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Abstract

Identifying new genetic associations in non-Mendelian complex diseases is an increas-
ingly difficult challenge. Yet, these diseases seem to have a significant part of heritability
to explain. This missing heritability could be explained by the existence of subtypes in-
volving different genetic factors.
This work proposes an original method for disease subtyping from both longitudinal clini-
cal variables and genetic markers via a mixture of regressions model, with logistic weights
function of a potentially large number of genetic variables. In order to address these large-
scale problems, variable selection is an essential step. We thus propose to discard genetic
variables that may not be relevant for clustering by maximizing a penalized likelihood via
a Classification Expectation Maximization algorithm.
The proposed method is validated on simulations. A data set from a cohort of Parkinson’s
disease patients was also analyzed. Several subtypes of the disease as well as genetic
variants having potentially a role in this typology have been identified.
R code for the proposed method, named DiSuGen, and a tutorial are available at
https://github.com/MCour/DiSuGen.

∗MeMoDeep: Methods and Models for Deep Screening of subphenotypes in Parkinson’s Disease.
Christophe Ambroise, Samir Bekadar, Jean-Christophe Corvol, Marie Courbariaux, Cyril Dalmasso, Fabrice
Danjou, Maria Martinez, Pierre Neuvial, Marie Szafranski.
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1 Introduction
Known genetic markers in complex disease usually account for only a part of calculated
heritability. A possible interpretation could be that there exists subtypes of those complex
diseases involving different genetic factors. In order to identify such subtypes, large
heterogeneous data sets are now available, including for example patients follow-up and
genotyping data.

A simple way to find genetically meaningful subtypes would be a two-step approach: i)
a subtyping of the disease based on clinical data followed by ii) an analysis of the genetic
associations in each subtype. The first step consists in clustering of clinical data. Such data
often come from a clinical follow-up in which case they are generally of longitudinal nature.
A review of clustering methods adapted to functional data, including longitudinal data,
is presented in Jacques and Preda (2014). In the second step, one might exhibit genetic
associations that explain the clusters using them as phenotypes in standard approaches
devoted to GWAS which usually involve statistical procedures based on hypothesis testing
(see for instance (Bush and Moore, 2012) or (Hayes, 2013)). Another way to reveal
such genetic associations resorts to supervised learning methods, such as (multinomial)
logistic regression, with a feature selection procedure (Ma and Huang, 2008, and references
therein).

Concomitant clustering of clinical and genomic data represents an attractive alterna-
tive to the two-step scheme. In this context, feature or variable selection strategies are
mandatory to make the problem computationally tractable. Also, it may help to identify
relevant variables more directly than with dimensionality reduction methods. Two recent
surveys focus on the problem of variable selection for continuous and categorical data
(Bouveyron and Brunet-Saumard, 2014; Fop et al., 2018). For functional or longitudinal
data, James and Sugar (2003) introduced the method fclust which enforces sparsity on the
cluster means. More recently, McNicholas and Murphy (2010) developed a framework
based on Gaussian mixtures using a constrained modified Cholesky decomposition of the
group covariance matrices to achieve sparsity. Note that there is less work devoted to
sparse model-based clustering for functional or longitudinal data, the usual approach re-
lying on dimensionality reduction (Jacques and Preda, 2014), which may be efficient but
less convenient for interpretation.

Multi-view learning is a framework coming from the machine learning community
which allows to solve problems by considering feature sets of different nature. The survey
of Sun (2013) gives an overview of this framework together with theoretical considera-
tions. The works of Bickel and Scheffer (2004) and Tzortzis and Likas (2009) relying
on (non sparse) model-based approaches is representative of this framework. Muliple
Kernel Learning framework (Gönen and Alpaydin, 2011) and its clustering counterpart
(Zhao et al., 2009) are another avatar of multi-view clustering approach. Sun et al. (2014)
propose a sparse multi-view co-clustering method based on Sparse Singular Values De-
composition (SSVD) (Lee et al., 2010). This recent work is dedicated to disease subtyping
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with clinical and genomic information. Sun et al. (2015) build on this work providing con-
vergence guarantees using the proximal alternating linearized minimization algorithm of
Bolte et al. (2014). Despite a wide range of existing methods in various applications, there
is no sparse multi-view model-based clustering method available to our knowledge in this
community.

In cancer research, many statistical methodologies have emerged to analyze data coming
from different sources, generally multiple ’omics’ data, under the concept of integrative
genomics (Kristensen et al., 2014), with a philosophy closely related to multi-view learn-
ing. Huang et al. (2017) present a recent review of multi-omics integration tools. More
specifically, integrative clustering may be built on model-based approaches such as the
representative work of Shen et al. (2009, 2010). The method iCluster uses a latent vari-
able model to connect multiple data types. The optimization of a penalized log-likelihood
alternates a process of dimensionality reduction on the representation of original data with
a sparse estimation of the corresponding coefficients. Several extensions of iCluster using
penalties inducing sparsity of different forms have been proposed since the work of Shen
et al. (2013) and Kim et al. (2017).

When dealing with both genetic and clinical longitudinal data, a two-step approach rep-
resents a straightforward solution to the problem of genetic subtyping. Yet, the clustering
step of such method does not take benefit from the genetic data in devising the groups.
As a consequence, there is no guarantee regarding the connection between the genetic
information and the clinical clusters. Integrative-like approaches seem more adapted.
However, none of the integrative and multi-view methods explicitly address how to deal
with multiple data of different nature (such as longitudinal data and counting data for
instance). Indeed, merging the datasets without a clever pretreatment to smooth the dif-
ferences between the nature of variables is certainly not appropriate in the sense that only
one kind of information may influence all the clustering. To get around this aspect, most
methods use representations of data obtained from projections on subspaces (PCA or SVD
for example). However, distorting the initial information may significantly complicate the
posterior validation of the extracted features since they correspond to a composition of
several variables.

In the light of the previous considerations, our proposal is to cluster the clinical data
by estimating a mixture of regressions model, with the weights depending on the genetic
variables. Involving the genetic information leads to problems of large dimension where a
variable selection strategy becomes essential. Therefore, we propose to discard the genetic
variables that might be irrelevant for the clinical clustering thanks to a sparse constraint on
the parameters involved in the logistic weights. The proposed scheme is at the crossroad of
the possibilities presented above, namely i) the clustering of clinical data with a posterior
genetic analysis and ii) the concomitant clustering of clinical and genetic data. Indeed,
the clustering of the clinical data is guided by the genetic markers through the weights of
the mixture model while being adapted to the longitudinal nature of the data.
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2 Mixture of regressions model with logistic weights
We propose a general model that may apply when the disease has to be subtyped from
several longitudinal variables, such as patient symptoms recorded from their follow-up.

Thereafter Yvij stands for the vth clinical variable under consideration for disease sub-
typing observed during the jth visit of patient i, V is the number of variables under
consideration, K is the number of disease subtypes, L is the number of genetic markers
and I is the size of the cohort.

The following regression model with logistic weights is considered:

(Yvij |Zik = 1) = αv0k + αv1ktij + · · ·+ αvNpkt
Np

ij

+ σvkεvij , εvij ∼
iid
N (0, 1) , (1)

Pr(Zik = 1) =
eω0k+ωT

k Gi∑K
k′=1 e

ω0k′+ωT
k′Gi

,

where:

• tij is the time (such as the patient age or the time since the beginning of the disease)
for the patient i at its jth follow-up visit,

• Np is the maximum polynomial degree we consider in the regression (Np = 2 is
generally sufficient),

• Gi is its genotype vector,

• Zik is the indicator variable of patient i belonging to the class k,

• (ωk)k∈{1,...,K} , (αvpk)v∈{1,...,V },p∈{0,...,Np},k∈{1,...,K} and
(σvk)v∈{1,...,V },k∈{1,...,K} are parameters or vectors of parameters to be estimated.

• ωl1 = 0, ∀l ∈ {1, ..., L} for the sake of identifiability.

Also, εvij ∼
iid
N (0, 1) implies some conditional independence assumptions between

variables, patients and visits when the class is known. Indeed, clinical variables are
chosen such that they are as independent as possible, correlation between individuals
should essentially come from a similar typology of the disease and, finally, the remaining
time correlation after the polynomial regression is expected to be poor.

The modeling of posterior probabilities via logistic regression allows concomitant vari-
ables, such as genetic data, to subtly influence the subtyping.

If the Gaussian hypothesis does not apply to the variable v, one may consider Poisson
or logistic regression instead with no substantial additional cost.

Note that a similar model is used for disease subtyping, though without genotyping data,
by Schulam and Saria (2015). This model could also be viewed as a Mixture Of Experts
(MOE) close to the work of Jordan and Jacobs (1994), in which however, the variables
involved in the logistic weights are the same as those involved in the main regression.
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3 Model selection
We combine two model selection strategies in order to select the number of polynomial
degrees, the number of clusters and the genetic markers that are involved in the mixture.

In order to select the most appropriate number of subtypes (K) and of polynomial
degrees in the main regressions (Np), the Bayesian Information Criterion (BIC) seems
convenient.

A selection on the variables inG is needed, since we suspect that many have no influence
on the disease phenomenology. Since G may be very large (about a few millions of
markers after genotype imputation in the cases we consider), classical backward-stepwise
methods (such as the one described by Maugis et al. (2009)) would result in non affordable
computational time. In the case where there are a lot of possible regressors, and one
suspects that many are not necessary to describe the phenomenon, one may use a Lasso-
type penalization. Here, as Khalili (2010) in the case of MOE models, this selection takes
action within an Expectation-Maximization (EM) algorithm.

4 EM algorithm with integrated Lasso inference
The inference of such a model with latent variables (here, the Zs) can be classically
conducted with an Expectation Maximization algorithm (EM algorithm, Dempster et al.,
1977). We used a modified version of this algorithm in order to maximize a (Lasso-type)
penalized likelihood instead of the likelihood. This modification does not compromise the
convergence of the EM algorithm (Green, 1990).

At the (q + 1)th iteration of the modified EM algorithm, one maximizes the expected
and penalized complete-data log-likelihood:

E(Z|θ(q),Y=y) {L (y,Z; θ)− Pen(ω)} ,

where θ = (ω,α,σ) is the vector of all model parameters, Pen(ω) is the penalty and
L (y,Z; θ) is the complete-data log-likelihood:

L (y,Z; θ) =
∑
i

∑
k

Zik

(
log {Pr (Zik = 1;ωk)}

∑
v

∑
j

log {φvijk(yvij ; θ)}

)
,

where φvijk(y; θ) = f (Yvij = y|Zik = 1;αvk, σvk) and f (X = x; ζ) is the probability
density function of X in x with parameters ζ. The penalty, Pen(ω) can for instance have
the following form: Pen(ω) = λ

∑
k‖ωk‖1, the Lasso penalty, where ‖·‖1 is the l1-norm

and λ > 0 is a parameter to choose.
To maximize the expected and penalized complete-data log-likelihood, each iteration

is divided into 2 steps: an expectation step (E) followed by a maximization step (M).
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At step E of the (q + 1)th iteration, posterior weights are updated as follows:

τ
(q+1)
ik = E

{
Zik|Y = y; θ(q)

}

=

Pr
(
Zik = 1;ω

(q)
k

)∏
v

∏
j
φvijk(yvij ; θ

(q))∑k′=K
k′=1 Pr

(
Zik′ = 1;ω

(q)
k′

)∏
v

∏
j
φvijk′(yvij ; θ(q))

.

At step M of the (q + 1)th iteration, parameters are updated as follows:

θ(q+1) = argmax
θ

∑
i

∑
k

τ
(q+1)
ik

(
log {Pr (Zik = 1;ωk)}

∑
v

∑
j

log {φvijk(yvij ; θ)}
)
− Pen(ω).

The maximization with regard to αs and σs parameters presents no difficulty. How-
ever, there is no close formula to update the logistic weights parameters. The term to be
maximized with respect to ωs at iteration (q + 1) of the EM algorithm is the following:

1

I

∑
i

∑
k

τ
(q+1)
ik log

(
eω0k+ωT

k Gi∑K
k′=1 e

ω0k′+ωT
k′Gi

)
− Pen(ω). (2)

When resorting to Classification EM (CEM, Celeux and Govaert (1992)), τ (q+1)
ik are

replaced by the indicator variable of the most likely class for patient i at iteration (q + 1).
This maximization problem corresponds to the multinomial logistic regression problem
with a penalty. It can be addressed by a partial Newton algorithm as for instance in the
glmnetR package (Friedman et al., 2010). Theλ parameter is chosen by cross-validation
so that the likelihood of the multinomial logistic model is maximized.

To implement our method, we build an adapted concomitant variable driver making use
of glmnet within the FlexMix R package (Grun and Leisch, 2008). The FlexMix
package proposes a (C)EM algorithm adapted to multinomial logistic weights mixture
models.

To avoid (negative) bias due to the penalization in the parameter estimation, we re-
estimate the selected ω parameters at the end of the EM algorithm in order to get the
maximum likelihood estimates. A BIC selection finally arbitrates among initializations.

This implementation of the proposed method (named DiSuGen) as well as an R Mark-
down tutorial can be downloaded at https://github.com/MCour/DiSuGen.
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5 Numerical illustrations on artificial data
The proposed estimation and model selection procedures are first evaluated on artificial
data. The goals are to check whether the CEM algorithm produces a good estimation of
the parameters and whether the model selection method chooses the appropriate model.

Experimental setting
Artificial data are simulated according to the model (1) with K = 3 clusters, V = 4
clinical variables, I = 396 patients, times ti,j randomly ranging from 10 to 410 days for
the first visit, from 1800 to 2200 days for the second and from 3600 to 4000 days for
the third, Np = 1 polynomial degree in the regression, ni = 3 observations per patient
and L = 2657 genetic markers, only 10 of which having an influence on the clustering:
ω(2,3,4),2 = ω(5,6,7),3 = 2,ω(5,6,7),2 = −1 andω(1,8,9,10),3 = −2. Those genetic markers
are the ones that will be used in section 6. The parameters α and σ are chosen so as to be
realistic with regard to Parkinson’s Disease (PD) clinical data.

For each simulation, the proposed CEM algorithm is launched with a number of clus-
ters corresponding to the simulated one (K = 3) and a Lasso penalty. This experiment
is repeated 100 times. The estimation is initialized with 10 sets of starting values corre-
sponding to 10 random assignments intoK = 3 clusters and the one that leads to the lower
BIC is kept.

The results are compared with the ones got with the corresponding two-step method,
i.e. without any use of genetic information in the clustering process, what corresponds
to constant weights of the clusters, P(Zik = 1) = πk. In this case, the Lasso-penalized
multinomial logistic regression is performed afterward to get genetic association results.
When possible, the proposed method is also compared to the k-means method. This
algorithm corresponds to a simple Gaussian mixture model with identical proportions and
identical standard deviations in all clusters. To do so, recourse is made to a k-means method
adapted to longitudinal data implemented in the R package kml3d (Genolini et al., 2015).

Results
Clustering ability. The Adjusted Rand Index (ARI, Rand (1971); Hubert and Arabie
(1985)) is computed for each simulation to check that the estimated clusters are close to the
ones that are simulated. The results for the proposed method are illustrated by the boxplot
for the "integrative" method of Figure 1. Most clusters are well identified. When making
no use of genetic information within the clustering, the algorithm globally achieves lower
ARI.

In theory, a better clustering ability can be expected from the algorithm making use of
genetic data as illustrated by the corresponding oracle results ("oracle integrative"). Those
results are obtained by using the true parameters values to predict the clusters the patients
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Figure 1: Boxplots of the ARI over 100 simula-
tions with a k-means algorithm, with no use of
genetic information (2-step method), with the
use of genetic information (integrative method)
and corresponding oracles.
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Figure 2: Histogram of the estimated
number of clusters according to the BIC
over 100 simulations.

belong to. This improvement in cluster prediction does not come from a better estimation
of the ω parameters as illustrated by the "semi-oracle integrative" results. Those results
are obtained using the true ω parameters and estimating the other parameters.

The k-means algorithm is not able to recover the underlying classification as well: the
corresponding ARI all range between 0.6 and 0.7. This was expected, since the differences
between the clusters partly lie in the variances of the variables. Moreover, the k-means
method is not able to account for the exact visit times but only for the visit ranks.

Parameters estimation ability. The parameters of the the main regressions are es-
timated accurately and with biases notably close to 0 whatever the considered clinical
variable and the chosen approach (two-step or integrative). Accounting for genetic infor-
mation does not seem to improve notably the estimation of those parameters.

When it comes to the logistic regression parameters, the sign of the estimated parameters
are most of the time adequate for both approaches as illustrated Figure 3.

Variable selection within the logistic regression. Figure 4 illustrates the results of
the proposed Lasso selection procedure with regard to the genetic variables. The selection
rates of 8 of the 10 active genetic variables are notably higher than the selection rates
of the other variables, thus showing a good performance of the selection method. The
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Figure 3: Non-negative ω parameters estimates over 100 simulations and respective true
values.

selection rates obtained using the two-step method are lower, which underlines the interest
of the proposed integrative approach. The 2 lasting active markers do not vary between
patients and can thus be replaced by any variant with a poor variation. Most of the inactive
markers are selected less than 5 times over 100 simulations. However this specificity is
good, many false positives are observed for each simulation since the number of genetic
markers is relatively high (2657). This selection performance decreases (as expected) as
the ω parameters are set closer to zero (not shown).

Model selection ability. An additional simulation study is conducted to evaluate the
capacity of the BIC (computed as described Section 3) to select the correct number of
clusters (K = 3) on the same 100 simulated datasets. The results are illustrated by the
histogram of Figure 2. The correct number of clusters is most of the time selected: 79
times over 100.

6 Application to Parkinson’s Disease subtyping
The proposed method is then applied to Parkinson’s Disease (PD) subtyping. This disease
is known to have several subtypes. This has given rise to numerous studies among which
(Lewis et al., 2005).

Data description
The data on which the method is applied are from the DIG-PD cohort (Corvol et al., 2018).
This cohort is composed of 396 genotyped adults with a recent PD onset (diagnosed less
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Figure 4: Selection rates of the genetic variables over 100 simulations. The 10 variables that
should be selected are represented by their respective number (l).

than 6 years prior to the beginning of the study).
Clinical data were collected at inclusion and then at yearly clinical follow up (during

one to seven years). They include a number of scores evaluating the progression of the
disease. Two of them are used, ones that are assumed to be representative of the evolution
of the disease, namely Section III of the Unified PD Rating Scale (UPDRS III, a motor
examination) and the Mini-Mental Status Examination toolkit score (MMSE, an evaluation
of cognitive impairment). The higher the UPDRS III and the lower the MMSE, the more
patients are impaired. The scores were adjusted for the treatment doses and for the gender
effects beforehand, by considering the residuals of the linear regression with gender and
treatment doses as (respectively factor and quantitative) predictors. The patient age is
taken as the time scale.

More than 6 million genetic markers were available after imputation for each patient.
Only 2652 of them are used: ones that either were associated to PD in previous studies
(about 400 of them) or that had an important impact on the gene function (scaled CADD
score1 greater than 25) and an allele frequency greater than 0.01. As done classically, the
ones with two copies of the reference allele were encoded−1, the ones with two copies of
the alternative allele were encoded 1 and the others (with one copy of each) were encoded
0.

1Combined Annotation Dependent Depletion score, this score evaluates the deleteriousness of variants in the
human genome.
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Figure 5: Clustering results with regard to the clinical variables.

Results
Model selection results. In order to warranty a good interpretability of the results,
a maximal number of K = 4 clusters was allowed. Moreover, a maximal number of 2
polynomial degrees was tested. The solution with 4 clusters and 1 polynomial degree
resulted is the lowest BIC.

Clinical results. Clustering results with regard to the clinical data are illustrated in
Figure 5. Remember that the variables represented here are residuals of a fitted linear
model. On the figure, the cluster attributed to each patient corresponds to the cluster the
patient is the most likely to belong to according to the model. Half of the patients are
allocated to cluster 1 and about one third of the remaining patients are allocated to each
of the 3 remaining clusters. Cluster 3 is characterized by late but rapid cognitive and
motor decline. Cluster 2 is characterized by a smaller cognitive impairment but by a very
significant motor impairment. In contrast, cluster 4 is characterized by a small and late
cognitive and motor decline.

Genetic association results. Genetic association results are illustrated Figure 6. The
95% confidence intervals associated to the ω parameters are computed from the Hessian
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Figure 6: Genetic association results: estimated logistic regression (ω) parameters.

matrix (provided by the Rnnet::nnet function (Ripley et al., 2016)). Note that p-values
below 0.05 (i.e. significant association prior to any multiple test correction) correspond to
a 0 value outside the 95% confidence interval.

There were 15 SNPs selected, 7 of them are part of genes with a potential role in
neurological diseases. rs35866326 is the most significantly associated to the clustering,
with a p-value around10−4 for cluster2 (19/48 cases with at least one copy of the alternative
allele, compared to 52/348 in the other clusters). This SNP has been associated with
susceptibility to Parkinson’s disease (Maraganore et al., 2005, 2006; Goris et al., 2006)
although this result has not been replicated by others (Li et al., 2006; Farrer et al., 2006).
These controversial results might be due to the fact that this gene is associated with a
particular subtype of PD, as is shown here with an association with cluster 2 only.

However, an unselected variant does not mean that it may not be associated with the
disease subtype. It may be associated but not enough to bring more information relative
to the clustering.
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7 Conclusion and outlook
We propose a model-based method for disease subtyping from both short longitudinal data
with varying observation times, as are often clinical follow-up data, and from high dimen-
sional quantitative data, such as genotyping data. Unlike in most multi-view clustering
methods, the two types of data are processed in a non-symmetrical way by integrating
genetic data in the clustering via multinomial logistic weights. A Lasso penalty on the
logistic regression parameters permits to get sparsity by exhibiting a short list of genetic
factors potentially involved in the typology of the disease.

An experiment on artificial data validates the proposed inference (and model selection)
method and shows its superiority in finding latent subtypes of the disease and in finding the
influent genetic factors when compared to the corresponding two-step method (clustering
on clinical data followed by an association study).

Using our method on clinical and genetic data from a cohort of patients with Parkin-
son’s disease (PD) allows to characterize 4 distinct subtypes and 15 genetic factors with
a potential impact on the subtyping. Of these 15 SNPs, the most significant SNP is al-
ready associated with PD. Half of the others belong to genes suspected to be implied in
neurological diseases.

The statistical analysis presented here may be underpowered due to the relatively small
sample size of the dataset. It may thus be of interest to try a replication in independent
cohorts. Moreover, a correction for multiple testing has to be performed to assess the
likelihood that the SNPs identified with our method actually have an impact on the disease
typology. This correction should take into account the fact that the Lasso selection is
performed on a high number of SNPs and that the tests are performed on a subgroup of
those SNPs. Moreover, in order to use this method with a very high-dimension genetic
dataset (several millions of SNPs), it may be necessary to summarize the data, for instance
by aggregating SNPs in linkage disequilibrium blocks (Guinot et al., 2017; Dehman et al.,
2015). In short, it leaves the opportunity of studying further potential associations between
the genetic markers extracted in the variable selection process. The proposed method does
not dispense with the need for a more traditional association study afterward.

In addition, if one chooses to focus on some correlated clinical variables, a multivariate
version of the proposed model could be considered, but this is complicated by the functional
nature of the data (tij times are different from one individual i to another).

Finally, if the objective of the subtyping is to predict the evolution of the patient’s
symptoms and if more data are available for each patient, one can consider taking into
account the temporal dynamics specific to each individual in a more refined way, for
example by using a Gaussian process as done by Schulam and Saria (2015).
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