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ON INP-MINIMAL ω-CATEGORICAL GROUPS AND RINGS

JAN DOBROWOLSKI AND FRANK O. WAGNER

Abstract. An ω-categorical inp-minimal group is virtually finite-by-abelian; an ω-
categorical inp-minimal ring is virtually finite-by-null; an ω-categorical NTP2 ring is
virtually nilpotent.

1. Introduction

The NIP property has recently been one of the most intensly studied subjects in model
theory (see [14]). Dp-rank is a cardinal-valued rank well defined (i.e. not assuming value
∞) on the class of NIP theories, thus providing a hierarchy inside of this class. The
simplest in the sense of this hierarchy of NIP structures are dp-minimal structures, that is,
the structures of dp-rank one. Still, many of the most natural examples of NIP structures
are dp-minimal, e.g. the field of real numbers (and its (weakly) o-minimal expansions),
the valued fields of p-adic numbers for any prime p, non-trivially valued algebraically
closed fields, Peano arithmetic (Z, 0,+, ·), as well as any strongly minimal structure.
An analogous rank for NTP2 structures (a generalization of NIP, including all simple
structures) is inp-rank. In fact, both ranks coincide as long as the dp-rank is well-defined,
i.e. under the NIP hypothsis (see Definition 3.2 for the definition of inp-rank). Thus,
inp-minimal structures form a class containing that of dp-minimal structures; an example
of an inp-minimal structure which is not dp-minimal is the random graph.
There is a long history of study of ω-categorical groups. In the general case, the main

result is the theorem of Wilson on characteristically simple ω-categorical groups (Fact
5.1). A complete classification of ω-categorical groups and rings seems to be out of reach
at the moment, yet the situation is clear under some model-theoretic assumptions: ω-
categorical superstable groups are virtually abelian, and ω-categorical superstable rings
are virtually null [3]; ω-categorical supersimple groups are virtually finite-by-abelian [6],
and extraspecial p-groups yield an example showing that the finite normal subgroup can-
not be avoided. Many variants of these now-classical results have been proven. In [10],
it was shown that ω-categorical NIP rings are virtually nilpotent (we generalize this to
NTP2 setting in Theorem 6.2), and it was conjectured that ω-categorical groups are vir-
tually nilpotent as well. The latter conjecture remains open, yet a special case of it was
obtained in [8]: dp-minimal ω-categorical groups are virtually nilpotent. It was asked in
[8, Problem 2.18] whether they are actually virtually abelian. The main result of this
paper is Theorem 5.6, which in particular solves this problem in affirmative (see Corol-
lary 5.7), and also solves [8, Problem 2.18]. To get the result, we prove that inp-minimal
bilinear forms are virtually almost trivial, and, as a by-product, we obtain analogous re-
sults for rings (Theorem 5.8, Corollary 5.9). Throughout the paper, we do not refer to
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the definition of inp-rank — we only use the fact saying that in an inp-minimal group,
definable subgroups are comparable up to finite index (Fact 3.3).
The paper is organized as follows: In Section 2, we recall the basic concepts and facts

about measures and quasi-endomorphisms. In Section 3, we study properties of quasi-
endomorphisms under assumptions of ω-categoricity and inp-minimality. In Section 4,
we prove Theorem 4.8 about bilinear forms (using results of Section 3). In Section 5,
we apply Theorem 4.8 to obtain the main results about groups and rings. In Section 6,
we state some questions and we prove that ω-categorical rings with NTP2 are virtually
nilpotent.

2. Preliminaries

2.1. Measure. Let M be a structure such that algebraic closure is locally finite (i.e.
acl(A) is finite for all finite A, in every sort S). We can then define a measure µ as
follows: Let I be the collection of algebraically closed subsets of Meq, and for A ∈ I put
IA = {B ∈ I : A ⊆ B}. If U is any ultrafilter on I extending the filter generated by the
set {IA : A ∈ A} and X is a subset of Meq, put

µ(X) =
∏

A∈I

|X ∩A|
/
U .

Then in every sort µ is a finitely additive measure on the boolean algebra of sets of sort S
and taking values in the non-standard natural numbers

∏
I N/U . Note that µ is in general

not automorphism-invariant.

Lemma 2.1 (Multiplicativity). If f : X → Y is a definable function whose fibres all have
finite size n, then

µ(X) = nµ(Y ).

In particular, µ is invariant under definable bijections. More generally, if F ⊆ X × Y is
a definable (k, ℓ)-correspondence, meaning that |{x ∈ X : (x, y) ∈ F}| = k for all y ∈ Y
and |{y ∈ Y : (x, y) ∈ F}| = ℓ for all x ∈ X, then ℓ µ(X) = k µ(Y ).

Proof. We choose A ∈ I such that F,X, Y are defined over A. If B ∈ IA, by algebraic
closedness |{x ∈ X ∩ B : (x, y) ∈ F}| = k for all y ∈ Y ∩ B and |{y ∈ Y ∩ B : (x, y) ∈
F}| = ℓ for all x ∈ X ∩ B. The result follows, as IA ∈ U . �

If X is a non-empty definable set in Meq, we can relativize µ to X by putting

µX(Y ) = st
(µ(Y )

µ(X)

)
= st

(∏

A∈I

|Y ∩A|

|X ∩ A|

/
U
)
.

(The first quotient is calculated in the non-standard rationals
∏

I Q/U .) Then µX is
a finitely additive probability measure on X . We call a partial type π extending X
measure-generic in X if µX(Y ) > 0 for all Y ∈ π. Note that by finite additivity every
measure-generic partial type in X can be extended to a measure-generic complete type
in X . We shall call a tuple y measure-generic in X over A if tp(y/A) is such.

Lemma 2.2. If G is an A-definable group in M and H an A-definable subgroup, the
following are equivalent:

(1) H has finite index in G.
(2) µG(H) > 0.
(3) There is a complete type p over A extending x ∈ H which is measure-generic in

G over A.
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In this case, |G : H| = 1/µG(H) = µ(G)/µ(H).

Proof. If |G : H| = n, then µ(G) = nµ(H), so µG(H) = 1/n > 0. Conversely, if
|G : H| > n for all n, then µG(H) < 1/n for all n, so µG(H) = 0.
If µG(H) > 0, then H is measure-generic in G and can be completed to a type p over

A mesure-generic in G. Conversely, if p ∈ S(A) extends H and is measure-generic in G
over A, then clearly µG(H) > 0. �

2.2. Multiplicative relations and quasi-endomorphisms. Here, we slightly modify
the construction of definable quasi-endomorphisms ring from [3] in order to be able to
apply it to non-connected definable groups.

Definition 2.3. Let G and H be groups. A multiplicative relation between G and H is
a subgroup R ≤ G×G. We call π1(R), the projection to the first coordinate, the domain
domR and π2(R) the image imR of R; the subgroup R1 = {g ∈ G : (g, 1) ∈ R} is the
kernel kerR, and 1R = {h ∈ H : (1, h) ∈ R} is the cokernel cokerR. If domR has finite
index in G and cokerR is finite, a multiplicative relation R is a quasi-homomorphism from
G to H . A quasi-homomorphism R induces a homomorphism domR → imR/cokerR.
If G = H we call R a quasi-endomorphism. Particular multiplicative relations are idg =
{(g, g) : g ∈ G} and 1G = G× {1}.

Definition 2.4. • If R ≤ G×H is a multiplicative relation, g ∈ G and K ≤ G, put
R(g) = {h ∈ H : (g, h) ∈ R} and R[K] =

⋃
g∈K R(g).

• If R,R′ ≤ G×H are multiplicative relations, put

R · R′ = {(a, bb′) ∈ G×H : (a, b) ∈ R, (a, b′) ∈ R′}.

If imR and imR′ commute, this is again a multiplicative relation. If moreover R
and R′ are quasi-homomorphisms from G to H , so is R · R′.

• We call R,R′ ≤ G × H equivalent, denoted R ≡ R′, if there is a subgroup G1 of
finite index in G and a finite group F ≤ H normalized by R(G1) and R′(G1), such
that

(R ∩ (G1 ×H)) · ({1G} × F ) = (R′ ∩ (G1 ×H)) · ({1G} × F ).

This is clearly an equivalence relation.
• If R ≤ G×H and R′ ≤ H ×K are multiplicative relations, put

R′ ◦R = {(a, c) ∈ G×K : ∃b [(a, b) ∈ R and (b, c) ∈ R′]},

a multiplicative relation between G and K. If R and R′ are quasi-homomorphisms,
so is R′ ◦R. We denote the n-fold composition of R with itself by R◦n.

• For a multiplicative relation R ≤ G×H put

R−1 = {(h, g) ∈ H ×G : (g, h) ∈ R},

a multiplicative relation between H and G.

Remark 2.5. Note that

R−1 ◦R = iddomR
· ({1G} × kerR) and R ◦R−1 = idimR · ({1H} × cokerR).

If imR has finite index in H and kerR is finite, then R−1 is a quasi-homomorphism from
H to G. If moreover R is a quasi-homomorphism, then R◦R−1 ≡ idH and R−1 ◦R ≡ idG.

If the groups are abelian and noted additively, we write R + R′ instead of R · R′, and
call them additive relations.
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Lemma 2.6. Let G be an abelian group. The sum, difference and product of definable
quasi-endomorphisms of G is again a definable quasi-endomorphism. The set of definable
quasi-endomorphisms of G modulo equivalence forms an associative ring.

Proof. As in [3], taking subgroups of finite index where needed. �

3. Quasi-homomorphisms of ω-categorical groups and inp-minimality

Recall that a complete first order theory in a countable language is said to be ω-
categorical if it has only one countable model up to isomorphisms, and a structure M
is ω-categorical if Th(M) is. By the Ryll-Nardzewski Theorem, this is equivalent to the
following statement: for every n < ω there are only finitely many complete n-types over
∅. Hence, for any finite set A in an ω-categorical structure M there are only finitely many
definable sets over A, and ω-categorical algebraic structures are uniformly locally finite.

Lemma 3.1. Let G and H be definable groups in an ω-categorical structure, and f, g ≤
G × H definable multiplicative relations such that ker f and coker g are finite, and im g
has finite index in H. Then ker g and coker f are finite, and imf has finite index in H.

Proof. Let A be a finite set over which all the above objects are definable.

Claim. Suppose that H1 < H2 ≤ H are such that H1 has infinite index in H2. Then
f [g−1[H1]] has infinite index in f [g−1[H2]].

Proof. As im g has finite index in H , the index of H1 ∩ im g in H2 ∩ im g is infinite. As
coker g is finite, g−1[H1] has infinite index in g−1[H2]. Hence f [g−1[H1]] is a subgroup of
infinite index in f [g−1[H2]], since ker f is finite. �

Suppose for a contradiction that ker(g) or coker f is infinite. Put K0 = {e} ≤ H and
define inductively Kn+1 = f [g−1[Kn]]. Then K1 is infinite; by the claim Kn is a subgroup
of infinite index in Kn+1 for all n < ω, contradicting ω-categoricity.
Now suppose that imf has infinite index in H . Put K0 = H and define as before

Kn+1 = f [g−1[Kn]]. Then K1 has infinite index in K0; by the claim Kn+1 is a subgroup
of infinite index in Kn for all n < ω, again contradicting ω-categoricity. �

Although we will not refer to the definition of inp-rank in this paper, we write it here
for completeness.

Definition 3.2. (1) An inp-pattern of depth κ in the partial type π(x) is a sequence
〈ϕi(x; yi) : i < κ〉 of formulas and an array {aij : i < κ, j < ω} of parameters
(from some model of T ) such that:
(a) For each i < κ, there is some ki < ω such that {ϕi(x; ai,j) : j < ω} is

ki-inconsistent; and
(b) For each η : κ → ω, the partial type

π(x) ∪ {ϕi(x; ai,η(i)) : i < κ}

is consistent.
(2) The inp-rank (or burden) of a partial type π(x) is the maximal κ such that there

is an inp-pattern of depth κ in π(x), if such a maximum exists. In case there are
inp-patterns of depth λ in π(x) for every cardinal λ < κ but no inp-pattern of
depth κ, we say that the inp-rank of π(x) is κ−.

(3) The inp-rank of T is the inp-rank of x = x, and T is inp-minimal if its inp-rank
is 1.
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For the next lemma we introduce some notation for subgroups H and K of a group G.
We say that H is almost contained in K, denoted H . K, if H ∩K has finite index in
H . If H . K and K . H , the two groups are commensurable, denoted H ≃ K.
We shall only use the following consequence of inp-minimality, which was essentially

observed in the proof of [13, Proposition 3.1]:

Fact 3.3. If G is an inp-minimal group and H,K ≤ G are definable, then H . K or
K . H.

In other words, . is a total pre-order on the set of definable subgroups of an inp-minimal
group.

Lemma 3.4. Let G and H be inp-minimal groups definable in an ω-categorical structure,
and f, g ≤ G×H definable quasi-homomorphisms. Then:

(1) ker f . ker g if and only if im g . imf .
(2) If K is a definable subgroup of G and ker f . ker g then g[K] . f [K].

Proof. (1) Replacing G by a subgroup of finite index, we may suppose dom f =
dom g = G. Suppose ker f . ker g. Put H1 = im f and

G1 = g−1[imf ∩ im g](ker f ∩ ker g)/(ker f ∩ ker g).

and let f1, g1 ≤ G/(ker f ∩ ker g)×H1 be the multiplicative relations induced by
f and g. Then ker f1 is finite since ker f . ker g.

Suppose that imf . im g. Then g1[G1] = imf ∩ im g has finite index in H1 =
im f . Thus f1[G1] has finite index in H1 by Lemma 3.1 applied to f1|G1

, g1|G1
≤

G1 ×H1. As ker f1 is finite, G1 has finite index in G/(ker f ∩ ker g), and g1[G1] =
imf ∩ im g has finite index in g1[G/(ker f ∩ ker g)] = im g. Thus im g . imf as
well. On the other hand, if imf 6. im g, then im g . imf by inp-minimality. This
shows that ker f . ker g implies im g . imf .

For the converse, suppose imf . im g. If ker f . ker g, then we can apply
Lemma 3.1 as above and obtain that ker g1|G1

is finite, i.e. ker f ∩ ker g has finite
index in ker g, whence ker g . ker f . Otherwise, ker g . ker f by inp-minimality,
and we are done in either case.

(2) If ker f . ker g, then ker f |K . ker g|K. Apply part (1) to f |K, g|K ≤ K ×H . �

Lemma 3.5. Let G and H be inp-minimal groups definable in an ω-categorical theory.
Suppose f, g ≤ G × H are definable quasi-homomorphisms such that ker(f) 6. ker(g).
Define inductively D0 = G and Dn+1 = g−1[f [Dn]]. Then there is some n such that
Dn ≃ ker(g).

Proof. The Dn form a descending chain of subgroups, all definable over the same finite
set of parameters. By ω-categoricity there is some n such that Dn = Dn+1. Thus

g[Dn] = g[Dn+1] = g[g−1[f [Dn]]] . f [Dn],

whence ker f |Dn
. ker g|Dn

by Lemma 3.1. Clearly ker g ≤ Dn, whence Dn∩ker f . ker g.
Since ker f . Dn or Dn . ker f by inp-minimality, we obtain ker f . ker g or Dn . ker g.
As the first option is excluded by hypothesis, we must have Dn ≃ ker g. �

Recall Schlichting’s Theorem [12, 4].

Fact 3.6. Let H be a family of uniformly commensurable subgroups of a group G, i.e.
the index |H : H ∩ H∗| is finite and bounded independently of H,H∗ ∈ H. Then there
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is a subgroup N of G commensurable with any H ∈ H, which is invariant under any
automorphism of G stabilizing H setwise. Moreover, N is a finite extension of a finite
intersection of groups in H; if the latter are definable, so is N .

Lemma 3.7. Let G be an inp-minimal torsion group, and H ≤ G a definable subgroup.
Then H is uniformly commensurable with its G-conjugates, and there is a normal definable
subgroup N ≤ G commensurable with H.

Proof. For any g ∈ G we have H . Hg or Hg . H by inp-minimality. In the first case
we obtain Hgn . Hgn+1

for all n < ω, whence H . Hg . Hgn. Taking n = o(g) the order

of g, we get H ≃ Hg. Or,
⋂

i<n H
gi has finite index in H and is g-invariant. It follows

that |H : H ∩Hg| = |Hg : H ∩Hg|. If this index were not bounded, by compactness we
could find g∗ in some elementary extension with H 6. Hg∗ and Hg∗ 6. H , contradicting
inp-minimality. So H is uniformly commensurable with all its G-conjugates. The rest
follows from Schlichting’s Theorem. �

4. Bilinear forms

We will now introduce some notation related to bilinear forms. Suppose G and K are
abelian groups, and λ : G× G → K is a bilinear form. For g ∈ G the left annihilator of
g is the subgroup annL(g) = {g′ ∈ G : λ(g′, g) = 0}; the right annihilator is the subgroup
annR(g) = {g′ ∈ G : λ(g, g′) = 0}.
If λ : G × G → K is a bilinear form and g ∈ G, then λ induces a homomorphism

λg : G → K given by x 7→ λ(g, x). Clearly ker λg = annR(g) and imλg = λ(g,G). For
g′ ∈ G, we also consider the multiplicative relation λg,g′ = λ−1

g′ ◦ λg ≤ G × G given by

{(h, h′) ∈ G × G : λ(g, h) = λ(g′, h′)}. Clearly ker λg,g′ = annR(g) and coker λg,g′ =
annR(g

′). If annR(g
′) . annR(g) and λ(g,G) . λ(g′, G) (which are equivalent conditions

in the inp-minimal case by Lemma 3.4 applied to λg and λg′), then λg,g′ induces a quasi-
endomorphism of G/annR(g

′).

Definition 4.1. A bilinear form λ is almost trivial if there is a finite subgroup of K
containing imλ. It is virtually almost trivial if there is a subgroup G1 of finite index in G
such that the restriction of λ to G1 is almost trivial.

Proposition 4.2. Let G and K be abelian groups and λ : G × G → K a bilinear form.
Then λ is almost trivial iff annL(g) and annR(g) have uniformly finite index in G for all
g ∈ G.

Proof. Clearly left implies right. So suppose annL(g) and annR(g) have uniformly finite
index in G for all g ∈ G. Note that this implies that 〈imλ〉 has finite exponent. So it is
enough to show that imλ is finite. Note that λ(g,G) is uniformly finite for all g ∈ G.
Consider g ∈ G with λ(g,G) maximal, and choose g0, . . . , gn ∈ G with λ(g,G) =

{λ(g, gi) : i ≤ n}. Then for g′ ∈ g +
⋂

i≤n annL(gi) we have λ(g′, gi) = λ(g, gi), whence
λ(g′, G) ⊇ λ(g,G), and λ(g′, G) = λ(g,G) by maximality. Note that

⋂
i≤n annL(gi) is a

subgroup of boundedly finite index in G. It follows that there can only be finitely many
maximal sets of the form λ(g,G) for g ∈ G, and imλ is finite. �

Lemma 4.3. In an ω-categorical theory let G and K be inp-minimal definable abelian
groups, and λ : G×G → K a definable bilinear map. If (xi : i ∈ Q) is 3-indiscernible in
G and annR(x1) . annR(x0), then λx0,x1

[G] . annR(xi) for any i < 1.
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Proof. Note that the hypotheses and Lemma 3.4 imply λxi
[H ] . λxj

[H ] for all definable
subgroups H ≤ G and i < j, whence in particular imλxi,xk

. imλxj ,xk
for i < j < k.

Moreover, λ−1
xi

and λ−1
xj

both induce quasi-homomorphisms from imλxi
to G/annR(xi).

The kernel of the former is finite, so λ−1
xj
[K ′] . λ−1

xi
[K ′] for all definable K ′ . imλxi

by

Lemma 3.4. Taking K ′ = λx0
[H ] for H ≤ G definable, we obtain λx0,xj

[H ] . λx0,xi
[H ].

Finally, λg ◦ λ
−1
g = idimλg

by Remark 2.5.
For 0 < i < j we have imλx0

. imλxi
, whence

λx0,xj
= λ−1

xj
◦ λx0

= λ−1
xj

◦ idimλx0
◦ λx0

≡ λ−1
xj

◦ idimλxi
◦ λx0

= λ−1
xj

◦ λxi
◦ λ−1

xi
◦ λx0

= λxi,xj
◦ λx0,xi

.

Claim. If imλx0,x1
. imλx1,x2

then imλx0,xj
. imλ◦n

xi,xj
for all 0 < i < j and 1 ≤ n < ω.

Proof. We proceed by induction on n. For n = 1 the statement follows from indiscerni-
bility. Assume it holds for some n. Choose 0 < k < i. Then

imλx0,xj
≃ im(λxk,xj

◦ λx0,xk
) = λxk,xj

[imλx0,xk
] . λxk,xj

[imλxk,xj
]

. λxk,xj
[imλ◦n

xi,xj
] . λxi,xj

[imλ◦n
xi,xj

] = im(λxi,xj
◦ λ◦n

xi,xj
) = imλ◦(n+1)

xi,xj
. �

Claim. If imλx1,x2
. imλx0,x1

then imλx0,xj
. imλ◦n

x0,xi
for all 0 < i < j and 1 ≤ n < ω.

Proof. The case n = 1 is immediate, so assume the statement holds for some n. Take
i < k < j, and consider λxi,xj

and λx0,xi
as quasi-homomorphisms from G to G/annR(xi).

Then λxi,xj
[H ] . λx0,xi

[H ] for all definable subgroups H ≤ G by Lemma 3.4. Thus

imλx0,xj
≃ im(λxk,xj

◦ λx0,xk
) = λxk,xj

[imλx0,xk
] . λxk,xj

[imλ◦n
x0,xi

]

. λx0,xk
[imλ◦n

x0,xi
] . λx0,xi

[imλ◦n
x0,xi

] . im(λx0,xi
◦ λ◦n

x0,xi
) = imλ◦(n+1)

x0,xi
. �

By Lemma 3.5 there is n such that imλ◦n
xi,xj

. ker λxj
for any i < j. Since ker λxj

.

ker λxi
for i < j, the above claims yields imλx0,x1

. ker λxi
for all i < 1. �

Definition 4.4. For g ∈ G let annL(g) be the left annihilator of g, and for H ≤ G
definable put

ãnnR(H) = {g ∈ G : H . annL(g)} = {g ∈ G : λ(H, g) is finite} and

ãnnL(H) = {g ∈ G : H . annR(g)} = {g ∈ G : λ(g,H) is finite},

the almost (right or left) annihilator of H .

The almost annihilators are subgroups of G; they are given as a countable increasing
union of definable sets (over the same parameters as G and H). Thus they are definable
in an ω-categorical theory. Note that ãnnL(G) and ãnnR(G) are ideals.
The next proposition is an adaptation of [7, Theorem 2.10] to bilinear forms.

Proposition 4.5. Let H1 and H2 be definable subgroups of G. Then H1 . ãnnL(H2) if
and only if H2 . ãnnR(H1).

Proof. We may assume that G, H1 and H2 are defined over ∅. Suppose that H2 6.
ãnnR(H1). Consider a sequence (gi : i < ω) in H2 representing different cosets of
ãnnR(H1). So gi − gj /∈ ãnnR(H1) for i 6= j, and the index |H1 : H1 ∩ annL(gi − gj)| is
infinite. By Neumann’s Lemma no finite union of cosets of the various H1∩ annL(gi− gj)
can cover H1. By compactness there is an infinite sequence (hk : k < ω) such that
λ(hk − hℓ, gi − gj) 6= 0 for all i 6= j and k 6= ℓ. It follows that |H2 : H2 ∩ annR(hk − hℓ)| is
infinite and hk − hℓ /∈ ãnnL(H2) for all k 6= ℓ, whence H1 6. ãnnL(H2).
The other direction follows by symmetry. �
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Proposition 4.6. Let G and K be inp-minimal abelian groups definable in some ω-
categorical theory, and let λ : G×G → K be a definable quasi-symmetric bilinear map. Let
(xi)i∈ω be a 10-indiscernible measure generic sequence (over ∅). If annL(xi) . annR(xi),
then annR(x0) ≃ annR(x1).

Proof. Put zi = x2i − x2i+1. So (zi : i < ω) is 6-indiscernible.

Claim. annR(z1) . annR(z0) and annL(z1) . annL(z0).

Proof. Suppose annR(z0) . annR(z1). Then z1 ∈ ãnnL(annR(z0)); as z1 is measure-generic
over z0 we have G . ãnnL(annR(z0)). By Proposition 4.5, annR(z0) . ãnnR(G).
By ω-categoricity there is a bound n on the index of annL(g) in G for g ∈ ãnnR(G).

Choose g ∈ ãnnR(G) measure-generic over x0, . . . , xn. Then xi−xj ∈ annL(g) for some 0 ≤
i < j ≤ n, whence g ∈ annR(xi − xj). By measure-genericity, ãnnR(G) . annR(xi − xj);
by indiscernibility we obtain ãnnR(G) . annR(x0 − x1) = annR(z0).
It follows that annR(zi) ≃ ãnnR(G) for all i ∈ ω, and annR(z1) . annR(z0). The result

follows by inp-minimality and symmetry (note that the assumption annL(xi) . annR(xi)
has not been used so far). �

Now let (yi)i∈Q be an indiscernible sequence based on (zi)i∈ω.

Claim. Whenever H ≤ G is definable over a 3-element subset A of (yj : j 6= i) and
y ∈ H, then y ∈ H0

A.

Proof. It is enough to show that the same is true about the sequence (zi)i∈ω. A group H
definable over a 3-element subset A of (zj : j 6= i) is definable over a 6-element subset B
of the set {xj : j 6= 2i, 2i+ 1} with A ⊆ dcl(B). We can extend B ∪ {x2i, x2i+1} to a 10-
indiscernible sequence (x′

j)j∈Q with xj = x′
j for xj ∈ B∪{x2i, x2i+1}. Since zi ∈ H , by the

pigeonhole principle and 10-indiscernibility, x′
j − x′

k ∈ H for all 2i ≤ j < k ≤ 2i+ 1. By
Ramsey’s Theorem, we can assume that for all 2i < j < k < 2i+1 the element xj−xk is in
the same coset ofH0

A, say g+H0
A. Ifm is the order of g, then for 2i < j0 < · · · < jm < 2i+1

we get that

xj0 − xjm = (xj0 − xj1) + · · ·+ (xjm−1
− xjm) ∈ mg +H0

A = H0
A.

By indiscernibility again, zi = x2i − x2i+1 ∈ H0
A. �

Claim. If annR(g) 6. annR(h), then annR(g ± h) ≃ annR(h).

Proof. By inp-minimality we have annR(h) . annR(g), whence

annR(h) . annR(h) ∩ annR(g) ≤ annR(g ± h).

If annR(g ± h) 6. annR(h), then by inp-minimality

annR(h) ≥ annR(g ± h) ∩ annR(g) 6. annR(h),

a contradiction. The result follows. �

Note that if annR(x1) 6. annR(x0), then annR(zi) ≃ annR(x2i) for all i, contradicting
the first claim. For a contradiction, suppose that annR(x0) 6. annR(x1). Then annR(zi) ≃
annR(x2i+1) for all i, and

(*) annR(yi) 6. annR(yj) for all i < j.

Fix i < j < k < 1. By Lemma 4.3, we get:

imλyi . λy1[annR(yj)] and imλyi . λyk [annR(yj)].
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Moreover, λyk [annR(yj)] . λy1[annR(yj)] by Lemma 3.4. Now

λ(yi, y1) ∈ (imλyi)
0
yi,yj ,yk

≤ λyk [annR(yj)].

Hence, putting λ′
g(x) = λ(x, g), we obtain

yi ∈ λ′−1
y1

[λyk [annR(yj)]
0
yj ,yk,y1

] ≤ λ′−1
y1

[λy1[annR(yj)]].

Thus, by Lemma 3.4 we get that

yi ∈ (annR(yj) + annL(y1))
0
yj ,y1

≤ (annR(yj) + annR(y1))
0
yj ,y1

≤ annR(yj).

Thus, λ(yi, yj) = 0. As (yi)i∈Q is based on (zi)i<ω, we also have that λ(z0, z1) = 0. As
(zi)i<ω is a measure generic sequence, we get that annR(z0) has finite index in G, so in
particular annR(zi) ≃ G and hence annR(yi) ≃ G for all i, contradicting (∗). �

Lascar equivalence is, by definition, the finest bounded ∅-invariant relation on the
monster model. Equivalently, it is the transitive closure of the relation Θ, where Θ(a, b)
holds iff a and b are the first two elements of an indiscernible sequence. We say that a
and b are at Lascar distance 1 if Θ(a, b) holds. For more details on Lascar equivalence see
for example [16].

Corollary 4.7. Let G andK be inp-minimal abelian groups definable in some ω-categorical
theory, and let λ : G × G → K be a definable bilinear map. If x0, x1 ∈ G are Lascar-
equivalent measure generics and annL(x0) . annR(x0), then annR(x0) ≃ annR(x1).

Proof. We may assume that x0 and x1 are at Lascar distance 1, i.e. there is an indiscernible
sequence (xi)i<ω. Let (yi)i<ω be a 10-indiscernible measure generic sequence with tp(y0) =
tp(x0). By moving x0 and x1 we may assume that x0 = y0. As (yi)i<ω is measure generic
and a formula of positive measure cannot divide over any set, we get that tp(yi : i > 0/x0)
does not divide over ∅. As (xi : i ∈ ω) is indiscernible, there is a sequence (y′i)i>0 such
that

(x0, y
′
i : i > 0) ≡ (x1, y

′
i : i > 0) ≡ (yi : i ∈ ω).

Then annR(y0) ≃ annR(y1) by Proposition 4.6, so annR(x0) ≃ annR(y
′
1) ≃ annR(x1). �

Theorem 4.8. Let G andK be inp-minimal abelian groups definable in some ω-categorical
theory, and let λ : G×G → K be a definable bilinear map. Then:

(1) ãnnL(G) has finite index in G.
(2) λ is virtually almost trivial.
(3) If G is connected, then λ is trivial.

Proof. Assume I = ãnnL(G) has finite index in G. Then I . annR(g) for g ∈ I. Let
(xi : i < ω) be a measure-generic 4-indiscernible sequence, and put zi = x2i −x2i+1. Then
zi ∈ I, so z0 ∈ I0z1 ≤ annR(z1) (by the same argument as in the second claim from the
proof of Proposition 4.6) and λ(z1, z0) = 0. But then z1 ∈ annL(z0) is measure-generic
over z0, and annL(z0) has finite index in G. It follows that z0 ∈ ãnnR(G), so ãnnR(G)
has finite index in G as well. Hence J = ãnnL(G) ∩ ãnnR(G) has finite index in G. By
ω-categoricity and Lemma 4.2 we see that λ is almost trivial on J .
If moreover G is connected, then G = annL(G) = ãnnR(G), whence G = annL(g) =

annR(g) for all g ∈ G. Thus it is enough to show (1).
Assume for a contradiction that neither ãnnL(G) nor ãnnR(G) has finite index inG. (We

have just seen that if one does, so does the other.) In particular, λ is not virtually almost
trivial. As G is locally finite, it is amenable, so in particular it admits a G-invariant
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Keisler measure µ. By ω-categoricity, the Lascar equivalence relation is definable and
there are only finitely many Lascar types. By naming representatives of all Lascar strong
types, we can assume that all types over ∅ are Lascar strong types.
By Corollary 4.7 and inp-minimality, annL(x) + annR(x) ≃ annL(φ(x)) + annR(φ(x))

for any automorphism φ and any measure-generic x. We choose a measure-generic Lascar
strong type p such that annL(x) + annR(x) is maximal possible up to commensurability
for x |= p. We may assume annL(x) . annR(x), so imλx is minimal possible up to
commensurability, among all imλy and imλ′

y for measure-generic y, by Lemma 3.4.
By Schlichting’s Theorem there is an ∅-definable subgroup N of G commensurable with

annR(x) for all x |= p. Then for x, y |= p the relation λx,y induces a quasi-endomorphism
λ̄x,y on Ḡ = G/N with finite kernel. Let R be the ring of definable quasi-endomorphisms
of Ḡ. Note that Ḡ is infinite, as annR(x) has infinite index in G by assumption.
By inp-minimality G is not commensurable with a sum of two definable subgroups of

G not commensurable with G. If H has infinite index in G and r ∈ R such that rH has
finite index in G, then r−1rH has finite index in G and for g ∈ r−1rH there is h ∈ H
with rg = rh. Thus g ∈ H + ker r. It follows that

I = {r ∈ R : G 6. im r}

is a two-sided ideal of R. By Lemma 3.1, any definable quasi-endomorphism of Ḡ
with finite kernel must be almost surjective, and any definable almost surjective quasi-
endomorphism must have finite kernel; in either case it is invertible. Hence R/I is a
division ring, which is locally finite by ω-categoricity, whence a locally finite field by
Wedderburn’s Theorem.
Let (xi : i < ω) be a measure-generic 2-indiscernible sequence of realizations of p. Then

λ̄xi,xj
∈ R \ I for i 6= j, and has a fixed finite order modulo I. By Ramsey’s Theorem

we can assume that λ̄xi,xj
+ I does not depend on i < j. But λ̄xj ,xk

λ̄xi,xj
= λ̄xi,xk

for

i < j < k, so λ̄xi,xj
∈ idḠ + I.

Let H̄ = im(λ̄x0,x1
− idḠ), a definable subgroup of infinite index in Ḡ; let H be its

preimage in G. Then for all g ∈ G there is h ∈ H with (g, g + h) ∈ λx0,x1
. Hence

λx1
(g + h) = λx0

(g), that is

λ(x0, g) = λ(x1, g + h) = λ(x1, g) + λ(x1, h),

whence
λ(x0 − x1, g) = λ(x1, h).

But this means that imλx0−x1
≤ λx1

[H ].

Claim. imλx1
6. λx1

[H ].

Proof. Otherwise idḠ ≡ λ̄x1,x1
, so H ≃ λ̄x1,x1

[H ] = G, a contradiction. �

Now x0 − x1 is again measure-generic, and imλx1
6. imλx0−x1

. Hence annR(x0 − x1) 6.
annR(x1) by Lemma 3.4, contradicting the choice of p. �

5. Main results

5.1. ω-categorical inp-minimal Groups and Rings. Recall that each countable, ω-
categorical group has a finite series of characteristic (i.e. invariant under the automor-
phism group) subgroups in which all successive quotients are characteristically simple
groups (i.e. they do not have non-trivial, proper characteristic subgroups). On the other
hand, Wilson [15] proved (see also [1] for an exposition of the proof):
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Fact 5.1. For each infinite, countable, ω-categorical, characteristically simple group H,
one of the following holds.

(i) For some prime number p, H is an elementary abelian p-group (i. e. an abelian
group, in which every nontrivial element has order p).

(ii) H ∼= B(F ) or H ∼= B−(F ) for some non-abelian, finite, simple group F , where
B(F ) is the group of all continuous functions from the Cantor space C to F , and
B−(F ) is the subgroup of B(F ) consisting of the functions f such that f(x0) = e
for a fixed element x0 ∈ C.

(iii) H is a perfect p-group (perfect means that H equals its commutator subgroup).

It remains a difficult open question whether there exist infinite, ω-categorical, perfect
p-groups.
The following is Theorem 3.1 from [11]:

Fact 5.2. There is a finite bound of the size of conjugacy classes in a group G if and only
if the derived subgroup G′ is finite.

Remark 5.3. If a group G is virtually finite-by-abelian, then there is a definable finite-
by-abelian subgroup G0 ≤ G of finite index; if a ring R is virtually finite-by-null, there is
a definable subring R0 which is finite-by-null.

Proof. LetG be virtually finite-by-abelian, and consider a finite-by-abelian subgroupH0 ≤
G of finite index; we may assume that H0 is normal in G. Put F := H ′

0 ≤ G, and
Gh := {g ∈ G : [g, h] ∈ F} for any h ∈ G. As F is finite and normal, each Gh is
a definable subgroup of G. Also, Gh ≥ H0 for any h ∈ H0, so H :=

⋂
h∈H0

Gh is an
intersection of finitely many Gh, hence it is definable. Clearly [H,H0] ≤ F . Similarly, as
G0 := H ∩

⋂
g∈H Gh contains H0, it is definable, and G′

0 ≤ F .

If R is virtually finite-by-null, let S0 be a finite-by-null subring of finite (additive)
index, and I a finite ideal of S0 containing S0 · S0. Then S :=

⋂
s∈S0

{r ∈ R : rs ∈ I}
contains S0 and must be a definable subgroup of finite index, with S · S0 ⊆ I. Now
R0 := S ∩

⋂
s∈S{r ∈ R : sr ∈ I} contains S0 and is again a definable subgroup of finite

index. Since R0 · R0 ⊆ I ≤ R0, this is the required subring. �

We will use the following variant of Proposition 2.5 from [8]. As in our context we
cannot use connected components, we have to modify the proof slightly.

Lemma 5.4. Let C be a class of countable, ω-categorical NTP2 (pure) groups, closed
under taking definable subgroups and quotients by definable normal subgroups. Suppose
that every infinite, characteristically simple group in C is solvable. Then every group in
C is nilpotent-by finite.

Proof. Let G ∈ C. Let {e} = G0 ≤ G1 ≤ · · · ≤ Gn = G be a chain of characteristic
subgroups of G of maximal length. We will show the assertion by induction n. Let i be
maximal such hat Gi is finite. Then CG(Gi) is a characteristic subgroup of G of finite
index, so we can replace G by CG(Gi)/Gi without increasing n. We can thus assume that
G1 is infinite. Now, as G1 is characteristically simple, it is solvable by the assumption.
By the inductive hypothesis, G/G1 is virtually nilpotent, so there is a normal definable
subgroup N of G of finite index such that N/G1 is nilpotent, so N is solvable. Since N
is NTP2, it does not interpret the atomless boolean algebra, so by [2, Theorem 1.2] it is
virtually nilpotent, and so is G. �

Proposition 5.5. An ω-categorical inp-minimal group is nilpotent-by finite.
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Proof. We will additionally assume that the group G is characteristically simple, and we
will show that G is solvable (even nilpotent), which is sufficient by Lemma 5.4.

Claim. There is a finite tuple ā of elements of G such that Z̃(CG(ā)) is infinite.

Proof. If there is ā ⊆ G such that CG(ā) . CG(a
′) for every a′ ∈ CG(ā), then CG(ā) =

Z̃(CG(ā)), so ā satisfies the conclusion (note that, by characteristic simplicity and Fact
5.1, centralizers of finite tuples are infinite).
Supposing otherwise, we can find a sequence (ai : i < ω) such that ai+1 ∈ CG(a0, . . . , ai)

and CG(a0, . . . , ai) 6. CG(ai+1) for all i < ω. In particular, all ai are distinct and commute

pairwise. Moreover CG(aj) . CG(ai), so ai ∈ Z̃(CG(āj)) for i ≤ j. By ω-categoricity, the

groups Z̃(CG(ai)) are uniformly definable, so, by compactness, there is a ∈ G such that

Z̃(CG(a)) is infinite. �

Let H = Z̃(CG(ā)) be as in the claim. Then H is commensurable with a normal group
N by Lemma 3.7. So N is virtually abelian, and its Fitting subgroup F (N) is nontrivial.
As F (N) is characteristic in N , it is normal in G, so F (G) is non-trivial. As F (G) is
characteristic, characteristic simplicity of G implies that G = F (G), so G is nilpotent. �

Theorem 5.6. An ω-categorical inp-minimal group is virtually finite-by-abelian.

Proof. Let G be a counter-example; we may assume it is nilpotent of minimal class pos-
sible. Then Z(G) is infinite, and G/Z(G) is virtually finite-by-abelian. By Remark 5.3
there is a definable subgroup G0 of finite index and a finite normal subgroup F/Z(G)
of G0/Z(G) such that G0/F is abelian. Clearly we may replace G by CG0

(F/Z(G)), a
definable subgroup of finite index. Then G′ ≤ F and F . Z(G). By Neumann’s Lemma
F ′ is finite; we may assume it is trivial. Replacing G by a definable subgroup of finite
index, we may assume that the index |G′ : G′ ∩ Z(G)| is minimal possible.
Consider g ∈ G. As G′/Z(G) is central in G/Z(G), the map x 7→ [g, x]Z(G) is a

definable homomorphism from G to G′/Z(G); its kernel H must have finite index. Then
x 7→ [g, x] is a definable homomorphism from H to Z(G) with abelian image; its kernel
must hence contain H ′Z(G). As H ′Z(G) = G′Z(G) by minimality, we see that G′ ≤
CG(g). This holds for all g ∈ G, so G′ ≤ Z(G).
Now commutation is a definable bilinear form from G/Z(G) to Z(G). By Theorem

4.8 it is virtually almost trivial. But this means that G is virtually finite-by-abelian,
contradicting our assumption. �

Corollary 5.7. An ω-categorical dp-minimal group is virtually abelian.

Proof. Let G be an ω-categorical dp-minimal group. As G is in particular NIP, by a
result of Shelah, the absolute connected component G00 (i.e., the smallest type-definable
subgroup of G of bounded index) exists. By ω-categoricity, G00 is definable and hence of
finite index in G, so we may assume that G is connected. Then G is finite-by-abelian by
Remark 5.3. Thus, the centralizer of any element in G has finite index in G, hence, by
connectedness, is equal to G. This means that G is abelian. �

Theorem 5.8. An ω-categorical inp-minimal ring is virtually finite-by-null.

Proof. This is immediate from Theorem 4.8, as multiplication is a definable bilinear map.
�

As for groups, we get a corollary:
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Corollary 5.9. An ω-categorical dp-minimal ring R is virtually null.

Proof. Again, we may assume that R is connected (in the sense of the additive group).
Then R is finite-by-null by Remark 5.3. Hence, the left annihilator of any element in R
has finite index in R, and must be equal to R by connectedness. This shows that R is
null. �

6. Questions and concluding remarks

One can ask various questions about generalizations of the above results to more general
contexts, such as finite inp-rank, strong or NTP2 theories.

Question 6.1. Are ω-categorical groups of finite inp-rank virtually finite-by-abelian?

A positive answer would seem to be a major improvement of Theorem 5.6, as the class
of groups of finite inp-rank seems much richer than that of inp-minimal groups (containing
for example all groups interpretable in R, C and Qp). Note that by [9, Theorem 2.1], a
positive answer would also imply that every ω-categorical ring of finite dp-rank is virtually
null.
By modifying the proof of Theorem 2.1 from [10] we prove its generalization from the

NIP to the NTP2 context:

Theorem 6.2. Every ω-categorical NTP2 ring is virtually nilpotent.

Proof. As in [10], it is enough to show that a semisimple ω-categorical NTP2 ring R is
finite, and we can assume that R is a subring of

∏
i∈I Ri, where each Ri is finite, and

|{Ri : i ∈ I}| < ω. Let πi be the projection onto the i-th coordinate. For i0, . . . , in ∈ I
and r0 ∈ Ri0 , . . . , rn ∈ Rin , we define

Rr0,...,rn
i0,...,in

=

{
r ∈ R :

n∧

j=0

πij (r) = rj

}
.

Suppose for a contradiction that R is infinite. Again as in [10], we get the following claim:

Claim. For any N ∈ ω there are pairwise distinct i(0), . . . , i(N−1) ∈ I and non-nilpotent
elements ri ∈ Ri for i < N such that the sets

Rr0,0...,0
i0,...,iN−1

, R0,r1...,0
i0,...,in

, . . . , R
0,0...,rN−1

i0,...,in

are all non-empty.

Notice that, by ω-categoricity, the principal two-sided ideals RxR for x ∈ R are uni-
formly definable. Hence, by [5, Theorem 2.4] and compactness, we obtain in particular
that in order to contradict NTP2 it is enough to find for any n,m < ω elements b0, . . . , bn−1

such that

(*)
∣∣ ⋂

j∈n\{j0}

RbjR :
⋂

j∈n

RbjR
∣∣ ≥ m

for any j0 < n (where n = {0, 1, . . . , n − 1}). So fix any n,m < ω, and for N = nm
choose ij and rj as in the claim. Let (ij,k)j<n,j<m be another enumeration of (ij)j<N ,
and let (rj,k)j<n,k<m be the corresponding enumeration of (rj)j<N and (πj,k)j<n,k<m the
corresponding enumeration of (πj)j<N . For any j0 < n, k0 < m let sj0,k0 ∈ R be such that
πj,k(sj0,k0) = 0 for (j, k) 6= (j0, k0) and πj0,k0(sj0,k0) = rj0,k0. Put bj =

∑
j′ 6=j,k<m sj′,k for

all j < n.
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Claim. |
⋂

j∈n\{j0}
RbjR :

⋂
j∈nRbjR| ≥ m for any j0 < n.

Proof. Fix any j0 < n and put b = b0b1 . . . bj0−1bj0+1bj0+2 . . . bn−1. Notice that for any
r ∈

⋂
j∈nRbjR and k < m we have that πj0,k(r) = 0. On the other hand, for distinct

k1, k2 < m we have that

πj0,k1(sj0,k1b− sj0,k2b) = πj0,k1(sj0,k1b) = πj0,k1(sj0,k1)πj0,k1(b) = rj0,k1r
n−1
j0,k1

= rnj0,k1 6= 0.

Hence the elements
sj0,0b, sj0,1b, . . . , sj0,m−1b ∈

⋂

j∈n\{j0}

RbjR

are in pairwise distinct cosets of
⋂

j∈nRbjR. �

By the claim and (∗) we obtain a contradiction. �
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