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Abstract

We consider the problem of maximal regularity for non-autonomous
Cauchy problems

W (1) + A(ult) = £(t) (¢ € [0,7]), u(0) = ug.

The time dependent operators A(t) are associated with sesquilinear
forms on a Hilbert space H. We prove the maximal regularity in the
weighted space L2(0,7,t%dt; H), with 8 €] — 1,1[ and we prove also
other regularity properties for the solution of the previous problem.
Our result is motivated by boundary value problems.

keywords: Maximal regularity, non-autonomous evolution equations,
weighted space.

Contents
1 Introduction 2
2 Properties of the weighted spaces 4
3 Preliminaries 8
4 Maximal regularity for autonomous problem 17
5 Maximal regularity for non-autonomous problem 21
6 Applications 27
6.1 Elliptic operators in the divergence form . . . . . . . .. 27
6.2 Robin boundary conditions . . . .. .. ... ... ... 28

*Univ. Bordeaux, Institut de Mathématiques (IMB). CNRS UMR 5251. 351, Cours
de la Libération 33405 Talence, France. Mahdi.Achache@math.u-bordeaux.fr
TUniv. Sétif -1-, Algeria. maths47@ymail.com.



1 Introduction

The aim of this article is to study autonomous and non-autonomous evolu-
tion equation governed by forms.

Let (H,(-,-),] - ||) be a Hilbert space over R or C. We consider another
Hilbert space V' which is densely and continuously embedded into H. We
denote by V’ the (anti-) dual space of V, so that

Vg H —y V.
i.e., V is a dense subspace of H such that for some constant Cg > 0,
lullg < CHllully (uwe V).

We denote by (,) the duality V'—V and note that (¢, v) = (¢,v) if ¢, v € H.

We consider a family of sesquilinear forms
a:[0,7]xV xV —=C
such that
e [H1]: D(a(t)) =V (constant form domain),
e [H2]: |a(t,u,v)| < M|ul|v||v||y (uniform boundedness),

e [H3]: Re a(t,u,u)+v||ul% > &||ul|} (Vu € V) for some § > 0 and some
v € R (uniform quasi-coercivity).

We denote by A(t), A(t) the usual associated operators with a(t) (as oper-
ators on H and V).
In 1961 J. L. Lions proved that the non-autonomous Cauchy problem

a(t) + A)u(t) = f(t)
u(0) = ug
has L?-maximal regularity in V':

Theorem 1.1 (Lions’ theorem). Given f € L*(0,7;V") and ug € H, there is
a unique solution u € MR(V, V') := HY(0,7;V')NL?(0,7; V) of the Cauchy
problem (P).

Note that MR(V, V') — C([0,7]; H) so that the initial condition makes
sense. In Theorem (1.1) only measurability of ¢ — a(t,.,.) with respect
to the time variable is required to have a solution u € MR(V,V’). How-
ever, considering boundary valued problems one is interested in strong solu-
tions, i.e., solutions u € H(0,7; H) and not only in H'(0,7; V") (note that
H — V' by the natural embedding).



In the recent decades, the maximal regularity approach has become very
useful in application to parabolic partial differential equations. The maxi-
mal regularity in H (autonomous or non-autonomous cases) is so important
for several reasons. First of all, if Robin boundary conditions are considered,
only the operator A(t) realizes these boundary conditions.

Problem 1.2. Let f € L*(0,7; H). Under which conditions on the forms
a(.) the solution w € MR(V,V') of (P) satisfies u € H*(0,7; H).

Lions asked this question on maximal regularity for several conditions
on the form and on the initial value. He also gave partial positive answers in
[20][XVIII Chapter 3, p. 513]. More recently, this problem has been studied
with a lot of progress. See the recent papers [2] or [5] for more details and
references. The main reason for studing this problem is the importance for
non-linear problems. They are mainly solved by appllying the Banach or
the Shauder fixed point theorem.

The main focus of this work is the presence of the temporal weights.
The choice of the weighted spaces has a big advantages. One of them is to
reduce the necessary regularity for initial conditions of evolution equations.
Time-weights can be used also to exploit parabolic regularization which is
typical for quasilinear parabolic problems.

In this paper we are mainly interested by proving the maximal regular-
ity in the non-autonomous case, i.e. we prove the existence and unique-
ness of solution to the Problem (P). We shall allow considerably less re-
strictive assumptions on f and the initial data ug. Here f belongs to the
weighted Hilbert space L?(0, 7, t?dt; H), with 8 € [0, 1] and the initial data
up takes its values in a certain interpolation space (H,D(A(0)) 18, be-
tween H and D(A(0)). The maximal regularity for the autonomous case
in weighted spaces was the subject of treatment of many authors, see for
instance [3].

In the non-autonomous case (see the Section 5) we prove that if f €
L?(0,7,t8dt; H) and ug € (H, D(A(O))%’2 for arbitrary 8 > 0 with the as-

sumption that the operator A(.) € W%’Q(O, m LV, V)N Ce([0, 7], L(V, V"))
for some £ > 0, then the non-autonomous Problem (5.2) has a unique so-
lution v such that u, A(.)u € L%(0,7,t?dt; H). Throughout all of this paper
we assume that the Kato square root property (see (3.1)) is satisfies.

In order to prove our results we appeal to classical tools from harmonic
analysis such as square function estimate or functional calculus and from
functional analysis such as interpolation theory or operator theory.

This work is structured as follows. In section (2) we present basic def-
initions and proprieties used throughout this paper, in particular those of
weighted spaces. In Section (3) we prove some preparatory results, while
in the Section (4) we prove the maximal regularity to the considered au-



tonomous Cauchy problem in the weighted space L?(0, , tdt; H ) and other
regularity properties for the solution.

We illustrate our abstract results by two applications in the final section.
One of them concerns the heat equation with Robin boundary conditions
on a bounded Lipschitz domain 2.

Notation.

- We denote by C, C’ or c... all inessential positive constants. Their
values may change from line to line.

- On some cases we will use the notation a < b to signify that there
exists an inessential positive constant C' such that a < Cb.

2 Properties of the weighted spaces

In this section we briefly recall the definitions and we give the basic proper-
ties of vector-valued function spaces with temporal weights.

Let (X,]| - ||x) be a Banach space over R or C. For —1 < 8 < 1 we set
L%(O, 7;X) = L?(0, 7, t%dt; X), endowed with norm

a0 = | eIt .

It’s very seen that L%(O, 7 X) < L},.(0,7; X). Indeed, for all u € L%(O, 7 X),
we have

T T _ 1
| )l de < (67 d) fulls v
0 0

It clearly holds L%(0,7;X) < L%(O,T;X) for 8 > 0 and L%(O,T;X) —
L?(0,7; X) for 8 < 0.
We define the corresponding weighted Sobolev spaces

W52 (0,7;X) = {u e W (0,75 X) st u, 1€ L3(0,7; X))},
W20, 75 X) i= {u € WE2(0, 75 X), s.t u(0) = 0},
which are Banach spaces endowed with norms, respectively
2 2 112

HUHWBI’Q(O,T;X) - HUHL%(O,T;X) + HUHLg(o,T;X),

2 .12
HuHWg:g(O,T;X) - HuHL%(O,T;X)'

We set also

L3 (0,7 X) :=={u € LY0,7;X) st s — sgu(s) € L>(0,7; X)},



endowed with norm HUHL?;(O,T;X) = ||.§U(.)||LOO(O7T;X). We define also the

fractional weighted Sobolev space WE’Q(O, 7; X)), where
8,2 2
W5(0,7;X) = (L3(0, 73 X); W5?(0,73 X)) s 2,

endowed with norm

Jutt) = u(s)|1
Bz = 030, + | / 1+28X5dsdt

with s € (0, 1).
Here (.;.)s2 is the real interpolation space. For more details see [24](2.6).

Lemma 2.1 (Weighted Hardy inequality ). For all f € L%(O, 7, X), we have
the following inequality

T 1 t
|G [ 1@l ds? dt S 110
0 0
The Lemma 2.1 is proved in ([29], Lemma 6).

Proposition 2.2. We have the following properties
1- (a) Forp>2and 8 > % — 1, we have LP(0,7; X) — L%(O,T,X),
(b) Forp<2andfp < % — 1, we obtain L%(O,T, X) — LP(0,7; X).

2- For allu € L%(O,T,X), we have t — v(t) = %fé u(s)ds € L%(O,T,X).

3- We define the operator ® : L%(O,T;X) — L2(0,7; X), such that (®f)(t) =
tgf(t) for f € L%(O,T;X) and t € [0,7]. Then ® is an isomtric iso-
morphism. We note also that ® € ﬁ(Lz(O,T;X),L%B(O,T;X)) and
O € LWg5(0,7:X), Wy (0,75 X)).

4- We have Wﬁl,’g(O,T;X) — L%_Q(OuT;X)'

5- LQ_B(O,T;X) is the dual space of L%(O,T;X) by the duality defined in
L2(0,7; H).

6- If u € Wﬁl’Q(O,T;X), we obtain that u has a continuous extension on
X and we have
W50, 75 X) = C([0,7]; X).

7- C((0,7); X) is dense in L%(O,T;X) and C*([0,7]; X) is dense in
WE’Q(O, 7; X) for all s € [0,1].



Proof.  1- (zau)Le‘cp>2and5>2 1, we set p' =& > 1, 1,4_1:1
and this implies that ¢ = - L.
and the condition above we get

0y = | IOt a
2 T
([ 1ol a)” ([ 6% ar)
0 0

1 2B 41 v 2
= lllZe 0.7:)-

(b) Similarly, by the above applied to the case p’ = % > 1, we have

By using the Holder S mequahty

p—2
p

IN

o) = [ IOt %

< ([ e’ dt)2 (

= Ollullzs

o\\]
~
e
s
<
=
~_
.

(0,1;X)"

2- Using the previous Hardy inequality we have
¢
01 307y = o I i ) ds Bt dt 5l .
Now, since u € L%(O, 7; X)), we get the result.

3- We see that [|[® f{|£2(0.r.x) = ”fHLg(O,T;X) and we have ®~1 : L2(0,7; X) —
_ _B
L%(O,T;X) such that (®~1g)(t) =t 2g(t) for all g € L*(0,7; X).

4- Let u € Wé’Q(O,T;X) such that u(0) = 0. We write u(t) = [y u(l)dl
Then .
w372 = || [ a0 iz’
0
This implies that
s oy = | NIt at
_/ 2”/ (s)ds||%t” dt
2
< [ (3 [ Watlxds) ¢ a
o \tJo

5 HuHL%(O,T;X) < ||u”Wg’2(O,T;X)7

where here we used the Hardy inequality.



5-

Use simple functions in L% ﬁ(O,T; X)) which norm simple functions in
L%(O,T;X ) and the Cauchy-Schwartz inequality (the proof is similar
to the non weighted case see ([14], p.98)).

Let u € W6172(0,T;X) and for (¢,s) € [0,7]2. We obtain

Jutt) )l = | [t

t 1
< ([ 172 ) H il
S
1
Vi-p
By letting s — ¢t we get u(s) — u(t) in X. Therefore u has a con-

tinuous extension on X. Thus we can always identify a function in
Wé 2 (0, 7; X) by its continuous representative.

(fﬁﬂ _ S*BH)

1 .
: ”U’HL%(Oﬂ';X)'

First we note that C2°((0,7); X) is dense L?(0,7;X). Then for all
fe L/%)(O7 7; X) and for any given € > 0 there thus exists a function
¥ € C°((0,7); X) such that

||((I)f) - ¢||%2(0,T;X) S e.

It follows that

< @l omx)z20mx) (2F) = D17 200,r:x)
<e.

Therefore C2°((0,7); X) is dense in L%(O,T;X).

As in ([30], Theorem 2.9.1) for the scalar-valued case, one sees that
the space of all function f in C*°([0, 7]; X) such that f(0) = 0, is dense
in W01’2(0,7';X). Then for all g € Wﬁlﬁ(O,T;X) and € > 0 there exists
¢ € C([0,7]; X) with ¢(0) = 0 such that

H¢ - ¢g||12/V172(0,’T;X) Se.

Then [|[®~1¢— g”?/(/g*Q(O,T;X) < ¢. This shows that the space of all func-

tion f in C*°([0, 7]; X) such that f(0) = 0, is dense in Wﬁljg(O,T;X).
Let f € WI81’2(0,7'; X) and ¢ € C*°(]0,7]; X) such that ¢(0) = f(0).
Then f—¢ € Wy5(0,7; X) and there is £ € C%([0,7]; X) with £(0) =

2 : e8] .
0, such that ||f — & — ¢HW61’2(0,T;X) < e. Since & + ¢ € C([0,7]; X),



then C*°([0,7]; X) is dense in Wﬁl’2(0, 7; X).
Since C*°(]0, 7]; X) is dense in WE’Q(O,T; X) and

Wi2(0,73.X) = (L3(0, 7 X); W5?(0, 73 X))s2,

we obtain that C*°([0,7]; X) is also dense in W§’2(O,T;X) by ([30],
p.39).
O

3 Preliminaries

In this section we prove several estimates which will play an important role
in the proof of our results.

From now we assume without loss of generality that the forms are coer-
cive, that is [H3] holds with v = 0. The reason is that by replacing A(t)
by A(t) + v, the solution v of (P) is v(t) = e “*u(t) and it is clear that
u € W$’2(O,T; H) if and only if v € Wé’2(0,7'; H).

We denote by Sp the open sector Sy = {z € C* : |arg(z)| < 0} with
vertex 0.
The following lemma is proved in [17] (Proposition 2.1)

Lemma 3.1. For any t € [0, 7], the operators —A(t) and —A(t) generate
strongly continuous analytic semigroups of angle v = 5 — arctan(%) on H
and V' .respectively. In addition, there exist constants C' and Cy, independent
of t, such that

1- He_ZA(t)HL(H) <1 and ||6_Z‘A(t)||£(vl) < C forall z € S,.

2- HA(t)e*SA(t)HE(H) <Y and H.A(t)e*SA(t)Hﬁ(V/) << forall s € R.

s

3- [le™*AD | ey < %

4= = AE) ey < ﬁ and ||(z = A®) " o,y < ﬁ for all
z & Sy with fived 6 > .
The following lemma is proved in [22](Corollary 4.312)

Lemma 3.2. Let Hi, Hy be two Hilbert spaces, with Hy C Hy, Ho dense in
H,. Then for every 6 € (0,1),

[H1, Halp = (H1, H2)g 2,

with ||ull(g, ), = Cllull(#,,Hy), 5, where C is a positive constant indepen-
dent of Hy and Ho.



As consequence from the previous Lemma and ([22], Theorem 4.2.6) we
have that for all v € (0,1),t € [0, 7]

(H, D(A(t)))y,2 = [H, D(A(t))], = D(A(?)").

Lemma 3.3. For all x € (H,D(A(t)))%g, we get

/0 JA(t)e AWz |2 ds < CﬂxH%H,D(A(t)))%gv

where C' > 0 is independent of t.

Proof. Note that He_SA(t)||£(H) < 1 and HsA(t)e_SA(t)HL(H) < M, where
M is independent of t. Let x € (H, D(A(t)))%g. We write x = a + b, where
a € H and b€ D(A(t)) to obtain

s3[|A(t)e 4Oz | < Mys~2 |la]| + s2[[bl peace)
1
< max{Mi, 1}s™2{|lal| + s[|bl[ pca)) }
< max{M;,1}s 2 K (s, z; H, D(A(t))).

So ||A(t)e*4Wz|| < max{M;,1}s 'K (s, z; H, D(A(t))), where

K (5,3 H, D(A(t))) lall + sub\D(A(t)))

inf (
z=a+b; a€H, be D(A(t))

=/ \K(s,x;H,D(A(t)))\Q% (See [22], Definition

Since [l pacy) 2

1.1.1), then

[N

/0 | At)e= 402 ds < max{M;, 1}|lPy piacey)

Then we get the desired result. O

In the next lemma we prove the quadratic estimate, this lemma was
proved in [2] with the assumption (3.1), here we prove this estimate without
this assumption.

Lemma 3.4. Let x € H and t € [0,7]. We have the following estimate
T L —sA(t),.12 2
| 1@ e 2002 ds < cljaf
0

where ¢ > 0 is independent of t.



Proof. Note that by ([19], (A1) p. 269)

1

AW = = [ G+ ) aw

Then by Lemma 3.1 one has ||A(t)_%||£(H) < ', with C" > 0 independent
of t.
Let z € H and t € [0, 7]. We get by the previous lemma

1 1
| IA@Re A0z 2as = [ A@me A0 @)l ds
0 0

_1
< A® 2l pay
:

1
= |lzl|% + A1) "z
< (O + )|,

O]

In the next of this paper we suppose that D(A(t)%) =V, forallt e |0,7]
and there exist ¢, ¢! > 0 such that for all v € V

1
allvllv < |A@)z0]| < ¢'vllv, (3.1)
this also holds for the adjoint-operator and we have
1
allvlly < |A* 1)z 0] < vy
Note that this assumption is always true for symmetric forms and we get
1 =V and ¢! = VM.
Lemma 3.5. For allt € [0, 7] we have D(A(t)%) = H and D([A(t)*]%) =V

Proof. We write

Therefore u
allull <A@ 2ulve < = ul.
So that A(t)% € L(H,V"). By duality we have A(t)*% e L(V,H). O

Every f € L?(0,t; H), defines an operator by putting

(B0 = [ O f(5) ds.

The next lemma shows that R(t) is bounded in £(L?(0,¢; H), V).

10



Lemma 3.6. We have that for all t € [0,7], R(t) € L(L*(0,t; H), V).

The Lemma 3.6 is proved in ([2], Lemma 4.1).
We define the space

L3(0,7; D(A(.))) = {u € L3(0,7; H) s.t A(.)u € L3(0,7;H)}
endowed with norm
1l o,m,00a0))) = lllLz om0y + 1AC ull 22 0,7, 1)

Lemma 3.7. We assume that A(.) € C<([0,7]; L(V,V’)),e > 0. Then
for all X € (0,00), we have (A + A(.))~' € C([0,7]; L(H)) and ||(X +
A Meworewmy) < §-

Proof. Let X € (0,00),t,s € [0,7]. We get
A+A@) T = A+ A) ™ = (A + A))THA®) — A()) (A + A(s) 7
Therefore by the Lemma (3.1) we have
I+ A@) ™ = A+ As) e
<A+ A@) " e m IA®) = A e |3+ A®) ey

|t — s
<C
Al

O
Lemma 3.8. We suppose that A(.) € C*([0,7]; L(V, V")), then L3(0,7; D(A(.)))
is dense in L%(O,T;H).

Proof. Let f € L%(O,T;H), and set f,,(t) = n(n + A(t))"1f(t) for n € N.
Since t — (n+A(t))~! € C*([0,7]; L(H)), then for all n € N the function f,, :
[0,7] — H is measurable and satisfies f,,(t) € D(A(t)) almost everywhere
as well as [|A(t) fn(t)]] < Cnl|f(t)]|. Moreover

1falt) = £ = | (n(n + A@) ™ = 1) £

Hence, the convergence f, — f in L% (0, 7; H) holds by the dominated con-
vergence theorem. O

Proposition 3.9. Assume that A(.) € C<([0,7]; L(V, V")), for some & > 0.
Then for all [ € L%(O,T;H), with B < 1 the operator L defined by

(LA)O) = ) [ D0 f(s)ds

0

is bounded in L%(O,T; H).

11



Proof. Let f € L%(O7 7; D(A(.))). We split the integral into two parts to get
L t
2 _ —s —(t—s
(L)) = A(t) /0 =0 f(s5)ds + () [ eI f(s)ds
= Il(t) + IQ(t).
We begin by estimating the first integral

3 301
||1'1(1f)||=|\z4(7f)/0 e“t‘S)A“)f(S)dSHHS,/O mllf(S)Hds

2 (3
<5 [TIre)lds,
0
Therefore by Hardy inequality (See Lemma 2.1) we have
- t
1A [ e 940 1(s) ds| e an
0 0

< [[C [P i sz a

~ HfHLQ(ofH

As before we estimate the second integral, so for all x € H, we obtain
(@ ‘/ ze 2740 f(5), A(t)2em 270"y ) ds|

< ([ 1awbe b0 piayas)? ([ awe

1
ef%(tfs)A(t)*l,H2 dS) 2

%
l_l_
) ([ 1A A0 £ as) .
2

In (i) we have used the quadratic estimate (3.4).

Taking the supremum over all x € H, we obtain the following estimate

T T t
| eInmld = [ A [ e 940 ps)as)
0 0 i

T t
S [10 [ lAmie 30 () ds ar
0 3

T rt
S [ [ 1awie a0 (s o)) 2 ds ar
0 /3

Let g be the function defined by g = (®f). Using the Fubini theorem and

12



the inequality (z + y)? < 222 + 2y%, we obtain

T rt
f) A O Sl ds
<2/ / | A(s)3 e 3=94g(s) |2 ds dt

l
NHgHLQOTH WA

The functional calculus for a sectorial operators gives

A(S)%e*%(t*S)A(S) — A(t )26 L(t—s)A(t)
- /r Are 2NN — A®) (A1) — A(s))(A — A(s)) ! dA

M\)—l
N
b
—~
]
—
—
~
~—
N[
®
|
N[
—~
T
»
—
B
—~
~
~
N—
Q
—
»
~—
[\
U
»
=
~

Hence
| A(s )% —3(t—s)A(s) —A(t)%e*%t s)A() H

< /F AlZem2tRe X5 A(t))_luﬁ(V’,H) ICA) = A e Il = A) ™ ey [dA.

Therefore

[As) 2¢O — A(p)2em2 (7940

< [T AR B Wl (A) ~ A e

0
Then
”A(s)%e_%(t—s)/-‘(s) _A(t)%e %(t $)A(t )HE(H) S ||A(t> _A(S)‘l‘ﬁ(v’vl)'
(t—s)2
Therefore
/ ﬂ ||( (s ) —(t—s)A(s) _A(t)%e—(t—s)A(t)>g(s)H2dsdt
0 J3
™LA Hg v
~/ / Hg(s)| ds dt
T HA )_ ( )H%(VV/)
: SUP}/S = dtllieonm

S T NANE: (o vy 1 122 0,71

This completes the proof of the Proposition 3.9. O
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Proposition 3.10. For 8 > 1 we have that the operator L is not bounded
in L%(Oﬂ'; H) in general.

Proof. Let u € H and g € Lgﬁ(O,T; H). It’s very seen that

= / A(s) e =046 g(5) ds
t

and L € L(L%(O,T;H)) if and only if L* € C(L2 0, 7; H))
If A(s)* = A(0)* forall s € [0, 7], then (L*g)(t) = ft A(0)*e~(5=DA0) g (5) ds.
Assume now that 7 > 1 and take g(s) = 1j; -)(s)u, so

(L*g) (t) — e—(T—t)A(O)*u _ e_(l_t)A(O)*u

I

—7A(0)* —A(0)*

which converges to e u—e u as t — 0. We claim that

=TAO) y _ =AO)"y, £ 0,
then
* 112 * 112
12 9l122 0ty 2 1279122 0,150

M —r—a0) —(1—pA@)*, 2 4t _
—/0 lle u—e uHHt—B—oo.

—TA0)*y, _ o—A(0)*

Now, suppose that e u = 0, then we have

o~ (2r—1)A(0)" —A(0)7,.

u=-e
So for all n € N and by using induction we get
o~ (T=D+DA©0)", _ —A0)*,, —

Since [|A(0)*e("T VA A0 M ully S Gy 1A0) M, by let-

ting n — oo it follows that e 4"y = 0. Hence, for all t > 1, we get
e 1407y, = 0. We deduce that u = 0 by an application of the isolated point
theorem and the analyticity of the semigroup. O

Lemma 3.11. For all f € L%(O,T;H),t € [0,7] and f < 1, we have
(L1f)(t) € V, where

(Laf)0) = 13 [ IO () ds

Proof. We write

13 t
(Lo f)(t) = 2 /O 2 =AW £ (o) ds + 7 / e~ (=940 £ () ds.

2
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A straightforward computation gives
i
I8 [* =040 payaslly 58 [ 1m0 g7l ds
0 0

B 5 _4_ 2
G([ s 1ds)2ufuL;<o,T;H)

5 HfHL%(O,T;H)‘

AN

Using the Lemma (3.4), to deduce

s [t —(t—s —(t—s
2 [ 91O f(s)asly S | [ e A0 (55 1)) dsly
2

2
Sz 0,m5m)-

Then we get the result. O

Lemma 3.12. For all up € (H; D(A(0)))1-5 , and 3 € [0,1), we have

T L -
|1 A A Ol dt = ol ey, -

Proof. Note that (H; D(A(0)))1-s , = D(A(0)' ). If B € [0,1), by using
2 b
the quadratic estimate we obtain

/OT [¢5 A(0)e 4O g% dt

- /0 15 A(0) % e=4© 4(0) T g3 dt
< [ 1407 40 40)F wo

< JJA®©) 7 uo? = ol pao o

< luolltr, peaoyy, s ,

Conversely, we know that (See [22], Definition 1.1.1)

1
Jooloaonse, = [ 172V )l dr
0
where

K = inf .
(¢, uo) uo:a-&-b;ael%,beD(A(O))<||a”H +t”bHD(A(0)))

This allows us to write for ¢ € [0, 7]
Uy = (uo . e—tA(o)uO> + e_tA(O)u(]

t
—/ A(0)e A0y di + etAO) g4
0

15



Since e 40y, € D(A(0)) a.e t € [0,7] and (uo - e_tA(O)uo> € H, it
follows that

t
1K (¢, uo)ll S/O 14(0)e A ug| dl + ¢]| A(0)e ™ A Ou.
Roughly speaking, by Hardy inequality (2.1), we have

T8 _
1ol pacon) s ) §/0 182 A(0)e ™ AOug |3 dt.
2
This completes the proof of the Lemma. O

Remark 3.13. As consequence of the previous lemma the orbitt — e 40y
belongs to the space Wg’z(O,T;H) N L%(O,T;D(A(O))) if and only if uy €
(H; D(A(0))) 12

We define the space
Ws(D(A(.),H) = {u e W"(0,7; H), s.t A(Ju € L3(0,7; H), 4 € L3(0,7; H)},
endowed with norm
lullws (oac).m = 1AC)ul Lz 0.0 + @l Lz 0,0m)-
It is easy to see that Wg(D(A(.),H) — Wﬂl’2(0, T H).

Lemma 3.14. For all v < , we have (H, D(A(0)))4,2 = [H, V]2, and for

v > % we get (H, D(A(0)))y,2 = V.

Proof. As a consequence of the interpolation method (See [22], Remark
1.3.6) we have for v < 1,

(H, D(A(0))),2 = (H, D(A(0)2))2y2 = (H. V).
Since H and V are Hilbert spaces we get by the Lemma 3.2
(H, D(A(0)))y2 = (H,V)ay.2 = [H, V]ay.
Let v € D(A(0)) and v > 3. We obtain
3llvlli < Re (A(0)v,v)

S 1 A0) vk [A©)T vl

S A vl mllvll vy, )

S 1A0) vl lvflv-
Therefore we have that for all v > } and v € D(A4(0))

[vllv < vl peagoyry-

Finally, by the density of D(A(0)) in D(A(0)”) we get the desired result. [
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4 Maximal regularity for autonomous problem
In this section we are interesting in the regularity of the following problem
u(t) + A)u(t) = f(t)

u(0) = up.

(4.1)

Theorem 4.1. Forall f € L%(O,T, H) and ug € (H; D(A(0)))1-8 , if B3>0
2

and ug = 0 if B <0, there is a unique u € Wg(D(A(0)), H) N L5 (0,7; V) be
the solution of the problem (4.1). We have also the following embedding

Ws(D(A(0), H) — C([0, 7]; (H; D(A(0))) -z ).
For 5 € [0,1] we have
1
Ws(D(A(0)), H) = WE™(0,7; V).
Proof. Since A(0) is an analytic semigroup in H, it is very knowing that by

the variation of constants formula the solution of the Problem (4.1) is given
by

t
u(t) = e 40y, +/ e~ (t=9)40) () ds.
0
Thus, it follows
t
A(0)u(t) = A(0)e Ay + A(0) / e~ (=9)40) £ () ds
0

= (Fuo)(t) + (Lf)(¢).

Then by the Lemmas 3.12 and 3.11 and the Proposition 3.9, we obtain
HA(O)UHLg(o,T;H) < HFUOHLg(O,T;H) + ||Lf||L%(07T;H)
< C(Iluollrr:papys s , + Mz 0mstr):
Ti

Since & = f — A(O)u € L%(O,T; H), we get finally

lullwsoeaon.m < € (luollarpaon, s, + 1flz0nm)-  (@2)
2,
Using Proposition 5.1 and (4.2) we obtain for all ¢ € [0, 7]
lu)llr:pea©)) s ,
S,

S lullwy o), mncy o)

S luolli:pa)ss , + 123 0,00 (4.3)
=<
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For 0 <s<[l<t<T7weseto(l)= e*(t*l)A(O)u(l). Then

t
u(t) —u(s) = (e_(t_S)A(O) - I)u(s) —l—/ e~ =00 £y dl. (4.4)
Observe that e~ (=940 is strongly continuous on (H; D(A(0)))1-s 5 In
2 I
particular, this ensures that H( t=5)A(0) _ I)u(s)H(H;D(A(O)))17{3 — 0 as
1289
t—s.

The Estimate (4.3) for the case ug = 0 gives that

H/ e FO oo s, S 1l eam:

It follows that u(t) is right continuous on (H; D(A(0 )))

Now, we set v(l) = e~ =940y (r) for 0 < s <1 < t.
Then

u(s) - uft) = (e~ (=940 )+ / 940 (£(1) + 2A(0)u(d) ) dl.

The same argument with the right continuous gives that u is left continuous
n (H; D(A(0)))1-s 5. Thus u € C([0,7]; (H; D(A(0))) 125 ,)-
2 2

1
In the next we prove that Ws(D(A(0)), H) — Wy ’2(0, V).
Let 8 € [0,1] and u € C*([0,7]; D(A(0))). We recall that

[[u(t) ”V
HUHL2 (0,73V) +/ / \t— 3\2 s’ ds dt.

By (4.4) it holds that forall 0 < s <t <7

lul®
52 (0»T§

u(t) —u(s) = (e_(t_s)A(O)u(s) - u(s)) + / ' (=040 F()di
= Ly(t,s) + La(t, s),

where f(1) = A(0)u(l) + u(l).

So that
2 | L1(t, s ||V
I e, < T2 0 +2// b dsar
8 T
Lo(t
+2/ NG 5 g g,
|t — s]?
We write

t—s
Li(t,s) = e =40 (6) — y(s) = / =4O A(0)u(s) di.
0

18



Therefore by the Hardy inequality of the Lemma 2.1 and the quadratic
estimate we have

\t—8|2

/ / A0 AO)u (s)llvdl)Zdtsﬂds
|75—S|

< c/ / e~ 4O A(0Vu(s) |2 dts’ ds

< / ||A ()[° ds

Similarly, we get
L
[
0 t—s‘z

< [ [[(EEenOay, ,
=

<c [" [ 110w dsai
0 JO

—c [" [ 1O @) s) e ds
0 Js
< 1910 rny = CUA I3 0,700
Therefore

< ||A(0 ) )
||u”w§’2(o,f;x/) S 1Al Lz 0,00 + 1112 0,7:m0)
S lullws(pcacoy),m)-

We note that C*°([0, 7]; D(A(0))) is dense in Wz(D(A(0)), H). This shows
that

Ws(D(A(0)), H) = W2>(0,75 V).

Remark 4.2. The following embeddings hold
1) Ws(D(A(0)), H) = C([0,7]; [H, V]51-p)), for B = 0.
2) Ws(D(A(0)), H) — C([0,7];V), for 5 < 0.

Theorem 4.3. For all f € Wg’g(O,T, H), there exists a unique

u € CH([0,7; (H; D(A(0))) 122 ,) N C((0, 7]; D(A(0))),
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which satisfies the following equation
u(t) + A(O)u(t) = f(t)
u(0) = 0.
In addition,
lulleonmpaon) s Jocqorpaon) < Clflwromm:

Assume now that 7 = +oo and f is a periodic function with period p.
Then u satsifies

u(t +p) = e u(p) + u(t), t € [0,00),
and u is periodic with the same period p if and only if u(p) = 0.

Proof. According to the Theorem 4.1, there exists a unique solution u of
the Problem (4.5) and for all f € L%(O,T; H) the solution is given by the
formula

¢
u(t) = / e~ (=9)40) f(5) s, (4.6)
0
We have also u € Wg(D(A(0)), H) and
lullwy(peaoy),m) < C||f”Lg(0,r;H)- (4.7)

Fort € [0,7] and f € Wﬁl’g((), 7, H), we have by integration by parts

A0)u(t) = A(0) /0 (-9 40) f(s)ds

= j(t)~ [ e 40 fs)ds
0
=u(t) + A(0)u(t) — / e (t-540) f(s)ds.
0
Hence

it) = [ IO fs)ds = (L)),

Now, by the Theorem 4.1 we get that u € C*([0,7]; (H; D(A(0)))1-5 ,)-

)

Since for ¢ € [0, 7], A(0)u(t) = f(t) — u(t) we have A(0)u € C([0,7]; Hj
As a consequence, we obtain the final estimate

lulle qo.repeao) s Jeqoripao) < ClFllwiz o rm:

Now we take 7 = +o00 and we assume that f is a periodic function with
period p, i.e, f(t +p) = f(t) for all ¢t € [0,400). It is clair that if u is
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periodic with period p, then u(p) = u(0) = 0.
By the formula (4.6), we get that for ¢ € [0, c0)

t+p
u(t+p) = / e~ AP35 A0) () ds.
0
Then
P P+t
u(t+p) = / e~ tFP=9)A0) £(5) ds —I—/ e~ (tHP=9)A0) £(5) ds
0 P

—(i) ,—tA /p e~ P=9)A0) £ () ds + /t e~ =DAO) (1 4 p) dl
0 0
=) =t Au(p) + u(t).

In (i) we made a change of variable and the periodicity of the function f
has been used in (7).

Then u is periodic with period p if and only if e *4u(p) = 0 for all t € [0, c0).
Therefore by the analyticity of the semigroup we get that u(p) = 0 is a
necessary condition for u to be periodic. O

5 Maximal regularity for non-autonomous prob-
lem

In this section we focus with the maximal regularity for the non-autonomous
problem, i.e. we prove the existence and the uniqueness of the solution for
the Problem (P) in the weighted space WBI’Q(O, T H).

Proposition 5.1. 1. Assume that

dt < oo

ECE A0y
0 t

Then for all s € [0, 7]

TR, : Ws(D(A(.), H) N LF (0,75 V)

L

is a bounded operator.
2. Forug € (H; D(A(0)))1-5 ,, we obtain that
2 b

B
2

t = (Fug)(t) = t2 A(t)e 4Dy € L2(0, 7; H).
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Proof. 1. First we consider the case s = 0. We have
1u(O) I ez a0 —/ 17 A0)e ™A@ u(0) 3, dt + [|u(0) 3,

<2 [ 143 40040 (u(0) — u(t) I i + [u(O) s
0
1

+2/H£Amk4ﬂmmm@dt
0
1 1 t

S [ PG [ lalads?a

+/t%A OII3 dt

/ th e O — A()e AOTu(t) (|3 dt + [|u(0)]1F

+/wHA@w—Amwauw>
0

; dt”“”LgO(o,r;V) + [Ju(0)]1%
S el peacy,m + ||U||%g°(o,T;V) + [[u(0) 1%,

where we have used the estimate

1A(0)e ™4 — A(t)e™ AW | 2y S

~

[ A(t) — A0 )||z(vv’
3

Now, we prove the result for all s €]0, 7]. Indeed, let [ €]0,7[ and we
set
Mﬂ—{ u(t+s), telo,7—s.

| wE(r—1t), te[r—s,T]

Similarly
Blt) — A(t+s), te|0,7—s].
W=V ACE-1)), telr—s7).

Since v(t) € Wg(D(B(.), H), therefore

0(0) = u(s) € (H; D(B(0))) 1= , = (H; D(A(5))) 12,

2

For the case s = 7, we take v(t) = u(t — t) and B(t) = A(T — t).

2. Note that



For 8 > 0 we have by interpolation

S

1
7

I = A0)) "Ml 2((r:DA0)) 1_s A3

3

27‘/)

Therefore
[ (F'uo) ()] a1
< [LA0) — A cvvry
< - [uoll(a:0(a(0)) 1_g
2
+ ||t§A(O)6_tA(O)u0||H-
Hence,

||(Fu0)‘|%2(O,T;H)

[ A(0) = A%y
N /0 " ol azpaon) o

7 2

+ / L5 A(0)e A0 0|2, dt
0

S lwolltmpeaoy), s -
)

This shows 2.

In the next of this paper we consider only the case 5 € [0, 1].

Proposition 5.2. Suppose that A € C*([0,7]; L(V,V')). Then for all f €

L%(O,T;H), ug € (H;D(A(0)))1-5 ,, and for T is small enough, there is
2 b

a unique u such that u € L%O(O,T; V'), where u is the solution of the non-

autonomous Cauchy problem

a(t) + AQt)u(t) = f(t)
(5.1)

u(0) = wp.

Proof. Let f € L3(0,7;H). We set v(s) = e~ (t=9)AWy(s). Since u(t) =
et Wyg 4 [10(s) ds, therefore
t t
u(t) = e 4Oy + / e~ U=DAD (A(t) — A(s))u(s) ds + / e (=940 1(5) ds
0 0
1= (Muo)(t) + (Miu)(t) + (L1f)(¢).

Moreover, for 3 > 0 and ug € (H, D(A(0))1-5 , we have by interpolation
7

argument
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_tA _B
e 4Wuqlly <t 2||UOH(H,D(A(O))#’2-

In view of the Lemma (3.11) .gM, .ng are bounded in V.
In what follows, we prove that tg(Mlu)(t) € L>®(0,7;V), for all t3u €
L>(0,7; V). We write

Oru)(t) = [* e IO — Als)uls) ds

0
t
+ [ e UTIAAR) — A(s))uls) ds
3
= (Mnu)(t) + (Mlzu)(t).
By taking = € V' we obtain the following estimate
[(Migu)(t), z)vrxv|
1 (tfs)A

= | [ SO — AGs)u(s), A e T AW s

to (s A
< ([ e A0 ) AG) — Au(s) R )’

1 (t—s)

([ Ao T4 (agey ) el ds)

Now, we estimate M1; by the following
B
t2||(Muo)(8)|lv

t
B8 [z, _(t=s) _8 8
5752/0 le” 2 A(t)Hc(v',v)HA(t) = A(s)llzvvrys 2033||32U(-)”Loo(o,g;V)

t B
g (2 s 2 [A®) — Al cvvry, 8
5752/ 52 s sup VO N5 () s .00
o (t=9)'"" sy (t —s)° L= 0,3:V)
Note that
B8 2 8_g % l_g
t2 ds = t° dl
§ /0 (t—s)l—< § /0 (1—1)—=
Therefore

B
L@l
€ B
5 3 HAHCE([O,T};L(V,V’)) H52 u(')HLOO(O,%;V)

N ([ IA(t) — A(Z)H%(V,V/

) ;N1
B P dS)ZHUHLgO(%,t;V)

2

S tEHA(-)HCE([O,T];L(V,V'))HUHL;;O(o,t;V)-
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By taking 7 small enough we may arrange that
My € L(LF (0, 7; V),

with norm ||M; HL:(L;O(O,T;V)) < 1, therefore (I—Mj) is invertible in LZ°(0, 73 V).
Hence
w=(I— M) (Mug+ L1f) € LF(0,7;V).

This finishes the proof. O
Our principal result in the non-autonomous case is the following

Theorem 5.3. Suppose that A € W22(0, 7; L(V, V') N C=([0, 7], LIV, V")),

with € > 0, then for all f € L%(O,T; H) and vy € (H; D(A(0))1-s, there is
2

a unique u € Wg(D(A(.), H) be the solution of the Cauchy problem

a(t) + A(t)u(t) = f(1)
(5.2)
u(0) = up.

Proof. Let T be small enough and f € L%(O,T; H), up € (H; D(A(0))1-5 ,-
R

Then by the Proposition 5.2 we have u € L’ (0,7; V), while u is the solution

of the Cauchy problem (5.2).

Let 0 < s <t <7 and we set v(s) = e~ (=9)4My(s). Since v(t) = v(0) +

5 0(s) ds, therefore

At)u(t) = A(t)e A0y + A(t) /0 (=90 (A(t) — A(s)u(s) ds

+ A(t) /Ot e~ (=940 1(5) ds
= (Fuo)(t) + (Su)(t) + (Lf)(?)-

The only thing to check is that Su € L%(O,T;H). In fact, take g €
L?(0,7; H), then the following relation holds

1(.2.Su, 9) 2 (0.r1)|
—| /ot /0 ((A() — A(s))u(s), A@) e DA g(1)) oy ds

. \/OT t7 /:«A(t) — A(s))u(s), At) e~ DA g (1)) ds dt|

1[5 [ 1AW - Au(e), AW I g0 ey dsa

=1 + Is.
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For I we have

T _(t—s) *
ESA AW — A e T A
. (t=s) 1, _(t=8) gpy _8 8
X A 2 e “THAO o [|A(E) 3= THAO g (1) 555 ds dt|. Ful| oo o.mavry

t || A(t ’ 1 (t—s)
/ / ” () ( )HL(VV HA() *eT 4 A(t)” ()HHdetH 2UHLoo (0,75V)

1* _(f s)
S My oo e (L /’wa 4G (1) s ) a0

S 1A

= N

W%,2(O’T;L(V7V/)) ||g||L2(0,T,H) ||UHL;;‘(0,T;V)-

Similarly,

- o
ns [T s
0 t— 2E

B
x [ Allceqoricevyll-2ull Lo o,mv)

S ”A”C'E([OJ];L(V,V’))HQHL2(0,7—,H)HUHLE"(O,T;V)'

Finally, we get the final estimate

HA(')UHL%(O,T;H) S HFUOHL%(O,T;H) + HSUHL2 0,mH) T HLfHL2 (0,7:H)

S ||U0H(H;D(A(o)))1,5 Fllullzg vy + 1122 0.7m)

2

N ||UOH(H§D(A(O)))1—,B 5 + Hf||L§(o,T;H)-

Therefore A(.)u € L%(O,T; H). Since @ = f — Au, then @ € L%(O,T;H),
and so u € Wa(D(A(.), H). We note that by the Proposition 5.1 we have
u(t) € (H; D(A(t)))ﬂ72 for all t € [0, 7].

For arbitrary 7 we sSlit the interval [0, 7] into union of small intervals and
similarly we use the same procedure as before to each subinterval. Finally
we stick the solutions and we get the desired result. O

Remark 5.4. By the same assumption of the Theorem 5.3 and as in the
proof of the Theorem /.1 we may prove that

Wi(D(A(), H) = W37(0,7:V).

Proposition 5.5. For all g € L*(0,7;H) and 0 < B < 1 there ewists a
unique v € Wo(D(A(.), H) be the solution of the singular equation

o(t) + A(t)o(t) — 59 = g(1)
(5.3)

v(0) = 0.

26



Proof. Weset f(t) = (®g)(t) = tgg(t) with ¢ € [0, 7], so that f € L%(O,T;H).
Let u € Wg(D(A(.), H) be the solution of the Problem

u(t) + A(t)u(t) = f(1)

u(0) = 0.

(5.4)

Now, we set v = (® !u). Then v € Wy(D(A(.), H) and v is the unique
solution of the Problem (5.3). O

6 Applications

This section is devoted to some applications of the results given in the pre-
vious sections. We give examples illustrating the theory without seeking for
generality.

6.1 Elliptic operators in the divergence form

Let © be a bounded Lipschitz domain of R*. We set H := L?(Q) and
V := H'(Q) and we define the sesquilinear forms

a(t,u,v) = / C(t,z)VuVo dx
Q
where here u,v € V and C : [0, 7] x 2 — C"*" is a bounded and measurable
function for which there exists o, M > 0 such that
alé]* < Re (C(t,)€.€) and |C(t, 2)&.v| < MIE]|v]

for all t € [0,7] and a.e x € Q, and all £, € C". We define the gradient
operator V : V. — H and V* : H — V’. The non-autonomous form a(t)
induces the operators

A(t) == -V*C(t,z)V € L(V, V).

The form a(t) is H'(Q2)-bounded and coercive. The part of A(t) in H is the
operator
A(t) .= —div C(t,2)V

under Neumann boundary conditions. We note that

MA@ zvivry = NCEs )l e @ienxny = M.

Next, we suppose that C € W%’Q(O, T; L (Q; C™™))NCe([0, 7]; L (Q; C™*™)),
with € > 0. which is equivalent to

2
[ [ len =Gl
0 xEQ |t—8|
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|t —sl|®

a.e for x € Q.
We note that

[A®) = A(s)llcvvny S IO ) = C(s, )l Lo (cnxn)-
Therefore we get
AeW22(0,7; L(V,V')) N C([0,7]; LV, V"))
Remark 6.1. D(A(t)2) =V = HY(Q) for allt € [0,7] and

crllull gy < HUHD(A < ClHUHHl(Q)

t)2)

1

where c1,¢' are two positive constants independent of t (see [7], Theorem

1).

In the next theorem we assume that § € [0, 1].
Proposition 6.2. For all f € L%(O,T;LQ(Q)),UO € H'B(Q) there is a
unique u € Wg(D(A(.), L%(2)), be the solution of the following problem

a(t) — div C(t, ) Vau(t) = f(t)
Qullo) — o (g € 99) (6.1)
u(0) = up.

The proposition follows by Theorems 5.3.

6.2 Robin boundary conditions

Let  be a bounded domain of R? with Lipschitz boundary 0§2. We denote
by Tr the classical trace operator. Let 8 : [0, 7] x 9 — [0,00) be bounded
function and H := L*(Q). We define the form

a(u,v) := /QVU.VU dx + /mzﬁ(.)Tr(u)Tr(v) do,

for all u,v € V := HY(Q). The form a is H'(2)-bounded, symmetric and
quasi-coercive. The first statement follows readily from the continuity of the
trace operator and the boundedness of 8. The second one is a consequence
of the inequality

| 1l < Sl + Collulzqo

which is valid for all 6 > 0 (Cs is a constant depending on §). Note that
this is a consequence of compactness of the trace as an operator from H'(Q)
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into L2(09), do).
Formally, the associated operator A is (minus) the Laplacian with the time
dependent Robin boundary condition

%Z + B(.)u =0 on 9.

Here g—z denotes the normal derivative in the weak sense.

By using Theorems 4.1 and 4.3, we get the following result
Proposition 6.3. Let 5 €] —1,1] and f € L%(O,T; L?(Y)). There exists a
unique u € Wg(D(A), L*(Q)) N C([0, 7], (L*(€); D(A))1-5 ,) be the solution
2 2
of the problem
u(t) — Au(t) = f(t)
% + B(.)u =0 on 0N (6.2)
u(0) = 0.
If we assume moreover that f € Wg:g(O,T; L?(9)), then the solution u is in
CH([0,7); (£(); D(A)) 125 ,) N C((0,7); D(A)).

Remark 6.4. We note that for 8 € [0, 1] we have
(L2(9Q): D(A) 10 5 = [L(Q): D(A) s = [L2(Q): ' (@)hs = H' ().
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