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Abstract—Spin-transfer torque magnetic memory (STT-
MRAM) is currently under intense academic and industrial
development, since it features nonvolatility, high write and read
speed and high endurance. In this work, we show that when
used in a non-conventional regime, it can additionally act as
a stochastic memristive device, appropriate to implement a
“synaptic” function. We introduce basic concepts relating to
spin-transfer torque magnetic tunnel junction (STT-MTJ, the
STT-MRAM cell) behavior and its possible use to implement
learning-capable synapses. Three programming regimes (low,
intermediate and high current) are identified and compared.
System-level simulations on a task of vehicle counting highlight
the potential of the technology for learning systems. Monte
Carlo simulations show its robustness to device variations. The
simulations also allow comparing the operation of system when
the different programming regimes of STT-MTJs are used. With
comparison to the high and low current regimes, the intermediate
current regime allows minimization of energy consumption, while
retaining a high robustness to device variations. These results
open the way for unexplored applications of STT-MTJs in robust,
low power, cognitive-type systems.

Index Terms—modeling, magnetic memories, magnetic devices,
simulation.

I. INTRODUCTION

Thanks to considerable progress in recent years, spin-transfer
torque magnetic random access memory (STT-MRAM) – the
second generation of magnetic memory – now appears as
a breakthrough for embedded and standalone non-volatile
memory, providing fast programming and high endurance [1].
However, a limitation of this technology is its stochastic switch-
ing nature [1]–[3]. The time required for programming from a
memory state to another is a random quantity, which requires
designing programming times with high safety margins, to
ensure reliable programming. Device physicists have intensely
studied this effect of intrinsic probability [4], [5], and circuit
designers have proposed ideas like self-enabled programming
to mitigate the issue [2]. However, an alternative approach is
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to not consider this randomness as a drawback, but as a feature
of the device. In particular, here we reinterpret STT-MRAM
cell’s behavior as a “stochastic memristive device”. And we
show by system-level simulations how it may be used in a
neuromorphic system for practical applications.

In recent years, the exploitation of nanodevices with memory
effects (or memristive devices) as synapses in neuromorphic
systems has stimulated a growing interest [6]–[21]. They
raise the hope for a breakthrough in electronics, bringing
smarter, lower power and more adaptive systems. Most of these
proposals use memory devices with multi-level capability – the
original memristor paradigm [8]. However, an alternative idea
is to use binary devices programmed in a stochastic fashion, or
even to use binary devices with intrinsic stochastic properties
[20], [22]–[24]. In theoretical works, the idea of using stochastic
synapses instead of deterministic ones (in a broad sense) has
also been proposed with supervised neural networks [25]–[27].
We suggest that STT magnetic memory is ideal for this vision
and illustrate it in the case of unsupervised learning.

In the present paper, we introduce the basic physics of STT
memory and the foundations of its behavior as a stochastic
memristive device. To support the idea, we perform system-
level simulations incorporating an accurate model of the
stochastic effects for an application of car counting. Monte
Carlo simulations show the relevance and the robustness of
the approach to device variations, and allow us to identify in
which regime STT memory should be used.

Partial and preliminary results of this work have appeared
in [28]. The present paper adds in-depth discussion on system
implications of using STT memory as a synapse, comprehensive
Monte Carlo simulations, and compares the operation of the
STT-MTJs in different regimes in terms of energy efficiency
and robustness to device variations.

II. STOCHASTIC MEMRISTIVE BEHAVIOR OF MAGNETIC
TUNNEL JUNCTIONS

A magnetic tunnel junction (MTJ, the basic structure of
magnetic memory, Figure 1(a)) is composed of a fixed magnetic
layer, an oxide layer and a free magnetic layer, whose
magnetization can be parallel or antiparallel to the one of
the fixed layer. The antiparallel state AP is high resistive and
the parallel state P is low resistive. Thanks to the spin transfer
torque (STT) effect, a positive current can switch the STT-
MTJ from the AP to the P state, while a negative current can
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Fig. 1. (a) Schematic illustrating the basic structure of an in-plane magnetic
tunnel junction. (b) Symbols: Experimental measurements of probability of
switching as a function of programming time, for different programming
voltages [5], [29]. Lines: our analytical model.

switch it from the P to the AP state. In this way, a STT-MTJ
is extremely reminiscent of a binary bipolar memristor [8].

The switching time depends heavily on the current and is
itself a stochastic quantity as observed in the measurements
of Figure 1(b). We see that a programming pulse of duration
∆t has a probability of switching the memory. This stochastic
effect is not caused by technological imperfections or filamen-
tary effects like in other resistive memory technologies [22],
[24], but is intrinsic to the physics of magnetic switching. This
has been largely clarified by magnetism studies.

A. Low Current Regime
In particular, at low current, memory switching is caused by

thermal fluctuations. We can introduce a critical current of a
STT-MTJ (in the case of a device with in-plane magnetization):

Ic0 =
2|e|
~
αV (1± P )

P
µ0Ms

Meff

2
, (1)

where α, Ms and V are the Gilbert damping, the saturation
magnetization and the volume of the free layer, P the spin
polarization of the current, and Meff an effective magnetization
(all the equations are written in SI units). The sign − in equation
1 is for the AP→P transition, the sign + for P→AP. It should
thus be noted that Ic0has different values for the P→AP and
AP→P transitions. However, basic calculations confirmed by
measurements show that they correspond to the same voltages.
The symmetry – in voltage – between the P→AP and AP→P
transitions is an extremely nice property of STT-MTJs used as
memristive devices.

If a current I much smaller than Ic0 flows through a STT-
MTJ, the mean switching time <τ > has been proven to behave
as the Néel-Brown equation [1]

<τ > = f−1
0 exp

(
E0

kBT

(
1− I

Ic0

))
, (2)

where the energy barrier at zero current is E0 = µ0MsHkV/2,
kBT is the thermal energy, Hk the amplitude of anisotropy
field and f−1

0 a constant. Switching time itself is determined
by an exponential random law with mean <τ > [1], [4]. This
implies that if a programming pulse of duration ∆t is applied
to the junction, its probability of switching is

Psw = 1− exp

(
− ∆t

<τ >

)
. (3)

Choosing the pulse duration ∆t thus allows tuning the
switching probability of the devices anywhere between a low
(Psw � 1 for ∆t� <τ >) and a high probability (Psw ≈ 1
for ∆t � <τ >). It should be noted that STT-MTJ thus
possess no hard threshold. Even an extremely low current has
a probability to switch the junction, but the mean switching
time is exponentially dependent on the current.

B. High Current and Intermediate Current Regimes

By contrast, when a current much higher than Ic0 flows, the
physics differs (precessional switching) and the switching time
behaves as Sun’s law [1], [5]

τ =
2

αγµ0Ms

Ic0
I − Ic0

log

(
π

2|θ|

)
, (4)

where θ, the initial angle of the magnetization, is given by a
normal random number with mean 0 and standard deviation
θ0 =

√
kBT/(µ0HkMsV ) (γ is the electron gyromagnetic

constant). This is no longer an exponential law as is seen
for the measurements on Figure 1(b), which are taken in the
intermediate and high current regimes.

Although the two regimes I � Ic0 and I � Ic0 have been
well studied, the intermediate regime is much harder to model.
For the present work we developed equations that fit STT-MTJs’
behavior in all situations. The relatively complex equations are
beyond the scope of the current paper and are published in a
sister publication [30]. Figure 1(b) shows that our equations
fit experimental measurements.

Figure 2 shows the mean switching time as a function of
current (for the AP→ P transition) in all possible regimes,
compared with physical simulations based on the macrospin
magnetic Landau-Lifschitz-Gilbert-Slonczewski equation with
thermal agitation. The low current, high current and interme-
diate current regimes are visible. This graph also shows how
the mean switching time can be tuned over several decades
by choosing current or voltage adequately, a unique feature of
STT-MTJs.

C. Integration and Scaling Potential of STT-MTJs

Although STT-MTJ technology is complex and involves
new materials, STT-MTJs are CMOS-compatible, and their
integration potential has been demonstrated in several experi-
mental realizations, which use STT-MTJs as standard memory.
A standalone memory of 64 Mb, in a 90 nm process, has
already reached the market [31], [32], and similar chips have
been published in recent years by several groups [33]–[35].
An embedded memory of 1 Mb in a 65 nm process has been
published [36].
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Fig. 2. Mean switching time as a function of current density in a 45 nm
technology STT-MTJ, simulated with our model for the AP→P transition.
Blue line: our analytical model. Symbols: physical simulation based on Landau-
Lifschitz-Gilbert-Slonczewski equation with thermal agitation.

Unlike flash memory, as well as several alternative non-
volatile memory technology, STT-MTJs use programming
voltages lesser or equal than logic voltages. Programming
currents scale with the technology node [1] and can range
from mA to 10 µA. The most recent realization use structures
where the magnetic layers magnetizations are perpendicular to
the structure, which reduces programming current [37]–[39].
In Ref. [36], [37], for example, programming voltage is 0.6 V,
programming current is 50µA and programming time only
3 ns. Read and write circuits associated with STT-MTJs have
been heavily developed in recent years. Advanced read circuits
are sense amplifiers specially designed for STT-MTJs [36],
[40]. Advanced write circuits mitigate stochastic effects using
self-enabled paradigms [2].

III. EXAMPLE OF APPLICATION IN A NEUROMORPHIC
SYSTEM

A. Architecture of the System

In this section, we validate by means of system-level
simulation the use of stochastic STT-MTJs as synapses. For
this, we adapted a scheme proposed elsewhere for Phase
Change Memory [13], [41] and Conductive Bridge RAM
(CBRAM) [22], [23]. The system implements a spiking neural
network, capable of performing unsupervised learning through
a simplified Spike Timing Dependent Plasticity (STDP) rule.
Figure 3 shows the basic architecture of the system.

CMOS input neurons present the input as asynchronous
spikes, which may come directly from a neuromorphic sensor
(e.g. DVS retina [42]). The STT-MTJs are organized as a
crossbar connecting input and output neurons. The simplest
architecture is to use a passive crossbar (1R), which has also
been proposed for memory applications [43]. This scheme is
extremely efficient in terms of area, and allows each input
neuron to be connected to each output neuron by a single
STT-MTJ. Unlike for memory operation, this architecture does
not suffer from the sneak path during read operations. Indeed,
read operation is naturally done in parallel.

Input No input No input No input 

(a) LIF neuron 

LIF neuron 

Vread (1) 

0 (0) 

(1) (0) (0) 
(0) 

(0) 

(0) 

Input Input No input No input 
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AP→P 

-½VProg 
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(1) (0) (0) (1) (2) 
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I1 
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Fig. 3. Schematization of the crossbar architecture (1R case) for the learning
system. (a) Read operation, which occurs whenever an input neuron spikes.
(b) STDP (write) operation which occurs when an output neuron spikes.
Waveforms (1) and (2) are applied concurrently.. Due to the stochastic nature
of switching, in the presented example, only two STT-MTJs switch states. .

In contrast, passive crossbar suffers from some sneak
paths during programming, which use unnecessary energy,
as discussed later. For this reason, this scheme can be adapted
to selector devices (1T-1R structure). This loses, unfortunately,
the compactness of the scheme. Detailed comparison between
1R and 1T-1R will be the subject of future work focused on
circuit implementations using STT-MTJs as synapses.

In our system, when an input neuron spikes, it applies a
brief read pulse to the crossbar, as illustrated in Figure 3(a).
This leads to currents that reach the different output neurons
simultaneously. The output neurons, materialized as triangles
(.) in Figure 3 maintain a constant voltage at their input
(avoiding sneak path on other STT-MTJs), while reading the
current. This can be achieved using second-generation current
conveyor designs [57]. The current received by an output
neuron depends on the state (P or AP) of the synapse connecting
the input to this particular output. The output neurons provide
two features. First, using a sense-amplifier type circuit, adapted
from the ones used for MRAM [36], [40], the output neuron
can determine if an input was received from a P or AP synapse.
This process would lead to error if two inputs spiked during
a time smaller than the read pulse width. In the practical
application that we studied (processing video data from a DVS
retina), this situation does not arise. Second , the output neurons
integrate the information received from their sense amplifier.
Functionally, the output neurons implement leaky integrate-
and-fire (LIF) spiking neurons. They may be implemented by
analog or digital circuits [44]–[48]. Only the inputs coming
from P synapses are integrated by the output neurons. So, MTJs
in the AP state act as synapses with a synaptic weight of zero,
and MTJs in the P state act as synapses with a synaptic weight
of one.

When an output neuron spikes, it inhibits the other output
neurons: their internal variable is reset to zero. In practice, this
can be implemented by nearest-neighbor schemes like diffusor
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network [49]. With this lateral inhibition, our architecture is
reminiscent of a winner-takes-all neural network.

B. Simplified STDP Rule

Additionally, when an output neuron spikes it applies a
voltage pulse on the crossbar, that implements our learning
rule inspired by STDP. STDP is a model for synaptic learning in
the brain [50], [51]. Many works have proposed to use memory
devices to implement STDP [9], [11]–[14], [52]–[57], usually
involving sophisticated schemes. Here we use an extremely
simplified version adapted to stochastic STT-MTJs.

This simplified STDP rule deviates from biological models ,
and includes two significant simplifications. First, STDP occurs
only when an output neuron spikes, which differs from most
STDP models, but is easier to implement with nanodevices
as seen in [12], [13], [23], [58]. In the field of neuroscience,
a similar choice has been taken by Nessler et al. [59]. They
showed that in this condition, STDP can approximate the pow-
erful machine learning algorithm of Expectation-Maximization.
Second, our STDP rule is stochastic instead of deterministic:
a STDP event has a probability to switch a nanodevice.

In practice, STDP steps act as the programming operations of
the network and are presented in Figure 3(b). When an output
neuron spikes, the whole system enters a “programming” phase.
The output neuron that spiked applies the voltage waveform (2)
to its row of the crossbar, while the inputs that were active in a
recent time window apply an input pulse (1). The combination
of these voltage pulses implements a simplified STDP rule:
when an output neuron spikes, a STT-MTJ connected to it

• has a given probability of switching to the P state if its
input neuron was active in a recent time window;

• has a given probability of switching to the AP state if its
input neuron was not active in the same time window.

At the same time, the STT-MTJs connected to the other
output neurons are either non-selected, or half-selected (i.e.
the voltage applied to these devices is either 0 or VProg/2).
According to the model of section II, the switching probability
of these devices is negligible.

This probabilistic rule is similar to the one that we proposed
for CBRAM [22], [23]. However, the voltage waveforms are
simpler because of the symmetry in voltage between P→AP
and AP→ P switching in MTJs. The learning rule is also
reminiscent of the simplified STDP proposed for computational
neuroscience studies in [59], but in a binary and probabilistic
version. As shown further, our simplified STDP allows a form
of powerful unsupervised learning.

C. Methodology for System-Level Simulation

To validate the use of STT-MTJs as synapses, we performed
system-level simulations where STT-MTJs are modeled ac-
curately according to the model of section II. We used a
specialized neuromorphic spiking neural network simulator
developed in our lab. The simulation is time-step based
and simulates CMOS circuits functionally. The simulator is
designed for the possibility of including comprehensive physical
models for the nanodevices and for their imperfections. This

Fig. 4. Representation of the final state of the MTJs. Every subimage represents
one output neuron. The state of the MTJs is organized as the input pixels in
the image. White is P, black is AP state.

Fig. 5. Evolution of the states of the MTJs connected to a one of the output
neurons during the learning process, and plotted as in Figure 4.

kind of simulation is much faster than SPICE simulation; for
our test application, the simulation time was between 25 and
40 times the real time on a Xeon E5620 processor. This allows
us to simulate practical applications, and to perform statistical
studies (Monte Carlo simulations).

We based our simulations on a STT-MTJ device represen-
tative of a 45 nm technology. The STT-MTJs are ellipses
with a width of 40 nm, a length of 100 nm and a free layer
thickness of 2 nm. The tunnel magnetoresistance is 150 % (i.e.
RAP/RP = 2.5).

The programming voltage VProg in Figure 3(b) is varied
between 0.3 V and 0.6 V, in order to study its impact of the
system. Under the constraint of fixed switching probability,
the programming pulses duration heavily depends on their
amplitude VProg. Thus, with the presented geometry and a
switching probability of 10%, it ranges from 32.3 µs (with
VProg = 0.3 V) to 3.9 ns (with VProg = 0.6 V). Concerning
the reading pulses, the are 1 ns long and 0.1 V high, resulting
in an insignificant probability of parasitic switching.

D. Task Results for Car Detection

For our test application, we presented an 80 seconds video of
cars passing on a freeway recorded with a neuromorphic retina
[42] (the video is freely available online [60]). This retina,
directly inspired by the human retina, works asynchronously
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and without frames, and generates spikes when the intensity
of a pixel changes. Each pixel of the retina comes in two
versions, sensitive to increase and decrease of pixel itensity,
respectively.

Each input neuron of our system corresponds to one of the
32,768 pixels of the retina. The system has 20 output neurons
and each of them is connected to every input pixel through a
synapse made of a single STT-MTJ. We presented the video five
times and observed that due to the simplified STDP learning
rule, the output neurons naturally specialize on particular lanes
and the system effectively becomes a vehicle counter.

The specialization of the output neurons is evident in
Figure 4, which shows the final states of the STT-MTJs. The
top image represents sample input: we plotted as white every
input that spiked during a 30 ms period. The yellow dotted
lines materialize the different lanes of the freeway. Every other
image represents the final states of the STT-MTJs connected
to one of the output neurons (white is P, black is AP). The
output neurons are listed according to the lane to which they
specialized. The number of output neurons specialized in a
given lane is not uniform (lanes 1, 3 and 5 have five specialized
output neurons, lane 2 three output neurons, and lanes 0 and 5
only one). This is determined by the number of cars passing on
each lane, and the number of pixels activated by a car passing
on each lane. In particular, fewer vehicles are passing on lanes
0 and 5 than on other lanes.

Figure 5 shows how a pattern emerges and stabilizes starting
from uniform random distribution of synaptic states, in one of
the output neurons. Originally, the STT-MTJ states are random.
After 33 s, the neuron has started to specialize in lane 4. After
114 s, the states of the STT-MTJs are stabilized.

Once the learning has been achieved, we can deactivate
both lateral inhibition and the learning steps, causing the
operation of the system to become very low power. Disabling
lateral inhibition and learning is not inspired by biology , but
motivated by engineering purpose. Disabling lateral inhibition
slightly increases the detection rate of the system, allowing the
system to react to two vehicles passing at the exact same time.
Disabling learning decreases the power consumption of the
system. Once the system has learnt, it can also be switched
OFF and ON without losing its function, since the state of
STT-MTJs is nonvolatile.

To estimate the performance of the system on the car
detection task, for each line, we chose the output neuron with
the best detection rate. This operation can be done automatically
by adding a second layer to the network as proposed in [61].

We first consider a situation where the devices are pro-
grammed in the intermediate current regime with a voltage
VProg = 0.46 V , and where device variation is neglected. The
STDP programming pulse width is adjusted such that transitions
from AP to P and P to the AP both have a probability of 10%.

If we interpret the system as a vehicle counter, the detection
rate is 97.3% for the four inward lanes. Detection rate is 62%
and 28% for the two outward lanes. The proportion of false
positives among the output spikes is 4.7%.

If we do not stop learning and inhibition once the system is
stable, the detection rate for the four inward lanes is sightly
reduced to 94.6 %, while the proportion of false positives is

Fig. 6. Histograms representing the values of P and AP states resistance
(left subfigures) and switching probabilities (right subfigures) when synaptic
variability is introduced. The switching probabilities are represented in the low,
intermediate and high programming current regimes (obtained with VProg =
0.3V , 0.4V and 0.6V respectively). Switching probability is 10% in all cases
for SV=0. From top to bottom, synaptic variability SV is 5%, 10% and 25%
of relative standard deviation (one-sigma) on resistance of the P state and
TMR.

5.0 %.
The best result on the same dataset, using a neural network

with double precision analog weight reports a detection rate
of 98.1% and a proportion of false positives of 4.3% [61].

During the learning process, the power consumption for
programming the STT-MTJs (excluding the power consumption
of the CMOS neurons and of the rest of the system) is only
180 nW, therefore making low power operation possible. We
show further that this figure depends tremendously on the
chosen programming regime.

Sneak paths represent only a small fraction of the power
consumption (8.4%). This is caused by the high parallelism of
the STDP operation. However, the proportion of sneak path
energy increases linearly with the number of output neurons.
The overall power consumption is smaller than in the case
of CBRAMs used for solving a similar task [23] due to the
low voltage operation and high speed of STT-MTJs in the
probabilistic regime.

Interestingly, the performance of the system is only weakly
dependent on the actual switching probability of STT-MTJs
during learning. If we adjust the programming pulse so that P
to AP transitions have a probability of 5% (P to AP remaining
10%), the system detection rate for the four inward lanes drops
to 86%.

IV. IMPACT OF DEVICE PROPERTIES ON THE
NEUROMORPHIC SYSTEM

A. Impact of Device Variations

In reality, device variations cause different STT-MTJs to
have different probabilities of switching when being applied
the same programming pulses. To evaluate the robustness of our
approach to this issue, we performed Monte Carlo simulations.
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Variations of the minimum and maximum resistances of the
MTJs are considered. Since they affect the current that flow
through the devices, this kind of variation has a dramatic effect
on the probabilities of switching STT-MTJs when programming
pulses are applied. This is illustrated in Figure 6. We introduce
several levels of Gaussian variability on the resistance of the
P state and on the TMR of 2000 STT-MTJs. The synaptic
variability SV parameters, 5%, 10% or 25%, represent the
relative standard deviation (σ/µ, one-sigma) of resistance of
the P state and TMR. This way of introducing variability
is motivated by experimental realizations, which suggest that
variations on the resistance of the P state and on the TMR are
uncorrelated and have equivalent relative standard deviation
[33], [34]. In Refs. [33], [34], the SV parameter was found to
be approximately 5%. The degree of variability that we are
considering therefore corresponds to extremely high level of
variability, in terms of realistic technology. The left subfigures
of Figure 6 represent histograms on the values of the resistances
of the parallel and antiparallel states. The right subfigures
are computed with the model of section II and represent
histograms of the switching probabilities of STT-MTJs, for
programming pulses whose probability to program STT-MTJs
when SV=0 is 10%. Three histograms are superimposed in the
low, intermediate and high current regimes. We see that the
variability on the switching probabilities is exacerbated with
regards to the variability on the resistance states. The variability
on the switching probabilities is also considerably higher in
the low programming current regime than in the intermediate
and high current regimes.

When simulating the whole system, we observed spectacular
tolerance of the system to device variation. We first consider the
case where the STT-MTJs are programmed in the intermediate
current regime. In Figure 7(a), we plotted detection rate and
proportion of false positives as a function of synaptic variability
in two situations: a situation where we did not stop STDP at the
end of learning, and a situation where we stopped it. Without
variability, the situation where learning is not stopped has a
significantly reduced detection rate compared to when it is
disabled. Up to 17 % of of synaptic variability, no impact is seen
on the detection rate in both situations, while as seen in Figure 6,
the variability of switching probability is considerable. The
degree of robustness is astonishing. When synaptic plasticity
is increased above 17%, the detection rate drops sharply in
the cases where learning and inhibition are disabled, and more
gently in the case where they are not. The case where inhibition
is not disabled is more robust, because in the presence of
high device variation, some output neurons react preferentially.
Inhibition limits their activity.

Figure 7(b) shows the proportion of false positives in
the same conditions as Figure 7(a). Similar trends are seen,
although the number of false positives starts to increase at a
lower synaptic variability (13%) than the detection rate.

Finally, we have also considered transient variations of
the properties of the STT-MTJs. We performed simulations
where, every time a STT-MTJ is programmed, its device
properties (RP and TMR) are redrawn randomly with a synaptic
variability of 10%. This constitutes an artificially high degree of
variations since MTJs properties are experimentally stable from
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Fig. 7. Detection rate (a) and proportion of false positives (b) as a function of
synaptic variability in a situation where learning is disabled at the end of the
learning process (squares) or not (triangles). Every simulation was repeated
ten times, the error bars represent one standard deviation.

cycle to cycle. Nevertheless, in these conditions our system
achieved the same detection rate and number of false positives
as in the situation were the MTJs properties are stable.

B. Impact of the Programming Regime

We have seen in section II that STT-MTJs can be operated
in different regimes (low, intermediate and high current). In
this part, system level simulations allow us to understand the
benefits and drawbacks of the different regimes when using
STT-MTJs as synapses.

Without device variations, all regimes allow implementing
the same switching probability, and thus lead to the same
detection rate and proportion of false positives. However, the
energy required to program the STT-MTJs differs significantly.
In the intermediate current regime, with a programming voltage
of 0.46 V, programming power is 180 nW. In the high current
regime, with a programming voltage of 0.6 V, it reaches 220 nW.
In the low current regime, with a programming voltage of 0.3 V,
it reaches a higher 0.42 mW.

In the presence of device variation, the programming regimes
are nonequivalent. This is seen in the Monte Carlo simulations
of Figure 8. In the intermediate and high current regimes, the
detection rate is robust until a synaptic variability of 17%; it is
robust until only 10% in the low current regimes. The number
of false positives is robust up to 10% of device variability in
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Fig. 8. Detection rate (a) and proportion of false positives (b) as a function
of synaptic variability with STT-MTJs programmed in the low (triangles),
intermediate (squares) or high (circles) programming regimes. Learning was
disabled at the end of the learning process. Every simulation was repeated ten
times, the error bars represent one standard deviation.

the cases of intermediate and high programming current, while
it increases as soon as there are device variations in the low
programming current.

This contrast can be explained by the device physics of STT-
MTJs. As seen in section II, in the low current regime, the mean
switching time of STT-MTJs has an exponential dependence
on the current. In the presence of device variations, each STT-
MTJ is programmed with a different current, and therefore has
an extremely disparate switching probability. For intermediate
and high programming currents, the mean switching time of
STT-MTJs has a softer dependence on current than in the low
programming current regime.

In summary, intermediate and high programming currents
require much smaller programming power than the low
programming current and have a better robustness to device
variations. Since the intermediate programming current uses
smaller voltages than the high programming current regime,
STT-MTJs have a better reliability in this regime. The inter-
mediate programming therefore appears as the ideal regime
for synaptic use of STT-MTJs. This differs from traditional
memory applications of STT-MTJs, where programming speed
is the major concern and where the high programming current
may be a better choice.

V. CONCLUSION

In this work, we interpreted magnetic tunnel junctions’
behavior as a stochastic memristive synapse. The stochastic
effects were modeled accurately using analytical physical
equations. The mean switching time can be tuned over many
decades, and STT-MTJs can be programmed in three different
regimes. Low voltages are used for programming and are
symmetric between positive and negative polarizations. We
introduced a neural network-inspired system that can exploit
this stochastic effect to perform unsupervised learning. The
switching probabilities of the nanodevices do not need to
be controlled perfectly, as the system is robust to device
mismatch, which is evidenced by Monte Carlo simulations. The
intermediate programming current regime minimizes energy
consumption and leads to high robustness to device variations.
This regime appears to be ideal for the use of STT-MTJs as
synapses.

Future works address the optimized circuits for using STT-
MTJs as synapses, which might differ from the circuits used for
using STT-MTJs as memory [62], and the physical realization of
hybrid CMOS/stochastic synapse circuits. From a system point
of view, the architecture should be advanced for demonstrating
more complex applications.

This work also gives insight into a new way to use memristive
nanodevices. Unpredictability caused by nanoscale physics is
not necessarily an enemy but can become the foundation for
efficient processing using novel computing paradigms.

ACKNOWLEDGEMENTS

The authors would like to thank T. Devolder, D. Ravelosona,
P. Bessiere, J. Droulez, A. Mizrahi, D. Vodenicarevic, J. S.
Friedman and J. Grollier for fruitful discussions.

REFERENCES

[1] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and
Y. Huai, “Spin-transfer torque switching in magnetic tunnel junctions
and spin-transfer torque random access memory,” Journal of Physics:
Condensed Matter, vol. 19, no. 16, p. 165209, Apr. 2007.

[2] Y. Lakys, W. S. Zhao, T. Devolder, Y. Zhang, J.-O. Klein, D. Ravelosona,
and C. Chappert, “Self-Enabled "Error-Free" Switching Circuit for Spin
Transfer Torque MRAM and Logic,” IEEE Trans. Magn., vol. 48, no. 9,
pp. 2403–2406, 2012.

[3] Y. Zhang, W. Zhao, G. Prenat, T. Devolder, J.-O. Klein, C. Chappert,
B. Dieny, and D. Ravelosona, “Electrical Modeling of Stochastic Spin
Transfer Torque Writing in Magnetic Tunnel Junctions for Memory and
Logic Applications,” IEEE Transactions on Magnetics, vol. 49, no. 7,
pp. 4375–4378, Jul. 2013.

[4] D. Bedau, H. Liu, J. Z. Sun, J. A. Katine, E. E. Fullerton, S. Mangin,
and A. D. Kent, “Spin-transfer pulse switching: From the dynamic to
the thermally activated regime,” Applied Physics Letters, vol. 97, no. 26,
pp. 262 502–262 502–3, Dec. 2010.

[5] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat,
N. Zerounian, J.-V. Kim, C. Chappert, and H. Ohno, “Single-Shot Time-
Resolved Measurements of Nanosecond-Scale Spin-Transfer Induced
Switching: Stochastic Versus Deterministic Aspects,” Phys. Rev. Lett.,
vol. 100, no. 5, p. 057206, Feb. 2008.

[6] Y. V. Pershin, S. La Fontaine, and M. Di Ventra, “Memristive model of
amoeba learning,” Phys. Rev. E, vol. 80, no. 2, p. 021926, 2009.

[7] S. H. Jo, K.-H. Kim, and W. Lu, “Programmable Resistance Switching in
Nanoscale Two-Terminal Devices,” Nano Lett., vol. 9, no. 1, pp. 496–500,
Jan. 2009.

[8] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May
2008.



8

[9] G. S. Snider, “Self-organized computation with unreliable, memristive
nanodevices,” Nanotechnol., vol. 18, no. 36, p. 365202, Sep. 2007.

[10] S. Bamford, A. Murray, and D. Willshaw, “Spike-Timing-Dependent
Plasticity With Weight Dependence Evoked From Physical Constraints,”
IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4,
pp. 385–398, Aug. 2012.

[11] K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K. P. Biju,
J. Kong, K. Lee, B. Lee, and H. Hwang, “Analog memory and spike-
timing-dependent plasticity characteristics of a nanoscale titanium oxide
bilayer resistive switching device,” Nanotechnol., vol. 22, no. 25, p.
254023, Jun. 2011.

[12] D. Querlioz, O. Bichler, and C. Gamrat, “Simulation of a memristor-
based spiking neural network immune to device variations,” Proc. of the
Int. Joint Conf. on Neural Networks (IJCNN), pp. 1775 – 1781, 2011.

[13] M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa,
D. Vuillaume, C. Gamrat, and B. DeSalvo, “Phase change memory as
synapse for ultra-dense neuromorphic systems: Application to complex
visual pattern extraction,” in IEDM Tech. Dig. IEEE, Dec. 2011, pp.
4.4.1–4.4.4.

[14] S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H. P. Wong, “An Electronic
Synapse Device Based on Metal Oxide Resistive Switching Memory for
Neuromorphic Computation,” IEEE Trans. Electron Dev., vol. 58, no. 8,
pp. 2729–2737, Aug. 2011.

[15] V. Erokhin, T. Berzina, P. Camorani, A. Smerieri, D. Vavoulis, J. Feng,
and M. P. Fontana, “Material Memristive Device Circuits with Synaptic
Plasticity: Learning and Memory,” BioNanoScience, vol. 1, no. 1-2, pp.
24–30, Apr. 2011.

[16] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil,
X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes,
A. Barthélémy, and J. Grollier, “A ferroelectric memristor,” Nat. Mat.,
vol. 11, no. 10, pp. 860–864, 2012.

[17] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and
T. Prodromakis, “Integration of nanoscale memristor synapses in neuro-
morphic computing architectures,” Nanotechnology, vol. 24, no. 38, p.
384010, Sep. 2013.

[18] M. Sharad, C. Augustine, G. Panagopoulos, and K. Roy, “Spin-Based
Neuron Model With Domain-Wall Magnets as Synapse,” IEEE Transac-
tions on Nanotechnology, vol. 11, no. 4, pp. 843 –853, Jul. 2012.

[19] D. Chabi, D. Querlioz, W. Zhao, and J.-O. Klein, “Robust Learning
Approach for Neuro-inspired Nanoscale Crossbar Architecture,” J. Emerg.
Technol. Comput. Syst., vol. 10, no. 1, pp. 5:1–5:20, Jan. 2014.

[20] O. Kavehei, “Highly Scalable Neuromorphic Hardware with 1-bit
Stochastic nano-Synapses,” arXiv e-print 1309.6419, Sep. 2013.

[21] S. Saïghi, C. G. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf,
J. Tomas, J. Grollier, S. Boyn, A. F. Vincent, D. Querlioz, S. La Barbera,
F. Alibart, D. Vuillaume, O. Bichler, C. Gamrat, and B. Linares-Barranco,
“Plasticity in memristive devices for spiking neural networks,” Front.
Neurosci., vol. 9, p. 51, 2015.

[22] M. Suri, O. Bichler, D. Querlioz, G. Palma, E. Vianello, D. Vuillaume,
C. Gamrat, and B. DeSalvo, “CBRAM Devices as Binary Synapses for
Low-Power Stochastic Neuromorphic Systems: Auditory (Cochlea) and
Visual (Retina) Cognitive Processing Applications,” IEDM Tech. Dig., p.
10.3.1, 2012.

[23] M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuillaume,
C. Gamrat, and B. DeSalvo, “Bio-Inspired Stochastic Computing Using
Binary CBRAM Synapses,” IEEE Transactions on Electron Devices,
vol. 60, no. 7, pp. 2402–2409, 2013.

[24] S. Gaba, P. Sheridan, J. Zhou, S. Choi, and W. Lu, “Stochastic memristive
devices for computing and neuromorphic applications,” Nanoscale, vol. 5,
no. 13, pp. 5872–5878, Jun. 2013.

[25] J. H. Lee and K. K. Likharev, “Defect-tolerant nanoelectronic pattern
classifiers,” Int. J. Circuit Theory Appl., vol. 35, no. 3, pp. 239–264,
May 2007.

[26] W. Senn and S. Fusi, “Convergence of stochastic learning in perceptrons
with binary synapses,” Physical Review E, vol. 71, no. 6, p. 061907, Jun.
2005.

[27] Y. Kondo and Y. Sawada, “Functional abilities of a stochastic logic
neural network,” IEEE Transactions on Neural Networks, vol. 3, no. 3,
pp. 434 –443, May 1992.

[28] A. F. Vincent, J. Larroque, W. S. Zhao, N. Ben Romdhane, O. Bichler,
C. Gamrat, J.-O. Klein, S. Galdin-Retailleau, and D. Querlioz, “Spin-
transfer torque magnetic memory as a stochastic memristive synapse,” in
2014 IEEE International Symposium on Circuits and Systems (ISCAS),
Jun. 2014, pp. 1074–1077.

[29] M. Marins de Castro, R. C. Sousa, S. Bandiera, C. Ducruet, A. Chavent,
S. Auffret, C. Papusoi, I. L. Prejbeanu, C. Portemont, L. Vila, U. Ebels,
B. Rodmacq, and B. Dieny, “Precessional spin-transfer switching in a

magnetic tunnel junction with a synthetic antiferromagnetic perpendicular
polarizer,” J. Appl. Phys., vol. 111, no. 7, pp. 07C912–07C912–3, Mar.
2012.

[30] A. F. Vincent, N. Locatelli, J.-O. Klein, W. S. Zhao, S. Galdin-Retailleau,
and D. Querlioz, “Analytical Macrospin Modeling of the Stochastic
Switching Time of Spin-Transfer Torque Devices,” IEEE Transactions
on Electron Devices, vol. 62, no. 1, pp. 164–170, Jan. 2015.

[31] N. Rizzo, D. Houssameddine, J. Janesky, R. Whig, F. Mancoff, M. Schnei-
der, M. DeHerrera, J. Sun, K. Nagel, S. Deshpande et al., “A fully
functional 64 mb ddr3 st-mram built on 90 nm cmos technology,”
Magnetics, IEEE Transactions on, vol. 49, no. 7, pp. 4441–4446, 2013.

[32] T. Andre, S. Alam, D. Gogl, C. Subramanian, H. Lin, W. Meadows,
X. Zhang, N. Rizzo, J. Janesky, D. Houssameddine, and J. Slaughter, “St-
mram fundamentals, challenges, and applications,” in Custom Integrated
Circuits Conference (CICC), 2013 IEEE, Sept 2013, pp. 1–8.

[33] R. Beach, T. Min, C. Horng, Q. Chen, P. Sherman, S. Le, S. Young,
K. Yang, H. Yu, X. Lu, W. Kula, T. Zhong, R. Xiao, A. Zhong,
G. Liu, J. Kan, J. Yuan, J. Chen, R. Tong, J. Chien, T. Torng, D. Tang,
P. Wang, M. Chen, S. Assefa, M. Qazi, J. DeBrosse, M. Gaidis,
S. Kanakasabapathy, Y. Lu, J. Nowak, E. O’Sullivan, T. Maffitt, J. Sun,
and W. Gallagher, “A statistical study of magnetic tunnel junctions for
high-density spin torque transfer-MRAM (STT-MRAM),” in Electron
Devices Meeting, 2008. IEDM 2008. IEEE International, Dec. 2008, pp.
1–4.

[34] D. Worledge, G. Hu, P. Trouilloud, D. Abraham, S. Brown, M. Gaidis,
J. Nowak, E. O’Sullivan, R. Robertazzi, J. Sun et al., “Switching
distributions and write reliability of perpendicular spin torque mram,” in
Electron Devices Meeting (IEDM), 2010 IEEE International. IEEE,
2010, pp. 12–5.

[35] S. Chung, K.-M. Rho, S.-D. Kim, H.-J. Suh, D.-J. Kim, H. Kim,
S. Lee, J.-H. Park, H.-M. Hwang, S.-M. Hwang et al., “Fully integrated
54nm stt-ram with the smallest bit cell dimension for high density
memory application,” in Electron Devices Meeting (IEDM), 2010 IEEE
International. IEEE, 2010, pp. 12–7.

[36] H. Noguchi, K. Kushida, K. Ikegami, K. Abe, E. Kitagawa, S. Kashiwada,
C. Kamata, A. Kawasumi, H. Hara, and S. Fujita, “A 250-mhz 256b-i/o
1-mb stt-mram with advanced perpendicular mtj based dual cell for
nonvolatile magnetic caches to reduce active power of processors,” in
VLSI Technology (VLSIT), 2013 Symposium on, June 2013, pp. C108–
C109.

[37] E. Kitagawa, S. Fujita, K. Nomura, H. Noguchi, K. Abe, K. Ikegami,
T. Daibou, Y. Kato, C. Kamata, S. Kashiwada, N. Shimomura, J. Ito, and
H. Yoda, “Impact of ultra low power and fast write operation of advanced
perpendicular mtj on power reduction for high-performance mobile cpu,”
in Electron Devices Meeting (IEDM), 2012 IEEE International, Dec
2012, pp. 29.4.1–29.4.4.

[38] J. H. Kim, W. Lim, U. Pi, J. Lee, W. Kim, J. Kim, K. Kim, Y. Park, S. Park,
M. Kang, Y. Kim, W. Kim, S. Kim, J. Park, S. Lee, Y. Lee, J. Yoon,
S. Oh, S. Park, S. Jeong, S. Nam, H. Kang, and E. Jung, “Verification
on the extreme scalability of stt-mram without loss of thermal stability
below 15 nm mtj cell,” in VLSI Technology (VLSI-Technology): Digest
of Technical Papers, 2014 Symposium on, June 2014, pp. 1–2.

[39] L. Thomas, G. Jan, J. Zhu, H. Liu, Y.-J. Lee, S. Le, R.-Y. Tong, K. Pi,
Y.-J. Wang, D. Shen, R. He, J. Haq, J. Teng, V. Lam, K. Huang, T. Zhong,
T. Torng, and P.-K. Wang, “Perpendicular spin transfer torque magnetic
random access memories with high spin torque efficiency and thermal
stability for embedded applications (invited),” Journal of Applied Physics,
vol. 115, no. 17, pp. –, 2014.

[40] W. Zhao, C. Chappert, V. Javerliac, and J.-P. Noziere, “High speed,
high stability and low power sensing amplifier for mtj/cmos hybrid
logic circuits,” Magnetics, IEEE Transactions on, vol. 45, no. 10, pp.
3784–3787, Oct 2009.

[41] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and
C. Gamrat, “Visual Pattern Extraction Using Energy-Efficient "2-PCM
Synapse" Neuromorphic Architecture,” IEEE Trans. Electron Devices,
vol. 59, no. 8, pp. 2206 – 2214, 2012.

[42] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x 128 120 dB 15
mus Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE J.
Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[43] W. Zhao, S. Chaudhuri, C. Accoto, J.-O. Klein, C. Chappert, and
P. Mazoyer, “Cross-Point Architecture for Spin-Transfer Torque Magnetic
Random Access Memory,” IEEE Transactions on Nanotechnology,
vol. 11, no. 5, pp. 907 –917, Sep. 2012.

[44] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, R. Etienne-Cummings,
T. Delbruck, S.-C. Liu, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwen-
berghs, J. Arthur, S. Saighi, J. Wijekoon, and K. Boahen, “Neuromorphic



9

silicon neuron circuits,” Front. Neuromorphic Engineering, vol. 5, p. 73,
2011.

[45] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[46] S. Saighi, Y. Bornat, J. Tomas, G. Le Masson, and S. Renaud, “A Library
of Analog Operators Based on the Hodgkin-Huxley Formalism for the
Design of Tunable, Real-Time, Silicon Neurons,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 5, no. 1, pp. 3–19, Feb. 2011.

[47] S. Mitra, S. Fusi, and G. Indiveri, “Real-Time Classification of Complex
Patterns Using Spike-Based Learning in Neuromorphic VLSI,” IEEE
Transactions on Biomedical Circuits and Systems, vol. 3, no. 1, pp. 32–42,
2009.

[48] Y. Wang and S.-C. Liu, “Active Processing of Spatio-Temporal Input
Patterns in Silicon Dendrites,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 7, no. 3, pp. 307–318, Jun. 2013.

[49] J. V. Arthur and K. A. Boahen, “Learning in silicon: Timing is everything,”
Advances in neural information processing systems, vol. 18, pp. 281–1185,
2006.

[50] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, “Regulation
of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs,”
Science, vol. 275, no. 5297, pp. 213–215, Jan. 1997.

[51] G.-Q. Bi and M.-M. Poo, “Synaptic modification by correlated activity:
Hebb’s Postulate Revisited,” Annu. Rev. Neurosci., vol. 24, no. 1, pp.
139–166, Mar. 2001.

[52] G. Snider, “Spike-timing-dependent learning in memristive nanodevices,”
in Prof. of IEEE International Symposium on Nanoscale Architectures
2008 (NANOARCH), 2008, pp. 85–92.

[53] B. Linares-Barranco and T. Serrano-Gotarredona, “Exploiting memris-
tance in adaptive asynchronous spiking neuromorphic nanotechnology
systems,” in Proc. of IEEE Conference on Nanotechnology, 2009, 2009,
pp. 601–604.

[54] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale Memristor Device as Synapse in Neuromorphic Systems,”
Nano Lett., vol. 10, no. 4, pp. 1297–1301, Apr. 2010.

[55] F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Serrano-Gotarredona,
B. Linares-Barranco, and D. Vuillaume, “A Memristive Nanoparti-
cle/Organic Hybrid Synapstor for Neuroinspired Computing,” Advanced
Functional Materials, vol. 22, no. 3, pp. 609–616, 2012.

[56] A. Afifi, A. Ayatollahi, and F. Raissi, “Implementation of biologically
plausible spiking neural network models on the memristor crossbar-based
CMOS/nano circuits,” in European Conference on Circuit Theory and
Design (ECCTD), 2009, pp. 563–566.

[57] G. Lecerf, J. Tomas, and S. Saighi, “Excitatory and Inhibitory Memristive
Synapses for Spiking Neural Networks,” in 2013 IEEE International
Symposium on Circuits and Systems (ISCAS), 2013, pp. 1616–1619.

[58] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to Device
Variations in a Spiking Neural Network with Memristive Nanodevices,”
IEEE Trans. Nanotechnol., vol. 12, no. 3, pp. 288 – 295, 2013.

[59] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian Computa-
tion Emerges in Generic Cortical Microcircuits through Spike-Timing-
Dependent Plasticity,” PLoS Computational Biology, vol. 9, no. 4, Apr.
2013.

[60] http://sourceforge.net/p/jaer/wiki/AER data/.
[61] O. Bichler, D. Querlioz, S. J. Thorpe, J.-P. Bourgoin, and C. Gamrat,

“Extraction of temporally correlated features from dynamic vision sensors
with spike-timing-dependent plasticity,” Neural Networks, vol. 32, pp.
339–348, 2012.

[62] Y. Zhang, W. Zhao, J.-O. Klein, W. Kang, D. Querlioz, Y. Zhang,
D. Ravelosona, and C. Chappert, “Spintronics for low-power computing,”
in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014, Mar. 2014, pp. 1–6.

PLACE
PHOTO
HERE

Adrien F. Vincent received the M.S. degree from
the École Normale Supérieure de Cachan, France,
in 2013. During his Ph.D. at Univ. Paris-Sud, he is
studying the integration of spintronic nanodevices in
neuromorphic architectures.

PLACE
PHOTO
HERE

Jérôme Larroque received the M.S. degree from
Univ. Paris-Sud, France, in 2012. He worked on
the use of magnetic tunnel junctions as synapses.
During his Ph.D. at Univ. Paris-Sud, he is studying
nanometer-scaled thermoelectric generators.

PLACE
PHOTO
HERE

Nicolas Locatelli received the Ph.D. degree from
the University of Paris-Sud, Orsay, France, in 2012,
with a focus on developing conventional or more
innovative bioinspired applications of spintronic
nanodevices. He studied the dynamics of coupled
magnetic vortices nanooscillators.

PLACE
PHOTO
HERE

Nesrine Ben Romdhane received the Electronic
Engineering degree from Engineers National School
of Tunisia in 2007. From 2007 to 2011, she worked
in STMicroelectronics of Tunis as a Non Volatile
Memories Designer Engineer. She is currently work-
ing at Univ. Paris-Sud, France in a research project
on emerging non-volatile memories integration with
logic blocks, in embedded processor for healthcare
and smart grids applications.

PLACE
PHOTO
HERE

Olivier Bichler received the M.S. degree in embed-
ded systems from the École Normale Superieure de
Cachan, France, in 2009 and the Ph. D. degree from
the Universite Paris-Sud, Orsay, France, in 2012. He
is now a Research Engineer at CEA LIST, France, and
develops novel architectures based on nanoelectronics
and bio-inspired neuromorphic computing.



10

PLACE
PHOTO
HERE

Christian Gamrat received a degree in electrical
engineering from the Université Joseph Fourier,
Grenoble, France, in 1979 and a degree in infor-
mation processing in 1993 from École Nationale
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