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Abstract
Motivation: Identifying new genetic associations in non-Mendelian complex diseases is an

increasingly difficult challenge. Yet, these diseases seem to have a significant part of heritability
to explain. This missing heritability could be explained by the existence of subtypes involving
different genetic factors.
Taking genetic information into account in clinical trials can therefore be of interest to guide
the process of subtyping a complex disease. Most methods dealing with multiple sources of
information rely on data transformation, with two main tendencies regarding disease subtyping
in that situation: i) the clustering of clinical data followed with posterior genetic analyzes and
ii) the clustering of clinical and genetic variables. Both face limitations that we propose to
leverage.
Contribution: This work proposes an original method for disease subtyping from both lon-
gitudinal clinical variables and high-dimensionnal genetic markers via a sparse mixture of
regressions model. The added value of our approach lies in its interpretability regarding two
aspects. First, our model links both clinical and genetic data with regard to their respective
initial nature (i. e. without transformation) and does not need post-processing to come back
to the original information to interpret the subtypes. Also, it can adress large-scale problems
thanks to a variable selection step to discard genetic variables that may not be relevant for
subtyping.
Results: The proposed method is validated on simulations. A dataset from a cohort of Parkin-
son’s disease patients was also analyzed. Several subtypes of the disease as well as genetic
variants having potentially a role in this typology have been identified.
Software availability: The R code for the proposed method, named DiSuGen, and a tutorial
are made available at https://github.com/MCour/DiSuGen.
Status: as of march 2021, this preprint has just been submitted to Pattern Recognition Letters.
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1 Introduction
Known genetic markers in complex disease usually account for only a part of calculated heri-
tability. A possible interpretation could be that there exists subtypes of those complex diseases
involving different genetic factors. In order to identify such subtypes, large heterogeneous
datasets are now available, including for example patients follow-up and genotyping data.

Two approaches arise to address the problem of subtyping when clinical and genomic infor-
mation are available: i) the clustering of clinical data with a posterior genetic analysis and ii)
the concomitant clustering of clinical and genomic data. We will discuss the pro and cons of
both approaches in Section 2.

Contributions In this work, we sketch an alternative path at the crossroad of the possibilities
mentioned above. It consists in clustering the clinical variables by estimating a multinomial
logistic regressions model whose weights depend on the genetic variables. The model is shaped
for the longitudinal nature of the clinical data and accounts for the high dimensionality of the
problem with a sparse constraint on the parameters involved in the logistic weights.

Organization of the paper Section 2 gives an overview of different strategies that may
be used for disease subtyping with different sources of information. Section 3 proposes a
framework, related to mixture of experts models, for clustering of clinical longitudinal data
guided by genetic markers. Section 4 describes the algorithm and its implementation for the
high-dimensionality setting. Finally, Section 5 provides an illustration of our approach using
numerical simulations, and Section 6 gives an analysis of a cohort of patients with Parkinson’s
Disease.

2 Disease subtyping with multiple information
In this section, we provide a general picture of approaches that may be used for clustering using
different sources of data, with a particular attention on methods dedicated to disease subtyping
with multiple information.

2.1 Clustering of clinical data with posterior genetic analyzes
A first attempt would consist in a two-step approach with i) a disease subtyping based on clinical
data and then, ii) an analyse of the genetic associations in each subtype.

Clustering of clinical data The data often come from a clinical follow-up in which case
they are generally of longitudinal nature. A review of clustering methods adapted to functional
data, including longitudinal data, is presented by Jacques and Preda (2014), with the following
categorization:

• Methods with a filtering step consist in summarizing the curves by a few descriptors such
as their slope and intercept, followed by a clustering step on those descriptors.

• Non-parametric methods, such asK-means, with distance metrics adapted to longitudinal
data.
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• Finally, model-based methods appear to be the most adapted to deal with short longitu-
dinal data including numerous missing values, as often encountered when dealing with
medical follow-ups. An overview of approaches and tools dedicated to mixture models
for longitudinal data has been proposed by van der Nest et al. (2020).
Remark. In this work, we will focus on mixtures of experts, a specific category of mixture
models, with a dedicated description given in Section 3.1.

Analyse of clinical clusters with genomics In a second step, one might exhibit genetic
associations that explain the clusters using them as phenotypes in standart approaches devoted
to GWAS which usually involve statistical procedures based on (multiple) hypothesis testing
(see for instance (Bush and Moore, 2012) or (Hayes, 2013)). Another way to reveal such
associations could be to resort to classical supervised methods, such as (multinomial) logistic
regression, with a feature selection procedure (Ma and Huang, 2008, and references therein).

Limitation A well-suited clustering of clinical data followed with posterior genetic analyzes
of the clusters obtained does not take benefit from the genomic data in the clustering step. As a
consequence, there is no guarantee regarding the connection between the genomic information
and the clinical clusters. Also, most sparse model-based clustering methods for functional or
longitudinal data in high dimension rely on dimensionality reduction techniques, such as PCA
or SVD, which are efficient but much less convenient for interpretation.

2.2 Concomitant clustering of clinical and genomic data
Concomitant clustering gathering both clinical and genomic data represents an attractive alter-
native although many variables may be involved. In this context, feature or variable selection
strategies are mandatory to solve the problem.

Multi-view clustering This framework coming from the machine learning community is
popular for solving problems with different feature sets. The survey of Fu et al. (2020) divides
them into three categories.

• Graph-based methods combine different views according to their respective importance
and then mainly resort to spectral clustering algorithms.

• Space-learning-based methods are designed to construct a new learning space using the
most representative characteristic of each view to enhance clustering.

• Binary-code-learning-based methods encode original data as binary features using map-
ping and reduction techniques in order to save computation time and memory.

We must also mention the Multiple Kernel Learning framework declinated for clustering (Zhao
et al., 2009) as another kind of multi-view learning. In particular, the work of Mariette and
Villa-Vialaneix (2017) proposed (consensus) meta-kernels to aggregate the different sources of
information while preserving the original topology of the data. The works dedicated to disease
subtyping with clinical and genomic information falling into the scope of multi-view clustering
use space-learning-based methods with dimensionality reduction approaches. Sun et al. (2014)
propose a multi-view co-clustering method based on Sparse Singular Values Decomposition
(Lee et al., 2010). Sun et al. (2015) enhance this work providing convergence guarantees using
the proximal alternating linearized minimization algorithm of Bolte et al. (2014).
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Integrative clustering In cancer research, many statistical methodologies have emerged to
analyse data coming from different sources, generally multiple omics data, under the concept of
integrative genomics (Kristensen et al., 2014), with a philosophy closely related to multi-view
learning. Huang et al. (2017) present a review of multi-omics integration tools. In addition, we
should also refer to mixOmics (Rohart et al., 2017) which proposes various sparse multivariate
methods to explore multiple omics datasets. More specifically, integrative clustering may
be built on model-based approaches such as the representative work of Shen et al. (2009,
2010). The method iCluster uses a latent variable model to connect multiple data types. The
optimization of a penalized log-likelihood alternates a process of dimensionality reduction on
the representation of original data with a sparse estimation of the corresponding coefficients.
Several extensions of iCluster using penalties inducing sparsity of different forms have been
proposed since (Shen et al., 2013; Kim et al., 2017). Finally, to discover the subtypes across
the different views, PINSPlus (Nguyen et al., 2018) uses a perturbation scheme applied on
each source of data to define stable clusters, before merging results using several algorithms to
design a similarity matrix based on the overall connectivity of the patients.

Limitation Concomitant approaches could be adapted for problems dealing with clinical
and genomic datasets. However, none of them explicitly adress how to deal with data of
different nature nor to take the longitudinal aspect properly into account. Most methods require
representations derived from the original space. However, distorting the initial information
may significantly complicate the posterior validation of the extracted features. The limitation
of methods based on dimensionality reduction has been mentioned above. For methods based on
similarity matrices, such as kernel methods which implicitly map the data in a new feature space,
an additional difficulty emerges since it requires to solve a pre-image problem to approximate
the features and try to interpret them.

3 Mixture of regressions with clinical and genomic data
To take benefit of the clinical and the genomic information, both datasets can be used simul-
taneously into a mixture model. Mixtures of experts provide an elegant framework to include
concomitant variables as a side information to subtype data (Gormley, 2019). This section
starts with a description of mixture of experts models in order to lay the foundation and draw
the connections of our approach with this framework.

3.1 Background on mixture of experts models
We assume to be given Y, a matrix ofN outcomes data represented by variables v ∈ {1 · · ·V }
such that yi = (yi1, · · · , yiv, · · · , yiV ), for i ∈ {1 · · ·N}. These observations come from
a population of K components. We denote by z = (z1, · · · , zi, · · · , zN ), the component
membership vector where zi ∈ {1 · · ·K}, and by Z the corresponding indicator matrix such
that zi ∈ {0, 1}K , with zik = 1 if the observation i belongs to the kth component and zik′ = 0
otherwise, ∀k 6= k′. A matrix G ofN concomitant data represented by variables ` ∈ {1 · · ·L}
is also available, with gi = (gi1, · · · , gi`, · · · , giL), for i ∈ {1 · · ·N}. The random vectors
associated to these representations are respectively denoted Y, Z and G.

Remark. To lighten notations, the range of indexes will often be omitted, in which case indexes
i, v, ` and k (or k′) will go to the ranges define above.
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To refer to the terminology used in Gormley (2019, Section 2.3), we are interested in
simple mixtures of experts models where the outcome data distribution depends on the la-
tent component membership, which itself depends on the concomitant variables, such as
P(yi, zi | gi) = fzi(yi ; Θzi(gi)) ηzi(gi), with

yi |gi, zi = k ∼ fk(yi ; Θk(gi)) , (1a)

and P(zi = k |gi) = ηk(gi) , (1b)

where Θk(·) is the set of parameters of the kth component density function fk(·; Θk(·)), i.e. the
kth expert, and ηk(·) the probability weight related to the kth expert.

3.2 Proposed approach
Based on the above described framework, we propose a mixture of regressions model for disease
subtyping when patient symptoms are recorded from their follow-up along with genetic markers
as concomitant variables.

Specificities Our model is designed to take into account the longitudinal aspect of the clinical
data as well as the high dimensional setting of the genetic data. The cohort Y is observed on
clinical variables during several visits indexed by j. The vth clinical variable observed during
the jth visit of patient i is denoted yiv(j) . Also, the number of variables of genetic data G
may be of the order of a few millions after genotype imputation, so that dedicated metrics (as
CADD (Rentzsch et al., 2018), used in our application on Parkison’s Disease) or more general
elimination techniques such as screening rules (see Ndiaye et al. (2017) for instance) may still
be required beforehand. Note that even with such a processing, we remain in a configuration
where N � L.

Model In order to connect our proposal with the mixture of experts stated in (1), we charac-
terize the problem as

yiv(j) |gi, zi = k ∼ fk(yiv(j) ; {αvk, σvk}) , (2a)

and P(zi = k |gi) = ηk(gi ; ωk) , (2b)

defining the following regression model with logistic weights

fk(yiv(j) ; {αvk, σvk}) =
P∑

p= 0

αvkp t
p
ij + σvk εiv(j) , (3a)

and ηk(gi ; ωk) =
exp

(
ωk0 + ωᵀ

kgi
)∑

k′ exp
(
ωk′0 + ωᵀ

k′gi
) , (3b)

where

• tij is the time, such as the patient age or the time since the beginning of the disease, for
the patient i at its jth follow-up visit,

• p ∈ {0 · · ·P} is the polynomial degree considered in the regression (P = 2 is generally
sufficient),
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• {αvkp}, {σvk} and {ωk} are parameters or vectors to be estimated, with {ω1`} = 0 for
the sake of identifiability,

• εiv(j) ∼iid N (0, 1), implies some conditional independence assumptions between vari-

ables, patients and visits when the class is known. The clinical variables are chosen such
that they are as independent as possible, correlation between individuals should essentially
come from a similar typology of the disease and, finally, the remaining time correlation
after the polynomial regression is expected to be poor. If the Gaussian hypothesis does
not apply to the variable v, one may consider Poisson or logistic regression instead with
no substantial additional cost.

The modeling of posterior probabilities via logistic regression allows concomitant variables,
such as genetic data, to subtly influence the subtyping.

Model selection We combine two model selection strategies to select the hyperparameters
involved in the mixture. The Bayesian Information Criterion (BIC) is widely used to select K,
the most appropriate number of subtypes andP , the polynomial degrees in the main regressions.
Also, as discussed above, we suspect that many variables ` from G have an insignificant
influence to explain the disease phenomenology. Hence, a Lasso penalization will be applied
on the coefficients {ωk}, ∀k, to select those which are the most involved in the subtyping. More
detail about this aspect will be provided in Section 4.

4 EM algorithm with integrated Lasso inference
The inference of such a model with latent variables, here {zik}, can be classically conducted
with an Expectation Maximization algorithm (EM algorithm, Dempster et al., 1977). We
use a modified version of this algorithm with a Lasso-type penalized likelihood instead of the
classical likelihood.

4.1 EM algorithm
At the (q + 1)th iteration of the modified EM algorithm, one maximizes the expected and
penalized complete-data log-likelihood L(Y |G,Z; Θ = {α,σ,ω})− Pen(ω) which reads

∑
i

∑
k

zik

log [ηk(gi ; ωk)] +
∑
v

∑
j

log
[
fk(yiv(j) ; {αvk, σvk})

]
−λ
∑
k

‖ωk‖1 ,

where λ > 0 controls the amount of sparsity applied on the `1 norm of ωk and where ηk(·; ·)
and fk(·; ·) are defined as in (3).

To maximize the expected and penalized complete-data log-likelihood, each iteration is
divided into an expectation step (E) followed by a maximization step (M).

6



• At step E of the (q + 1)th iteration, posterior weights are updated as follows:

τ
(q+1)
ik = E

[
zik| (Y = yi|gi) ; Θ(q)

]

=

ηk

(
gi ; ω

(q)
k

)∏
v

∏
j
fk

(
yiv(j) ; {α(q)

vk , σ
(q)
vk }
)

∑
k′ ηk′

(
gi ; ω

(q)
k′

)∏
v

∏
j
fk′
(
yiv(j) ; {α(q)

vk′ , σ
(q)
vk′}

) .
• At step M of the (q + 1)th iteration, parameters are updated as follows:

Θ(q+1) = argmax
Θ

∑
i

∑
k

τ
(q+1)
ik

[
log [ηk(gi ; ωk)]

+
∑
v

∑
j

log
[
fk(yiv(j) ; {αvk, σvk})

] ]
− λ

∑
k

‖ωk‖1 .

The maximization with regard to parameters {α,σ} presents no difficulty. However, there
is no close formula to update the logistic weights parameters. The term to be maximized with
respect to {ω} at iteration (q + 1) of the EM algorithm is

1

N

∑
i

∑
k

τ
(q+1)
ik log [ηk(gi ; ωk)]− λ

∑
k

‖ωk‖1 . (4)

This maximization problem corresponds to the multinomial logistic regression problem with
a `1 penalty. It can be addressed by a classical partial Newton algorithm 1.

4.2 Variable selection in practice
Common strategies to select the hyperparameter λ are based on adjusted information criterion
(see Chen and Chen (2012) for General Linear Models or Fop et al. (2018) for a more global
overview). In an original approach, Yi and Caramanis (2015) proposed to optimize that hyper-
parameter with an iterative scheme through successive M steps and showed local convergence
properties in the high dimensional setting.

In this work, we rely on an alternative adopted by Mortier et al. (2015) where λ is chosen
within the M step by cross-validation so that the likelihood of the multinomial logistic model (4)
is maximized. A short simulation study shows that proceeding with that selection at every M
step of the EM algorithm does not compromise the convergence of the algorithm.

Finally, to avoid (negative) bias due to the penalization in the parameter estimation, we
re-estimate the selected {ω} parameters at the end of the EM algorithm in order to get the
maximum likelihood estimates, as usually done (Hastie et al., 2009, p. 91).

1For instance, with the R package glmnet (Friedman et al., 2010).
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4.3 Implementation
The implementation of the method proposed in this paper, named DiSuGen, as well as an R
Markdown tutorial are available (Courbariaux et al., 2020). We build on the FlexMix R pack-
age of Grun and Leisch (2008) which proposes a EM algorithm adapted to multinomial logistic
weights mixture models. To implement our method, we developed an adapted concomitant
variable driver making use of glmnetwithin FlexMix. Finally, for a faster convergence, we
resort in practice to a Classification EM (CEM) algorithm in which τ (q+1)

ik are replaced by the
indicator variables z(q+1)

ik (Celeux and Govaert, 1992).

5 Numerical illustrations on artificial data
The proposed estimation and model selection procedures are first evaluated on artificial data.
These simulations are designed to study the ability of the CEM algorithm to produce a good
estimation of the parameters on the one hand and to recover the appropriate model on the other
hand.

5.1 Data generation
Artificial data are simulated according to the model (3) with N = 396 patients, V = 4 clinical
variables, K = 3 clusters, P = 1 polynomial degree in the regression, 3 follow-up visits per
patient with times tij randomly ranging from 10 to 410 days for the first visit, from 1800 to
2200 days for the second and from 3600 to 4000 days for the third. Also, L = 2657 genetic
markers are simulated with only 10 having an influence on the clustering such that ωk{`} is
ω2{2,3,4} = ω3{5,6,7} = 2, ω2{5,6,7} = −1 and ω3{1,8,9,10} = −2. For the sake of consistency
with the study presented in Section 6, the genetic markers come from the Parkinson’s disease
genetic data and the parameters {α,σ} are chosen so as to be realistic with regard to the
Parkinson’s disease clinical data.

5.2 Protocol
For each simulation, the proposed CEM algorithm is launched with a number ofK = 3 clusters
and a Lasso penalty. The estimation is initialized with 10 sets of starting values corresponding
to 10 random assignments into K = 3 clusters and the one that leads to the lower BIC is kept.
This experiment is repeated 100 times. To assess the performance of our method, we propose
different settings of comparison:

• The integrative method is the one described in this paper, which uses both clinical and
genetic data and estimates the parameters {α,σ} and {ω}, and the subtypes z.

• The oracle integrative and semi-oracle integrative methods also use both type of data to
estimate the subtypes z. The oracle integrative uses all parameters of the model fixed to
their true values. The semi-oracle integrative method only fixed the parameters {ω} to
their true values. This allows us to check to what extent our method correctly subtypes
the data and estimates the parameters related to clinical variables (semi-oracle) and the
genetic variables (oracle).

• The 2-step method does not use genetic information into the clustering process to estimate
the parameters {α,σ}, and corresponds to constant weights of the clusters, i.e. P(zik =
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1) = πk. In this case, the Lasso-penalized multinomial logistic regression is performed
afterward to get genetic association results. This allows us to check the advantage of
taking into account the genetic information in the clustering process while the clinical
parameters are still estimated.

• The oracle 2-step method uses the same setting described in the 2-step method to estimate
πk, except that parameters {α,σ} are fixed to the true values.

• When possible, the proposed method is also compared to the K-means method which
corresponds to a simple Gaussian mixture model with identical proportions and identical
standard deviations in all clusters. To do so, recourse is made to a K-means method
adapted to longitudinal data implemented in the R package kml3d (Genolini et al.,
2015).

5.3 Results
Clustering ability The Adjusted Rand Index (ARI, Rand (1971); Hubert and Arabie (1985))
is computed for each simulation to check that the estimated clusters are close to the ones that
are simulated. The results for the proposed method are illustrated by the boxplot for the
integrative method of Figure 1(a). Most clusters are well identified. When making no use
of genetic information within the clustering, the algorithm globally achieves lower ARI. A
better clustering ability can be expected from the algorithm making use of genetic data if more
information is provided as illustrated by the oracle integrative results. This improvement in
cluster prediction does not come from a better estimation of the parameters {ω} as illustrated
by the semi-oracle integrative results. Finally, the K-means algorithm is not able to recover
the underlying classification as well: the corresponding ARI all range between 0.6 and 0.7.
This was expected, since the differences between the clusters partly lie in the variances of the
variables. Moreover, the K-means method is not able to account for the exact visit times but
only for the visit ranks.

Parameters estimation ability The parameters of the the main regressions are estimated
accurately and with biases notably close to 0 whatever the considered clinical variable and
the chosen approach (2-step or integrative). Accounting for genetic information does not
seem to improve notably the estimation of those parameters. When it comes to the logistic
regression parameters, the sign of the estimated parameters are most of the time adequate for
both approaches as illustrated Figure 1(b).

Variable selection within the logistic regression Figure 1(d) illustrates the results of
the proposed Lasso selection procedure with regard to the genetic variables. The selection
rates of 8 of the 10 active genetic variables are notably higher than the selection rates of the
other variables, thus showing a good performance of the selection method. The selection rates
obtained using the 2-step method are lower, which underlines the interest of the proposed
integrative approach. The 2 remaining active markers do not vary between patients and can
thus be replaced by any variant with a poor variation. Most of the inactive markers are selected
less than 5 times over 100 simulations. However this specificity is good, many false positives
are observed for each simulation since the number of genetic markers is relatively high (2657).
This selection performance decreases (as expected) as the parameters {ω} are set closer to zero
(not shown).
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Figure 1: Results on artificial data over 100 simulations. (a): ARI with aK-means algorithm, the 2-
step method (no use of genetic information) and the integrative method (use of genetic information)
and the corresponding oracles. (b): Non-negative {ω} parameter estimates and their respective true
values. (c): estimated number of clusters according to the BIC. (d): selection rates of the genetic
variables; the 10 variables that should be selected are represented by their respective number.
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Model selection ability An additional simulation study is conducted to evaluate the capacity
of the BIC (computed as described Section 3) to select the correct number of clusters (K = 3)
on the same 100 simulated datasets. The results are illustrated by the histogram of Figure 1(c).
The correct number of clusters is selected 79 times over 100.

6 Application to Parkinson’s Disease (PD) subtyping
The proposed method is applied to PD subtyping. This disease is known to have several
subtypes. This has given rise to numerous studies among which the one of Lewis et al. (2005).

6.1 Data description
The data on which the method is applied are from the DIG-PD cohort (Corvol et al., 2018),
composed of 396 genotyped adults with a recent PD onset (diagnosed less than 6 years prior to
the beginning of the study).

Clinical Clinical data were collected at inclusion and then at yearly clinical follow up, during
one to seven years. They include scores evaluating the progression of the disease. Two of them
are assumed to be representative of the evolution of the disease, namely Section III of the Unified
PD Rating Scale (UPDRS III, a motor examination) and the Mini-Mental Status Examination
toolkit score (MMSE, an evaluation of cognitive impairment). The higher the UPDRS III and
the lower the MMSE, the more patients are impaired. These two scores were adjusted for the
treatment doses and for the gender effects beforehand, by considering the residuals of the linear
regression with gender and treatment doses as (respectively factor and quantitative) predictors.
The patient age is taken as the time scale.

Genetic More than 6 million genetic markers were available after imputation for each patient.
Only 2652 of them are used: ones that either were associated to PD in previous studies (about
400 of them) or that had an important impact on the gene function (scaled CADD score 2 greater
than 25) and an allele frequency greater than 0.01. As done classically, the ones with two copies
of the reference allele were encoded−1, the ones with two copies of the alternative allele were
encoded 1 and the others (with one copy of each) were encoded 0.

6.2 Results
Model selection results In order to warranty a good interpretability of the results, a maximal
number of K = 4 clusters was allowed. Also, a maximal number of 2 polynomial degrees was
tested. The solution with 4 clusters and 1 polynomial degree resulted is the lowest BIC.

Clinical results Clustering results with regard to the clinical data are illustrated in Figure 6.2.
Note that the variables represented here are residuals of a fitted linear model. The cluster
attributed to each patient corresponds to the cluster the patient is the most likely to belong to
according to the model. Half of the patients are allocated to cluster 1 and about one third of the
remaining patients are allocated to each of the 3 remaining clusters. Cluster 3 is characterized

2Combined Annotation Dependent Depletion score, this score evaluates the deleteriousness of variants in the human
genome (Rentzsch et al., 2018).
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by late but rapid cognitive and motor decline. Cluster 2 is characterized by a smaller cognitive
impairment but by a very significant motor impairment. In contrast, cluster 4 is characterized
by a small and late cognitive and motor decline.

Genetic association results Figure 6.2 shows the results with the 95% confidence intervals
associated to the parameters {ω}. 3 The p-values below 0.05 (i.e. significant association prior
to any multiple test correction) correspond to a 0 value outside the 95% confidence interval.

There were 15 SNPs selected, 7 of them are part of genes with a potential role in neurological
diseases. The most significantly associated to the clustering is rs35866326, p-value around 10−4

for cluster 2 (19/48 cases with at least one copy of the alternative allele, compared to 52/348 in
the other clusters). This SNP has been associated with susceptibility to PD (Maraganore et al.,
2005, 2006; Goris et al., 2006) although this result has not been replicated by others (Li et al.,
2006; Farrer et al., 2006). These controversial results might be due to the fact that this gene is
associated with a particular subtype of PD, as is shown here with an association with cluster
2 only. However, an unselected variant does not mean that it may not be associated with the
disease subtype. It may be associated but not enough to bring more information relative to the
clustering.

7 Conclusion

7.1 Synthesis and results
We proposed a model-based method for disease subtyping where the information comes from
both short longitudinal data with varying observation times, as are often clinical follow-up
data, and from high-dimensional quantitative data, such as genotyping data. Unlike in most
multi-view clustering methods, the data are processed in a non-symmetrical way by integrating
genetic data in the clustering via multinomial logistic weights. A Lasso penalty on the logistic
regression parameters allows to deal with the high-dimensionality of the genotyping data while
exhibiting a short list of genetic factors potentially involved in the typology of the disease.

An experiment on artificial data validates the proposed inference and model selection ap-
proach and shows its superiority in finding latent subtypes of the disease as well as influent
genetic factors when compared to a clustering on clinical data followed by an association study.
Using our method on clinical and genetic data from a cohort of patients with Parkinson’s disease
allows to characterize 4 distinct subtypes and 15 genetic factors with a potential impact on the
subtyping. Of these 15 SNPs, the most significant SNP is already associated with PD. Half
of the others belong to genes suspected to be implied in neurological diseases. Being able to
recover such results corroborates the relevance of our approach in a real setting.

7.2 Perspectives
Several aspects can be considered in future works.

Replication The statistical analysis presented here uses a relatively small sample size and it
may thus be of interest to try a replicate and confirm using independent cohorts.

3The confidence intervals are computed from the Hessian matrix provided by the R function nnet::nnet (Ripley
et al., 2016).
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Modeling of data If the objective of the subtyping is to predict the evolution of the patient’s
symptoms and if more data are available for each patient, one can consider taking into account
the temporal dynamics specific to each individual in a more refined way, for example by using
a Gaussian process as done by Schulam and Saria (2015). In addition, if one chooses to focus
on some correlated clinical variables, a multivariate version of the proposed model could be
considered, but this is complicated by the functional nature of the data (tij times are different
from one individual i to another). Regarding the genetic data, in order to resort to a lighter
elimination preprocessing in a very high-dimensional setting (several millions of SNPs), it may
be useful to summarize the data, for instance by aggregating SNPs in linkage disequilibrium
blocks (Guinot et al., 2018).

Association study with genetic data Finally, the proposed method does not dispense
with the need for a more traditional association study afterward and leaves the opportunity of
studying further potential associations between the genetic markers extracted in the variable
selection process. In this perspective, a correction for multiple testing can be performed to
assess the likelihood that the SNPs identified with our method actually have an impact on the
disease typology. This correction should take into account the fact that the Lasso selection is
performed on a high number of SNPs and that the tests are performed on a subgroup of those
SNPs. In this case post-hoc inference tests may be useful (Goeman et al., 2011).
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