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Abstract

This work proposes an original method for disease subtyping from both longitudinal clini-
cal variables and genetic markers via a mixture of regressions model, with logistic weights
function of a potentially large number of genetic variables. In order to address these large-
scale problems, variable selection is an essential step. We thus propose to discard genetic
variables that may not be relevant for clustering by maximizing a penalized likelihood via
a Classification Expectation Maximization algorithm. The proposed method is validated
on simulations. The approach is applied to a data set from a cohort of Parkinson’s disease
patients. Several subtypes of the disease as well as genetic variants potentially having a role
in this typology have been identified.

Keywords: Genetic association, Sub-typing, Parkinson’s disease, Mixing model with
logistic weights, Lasso Penalization.

1 Introduction

It is becoming increasingly difficult to identify new genetic associations in complex non
mendelian disease while there is still a significant part of heritability to be explained.
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A possible interpretation could be that there exists subtypes of those complex diseases
involving different genetic factors. In order to identify such subtypes, large heterogeneous
data sets are now available, including for example patient follow-up and genotyping data.

1.1 Background

In this section, we review different ways to identify subgroups of interests using both clinical
and genomic data, and discuss the pros and cons of each approach.

1.1.1 Clustering of clinical data with a posterior genetic analysis

A first way to proceed would be a two-step approach with i) a subtyping of the disease based
on clinical data and then ii) an analysis of the genetic associations in each subtype.

Clustering of clinical data. In a first step, a clustering of clinical data can be performed.
The data often come from a clinical follow-up in which case they are generally of longitudinal
nature. A review of clustering methods adapted to functional data, including longitudinal
data, is presented in Jacques and Preda (2014a) with the following categorization.

- Methods with a filtering step consist in summarizing the curves by a few descriptors
such as their slope and intercept, followed by a (classical) clustering step on those
descriptors. For instance, Abraham et al. (2003) first represent each input function by
calculating its approximation on a fixed truncated basis and then implement the k-
means algorithm on the coordinates of the representation. Similarly, Rossi et al. (2004)
submit those coordinates to a Self-Organizing Map after an appropriate transformation.

- Non-parametric methods, such as k-means, with distance metrics adapted to longitu-
dinal data. For example, Ieva et al. (2012) make recourse of a k-means procedure with
a distance involving the wavelet estimate of the first derivative of the curves.

- Finally, model-based methods appear to be the most adapted approach to deal with
short longitudinal data, as often encountered when dealing with medical follow-ups.
Jacques and Preda (2014b) propose a mixture model-based on the assumption of nor-
mality of the principal components of a multivariate functional principal components
analysis. Alternatively, Schulam and Saria (2015) propose a mixture model involving
both basis expansions and a Gaussian Process.

Analysis of clinical clusters with genomics. In a second step, one might exhibit genetic
associations that explain the clusters using them as phenotypes in standard approaches
devoted to GWAS which usually involve statistical procedures based on hypothesis testing
(see for instance (Bush and Moore, 2012) or (Hayes, 2013)). Another way to reveal such
associations could be to resort to classical supervised methods, such as (multinomial) logistic
regression, with a feature selection procedure (Ma and Huang, 2008, and references therein).



1.1.2 Concomitant clustering of clinical and genomic data

An alternative scheme to cluster clinical data using genomic features would be to gather both
kind of information, leading to consider a huge number of variables. In this context, feature
or variable selection strategies are mandatory to make the problem tractable computation-
aly. Also, it may help to identify relevant variables more directly than with dimensionality
reduction methods. In the following, we will pay attention to sparse model-based clustering
approaches, this latest family being well suited to longitudinal data (Jacques and Preda,
2014a).

Sparse model-based clustering. Provided that clinical and genomic information are
merged into a new dataset, we could resort to sparse model-based clustering which has been
broadly investigated the past decade. In particular, two recent surveys focus on the problem
of variable selection for continuous and categorial data (Bouveyron and Brunet-Saumard,
2014; Fop and Murphy, 2017). For functional or longitudinal data, James and Sugar (2003)
introduced the method fclust which enforces sparsity on the cluster means. More recently,
McNicholas and Murphy (2010) developed a framework based on Gaussian mixtures using
a constrained modified Cholesky decomposition of the group covariance matrices to achieve
sparsity. Note that there is less work devoted to sparse model-based clustering for functional
or longitudinal data, the usual approach relying on dimensionality reduction (Jacques and
Preda, 2014a), which may be efficient but less convenient for interpretation.

Sparse multi-view clustering. Multi-view learning is a framework coming from the ma-
chine learning community which allows to solve problems considering different feature sets.
The survey of Sun (2013) gives an overview of this framework together with theoretical
considerations. Especially, we should mention the works of Bickel and Scheffer (2004) and
Tzortzis and Likas (2009) relying on (non sparse) model-based approaches. Also, one should
complete this survey with the Multiple Kernel Learning framework (Gönen and Alpaydin,
2011) and its clustering counterpart (Zhao et al., 2009). In addition to these references,
we can also report recent works dedicated to disease subtyping with clinical and genomic
information that fall into the scope of sparse multi-view clustering, though they do not use
model-based approaches. Sun et al. (2014) propose a multi-view co-clustering method based
on Sparse Singular Values Decomposition (SSVD) (Lee et al., 2010). Sun et al. (2015) en-
hance this work providing convergence guarantees using the proximal alternating linearized
minimization algorithm of Bolte et al. (2014). Despite a wide range of existing methods in
various applications, there is no sparse multi-view model-based clustering method available
to our knowledge in this community.

Sparse integrative clustering. In cancer research, many statistical methodologies have
emerged to analyse data coming from different sources, generally multiple ’omics’ data, under



the concept of integrative genomics (Kristensen et al., 2014), with a philosophy closely related
to multi-view learning. Huang et al. (2017) present a recent review of multi-omics integration
tools. More specifically, integrative clustering may be built on model-based approaches such
as the representative work of Shen et al. (2009, 2010). The method iCluster uses a latent
variable model to connect multiple data types. The optimization of a penalized log-likelihood
alternates a process of dimensionality reduction on the representation of original data with
a sparse estimation of the corresponding coefficients. Several extensions of iCluster using
penalties inducing sparsity of different forms have been proposed since (Shen et al., 2013;
Kim et al., 2017).

1.1.3 Limits

To identify subtypes of diseases, one may have clinical data of longitudinal nature on one
hand and genomic data which are of categorial nature on the other hand. A well-suited
clustering of clinical data followed with a posterior genetic analysis of the clusters obtained
may present limitations since the step of clustering does not take benefit from the genomic
data. As a consequence, there is no guarantee regarding the connection between the genomic
information and the clinical clusters. Integrative-like approaches seem more adapted for this
problem. Yet, none of the integrative and multi-view methods explicitly adress how to
deal with multiple data of different nature (such as longitudinal data and counting data
for instance). Indeed, merging the datasets without a clever pretreatment to smooth the
differences between the nature of variables is certainly unappropriated in the sense that
only one kind of information may influence all the clustering. To get around this aspect,
most methods use representations of data obtained from projections on subspaces (PCA or
SVD for example). However, distorting the initial information may significantly complicate
the posterior validation of the extracted features since they correspond to a composition of
several variables.

1.2 Proposed approach

In the light of the previous considerations, we sketch an alternative path to adress the
problem of subtyping when clinical and genomic information are available. Our proposal is
to cluster the clinical variables by estimating the weights of a multinomial logistic regression
model, with the weights depending on the genetic variables. Note that a similar model is
used for disease subtyping, though without genotyping data, by Schulam and Saria (2015).
This model could also be viewed as a Mixture Of Experts (MOE) close to (Jordan and
Jacobs, 1994), in which, however, the variables involved in the logistic weights are the same
as those involved in the main regression.

Involving the genetic information leads to problems of large dimension where a variable
selection strategy becomes essential, as seen in Section 1.1. Therefore, we propose to discard



the genetic variables that might be unrelevant for the clinical clustering thanks to a sparse
constraint on the logistic weights.

The proposed scheme is at the crossroad of the possibilities presented above, namely i) the
clustering of clinical data with a posterior genetic analysis and ii) the concomitant clustering
of clinical and genomic data. Indeed, the clustering of the clinical data is guided by the
genetic markers through the weights of the model while being adapted to the nature of the
longitudinal data. Also, it leaves the opportunity of studying further potential associations
between the genetic markers extracted in the variable selection process and the clinical
subtyping.

2 A mixture of regressions model with logistic weights

We propose a general model that may apply when the disease has to be subtyped from the
evolution of several longitudinal variables, such as patient symptoms recorded from their
follow-up.

We denote by Yv,i,j the vth clinical variable under consideration for disease subtyping
observed during the jth visit of patient i, by V the number of variables under consideration,
by K the number of subtypes of the disease, by L the number of genetic elements and by I
the size of the patients cohort.

We consider the following regression model with logistic weights:

(Yv,i,j|Zi,k = 1) = αv,0,k + αv,1,kti,j + αv,2,kt
2
i,j + · · ·+ αv,Np,kt

Np

i,j

+ σv,kεv,i,j, εv,i,j ∼
iid
N (0, 1) , (1)

Pr(Zi,k = 1) =
eω0,k+ωT

k Gi∑K
k′=1 e

ω0,k′+ωT
k′Gi

,

where:
- ti,j denotes the time (such as the patient age or the time since the beginning of the

disease) for the patient i at its jth follow-up visit,
- Np denotes the maximum polynomial degree we consider in the regression (Np = 2 is

generally sufficient),
- Gi denotes its genotype vector,
- Zi,k is the indicator variable of patient i belonging to the class k,
- (ωk)k∈{1,...,K} , (αv,p,k)v∈{1,...,V },p∈{0,...,Np},k∈{1,...,K} and (σv,k)v∈{1,...,V },k∈{1,...,K} are param-

eters or vectors of parameters to be estimated,
- ωl,1 = 0∀l ∈ {1, ..., L} for the sake of identifiability.
εv,i,j ∼

iid
N (0, 1) implies some conditional independence assumptions between variables,

patients and visits when the class is known. Indeed, clinical variables are chosen such that



they are as orthogonal as possible, correlation between individuals should essentially come
from a similar typology of the disease and, finally, the remaining time correlation after the
polynomial regression is expected to be poor.

The logistic weights allow for concomitant variables, such as genetic data, to guide as
well the subtyping. If the Gaussian hypothesis does not apply to the variable v, one may
consider the Poisson or the logistic regression instead with no substantial additional cost.

2.1 Lasso and BIC model selection

We combine two model selection strategies in order to select, on the one hand, the variants
and, on the other hand, the number of polynomial degrees and the number of clusters that
are involved in the mixture.

2.1.1 A Lasso penalty to select the logistic regression parameters

We want to operate a selection on the variables G, since we suspect that many have no
influence on the disease phenomenology. Since G may be very large (about a few millions
of elements after genotype imputation in the cases we consider), classical backward-stepwise
methods (such as the one described in Maugis et al. (2009)) would result in non affordable
computational time. In the case where there are a lot of possible regressors, and one sus-
pects that many are not necessary to describe the phenomenon, one may use a Lasso-type
penalization. Here, as Khalili (2010) in the case of MOE models, this selection takes action
within an Expectation-Maximization (EM) algorithm.

2.1.2 A BIC to select the number of clusters and polynomial degrees

In order to select the most appropriate number of subtypes (K) and of polynomial degrees
in the main regressions (Np), the Bayesian Information Criterion (BIC) seems convenient.
However, as in the case of mixed models (Delattre et al., 2014), the BIC can not directly
apply in our case. Indeed, the effective sample size is not clearly defined: one may consider
the number of patients, I, why some other may consider the number of observations, N =∑I

i=1 ni. We compute the BIC as follows:

BIC = −2LL+ (Np + 2)V K log(N) + log(I)
K∑
k=1

‖ωk‖0, (2)

where ‖ωk‖0 denotes the number of non-null elements of ωk including ω0,k and LL is the
log-likelihood. If Vnl additional non-longitudinal variables are included in the subtyping,
then one can add the term 2VnlK log(I).



3 An EM algorithm with integrated Lasso inference

The inference of such a model with latent variables (here, the Zs) can be classically conducted
with an Expectation Maximization algorithm (EM algorithm) (Dempster et al., 1977). We
used a modified version of this algorithm in order to maximize the (Lasso-type) penalized
likelihood instead of the likelihood. This modification does not compromise the convergence
of the EM algorithm (Green, 1990).

At the (q+ 1)th iteration of the modified EM algorithm, one maximizes the expected and
penalized complete-data log-likelihood:

E(Z|θ(q),Y=y) {L (y,Z; θ)− Pen(ω)} = E(Z|θ(q),Y=y) {L (y,Z; θ)} − Pen(ω),

where θ = (ω,α,σ) is the vector of all model parameters, Pen(ω) is the Lasso-type penalty
and L (y,Z; θ) is the complete-data log-likelihood:

L (y,Z; θ) =
i=I∑
i=1

k=K∑
k=1

Zi,k

(
log {Pr (Zi,k = 1;ωk)}

v=V∑
v=1

j=ni∑
j=1

log {f (Yv,i,j = yv,i,j|Zi,k = 1;αv,k, σv,k)}

)
,

where ni is the number of follow-up visits of patient i and f (X = x; ζ) is the probability
density function of X in x with parameters ζ. The penalty, Pen(ω) can for instance have
the following form: Pen(ω) = λ

∑
k‖ωk‖1, the Lasso penalty, where ‖·‖1 is the l1-norm and

λ is a parameter to choose.
To maximize the expected and penalized complete-data log-likelihood, each iteration is

divided into 2 steps: an expectation step (E) followed by a maximization step (M).
At step E of the (q + 1)th iteration, posterior weights are updated as follows:

τ
(q+1)
i,k = E

{
Zi,k|Y = y; θ(q)

}
=

Pr
(
Zi,k = 1;ω

(q)
k

)∏v=V
v=1

∏j=ni

j=1 f
(
Yv,i,j = yv,i,j|Zi,k = 1;α

(q)
v,k, σ

(q)
v,k

)
∑k′=K

k′=1 Pr
(
Zi,k′ = 1;ω

(q)
k′

)∏v=V
v=1

∏j=ni

j=1 f
(
Yv,i,j = yv,i,j|Zi,k′ = 1;α

(q)
v,k′ , σ

(q)
v,k′

) .
At step M of the (q + 1)th iteration, parameters are updated as follows:

θ(q+1) = argmax
θ

∑
i

∑
k

τ
(q+1)
i,k

(
log {Pr (Zi,k = 1;ωk)}

v=V∑
v=1

j=ni∑
j=1

log {f (Yv,i,j = yv,i,j|Zi,k = 1;αv,k, σv,k)}
)
− Pen(ω).



The maximization with regard to αs and σs parameters presents no difficulty. However,
there is no close formula to update the logistic weights parameters. The term to be maximized
with respect to ωs at iteration (q + 1) of the EM algorithm is the following:

1

I

∑
i

∑
k

τ
(q+1)
i,k log

(
eω0,k+ωT

k Gi∑K
k′=1 e

ω0,k′+ωT
k′Gi

)
− Pen(ω). (3)

When resorting to Classification EM (CEM, Celeux and Govaert (1992)), τ
(q+1)
i,k are re-

placed with the indicator variable of the most likely class for patient i at iteration (q + 1),

Z
(q+1)
i,k . Equation (3) becomes:

1

I

∑
i

∑
k

Z
(q+1)
i,k log

(
eω0,k+ωT

k Gi∑K
k′=1 e

ω0,k′+ωT
k′Gi

)
− Pen(ω). (4)

This maximization problem corresponds to the multinomial logistic regression problem
with a penalty. It can be addressed by a partial Newton algorithm as for instance in the
glmnet R package (Friedman et al., 2010). The λ parameter is chosen by cross-validation so
that the likelihood of the multinomial logistic model is maximized.

Implementation To implement our method, we build an adapted concomitant variable
driver making use of glmnet within the FlexMix R package (Grun and Leisch, 2008). The
FlexMix package proposes a (C)EM algorithm adapted to multinomial logistic weights mix-
ture models.

To avoid (negative) bias due to the penalization in the parameter estimation, we re-
estimate the selected ω parameters at the end of the EM algorithm in order to get the
maximum likelihood estimates. We finally proceed to the proposed BIC selection to arbitrate
among initializations.

4 Numerical illustrations on artificial data

We first check our estimation methods on artificial data. The goals are to check whether the
CEM algorithm gives a good estimation of the parameters and whether our model selection
method chooses the appropriate model.

Experimental setting

We simulate artificial data according to the model (1) with K = 3 clusters, V = 4 clinical
variables, I = 396 patients, times ti,j randomly ranging from 10 to 410 days for the first



visit, from 1800 to 2200 days for the second and from 3600 to 4000 days for the third, Np = 1
polynomial degree in the regression, ni = 3 observations per patient and L = 2657 genetic
elements, only 10 of which have an influence on the clustering: ω(2,3,4),2 = ω(5,6,7),3 = 2,
ω(5,6,7),2 = −1 and ω(1,8,9,10),3 = −2. Those genetic elements are the ones that will be used in
section 5. We choose realistic α and σ parameters with regard to Parkinson’s Disease (PD)
clinical data.

For each simulation, we launch the proposed CEM algorithm with an imposed number of
clusters corresponding to the simulated one (K = 3) and a Lasso penalty. This experiment is
repeated 100 times. We initialize the estimation with 10 sets of starting values corresponding
to 10 random assignments into K = 3 clusters and keep the one that leads to the lower BIC.

We compare our results with the one we get with the corresponding two-step method,
i.e. without any use of genetic information in the clustering process and having recourse
to the Lasso-penalized multinomial logistic regression afterward to get genetic association
results. This results in constant weights of the clusters, P(Zi,k = 1) = πk. When possible,
we also compare our method to the k-means method. This method corresponds to a simple
Gaussian mixture model with identical standard deviations in all clusters. To do so, we make
recourse to a k-means method adapted to longitudinal data implemented in the R package
kml3d (Genolini et al., 2015).

Results

Clustering ability We first compute the Adjusted Rand Index (ARI) for each simulation
to check that the estimated clusters are close to the ones that are simulated. The results for
our method are illustrated by the boxplot for the ”integrative” method of Figure 1. Most
clusters are thus adequate. When making no use of genetic information within the clustering,
the algorithm globally achieves lower ARI.

In theory, a better clustering ability can be expected from the algorithm making use of
genetic data as illustrated by the corresponding oracle rand indexes results (”oracle integra-
tive”). Those results are obtained by using the true parameters values to predict the clusters
the patients belong to. This improvement in cluster prediction does not come from a better
estimation of the ω parameters as illustrated by the ”semi-oracle integrative” results. Those
results are obtained using the true ω parameters and estimating the other parameters.

Finally, the k-means algorithm is not able to recover the underlying classification as well:
the corresponding rand indexes all range between 0.6 and 0.7. This was expected, since the
differences between the clusters partly lies in the variances of the variables. Moreover, the
k-means method is not able to account for the exact visit times but only for the visit ranks.

Parameters estimation ability in the main regressions The resulting estimated pa-
rameters are illustrated in Figure 3 on the example of the first clinical variable. All the
biases are notably close to 0. Accounting for genetic information (integrative method) does
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Figure 1: Boxplots of the ARI over 100 simulations
with a k-means algorithm, with no use of genetic infor-
mation (2-step method), with the use of genetic infor-
mation (integrative method) and corresponding oracles.
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not seem to improve notably the parameters estimation. The results are very similar for the
3 other clinical variables (not shown).

Variable selection and parameter estimation ability within the logistic regression
Figure 4 illustrates the results of the Lasso selection procedure we propose with regard to
the genetic variables. The selection rates of 8 of the 10 active genetic variables are notably
higher than the selection rates of the other variables, thus showing a good performance of our
selection method. The selection rates obtained using the two-step method are lower, which
underlines the interest of the integrative approach we propose. The 2 lasting active elements
do not vary between patients and can thus be replaced by any variant with a poor variation.
Most of the inactive elements are selected less than 5 times over 100 simulations. However this
specificity is good, many false positives are observed for each simulation since the number of
genetic elements is relatively high (2657). This selection performance decreases (as expected)
as the ω parameters are set closer to zero (not shown). The sign of the estimated parameters
are most of the time adequate for both approaches as illustrated Figure 5.
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Figure 5: ω non-negative parameters estimates
over 100 simulations and respective true values.

Model selection ability We conduct an additional simulation study to evaluate the ca-
pacity of the BIC (computed as described Section 2.1) to select the correct number of clusters
(K = 3) on the same 100 simulated datasets. The results are illustrated by the histogram
of Figure 2. The correct number of clusters is most of the time selected: 79 times over 100.
The 21 other times, a higher number of clusters is selected but never more than 5.



5 Application to Parkinson’s Disease subtyping

We then apply the proposed method for Parkinson’s Disease (PD) subtyping. This disease
is known to have several subtypes. This has given rise to numerous studies among which
(Lewis et al., 2005).

Data description

The data on which we apply our method are from the DIG-PD cohort (Corvol et al., 2018).
This cohort is composed of 396 genotyped adults with a recent PD onset (diagnosed less
than 6 years prior to the beginning of the study).

Clinical data were collected at inclusion and then at yearly clinical follow up (during
one to seven years). They include a number of scores evaluating the progression of the
disease. We chose to use two of them, ones we assume to be representative of the evolution
of the disease, namely Section III of the Unified PD Rating Scale (UPDRS III, a motor
examination) and the Mini-Mental Status Examination toolkit score (MMSE, an evaluation
of cognitive impairment). The higher the UPDRS III and the lower the MMSE, the more
patients are impaired. The scores were adjusted for the treatment doses and for the gender
effects beforehand, by considering the residuals of the linear regression with gender and
treatment doses as (respectively factor and quantitative) predictors. The patient age is
taken as the time scale.

More than 6 million genetic markers were available after imputation for each patient. We
chose to use only 2652 of them: ones that either were associated to PD in previous studies
(about 400 of them) or that had an important impact on the gene function (scaled CADD
score1 greater than 25) and an allele frequency greater than 0.01. As done classically, the
ones with two copies of the reference allele were encoded −1, the ones with two copies of the
alternative allele were encoded 1 and the others (with one copy of each) were encoded 0.

Results

Model selection results In order to warranty a good interpretability of the results, a
maximal number of K = 4 clusters was allowed. Moreover, a maximal number of 2 polyno-
mial degrees was tested. The solution with 4 clusters and 1 polynomial degree resulted is
the lowest BIC.

Clinical results Clustering results with regard to the clinical data are illustrated Figure 6.
Remember that the variables represented here are residuals of a fitted linear model. On the

1Combined Annotation Dependent Depletion score, this score evaluates the deleteriousness of variants in
the human genome.



figure, the cluster attributed to each patient corresponds to the cluster the patient is the
most likely to belong to according to the model. Half of the patients are allocated to cluster
1 and about one third of the remaining patients are allocated to each of the 3 remaining
clusters. Cluster 3 is characterized by late but rapid cognitive and motor decline. Cluster 2 is
characterized by a smaller cognitive impairment but by a very significant motor impairment.
In contrast, cluster 4 is characterized by a small and late cognitive and motor decline.
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Figure 6: Clustering results with regard to the clinical variables.

Genetic association results Genetic association results are illustrated Figure 7. The
95% confidence intervals associated to the ω parameters are computed from the Hessian
matrix (provided by the R nnet function of the nnet package (Ripley et al., 2016)). Note
that p-values below 0.05 (i.e. significant association prior to any multiple test correction)
correspond to a 0 value outside the 95% confidence interval.

15 SNPs were selected, 7 of them are part of genes with a potential role in neurological
diseases. The SNP rs13284404 appears to be associated to cluster 1 (23/203 cases with at
least one copy of the alternative allele, compared to 3/193 in the other clusters). It belongs
to gene semaphorin 4D (SEMA4D), which is expressed in neurons and which expression is
diminished for patients with Alzheimer’s disease (Villa et al., 2010).



rs35866326 is the most significantly associated to the clustering, with a p-value around
10−4 for cluster 2 (19/48 cases with at least one copy of the alternative allele, compared to
52/348 in the other clusters). This SNP has been associated with susceptibility to Parkinson’s
disease (Maraganore et al., 2005, 2006; Goris et al., 2006) although this result has not been
replicated by others (Li et al., 2006; Farrer et al., 2006). These controversial results might
be due to the fact that this gene is associated with a particular subtype of PD, as we show
here with an association with cluster 2 only.

However, an unselected variant doesn’t mean that it may not be associated with the
disease subtype. It may be associated but not enough to bring more information relative to
the clustering.
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Figure 7: Genetic association results: estimated logistic regression (ω) parameters.



6 Conclusion

We propose a model-based method for disease subtyping from both short longitudinal data
with varying observation times, as are often clinical follow-up data, and from high dimen-
sional quantitative data, such as genotyping data. Unlike in most multi-view clustering
methods, the two types of data are processed in a non-symmetrical way by integrating ge-
netic data in the clustering via multinomial logistic weights depending on them. A Lasso
penalty on the logistic regression parameters permits to get parsimony and a short list of
genetic factors potentially involved in the typology of the disease.

An experiment on artificial data validates the proposed inference (and model selection)
method and shows its superiority in finding latent subtypes of the disease and in finding the
influent genetic factors when compared to the corresponding two-step method (clustering on
clinical data followed by an association study).

Using our method on clinical and genetic data from a cohort of patients with Parkin-
son’s disease (PD) permits to characterize 4 distinct subtypes and 15 genetic factors with a
potential impact on the subtyping. Of these 15 SNPs, the one with the most significant role
is already associated with PD. Half of the others belong to genes suspected to be implied in
neurological diseases.

7 Discussion and perspectives

The statistical analysis presented here may be underpowered due to the relatively small
sample size of the dataset. It may thus be of interest to try a replication in independent
cohorts. Moreover, a correction for multiple testing must be performed to asses the likelihood
that the SNPs identified with our method actually have an impact on the disease typology.
This correction should take into account the fact that the Lasso selection is performed on
a high number of SNPs and that the tests are performed on a subgroup of those SNPs.
Moreover, in order to use this method with a very high-dimension genetic dataset (several
millions of SNPs), it may be necessary to summarize the data, for instance by aggregating
SNPs in linkage disequilibrium blocks (Guinot et al., 2017). In short, the proposed method
does not dispense with the need for a more traditional association study afterward.

In addition, if one chooses to focus on some correlated clinical variables, a multivariate
version of the proposed model could be considered, but this is complicated by the functional
nature of the data (tij times are different from one individual i to another).

Finally, if the objective of the subtyping is to predict the evolution of the patient’s
symptoms and more data are available for each patient, one can consider taking into account
the temporal dynamics specific to each individual in a more refined way, for example by using
a Gaussian process as done by Schulam and Saria (2015).
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