N ,
and let (rj,k)j<n,k<m be the corresponding enumeration of (rj)j<N and (πj,k)j<n,k<m the
corresponding enumeration of (πj)j<N . For any j0 < n, k0 < m let sj0,k0 ∈ R be such that
πj,k(sj0,k0) = 0 for (j, k) 6= (j0, k0) and πj0,k0(sj0,k0) = rj0,k0. Put bj =

∑
j′ 6=j,k<m sj′,k for

all j < n.

Claim 2. |
⋂

j∈n\{j0}
RbjR :

⋂
j∈nRbjR| ≥ m for any j0 < n.

Proof. Fix any j0 < n and put b = b0b1 . . . bj0−1bj0+1bj0+2 . . . bn−1. Notice that for any
r ∈

⋂
j∈nRbjR and k < m we have that πj0,k(r) = 0. On the other hand, for distinct

k1, k2 < m we have that

πj0,k1(sj0,k1b− sj0,k2b) = πj0,k1(sj0,k1b) = πj0,k1(sj0,k1)πj0,k1(b) = rj0,k1r
n−1
j0,k1

= rnj0,k1 6= 0.

Hence the elements

sj0,0b, sj0,1b, . . . , sj0,m−1b ∈
⋂

j∈n\{j0}

RbjR

are in pairwise distinct cosets of
⋂

j∈nRbjR. �

By the claim and (∗) we obtain a contradiction. �
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