
HAL Id: hal-01822199
https://hal.science/hal-01822199

Submitted on 24 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bioinspired Programming of Memory Devices for
Implementing an Inference Engine

Damien Querlioz, Olivier Bichler, Adrien Francis Vincent, Christian Gamrat

To cite this version:
Damien Querlioz, Olivier Bichler, Adrien Francis Vincent, Christian Gamrat. Bioinspired Program-
ming of Memory Devices for Implementing an Inference Engine. Proceedings of the IEEE, 2015, 103
(8), pp.1398 - 1416. �10.1109/JPROC.2015.2437616�. �hal-01822199�

https://hal.science/hal-01822199
https://hal.archives-ouvertes.fr

PROCEEDINGS OF THE IEEE 1

Bioinspired Programming of Memory Devices for
Implementing an Inference Engine

Damien Querlioz, Member, IEEE, Olivier Bichler, Adrien F. Vincent Student Member, IEEE, and Christian Gamrat

Abstract—Cognitive tasks are essential for the modern ap-
plications of electronics, and rely on the capability to perform
inference. The Von Neumann bottleneck is an important issue for
such tasks, and emerging memory devices offer an opportunity
to overcome this issue by fusing computing and memory, in
nonvolatile instant ON / OFF systems. A vision for accomplishing
this is to use brain-inspired architectures, which excel at inference
and do not differentiate between computing and memory. In this
work, we use a neuroscience inspired model of learning, spike
timing dependent plasticity, to develop a bioinspired approach
for programming memory devices, which naturally gives rise to
an inference engine. The method is then adapted to different
memory devices, including multivalued memories (cumulative
memristive device, phase change memory) and stochastic binary
memories (conductive bridge memory, spin transfer torque mag-
netic tunnel junction). By means of system-level simulations, we
investigate several applications including image recognition, and
pattern detection within video and auditory data. We compare the
results of the different devices. Stochastic binary devices require
the use of redundancy, the extent of which depends tremendously
on the considered task. A theoretical analysis allows us to under-
stand how the various devices differ, and ties the inference engine
to the machine learning algorithm of Expectation-Maximization.
Monte Carlo simulations demonstrate an exceptional robustness
of the inference engine with respect to device variations and
other issues. A theoretical analysis explains the roots of this
robustness. These results highlight a possible new bioinspired
paradigm for programming emerging memory devices, allowing
the natural learning of a complex inference engine. The physics
of the memory devices plays an active role. The results open
the way for a reinvention of the role of memory, when solving
inference tasks.

Index Terms—memory devices, neural networks, inference.

I. INTRODUCTION

MODERN electronics applications for smart sensors,
medical electronics and the future Internet-of-Things

require electronic circuits capable of handling large volumes
of noisy and incomplete real-life data. Tasks like recognition
or mining, broadly qualified as “cognitive”, are necessary.
While such assignments are not hard for humans, because
of their natural capability to perform inference, performing
them with computers necessitates advanced machine learning
algorithms. In contrast to more traditional programming, these
algorithms require minimal computing but significant memory
access [1]. For this reason, cognitive algorithms are severely
affected by the separation of computing and memory, known

D. Querlioz and A. F. Vincent are with Institut d’Electronique Fondamen-
tale, Univ. Paris-Sud, CNRS, 91405 Orsay France (email: damien.querlioz@u-
psud.fr; http://www.ief.u-psud.fr/˜querlioz/).

O. Bichler and C. Gamrat are with CEA, LIST, Saclay, France.
Manuscript received XXX. This work was supported by the ANR COG-

NISPIN (ANR-13-JS03-0004-01) and the FP7 ICT BAMBI (FP7-ICT-2013-C)
projects, and the CNRS/MI DEFI NANO program.

as the Von Neumann bottleneck, and need big computers
with a large power budget. For example, a recent widely
publicized demonstration by Google of a “deep” network uses
no complicated equations but accesses one billion parameters
from memory [2] (see also Figure 1). Due to the inefficiency of
cognitive tasks running on computers, smart devices currently
must rely on the cloud and its megawatt data centers.

Emerging nonvolatile memory devices (e.g. resistive mem-
ory [3], memristor [4], [5], magnetic memory [6]) may be
a major advancement for this situation. As they are quite
compact and can be embedded in CMOS circuitry, they
offer an opportunity to fuse computing and memory, with
the additional benefit of nonvolatility. Cognitive systems, the
parameters of which would be stored in nonvolatile memory
at the core of CMOS, would provide instant ON/OFF and
offer the possibility of highly reduced power consumption
for the smart objects of the Internet-of-Things. However,
designing such systems requires a complete reinvention of
electronics around cognitive tasks and inference problems, in
stark contrast with the Von Neumann paradigm. A current idea
is to try to use the human brain directly as an inspiration for a
new type of architecture. Indeed, brains excel at inference and
do not differentiate between computing and memory: memory
is embedded at the core of computation.

Although new memory devices are particularly appealing
for microelectronics, they also pose many challenges. They
often suffer from high device variability, noise and partly non
repeatable behavior [7], [8]; very much like the synapses and
ion channels that the brain uses for computing [9]. Despite
this, the brain achieves exceptional inference capability.

For these reasons, in recent years, the exploitation of emerg-
ing memory devices in brain inspired systems has stimulated a
considerable interest. They are typically proposed to be used as
synapses between silicon neurons [4], [10]–[29]. Such efforts
fit particularly well with recent progress on the implementation
of large neuroinspired systems [30]–[34], realizing a vision
pioneered by the research of Carver Mead in the late 80’s
[35].

Building on these ideas, here we show an example of how
simple stochastic programming of memory devices can lead
to a system capable of performing complex inference. We
differentiate between two main approaches: one that exploits
multilevel memory effects, and one that relies on binary
memory devices programmed in a stochastic way, possibly
employing device redundancy. We provide many examples,
exploring a range of inference tasks and device physics phe-
nomena. We introduce a theoretical analysis for the systems
functionality, based on [36]. We explain in detail how the
device physics relates to the inference capability, and how this

PROCEEDINGS OF THE IEEE 2

Input memory Output memory

Synaptic memory

Memory bus

(a) Formal neural network

(b) Traditional implementation

Memory

bottleneck

Input

neurons

Output

neurons

Computing

unit

Fig. 1. Implementation of cognitive algorithms like neural network (illustrated
in (a)) using a Von Neumann architecture suffers heavily from the separation
of computing and memory – the Von Neumann bottleneck. A neuron only
performs basic operations, which depend on a high number of memory access,
as illustrated in (b).

in turn relates to sophisticated machine learning ideas and to
Bayesian inference. Finally, we explore the intrinsic robustness
of these approaches with regards to device issues.

II. STOCHASTIC PROGRAMMING OF AN INFERENCE
ENGINE

A. General Ideas

In brains, the capability for inference naturally emerges
from learning [38]. Though the underlying mechanism is far
from understood, some models of how learning occurs at
the synaptic and neuronal level provide inspiration for novel
electronics paradigms. It is widely accepted that long term
memory is stored in synapses, which are the connections
between the neurons, which are the active computation units
of the brain. Synapses not only transmit information from
one neuron to another, but also adjust their strength (usually
called “synaptic weight”) in response to experience. This
adaptation, known as synaptic plasticity, is thought to be the
most important phenomenon for long term learning.

A canonical model of synaptic plasticity, known as spike
timing dependent plasticity (STDP), was identified in the late
90’s [37], [39]. It was proposed to provide an intuitive inter-
pretation of experimental observations. Neurons communicate
by asynchronous spikes, which are transmitted by synapses
from “presynaptic neurons” to “postsynaptic neurons”. The
assumption underlying STDP is that synapses tend to reinforce
causal links. That is, when the presynaptic neuron spikes just
before the postsynaptic neuron spikes, the synapse between
the two becomes stronger. Therefore, if the presynaptic neuron
spikes again, the synapse will allow the postsynaptic neuron
to spike faster. In contrast, when the postsynaptic neuron
spikes just before the presynaptic neuron, the synapse be-
comes weaker. This is summarized in the conventional STDP
curve of Figure 2(a). In addition to this conventional curve,
many variations of STDP have been observed experimentally
(e.g. symmetric, asymmetric, voltage-dependent...) [40]. One
should be careful to note that neuroscientists consider STDP

-100 -50 0 50 100
-60

-40

-20

0

20

40

60

80

100

120

C
o
n

d
u

ct
an

ce
 C

h
an

g
e

(%
)

Exp. data [Bi&Poo]

Model

Time Difference tPOST-tPRE (ms)

(a)

-100 -50 0 50 100
-60

-40

-20

0

20

40

60

80

100

120

C
o
n

d
u

ct
an

ce
 C

h
an

g
e

(%
)

Time Difference tPOST-tPRE (ms)

(b)

-100 -50 0 50 100

0

20

40

60

80

100

120

P
ro

b
ab

il
it

y
to

 S
w

it
ch

 (
%

)

Time Difference tPOST-tPRE (ms)

(c)

From 1 to 0 From 1 to 0

From 0 to 1

Fig. 2. Variations of the STDP curve. (a) Original measurement from biology
[37] and the traditional model. (b) Simplified STDP used in our inference
engine. (c) Stochastic version of the simplified STDP.

a simplified model; it does not account for all that has been
observed regarding synaptic plasticity and should not be seen
as the only learning process the brain possesses [41]. However,
research in neuroscience has shown that STDP is sufficient to
achieve some impressive forms of learning [42]–[44], and we
therefore use it as a major source of inspiration.

It is insightful to compare ideas coming from neuroscience
with the algorithms used in the field of machine learning
for processing Big Data. Synaptic plasticity, and in particular
STDP, shares features with learning rules used by various
machine learning paradigms. For example, STDP depends only
on the activity of the presynaptic and of the postsynaptic
neuron. This locality feature is similar to the learning rule
of Restricted Boltzmann Machines, the first system used to
demonstrate deep unsupervised learning [45]. Some learning
rules, however, are fundamentally non-local. This is the case
for backpropagation, traditionally used in artificial neural net-
works [46] and in the popular convolutional neural networks

PROCEEDINGS OF THE IEEE 3

[2], [47], [48]. Other machine learning paradigms such as Sup-
port Vector Machines use fundamentally different principles
than STDP and neurons.

In this work, we program memory devices to implement
a simplified version of STDP. Several proposals exist for
implementing traditional STDP with purely CMOS circuits
[49]–[51]. Numerous other works propose implementing it
directly when programming memory devices [5], [11], [13],
[14], [18], [52]–[55]. In contrast with purely CMOS solutions,
this brings a higher synaptic density, offering the possibility
of massive connectivity between neurons as in the human
brain. Even more importantly, the memory devices offer non-
volatility to the synapses, preserving their state without time
degradation, and thus offer instant ON / OFF operation to the
system. In these proposals, the memory devices are hybridized
with CMOS neurons, which do not require non-volatility.
This idea is made feasible by the tremendous progress on
implementing neurons with CMOS [30], [56], and on the very
large scale integration of such neurons [31], [32].

Most proposals for implementing STDP with memory
devices possess a relatively high complexity. They usually
employ multiple programming pulses [52] or complex analog
programming waveforms [11]. In this work, we abandon bio-
logical realism for a highly simplified version of STDP [36],
shown in Figure 2(b). The simplification results from two
major ideas. First, we ignore the analog time dependence of
STDP, allowing only two possibilities: increasing or decreas-
ing synaptic weight. Second, we decide that the actual synaptic
weight change specifically when a POST spike occurs. At
this point, if the presynaptic neuron was active recently, the
synaptic weight is increased (synaptic potentiation). In any
other case, it is decreased (synaptic depression).

This strategy, which is not mandatory and loses part of the
richness of STDP, provides two main benefits for implemen-
tation. First, we need only use simple square voltage pulses.
Second, the STDP learning rule is applied during clearly
defined “programming” phases, which are distinct from system
“operation”. We can thus design a system such that nothing
else can happen during the programming phase, making circuit
design significantly less complex. We show in section III
how this works in practice, and that this extremely simplified
version of STDP can allow a system to learn sophisticated
inference.

The precise implementation of STDP, and the exact be-
havior, depends on the chosen device technology. Different
emerging memory devices have unique physical and qualita-
tive behaviors, as illustrated in Figure 3. While such disparities
do not have many fundamental consequences when the devices
are used as binary memories, they become very apparent,
however, when the devices are used as plastic synapses. In this
context, a complete understanding of their operating principles
and electrical characteristics is necessary.

Nevertheless, our approach adapts to many kinds of memory
devices, which can have multilevel as well as binary memory
capability.

B. Implementation with a Multilevel Memory

1) “Cumulative” Memristive Device: We first consider the
case of memristive devices. Many emerging memory technolo-
gies have some form of multilevel capability, and this was a
core idea of the original memristor proposal [4] illustrated
in Figure 3(a). Devices with multilevel behaviors similar
to the memristor idea function based on different physical
phenomena: ionics [5], [14], [61], ferroelectrocity [20] and
magnetic domain wall motion [62]. In these devices, it is
possible to increase or decrease the conductance of the device
by applying short programming voltage or current pulses. The
change is cumulative: if one repeats a programming pulse to
a device, its conductance will change further, as is seen in
the measurements of Figure 3(a) (reproduced from [5]). This
behavior is reminiscent of synaptic plasticity, and it is thus
natural to compare memristive devices with synapses.

The way these memristive devices are used is straightfor-
ward. The conductance of the device encodes the “strength”
of the synapse, or synaptic weight. Applying a brief positive
voltage pulse that is higher than a programming threshold
(VT+) increases the conductance of the device. Applying a
brief negative voltage pulse that is lower than a programming
threshold (VT−) decreases the conductance of the device.
To obtain a simplified STDP analogue, we need only apply
cleverly designed programming voltage pulses, as illustrated
in Figure 4(c). When the postsynaptic neuron fires, it applies a
waveform to its synapses, while the presynaptic neurons that
were active recently simultaneously apply a simple voltage
pulse. Synapses presenting only the postsynaptic waveform
have their conductance reduced. Synapses that experience both
the postsynaptic waveform and the presynaptic pulse have their
conductance increased.

This implementation (analogous to Figure 3 in [63]) clearly
separates phases in which the device is used for transmitting
information, from phases in which it is programmed and learn-
ing occurs. It is only possible if, when STDP programming
occurs, the system does not need the synapses to transmit
information. This is typically the case in the Winner Takes All-
type systems studied in section III. It is also possible to avoid
this separation between transmission and programming by
making input pulses very long. This is illustrated in Figure 2 of
[63], and in various other proposals such as [11], [53], [55].
Such a scheme, however, makes the design of the synapses
driving circuitry harder [64] and thus leads to a significant
energy consumption due to the input pulses.

2) Phase Change Memory: In a phase change memory
(Figure 3(b)), a small volume of material can switch between
a high resistance amorphous state and a low resistance crys-
talline state [17], [58], [65]. A characteristic of phase change
memory when compared with more conventional memristive
devices is its unipolar nature: positive and negative voltages
are equivalent. While the transition from the amorphous to
the crystalline state exhibits the desirable cumulative behavior
found in memristive devices, as is seen in the measurements
of Figure 3(b), the reverse transition from the crystalline to
the amorphous state is not cumulative [58]. The programming
current determines the final state, and if one repeats the same
programming pulse twice, the second pulse has no effect. This
is a serious issue for implementing a functional synapse with

PROCEEDINGS OF THE IEEE 4

Fig. 3. Different nanodevices and their behavior. (a) Cumulative memristive device (measurements from [5] and model from [57]). (b) Phase Change Memory
(measurements and model from [58]). (c) Conductive Bridge Memory (measurements and model from [59]). (d) Spin Transfer Torque Magnetic Tunnel
Junction. (measurements and model from [60]).

phase change memory.
A possibility to regain cumulativity in both directions is

to associate two PCMs in the “2-PCM” structure described
in [65]. Additionally, it should be noted that PCMs suffer
from a drift issue that makes low resistive states partially
unstable. This does not, however, seem to forbid neuromorphic
applications [66].

C. Adaptation to Other Device Physics – Stochastic Synapse

1) Conductive Bridge Memory: In most CMOS-compatible
conductive bridge memories (CBRAM) [59], [67], both direc-
tions of programming are noncumulative (Figure 3(c)). It is
possible to provide multilevel memory by carefully choosing
the programming current, but applying the same programming
pulse multiple times has no further effect (some academic
technologies may exhibit cumulative effects or more complex
behaviors).

We have therefore proposed an alternate method for using
CBRAMs [59], [67]. We chose to treat the CBRAMs as
binary devices, and to replace the progressivity of multilevel

operation with a progressivity resulting from probabilistic
programming. The idea is simple: when STDP occurs, the
memory device only has a probability of changing its con-
ductance. When learning occurs, with traditional STDP, all
synapses change their conductance by a small amount. Here,
however, a fraction of synapses whose weight should slightly
increase change their weight entirely, while a fraction of
synapses whose weight should slightly decrease change their
weight entirely, but most synapses’ states do not change.
Stochastic STDP is illustrated in Figure 2(c). We compare this
form of STDP to traditional STDP in section III and show that
it can be quite powerful. In theoretical works, the idea of using
stochastic synapses instead of deterministic ones (in a broad
sense) has also been proposed with supervised neural networks
[23], [68], [69].

An important question is how to actually implement this
probabilistic behavior. One obvious solution is to use pseudo-
random number generators to achieve stochastic program-
ming. A more ideal option is to have some kind of intrinsic
probabilistic effects inherent to the devices. Both options are

PROCEEDINGS OF THE IEEE 5

Output activated

Voltage

VT-

Voltage

Time

(c)

VT+

Input was active recently

Vinput

VT-

Time

VT+

VT-

Time

VT+

Output-Input

Input layer

Input neurons

Output layer

(integrate & fire neurons)

nanodevice

Lateral inhibition

(a)

Input

Output

(b)

1. Operation phase
2. STDP step

(programming)

Input

Output

Fig. 4. (a) Simplified crossbar architecture of the inference engine, and
its equivalent neural network. (b) Representation of the two phases of the
system: operation and STDP. (c) Voltage pulses used to implement STDP
with cumulative memristive devices.

possible with conductive bridge memory, but the second option
may prove more difficult to control. Additionnally, it has
not been proven experimentally that the intrinsic probabilistic
effects in conductive bridge memory are sufficiently random
[59], [67].

2) Spin Transfer Torque Magnetic Tunnel Junction: One fi-
nal remarkable case is the spin transfer torque magnetic tunnel
junction (STT-MTJ, Figure 3(d)) the basic cell of Spin Transfer
Torque Magnetic memory (STT-MRAM) [6], [70], [71]. STT-
MTJs may be the ideal technology for the stochastic STDP

approach. Unlike the previously mentioned technologies, this
device is truly binary: it has only two memory states, the high
resistive anti-parallel (AP) state and the low resistive parallel
(P) state. A striking feature is that switching is fundamentally
stochastic, as observed in the measurements of Figure 3(d).
This effect is also seen in CBRAMs and other kinds of
memory when using weak programming pulses [28], [59],
[72], [73]. It is, however, better understood and controlled in
STT-MTJs than in CBRAMs, as it emerges from the basic MTJ
physics [6], [8]. Furthermore, STT-MTJs switching can be
modeled with comprehensive analytical equations [60], which
we use in the present work.

While this stochastic switching is deleterious for applica-
tions such as memory cells, and necessitates the use of long
programming pulses to ensure reliable switching [74], it can
fortuitously be used to generate true random numbers, as their
quality has already been verified with regards to true random
number generator standards [75].

III. EXAMPLE OF INFERENCES MADE WITH STDP-TYPE
PROGRAMMING

A. Problem of Classification

1) Basic Principle: We now describe how STDP-type pro-
gramming can allow a system to classify images, i.e. to infer
in which class an image belongs. In fact, the system not
only performs the inference, but also identifies and creates the
different categories by which the images can be categorized.
These categories constitute the values of a “latent variable” of
the data in the inference language.

The canonical dataset for machine learning is the MNIST
handwritten numbers dataset [46], and its is thus a natural
first test for our learning approaches. It consists of 60,000
handwritten digits dedicated to training a system, and 10,000
digits for testing it.

To realize our system, we lay out the memory devices
in a conventional memory crossbar structure as illustrated in
Figure 4(a), and use CMOS circuits for the input and output
neurons. Each input neuron is connected to each output neuron
by a memory device. This structure is feasible for devices
with strong nonlinearity that limit sneak paths [76]. For other
devices, access devices (diode or transistor depending on the
technology) might be necessary (as in phase change memory
[77] or conductive bridge memory [59]), but the basic principle
remains the same.

It is straightforward to understand how such a system may
learn. We present the handwritten digits converted to spikes
as the input to the system, each input neuron corresponding to
one pixel of the image. Alternative possibilities to encode the
pixel values as spikes are described in [63], and do not sig-
nificantly affect system-level performance. These input spikes
give rise to currents as they are applied to the memory devices,
the magnitude of these currents being directly determined
by the conductances of the devices. These currents Iout are
received by the output neurons, which act as leaky Integrate-
and-Fire neurons [30]. That is, they have an internal state
variable X that evolves according to a first order differential
equation:

PROCEEDINGS OF THE IEEE 6

τ
dX

dt
+ gX = Iout, (1)

where τ is an integration time constant associated with the
neuron, and g a real constant the value of which approaches
one.

When the variable X of one of the output neuron reaches
a given threshold, this output neuron spikes and X is reset
to zero during a “refractory period”. Many efficient options
(analog or digital) exist to implement leaky Integrate-and-
Fire neurons with CMOS [30], [56]. When the output neuron
spikes, it also inhibits the other output neurons during an
inhibition period. This can be efficiently implemented by a
nearest neighbor scheme like the diffuser network used in [49].

After an output neuron has spiked, the STDP step also
occurs (Figure 4(b) and (c)). It affects all the synapses
connected to the output neuron that spiked. In STDP, the
synapses that were active recently become stronger; that is, the
synapses change such that the output neurons will spike faster
in response to a similar input. All other synapses connected
to the output neuron become weaker; that is, if an input
substantially differs from the one which caused the output
neuron to spike, the neuron will be less likely to activate, and
thus leave more time for the other neurons to activate. The
output neurons thus become specialized to a particular type of
input. We show in the next sections that this approach works
impressively well in practice, for different types of problems.

Interestingly, this process is entirely unsupervised: every
output neuron progressively becomes specialized to a class
of patterns that continuously return. These categories that
implicitly separate the input presented constitute a latent
variable, using the language of inference. Through the process
of learning, our system is able to identify the values of latent
variable behind the inputs, and to classify the input among
them.

2) Performance on the MNIST Dataset: This process is
observed when we present the MNIST dataset to the system.
This example is taken from [16], [63], and is based on system
level simulation [78]. This kind of simulations, based on a
specialized simulator written in the C++ programming lan-
guage, includes comprehensive physical models of the memory
devices, but simulates their peripheral circuits functionally.
This allows simulations to be considerably faster than SPICE
simulations, and to simulate realistic full scale applications.
The detailed physical models of the memory devices allow
us to understand how device properties translate in terms of
learning the applications. In particular, it is possible to include
all imperfections seen on real devices and to evaluate the
resilence of the applications. On the other hand, some effects
due to peripheral circuits (like neuron variability) need to be
simulated in a highly abstracted way.

As memory devices, we are inspired from a cumulative
memristive device [5]. The device model, fitted from experi-
ments, is presented in [57] and based on realistic parameter
values following [5]. This model includes precisely the depen-
dence of conductance change to the state of the memristive
devices. It allows including effects of device mismatch, as
explored in section V. Discussion of the required precision

Input neurons

1 neuron=1 pixel

28x28=784 neurons
Output neurons

(a)

(b)

(c)

Fig. 5. Results on MNIST recognition with cumulative memristive devices.
(a) System topology for processing MNIST data. (b) Representation of the
final conductance of memristive devices, at the end of learning, with ten output
neurons. Each image is a 2-D representation of the devices connected to one
output neuron. (c) MNIST recognition rate as a function of number of output
neurons. Error bar is one standard deviation.

(a)

Fig. 6. (a) Representation of the final conductance of stochastic synapses,
at the end of MNIST learning. Each image is a 2-D representation of the
devices connected to one output neuron.Black: high resistance state, white:
low resistance state. (b) Recognition rate as a function of device redundancy
(number of devices connecting each input to each output), in a situation
with 50 output neurons. Horizontal line: recognition rate with cumulative
memristive devices in the same situation.

of the devices, and of how controlled the multilevel behavior
of the device needs to be appears in [63].

We first consider a simple system with ten output neurons,
according to the basic architecture of Figure 5(a). The final

PROCEEDINGS OF THE IEEE 7

post-learning weights of each synapse connected to an output
neuron is plotted as a two-dimensional image in Figure 5(b).
We can see that each output neuron has specialized in a type
of digit, and has learned its distinctive features: the loop of
the digit two, the bars of the digit eight, etc. This suggests
that the system has played its role as an inference engine, it
has recognized the different digits, which constitute the latent
variable behind images of handwritten digits.

If we identify the correspondence between digits and output
neurons, we can translate the performance of the system on
the test dataset as a recognition rate. It reaches 60%, which
is not an impressive recognition rate by machine learning
standards, although it is significantly better than random choice
(10%). This results from the fact that there are numerous
ways to hand-write the same digit. The true latent variable
behind the MNIST dataset thus represents the various typical
handwrittings of all digits. As can be seen in Figure 5(b), the
system learned two handwritings of the digit seven, yet no
handwriting of the digit four. Thus, we need more than ten
output neurons for successful digit recognition.

We therefore performed simulations with various numbers
of output neurons. At the end of learning, using a limited set
of the dataset, we automatically identify the digit to which
each output neuron corresponds. This step may be performed
using simple counting or by another spiking neural network
as described in [79]. We then tested the system on the MNIST
test dataset. This allows us to plot recognition rate as function
of the number of output neurons, as shown in Figure 5(c). For
300 output neurons, the recognition rate reaches 93.5%. This
is far from the best results obtained for the dataset, which
used millions of adjustable parameters and an augmented
dataset, and where the recognition rate can reach 99.7% [80].
However, our unsupervised results compare well to supervised
neural network with back-propagation and the same number of
adjustable parameters, which have a recognition rate of 95%
[46]. The supervised approach requires knowing which digit
corresponds to every image of the training dataset, while the
unsupervised approach requires knowledge of only a small
subset. This is an important feature in the era of Big Data,
where we have access to massive amounts of unlabeled data.

A big advantage of the MNIST benchmark is that it is pro-
vides a natural metric to compare potential devices as artificial
synapses. In particular, it is of special interest to compare
cumulative memristive synapses with stochastic synapses such
as stochastically programmed conductive bridge memory or
the intrinsically stochastic STT-MTJs. In Figure 6, we show
our results for a stochastically programmed conductive bridge
memory instead of the cumulative memristive devices. The
device model, described in [67], is fitted on experiments.
In particular, it includes the experimental intrinsic cycle-to-
cycle dispersion on device conductance: each time a device
is programmed to the ON of OFF state, its conductance is
varied.

Figure 6(a) shows the final states of the memory devices
for eight of the output neurons. This appears similar as
Figure 5(b), but with binary (black and white) values instead of
a color spectrum representing multilevel weights. The system
has 50 output neurons, and would have a recognition rate

Fig. 7. Simulation of the car detection task using STT-MTJs. Top: part of
the stimulus, obtained by averaging the input spike-based video over 30 ms.
Bottom: final weights of the stochastic STT-MTJs. Each image corresponds
to one output neuron. The outputs neurons are classified by the lane to which
they specialize.

of 82% with cumulative memristors. If we replace every
cumulative memristive device by just one stochastic device,
the recognition rate is a little better than 60%. However, it
is possible to obtain equivalent recognition by introducing
redundancy. Figure 6(b) shows the recognition rate as a func-
tion of number of stochastic devices replacing one cumulative
memristive device. We see that if we replace a cumulative
memristive device by 5 stochastic devices, a recognition of
77.2% is achieved, and with 7 we reach the 78.0%. As we
show in the next subsection, the required level of redundancy
is extremely problem-dependent and can be much smaller for
other tasks.

B. Detection within Dynamic Data

Beyond image classification, the time-dependent nature of
STDP makes it particularly appropriate to learn inference on
dynamic data. First, we take an example of video processing
[77]. We used a video acquired from a bioinspired dynamic
vision sensor [81], which naturally produces spikes, analogous
to our retina. The video shows vehicles moving in front
of a camera on a freeway in Pasadena, CA, USA, and is
freely available online [82]. A 2-D presentation of the spikes,
integrated over 30 ms, is shown in the top picture of Figure 7.
Here, the latent variable behind the video represents the
vehicles passing on the six lanes. If our system learns to
recognize them, it naturally becomes a proper vehicle counter.

To learn this task, we use the same system as for the MNIST
case. Each input neuron is connected to one pixel of the
camera. Only the actual values for the neurons’ threshold,
refractory and inhibitory periods need to be changed for

PROCEEDINGS OF THE IEEE 8

this new problem. The results are impressive: in the case of
cumulative memristive devices [65] or of 2-PCM structure
[77], the system becomes a vehicle counter with detection
rate higher than 95% on all lines except the two outer lane
where very few cars are passing. Less than ten false positives
occur during the 80 seconds video. Cumulative memristive
devices were modeled with the same model used as for MNIST
recognition [57], and 2-PCM structures with a variation of this
model fitted on experiments [58]. Including the drift effects
seen in the high resistance states of PCM did not affect the
result. As a comparison, the best result on the same dataset,
using a neural network with double precision analog weights
obtains a detection rate of 98.1% and 9 false positives [77].

The results with stochastic devices are even more inter-
esting. Figure 7 shows the results with STT-MTJs, where
we replaced every cumulative memristive device by only
one binary STT-MTJ. STT-MTJs are modeled with a com-
prehensive physics-based analytical model which reproduces
full magnetic simulations [60]. This models allows including
various device imperfections (device mismatch, dependence
to temperature) in a physical way. In terms of detection rate
and number of false positives, in simulations employing the
STT-MTJ analytical model, we still obtain recognition rates
higher than 95% on the four inward lanes, and less than ten
false positives [83]. Unlike the MNIST case, redundancy was
not necessary to reproduce the performance obtained with
cumulative memristive device with stochastic binary devices.

As the car detection constitutes a practical task, it is
insightful to estimate the energy that needs to be used by the
system to program the memory devices. These estimates solely
concern the programming energy at the device level (peripheral
circuitry is ignored). With a conservative Phase Change
Memory technology (used in a 2-PCM structure), the energy
consumption during learning has been estimated to 110 µW .
This power consumption value scales with the technology node
and could be as low as 100 nW on advanced PCM [65]. With
stochastic conductive bridge memory, energy consumption has
been estimated to 74 µW [59]. With STT-MTJs representative
of a 45 nm technology, energy consumption has been estimated
to 4 µW using long programming pulses with very low
voltages [71], [83], and can be as low as 180 nW using shorter
programming pulses with higher voltages (0.46 V) [71]. These
values support the potential of our bioinspired programming
approach for low energy computation. They are much smaller
than the power consumption of processors capable of machine
learning. However, designing the full system is necessary to
evaluate the final global power consumption. Once the car
detection task has been learned, we may choose to either
continue STDP so that the system can adapt to changes in the
inputs, or to deactivate STDP to save programming power.

The system can also be used to process auditory data. In
this case, we implement a collection of filters inspired by the
cochlea [84], and the result of each filter is connected to one
input neuron. We then present inputs consisting of audio noise,
in which repeated patterns have been inserted. After learning,
every output neuron becomes sensitive to one of the repeated
patterns. The final sensitivity is similar to that demonstrated
by humans given the same problem. The details of this task

Input

Output

1. Operation phase

2. STDP step

Input

Output

Expectation

Performs inference

Estimates

p(latent variable | inputs)

Maximization

Updates definition of

the latent variables

Fig. 8. Equivalence between the inference engine and the Expectation-
Maximization algorithm.

are given in [59].
This task can also be implemented either with cumulative

memristive devices or stochastically programmed ones. How-
ever, to achieve similar sensitivity with both implementations,
each cumulative memristive devices needs to be replaced by
three stochastically programmed devices.

These three examples illustrate that in many situations,
stochastically programmed binary devices can function equiva-
lently to cumulative memristive devices. However, the quantity
of redundancy to introduce in the binary case varies greatly.
No redundancy is needed for car counting, one cumulative
device needs to be replaced by three stochastic devices for
auditory pattern detection, and by five for roughly equivalent
MNIST character recognition.

IV. THEORETICAL ANALYSIS OF THE INFERENCE ENGINE

A. Link with Bayesian Inference

We have seen that simplified STDP-type programming of
memory devices can allow the system to learn sophisticated
inference, in very different situations. In the field of com-
putational neuroscience, a very powerful theory exists that
can explain this. In several works, Maass has studied how
systems of spiking neurons can be used to perform Bayesian
computation, in the presence of high noise and stochasticity
[85]. The most relevant work for our discussion investigates
how a specific form of STDP can lead to a form of optimal
Bayesian inference [36], by approximating the powerful ma-
chine learning algorithm of Expectation-Maximization.

The authors of ref. [36] use a simplified version of STDP,
which has the same graph as the STDP that we proposed for
memory devices (Figure 2(b)). However, the exact impact of
STDP steps on the weight of the synapses differs from what we
have considered previously. We can introduce w the synaptic
weight, δw+ the weight increase when a presynaptic spike
preceded a postsynaptic spike, and δw− the weight decrease
in other situations. Nessler et al. considered:

PROCEEDINGS OF THE IEEE 9

Fig. 9. (a) Final weight as a function of p(PRE|POST) in Nessler theory (equation 4), compared with cumulative memristive devices (equation 7) and
final probability of a stochastic synapse being in the state 1 (equation 8). (b) Final weight as a function of p(PRE|POST) in with cumulative memristive
devices for different α+ and α− values. (c) Final probability of a stochastic synapse being in the state 1 as a function of p(PRE|POST) for different α
values.

δw+ = C exp(−w)− 1

δw− = −1, (2)

where C is a real constant greater than one.
The exact comparison with the behavior of physical memory

devices will be discussed in the next subsection. Based on
equation 2, it is is straightforward to evaluate analytically
which values the synaptic weights approach at the end of a
learning process. We introduce

p(PRE|POST) =
p(tPRE ∈ [tPOST − tSTDP ; tPOST]|tPOST), (3)

the probability that when an output neuron spiked, a synapse
spiked in the STDP window tSTDP preceding the spike. Then
we can show that the final weight w∞ that this particular
synapse will approach during the learning process is

w∞ = log p(PRE|POST) + logC. (4)

This simple result has deep implications. Nessler et al. have
shown that this allows the system to perform an approximation
of Expectation Maximization, an extremely powerful machine

learning algorithm [86]. The process is illustrated in Figure 8.
The two phases in our system directly correspond to the ones
of the Expectation Maximization algorithm. The operating
phase where synapses transmit information from input to
output until an output neuron spikes correspond to Expectation
steps, the execution of inference. The STDP programming
steps correspond to Maximization steps, the optimization of
the latent variable.

This theoretical study provides insight into how our in-
ference engine learns and performs inference. However, the
physical synapses that we have studied do not correspond
to equation 2. We now consider the details regarding the
importance of this difference.

B. Link between Device Physics and Learning

1) Cumulative Memristive Synapses: We first consider the
case of cumulative memristive devices. We use a simple model
of the conductance increase and decrease [57], which fits the
measurements of the classical cumulative memristors of [5],
and can also be used to model the 2-PCM structure [58],
[65]. For the sake of simplicity, we use normalized units
w = G/GMAX , and assume that minimum and maximum
conductances are 0 and 1. We identify normalized conductance

PROCEEDINGS OF THE IEEE 10

with a synaptic weight w. The device model of [57] then
simplifies to

δw+ = α+ exp(−β+w)
δw− = α− exp(−β−(1− w)). (5)

α+ and α− represent by how much the conductance of
the memristive device changes when a programming pulse is
applied. Smaller α values lead to more analog behavior. β+
and β− model the dependency of this conductance change with
the state of the memristive device. β values of the order of
3.0 can model the devices of [5], [58], [65].

Additionally, the weight is bounded by a minimum (0) and
maximum (1) conductance.

Under these conditions, we can show that the final weight
of this particular synapse approaches

w∞ =
β−

β+ + β−

+
1

β+ + β−
log

p(PRE|POST)
1− p(PRE|POST)

+
1

β+ + β−
log

α+

α−
, (6)

with w∞ being additionally bounded between 0 and 1. The
derivation appears in Appendix A.

In the case where β+ and β− are equal, this simplifies to

w∞ =
1

2
+

1

2β
log

p(PRE|POST)
1− p(PRE|POST)

+
1

2β
log

α+

α−
. (7)

This equation is reminiscent of equation 4, but a significant
difference is that w∞ appears to approach infinity when
p(PRE|POST) approaches one. However, since the weight
of a physical device is bounded between 0 and 1, this diver-
gence does not actually occur. When considering and putting
practical values into equation 6, it becomes in fact remarkably
similar to equation 4. This is shown clearly in Figure 9(b),
where equation 6 is plotted for different values of α+/α−, and
the value for β is taken from real devices [5]. This suggests
that our inference engine with cumulative memristive devices
may work by an approximation of Expectation-Maximization.

Interestingly, the curves corresponding to differing values
of α+/α− (2.0, 1.0 and 0.5) are qualitatively similar. This is
in agreement with the fact that when simulating the problems
of section III, the value of α+/α− is not a sensitive parameter.
For example, on the car counting task, and with cumulative
memristive devices, the best recognition rate on the four
inward lanes (99%) is obtained with α+/α− = 2.0. With
α+/α− = 1.0, the recognition rate on the four inward lanes
is only slightly reduced (97%). This result has important
implications when dealing with nanodevices. The parameters
associated with learning do not need to be too fine-tuned for
the system to be able to learn tasks.

Additionally, we notice that only the ratio α+/α− appears
in equation 6, not the actual α value. This is also consistent
with the research in section III. This does not mean, however,

Mean image

Mean image STDP simulation Theoretical result

Fig. 10. Top left picture: mean image of the faces presented. Right pictures:
representation of the final weights in a system with one neuron, to which
photographs of faces was presented, as obtained in simulation, and as expected
from theory. With cumulative memristive devices and top: β = 3, α+/α− =
1, middle: β = 1, α+/α− = 1, bottom: β = 0 . Graph: Final weight as a
function of p(PRE|POST) in these three situations.

that the actual α values are entirely insignificant, as they
directly affect the speed of learning.

Finally, we should note that the β value has considerable
impact on the shape of the w∞ curves. To illustrate this, we
simulated a network with only one output neuron, to which
we presented static photographs of faces, and repeated the
simulation for devices with different β values. The resulting
synaptic weights, organized as a 2-D picture, as well as the
corresponding w∞ curves appear in Figure 10. We can see
that with a β value of 3.0 (which is close to what is observed
in the devices of [5], or the 2-PCM structure [65]), the final
weights are very analog, and approach the mean of all the
presented faces. By contrast a β value of 1.0 produces a
more binary map, amplifying what is distinctive about a face.
A β value of 0 leads to an entirely binary map separating
pixels where p(PRE|POST) is lower and greater than 0.5.
This corresponds well to what would be expected from w∞
as a function of p(PRE|POST) curves. This means that,
depending on device, very different kinds of learning can thus
be envisioned.

In summary, we have observed a remarkable insensitivity
to relative steps of potentiation and depression, as well as to
the actual value of these steps (α values). We have observed
that the devices with different dependences of steps with
actual values of the conductance (β values) can have different
learning characteristics.

2) Stochastic Synapses: We now consider the case of
stochastic programming, which we introduced in particular for
conductive bridge memory and STT-MTJs.

We introduce p+ the probability for a synapse to switch
from low conductance (“0”) to high conductance (“1”) when
a presynaptic spike occured before the postsynaptic spike,
p− its probability to switch from high conductance to low
conductance in the other situations, and α = p+/p−. At the
end of the learning process, we show in Appendix B that the
probability of a synapse to be in the high conductance state is

PROCEEDINGS OF THE IEEE 11

w∞ =
αp(PRE|POST)

1 + p(PRE|POST)(α− 1).
(8)

If p+ and p− are equal (α = 1), w∞ reduces to
p(PRE|POST). As can be seen in Figure 9(c), the shape of
the w∞ as a function of p(PRE|POST) appears relatively
different from those of equation 4, but retains some of its
distinctive features. It can be thus expected that learning
with stochastic synapses also performs an approximation of
Expectation-Maximization in an extremely stochastic form.

When redundancy between stochastic synapses is intro-
duced, w∞ not only represents the probability of an individual
device to be 1, but also a mean value of the weight of the
equivalent synapse formed by the ensemble of the stochastic
synapses. It is thus natural that the system approximates
Expectation-Maximization better, as was seen with the MNIST
classification task (Figure 6(b)).

Finally, it is insightful to compare the w∞ curves for α
values ranging from 0.5 to 2. Once again, the curves are
qualitatively relatively similar. This result is consistent with
our practical observation that the choice of α is not extremely
sensitive when solving the actual tasks of section III, although
more sensitive than α+/α− in the case of cumulative memris-
tive devices. For example, when solving the vehicle counting
task with an α value of 1.0 (p+ = p− = 0.1), the detection
rate is 97.3%. With an α value of 2.0 (p+ = 2p− = 0.1),
the detection rate is reduced significantly, but remains high
(83.0%). Once again, this is an essential feature for being
able to use a system with real devices, where mean switching
probability might not be tuned with an arbitrary precision.

V. ROBUSTNESS OF THE INFERENCE ENGINE TO NOISE
AND TO DEVICE IMPERFECTIONS

As mentioned in the introduction, device non-idealities
may be a fundamental obstacle to the approach that we are
proposing. In particular, new memory devices – like almost
all nanodevices – suffer from a high level of device variation.
Monte Carlo simulations allow us to evaluate and understand
the robustness of our inference engine with respect to device
non-idealities.

A. Robustness to Device Variability

To study the impact of device variations on the inference
engine, we perform Monte Carlo simulations where every
device in the system is different, as is routinely done in
modern CMOS circuit design. We first consider the case
of cumulative memristive devices, and take the example of
MNIST recognition. We use a system with only 50 outputs,
which without variability has a recognition rate (as defined
in section III) of 82%. Recognition rates when variability is
introduced are plotted in Figure 11. We introduced variations
on the initial states of the devices, on their minimum and
maximum conductance, and on the α parameters of equation 5.
These α parameters model by how much the conductance of
a memristive device changes when it is programmed. The
variability is expressed in relative standard dispersion σ/µ.
We can see that variations of 10% on all parameters have

70

80

0 20 40 60 80 100
Rel. std. dispersion s/µ

of the device parameters (%)

Initial conductance

αp and αm

αp, αm,

Gmin and Gmax

Fig. 11. Impact of device variations, on the problem of MNIST recognition
with cumulative memristive devices, with 50 output neurons. Recognition rate
as a function of relative standard deviations on device parameters. Triangles:
only the initial conductance. Squares: only the α+ and α− parameters of
equation 5. Circles: initial conductance, α+ and α−, minimum and maximum
conductance. Each simulation was repeated ten times. The error bar indicates
one standard deviation.

no impact on the recognition rate, and variations of 25%
reduce the recognition rate only by a few percent. Extreme
variations of 100% reduce the recognition rate to 70%, but
is still higher than random recognition (10%), and it is
incredible that the system remains functional with so much
variability of the device properties. It should be noted that,
in this situation, approximately one third of the devices have
an α value of zero in at least one direction, and are thus
practically incapable of learning. Additionally, devices where
the minimum and maximum conductance appear inverted due
to device variations are also considered as devices incapable
of learning.

A similar robustness was observed in the task of car count-
ing. With variations of 25%, the detection rate is identical to
that seen in the case of no variations. We call such robustness
to device variability with respect to traditional uses of memory
near-immunity. More in-depth discussions of these results
appear in [63].

We also performed Monte Carlo simulations for the case of
stochastic devices. In this implementation, device variability
affects minimum and maximum conductance. If the stochastic
effects directly emerge from the device physics, like we
proposed in the case of STT-MTJs, the probability to switch
p+ and p− (as introduced in section IV) will also be variable,
possibly dramatically. This is illustrated in Figure 12(a), which
plots histograms of the low (P) and high (AP) resistance
states values, and the corresponding switching probability,
when synaptic variability is introduced. It is observed that due
to STT-MTJ device physics, switching probability are more
disperse than the states’ resistance. The synaptic variability
introduced corresponds to relative standard deviation (one-
sigma) on resistance of the P state and tunnel magnetore-
sistance TMR (TMR = (RAP − RP)/RP .). The fact that
resistance of the P state and TMR are varied independently
is inspired by experiments. A typical value for the synaptic
variability in experimental demonstrators is 5% [87], [88].

PROCEEDINGS OF THE IEEE 12

(a)

(b)

Fig. 12. (a) Histograms representing the values of P and AP states resistance
of 2,000 STT-MTJs (left subfigures) and switching probabilities (right subfig-
ures) when synaptic variability (SV) is introduced. Switching probability is
10 % in all cases for SV = 0. From top to bottom, synaptic variability SV is
5 %, 10 % and 25 % of relative standard deviation (one-sigma) on resistance
of the P state and TMR. (b) Detection rate and proportion of false positives as
a function of synaptic variability for the task of car counting with STT-MTJs.

Once again we observed spectacular robustness to device
variations. For example, let us consider the case of car
counting with STT-MTJs. As observed in Figure 12(b), with
device variability of 10% of the STT-MTJs (higher than what
is seen is experiments), which directly translate to variability
of 61% on the p+ and p− parameters, the same detection rate
and number of false positives is observed as with no variability
[71].

B. Roots of the Robustness to Device Variability

The extreme robustness of our inference engine to device
variation is impressive and an understanding of its fundamental
origin is instructive for nanoelectronic design. We see two
basic elements for this robustness: the unsupervised nature of
learning, and the diversity of synapses that can approximate
the Expectation-Maximization algorithm.

First, the fact that the system learns in an unsupervised way
is an important asset to tolerate variations. When initialized,
the neurons are not specialized, and respond more readily to
the patterns they are naturally capable of learning. We can for
example consider a specific input pattern. If some synapses
associated with input neurons fundamental to this pattern do
not work, then the output neurons of these synapses will likely

0

20

40

60

80

100

0 10 20 30 40 50
Rel. std. dispersion s/µ

of the neurons' threshold (%)

Without homeostasis

With homeostasis

Fig. 13. Impact of homeostasis using the MNIST recognition task, with cu-
mulative memristive devices, where 50 output neurons were used. Recognition
rate as a function of variability on neurons’ threshold (expressed in relative
standard deviation) with and without homeostatic mechanisms. The results
are described in detail in [63].

learn another input pattern. In that sense, a reasonable device
variability is not deeply troublesome for the system. It may
even be considered as a feature that precipitates the beginning
of the learning process.

A second component of robustness to variability can be
gathered from the theoretical analysis of section IV. For the
case of cumulative devices, we have seen that the curve of
w∞ as a function of p(PRE|POST) depends only on the
ratio of α+ and α−, and that its shape does not qualitatively
depend dramatically on this ratio. Similarly, in the stochastic
synapses case, the curve of w∞ depends only on the ratio of
p+ and p− and its shape does not exhibit significant qualitative
dependence on this ratio. This suggests that variable synapses
will still manage to perform their task even if they learn
through completely different manners. This also suggests that
the analysis of section IV can be an effective way to assess
if a particular technology will give rise to a robust inference
engine.

C. Robustness to Other Issues

First, we should mention the one effect to which our
inference engine is not robust: the performance of the system
is strongly affected by variability between the neurons [63].
The neurons with lower threshold are activated frequently
and prevent the neurons with higher thresholds from learning
patterns. Neuron variability is an issue if the neurons are
implemented with analog circuits [30]. We proposed a solution
in [63], which is to implement a form of “homeostasis”
in the neurons (Figure 13). Homeostasis is a bioinspired
paradigm that ensures that over long periods, each output
neuron spikes a similar number of times. Circuit implementa-
tions of homeostasis can cause significant overhead. In digital
neuromorphic circuits, homeostasis implementation would be
straightforward. It is more challenging for analog neuromor-
phic systems, since homeostasis requires particularly long time
constants. Both pure analog and mixed analog/digital solutions
have been proposed [89]. In terms of inference, homeostasis

PROCEEDINGS OF THE IEEE 13

Fig. 14. Impact of read disturb on the task of MNIST recognition with cumu-
lative memristive devices, where 50 output neurons were used. Recognition
rate as a function of read disturb parameter ε, as defined in the Figure. ε = 0
signifies no read disturb.

implements a prior belief that all latent variable values have a
significant chance of occurring. It is particularly interesting to
note that synaptic variability (which is the primary concern, as
it emerges from nanodevices’ variability) is naturally tolerated,
while neuronal variability requires a correction mechanism. It
also stresses the necessity to consider all aspects of a system
when studying its robustness.

We can also investigate the robustness to noise in the inputs.
It is impressive. For example in the car counting task, for
both cumulative memristive devices and stochastic synapses,
we can add up to 10% of purely random spikes in the inputs
without affecting detection rate and number of false positives.
This is caused by the neuronal behavior of the outputs, which
naturally acts as a filter for input noise.

Another significant effect in a real system are the transient
and potentially local variations of the temperature. Such vari-
ations affect all memory devices, but STT-MTJs are among
the devices most vulnerable to this effect: since their memory
switching is thermally activated, their switching probability
depends heavily on the temperature. Therefore, we performed
simulations, for the task of vehicle detection, with exacerbated
temperature effects: each STDP step, the temperature of all
STT-MTJs is chosen randomly. We observed that with tem-
perature chosen randomly with a Gaussian law of standard
deviation of 30K, the detection rate and number of false
positives is not affected. Temperature fluctuations act as a form
of transient device variations, and the roots of the system’s
robustness are the same as for static device variations.

Another potential issue is the read disturb effect (the fact
that read operation may affect the state of the memory
devices). In our scheme, devices frequently transmit spikes.
Therefore, even if a read operation has an extremely small
effect on the memory state of the device, this effect may
accumulate and become significant. Simulations in the case of
cumulative memristive devices used for MNIST recognition
are presented in [63] and reproduced in Figure 14. The
robustness to the read disturb effect is astonishing: if we
assume that read disturb affects the device conductance by
1% of the effect of STDP operations, the recognition rate is

barely affected. When read operation have 10% of the effect
of STDP operations, the recognition rate moves from 82% to
a very reasonable 78%. This suggests that the system naturally
corrects the drift associated with read disturb. This comes from
a very specific feature of our inference engine, which never
stops learning. When the system has specialized and is stable,
STDP is not deactivated. This allows the system to autocorrect
for effects like read disturb, or for a long term evolution of
the inputs.

VI. MEMORY IMPLICATIONS

In this section, we summarize the core ideas that underlie
the present work, discuss research approaches that share some
features with our proposal, and highlight important open
questions.

The present research is based on several fundamental ideas.
First, we try to embed memory at the very core of computing,
analogous to the brain structure, in order to avoid the von
Neumann bottleneck. This vision, which has been previously
investigated in several contexts, finds specific appeal today.
The emergence of compact, CMOS-compatible, nonvolatile
memory offers an ideal technological basis for this concept. Si-
multaneously, emerging cognitive applications require frequent
memory access and suffer from the von Neumann bottleneck.
Novel general-purpose or application-specific processor ideas
merging computing and memory are therefore being proposed.
The level of integration between computing and memory can
be comprehensive, in accordance to the original “logic-in-
memory” concept [90] approach, or to novel ideas [91]–[93],
while some designs keep a stricter separation of computing and
memory at a local level [94]. Fusing computing and memory
is also at the core of many neuromorphic structures, at the
present day usually employing SRAM as memory [31], [32],
[49], [50].

In addition to integrating memory and computing, the
research reported here incorporates a second idea: to pro-
gram memory following a bioinspired approach similar to
synaptic learning rules. This idea can already be implemented
with SRAM [49], [50], but has significant advantages when
the memory is based on nanodevices. Programming memory
nanodevices in a conventional digital and deterministic way
can be wasteful in terms of energy. Bioinspired programming
using learning rules, by contrast, can map more closely to
device physics, and exploit the complex intrinsic behaviors
seen such as multilevel memory and stochasticity. A drawback
is that nanodevices used in this fashion exhibit nonidealities
like device variations. We have tried to show in this work that
bioinspired architectures can feature an intrinsic resilience to
these nonidealities, and are therefore able to benefit from the
intrinsic features of memory devices.

Other research explores this idea of bioinspired program-
ming. Most of this research attempts to precisely map bioin-
spired programming to biological models, with the aim of pro-
viding a direct correspondence between neuroscience and na-
noelectronics research. Here, we suggest that highly abstracted
bioinspired programming may already achieve useful features.
The balance between biological abstraction and biomimetism,

PROCEEDINGS OF THE IEEE 14

however, is an important open research question. It is not
solely determined by purely engineering questions, but also
by the prospectives of the researchers.

Another research approach that emphasizes memory at the
core of computing paradigm is the concept of “memcomput-
ing” [95], [96]. Memcomputing goes further on the path of
fusing computing and memory, with memory devices used as
the active computing elements instead of transistors. It has
been shown that non-Turing type memcomputing machines
could solve some nondeterministic polynomial (NP)-complete
problems in polynomial time, though also requiring a polyno-
mial growth of memory [96]. Memcomputing therefore allows
higher computational power than our proposed approach.
However, it does not appear to feature intrinsic resilience to
memory device imperfections. Nonetheless, it constitutes a
powerful concept to which approaches integrating computing
and memory should be confronted.

The present work leaves many open questions, at the tech-
nological level, but also at the computational level. We have
shown that bioinspired programming may be connected to
machine learning techniques. Nevertheless, the tasks presented
in this work are still relatively simple textbook applications.
More interdisciplinary research is needed to push the idea
further and investigate the possibility of state-of-the-art ma-
chine learning. For this, we need to convince machine learning
specialists to perform the needed specific research based on
an understanding of the benefits but also of the limitations of
nanodevices.

VII. CONCLUSION

In this work, we have explored a bioinspired methodology
for programming nanodevices, which naturally implements
an inference engine. The approach is fundamentally different
from those of traditional electronics. Its source of inspiration
is the Spike Timing Dependent Plasticity model of synaptic
learning in neurosciences. The system puts memory at the very
core of computing, with the physics of the memory devices
playing an active role in the process of learning and inference.
The system is capable of learning using an unsupervised
paradigm. More precisely, it can identify the latent variable
underlying the input to which it is exposed, and at the same
time infer its classification among the latent variable values.
The system is incredibly tolerant to device variations and read
disturb issues.

We have shown that it may be adapted to various emergent
memory device technologies. The most natural implementation
uses cumulative memristive or phase change memory devices,
in an analog manner. Another implementation can use stochas-
tic devices like STT-MTJs. In many situations, stochastic and
analog devices are equivalent. However, for most problems,
this requires adding redundancy in the stochastic version.

We have explored several applications for the inference
engine: image classification and detection of patterns in video
and auditory data. These applications are impressive, espe-
cially given that they use precisely the same system. However,
they are currently far from production and need to be asso-
ciated with other circuits capable of exploiting the inference

results. The methodology introduced in this work provides a
new paradigm for nanoelectronics. Bioinspired programming
of memory devices could identify latent variables and perform
inference, which is the biggest challenge for processing Big
Data. A simpler system can then interpret the inference result.

We have already connected the inference engine with
Bayesian inference and the algorithm of Expectation-
Maximization. By advancing this comparison further, it should
be possible to develop significantly more complex and com-
prehensive inference engines, while retaining the vision of
this work: using the bioinspired idea of fusing computing
and memory, we intend to put inference at the core of
nanoelectronics.

APPENDIX A
DERIVATION OF THE EXPRESSION OF w∞ IN THE CASE OF

CUMULATIVE MEMRISTIVE SYNAPSES

This appendix derives equation 6 from section IV. At the
end of learning, if a synapse has reached a stable state, it
experiences as many depression events as potentiation events.
With the notations of section IV, this reads:

δw+p(PRE|POST) = δw−p(PRE|POST), (9)

where we have introduced p(PRE|POST) = 1 −
p(PRE|POST). By introducing the expressions of δw+ and
δw− from equation 5, this becomes:

α+ exp(−β+w∞)p(PRE|POST) =
α− exp(−β−(1− w∞))(1− p(PRE|POST)). (10)

Therefore, we have

exp((β+ + β−)w∞ − β−) =
α+

α−

p(PRE|POST)
(1− p(PRE|POST))

,

(11)

which leads to equation 6:

w∞ =
β−

β+ + β−

+
1

β+ + β−
log

p(PRE|POST)
1− p(PRE|POST)

+
1

β+ + β−
log

α+

α−
. (12)

APPENDIX B
DERIVATION OF THE EXPRESSION OF w∞ IN THE CASE OF

STOCHASTIC SYNAPSES

This appendix derives equation 8 from section IV. At the
end of learning, if a synapse has reached a stable state, it expe-
riences as many depression events as potentiation events. With
the notations of section IV, and by introducing p(State = 1)
and p(State = 0), the probabilities of the synapse to be in
the 1 and 0 states, this reads:

p+ · p(PRE|POST) · p(State = 0) =

p− · p(PRE|POST) · p(State = 1) (13)

PROCEEDINGS OF THE IEEE 15

With the notations of section IV, p(State = 1) = w∞
and p(State = 0) = 1 − w∞. If we introduce α = p+/p−,
equation 13 becomes

αp(PRE|POST)(1− w∞) = (1− p(PRE|POST))w∞,
(14)

which leads to equation 8:

w∞ =
αp(PRE|POST)

1 + p(PRE|POST)(α− 1)
. (15)

ACKNOWLEDGMENTS

The authors would like to thank C. Bennett, P. Bessière,
L. Calvet, D. Chabi, D. Colliaux, B. De Salvo, J. Droulez,
J. S. Friedman, J. Grollier, J.-O. Klein, J. Larroque, N. Lo-
catelli, E. Mazer, A. Mizrahi, M. Suri, S. Tiwari, D. Vodeni-
carevic and W. S. Zhao.

REFERENCES

[1] Y.-K. Chen, J. Chhugani, P. Dubey, C. Hughes, D. Kim, S. Kumar,
V. Lee, A. Nguyen, and M. Smelyanskiy, “Convergence of Recognition,
Mining, and Synthesis Workloads and Its Implications,” Proceedings of
the IEEE, vol. 96, no. 5, pp. 790–807, May 2008.

[2] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado,
J. Dean, and A. Y. Ng, “Building high-level features using large scale
unsupervised learning,” International Conference on Machine Learning,
2012.

[3] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-
class memory,” IBM J. Res. Dev., 2008.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, May
2008.

[5] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
“Nanoscale Memristor Device as Synapse in Neuromorphic Systems,”
Nano Lett., vol. 10, no. 4, pp. 1297–1301, Apr. 2010.

[6] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and
Y. Huai, “Spin-transfer torque switching in magnetic tunnel junctions
and spin-transfer torque random access memory,” Journal of Physics:
Condensed Matter, vol. 19, no. 16, p. 165209, Apr. 2007.

[7] S. Yu, X. Guan, and H.-S. Wong, “On the stochastic nature of resistive
switching in metal oxide RRAM: Physical modeling, monte carlo
simulation, and experimental characterization,” in IEDM Tech. Dig., Dec.
2011, pp. 17.3.1 –17.3.4.

[8] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat,
N. Zerounian, J.-V. Kim, C. Chappert, and H. Ohno, “Single-Shot Time-
Resolved Measurements of Nanosecond-Scale Spin-Transfer Induced
Switching: Stochastic Versus Deterministic Aspects,” Phys. Rev. Lett.,
vol. 100, no. 5, p. 057206, Feb. 2008.

[9] E. Marder and J.-M. Goaillard, “Variability, compensation and home-
ostasis in neuron and network function,” Nat Rev Neurosci, vol. 7, no. 7,
pp. 563–574, Jul. 2006.

[10] Y. V. Pershin, S. La Fontaine, and M. Di Ventra, “Memristive model of
amoeba learning,” Phys. Rev. E, vol. 80, no. 2, p. 021926, 2009.

[11] B. Linares-Barranco and T. Serrano-Gotarredona, “Exploiting memris-
tance in adaptive asynchronous spiking neuromorphic nanotechnology
systems,” in Proc. of IEEE Conference on Nanotechnology, 2009, 2009,
pp. 601–604.

[12] S. H. Jo, K.-H. Kim, and W. Lu, “Programmable Resistance Switching
in Nanoscale Two-Terminal Devices,” Nano Lett., vol. 9, no. 1, pp. 496–
500, Jan. 2009.

[13] G. S. Snider, “Self-organized computation with unreliable, memristive
nanodevices,” Nanotechnology, vol. 18, no. 36, p. 365202, Sep. 2007.

[14] K. Seo, I. Kim, S. Jung, M. Jo, S. Park, J. Park, J. Shin, K. P. Biju,
J. Kong, K. Lee, B. Lee, and H. Hwang, “Analog memory and spike-
timing-dependent plasticity characteristics of a nanoscale titanium oxide
bilayer resistive switching device,” Nanotechnology, vol. 22, no. 25, p.
254023, Jun. 2011.

[15] M. Versace and B. Chandler, “The brain of a new machine,” Spectrum,
IEEE, vol. 47, no. 12, pp. 30–37, 2010.

[16] D. Querlioz, O. Bichler, and C. Gamrat, “Simulation of a memristor-
based spiking neural network immune to device variations,” Proc. of the
Int. Joint Conf. on Neural Networks (IJCNN), pp. 1775 – 1781, 2011.

[17] M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa,
D. Vuillaume, C. Gamrat, and B. DeSalvo, “Phase change memory as
synapse for ultra-dense neuromorphic systems: Application to complex
visual pattern extraction,” in IEDM Tech. Dig. IEEE, Dec. 2011, pp.
4.4.1–4.4.4.

[18] S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H. P. Wong, “An Electronic
Synapse Device Based on Metal Oxide Resistive Switching Memory for
Neuromorphic Computation,” IEEE Trans. Electron Dev., vol. 58, no. 8,
pp. 2729–2737, Aug. 2011.

[19] V. Erokhin, T. Berzina, P. Camorani, A. Smerieri, D. Vavoulis, J. Feng,
and M. P. Fontana, “Material Memristive Device Circuits with Synaptic
Plasticity: Learning and Memory,” BioNanoScience, vol. 1, no. 1-2, pp.
24–30, Apr. 2011.

[20] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil,
X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes,
A. Barthélémy, and J. Grollier, “A ferroelectric memristor,” Nat. Mat.,
vol. 11, no. 10, pp. 860–864, 2012.

[21] G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, and
T. Prodromakis, “Integration of nanoscale memristor synapses in neuro-
morphic computing architectures,” Nanotechnology, vol. 24, no. 38, p.
384010, Sep. 2013.

[22] M. Sharad, C. Augustine, G. Panagopoulos, and K. Roy, “Spin-Based
Neuron Model With Domain-Wall Magnets as Synapse,” IEEE Trans-
actions on Nanotechnology, vol. 11, no. 4, pp. 843 –853, Jul. 2012.

[23] J. H. Lee and K. K. Likharev, “Defect-tolerant nanoelectronic pattern
classifiers,” Int. J. Circ. Theor. Appl., vol. 35, no. 3, pp. 239–264, May
2007.

[24] K. Cantley, A. Subramaniam, H. Stiegler, R. Chapman, and E. Vogel,
“Hebbian Learning in Spiking Neural Networks With Nanocrystalline
Silicon TFTs and Memristive Synapses,” IEEE Transactions on Nan-
otechnol., vol. 10, no. 5, pp. 1066 –1073, Sep. 2011.

[25] D. Chabi, D. Querlioz, W. Zhao, and J.-O. Klein, “Robust Learning Ap-
proach for Neuro-inspired Nanoscale Crossbar Architecture,” J. Emerg.
Technol. Comput. Syst., vol. 10, no. 1, pp. 5:1–5:20, Jan. 2014.

[26] K. Gacem, J.-M. Retrouvey, D. Chabi, A. Filoramo, W. Zhao, J.-O.
Klein, and V. Derycke, “Neuromorphic function learning with carbon
nanotube based synapses,” Nanotechnology, vol. 24, no. 38, p. 384013,
Sep. 2013.

[27] S.-Y. Liao, J.-M. Retrouvey, G. Agnus, W. Zhao, C. Maneux, S. Fre-
gonese, T. Zimmer, D. Chabi, A. Filoramo, V. Derycke, C. Gamrat,
and J.-O. Klein, “Design and Modeling of a Neuro-Inspired Learning
Circuit Using Nanotube-Based Memory Devices,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 58, no. 9, pp. 2172–2181,
Sep. 2011.

[28] O. Kavehei, “Highly Scalable Neuromorphic Hardware with 1-bit
Stochastic nano-Synapses,” arXiv e-print 1309.6419, Sep. 2013.

[29] S. Saı̈ghi, C. G. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf,
J. Tomas, J. Grollier, S. Boyn, A. F. Vincent, D. Querlioz, S. La Barbera,
F. Alibart, D. Vuillaume, O. Bichler, C. Gamrat, and B. Linares-
Barranco, “Plasticity in memristive devices for spiking neural networks,”
Front. Neurosci, vol. 9, p. 51, 2015.

[30] G. Indiveri, B. Linares-Barranco, T. J. Hamilton, R. Etienne-Cummings,
T. Delbruck, S.-C. Liu, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwen-
berghs, J. Arthur, S. Saighi, J. Wijekoon, and K. Boahen, “Neuromorphic
silicon neuron circuits,” Front. Neuromorphic Engineering, vol. 5, p. 73,
2011.

[31] B. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran,
J.-M. Bussat, R. Alvarez-Icaza, J. Arthur, P. Merolla, and K. Boahen,
“Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale
Neural Simulations,” Proceedings of the IEEE, vol. 102, no. 5, pp. 699–
716, May 2014.

[32] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[33] S. Furber, F. Galluppi, S. Temple, and L. Plana, “The SpiNNaker
Project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, May
2014.

[34] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems (ISCAS), Jun. 2010, pp. 1947 –1950.

PROCEEDINGS OF THE IEEE 16

[35] C. Mead, Analog VLSI and Neural Systems, 1st ed. Addison Wesley
Publishing Company, Jan. 1989.

[36] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian Computa-
tion Emerges in Generic Cortical Microcircuits through Spike-Timing-
Dependent Plasticity,” PLoS Comput Biol, vol. 9, no. 4, Apr. 2013.

[37] G.-Q. Bi and M.-M. Poo, “Synaptic modification by correlated activity:
Hebb’s Postulate Revisited,” Annu. Rev. Neurosci., vol. 24, no. 1, pp.
139–166, Mar. 2001.

[38] A. Perfors, J. B. Tenenbaum, T. L. Griffiths, and F. Xu, “A tutorial
introduction to Bayesian models of cognitive development,” Cognition,
vol. 120, no. 3, pp. 302–321, Sep. 2011.

[39] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, “Regulation
of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs,”
Science, vol. 275, no. 5297, pp. 213–215, Jan. 1997.

[40] L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast,”
Nat Neurosci, vol. 3, pp. 1178–1183, 2000.

[41] P. J. Sjöström, E. A. Rancz, A. Roth, and M. Häusser, “Dendritic
Excitability and Synaptic Plasticity,” Physiological Reviews, vol. 88,
no. 2, pp. 769–840, Apr. 2008.

[42] J. M. Brader, W. Senn, and S. Fusi, “Learning Real-World Stimuli
in a Neural Network with Spike-Driven Synaptic Dynamics,” Neural
Comput., vol. 19, no. 11, pp. 2881–2912, Nov. 2007.

[43] T. Masquelier and S. J. Thorpe, “Unsupervised Learning of Visual
Features through Spike Timing Dependent Plasticity,” PLoS Comput
Biol, vol. 3, no. 2, p. e31, Feb. 2007.

[44] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Spike Timing Depen-
dent Plasticity Finds the Start of Repeating Patterns in Continuous Spike
Trains,” PLoS ONE, vol. 3, no. 1, p. e1377, Jan. 2008.

[45] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of
Data with Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[46] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[47] D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmid-
huber, “Flexible, High Performance Convolutional Neural Networks for
Image Classification,” in Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence - Volume Volume Two,
ser. IJCAI’11. Barcelona, Catalonia, Spain: AAAI Press, 2011, pp.
1237–1242.

[48] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” Advances in Neural Informa-
tion Processing Systems, 2012.

[49] J. V. Arthur and K. A. Boahen, “Learning in silicon: Timing is
everything,” Advances in neural information processing systems, vol. 18,
pp. 281–1185, 2006.

[50] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power
spiking neurons and bistable synapses with spike-timing dependent
plasticity,” IEEE Transactions on Neural Networks, vol. 17, no. 1, pp.
211–221, 2006.

[51] M. Azghadi, N. Iannella, S. Al-Sarawi, G. Indiveri, and D. Abbott,
“Spike-Based Synaptic Plasticity in Silicon: Design, Implementation,
Application, and Challenges,” Proceedings of the IEEE, vol. 102, no. 5,
pp. 717–737, May 2014.

[52] G. Snider, “Spike-timing-dependent learning in memristive nanode-
vices,” in Prof. of IEEE International Symposium on Nanoscale Archi-
tectures 2008 (NANOARCH), 2008, pp. 85–92.

[53] F. Alibart, S. Pleutin, O. Bichler, C. Gamrat, T. Serrano-Gotarredona,
B. Linares-Barranco, and D. Vuillaume, “A Memristive Nanoparti-
cle/Organic Hybrid Synapstor for Neuroinspired Computing,” Advanced
Functional Materials, vol. 22, no. 3, pp. 609–616, 2012.

[54] A. Afifi, A. Ayatollahi, and F. Raissi, “Implementation of biologically
plausible spiking neural network models on the memristor crossbar-
based CMOS/nano circuits,” in European Conference on Circuit Theory
and Design (ECCTD), 2009, pp. 563–566.

[55] G. Lecerf, J. Tomas, and S. Saighi, “Excitatory and Inhibitory Memris-
tive Synapses for Spiking Neural Networks,” in 2013 IEEE International
Symposium on Circuits and Systems (ISCAS), 2013, pp. 1616–1619.

[56] J. V. Arthur and K. A. Boahen, “Silicon-Neuron Design: A Dynamical
Systems Approach,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 58,
no. 5, pp. 1034–1043, 2011.

[57] D. Querlioz, P. Dollfus, O. Bichler, and C. Gamrat, “Learning with
memristive devices: how should we model their behavior?” Proc. of
IEEE/ACM Int. Symp. Nanoscale Architectures (NANOARCH 2011), p.
150, 2011.

[58] M. Suri, O. Bichler, D. Querlioz, B. Traoré, O. Cueto, L. Perniola,
V. Sousa, D. Vuillaume, C. Gamrat, and B. DeSalvo, “Physical aspects
of low power synapses based on phase change memory devices,” Journal
of Applied Physics, vol. 112, no. 5, pp. 054 904–054 904–10, Sep. 2012.

[59] M. Suri, D. Querlioz, O. Bichler, G. Palma, E. Vianello, D. Vuillaume,
C. Gamrat, and B. DeSalvo, “Bio-Inspired Stochastic Computing Using
Binary CBRAM Synapses,” IEEE Transactions on Electron Devices,
vol. 60, no. 7, pp. 2402–2409, 2013.

[60] A. Vincent, N. Locatelli, J.-O. Klein, W. Zhao, S. Galdin-Retailleau,
and D. Querlioz, “Analytical Macrospin Modeling of the Stochastic
Switching Time of Spin-Transfer Torque Devices,” IEEE Transactions
on Electron Devices, vol. 62, no. 1, pp. 164–170, Jan. 2015.

[61] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification
by memristive crossbar circuits using ex situ and in situ training,” Nat
Commun, vol. 4, Jun. 2013.

[62] A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane, A. Fert,
A. V. Khvalkovskiy, K. A. Zvezdin, K. Nishimura, Y. Nagamine,
H. Maehara, K. Tsunekawa, A. Fukushima, and S. Yuasa, “Vertical-
current-induced domain-wall motion in MgO-based magnetic tunnel
junctions with low current densities,” Nat. Phys., vol. 7, no. 8, pp. 626–
630, 2011.

[63] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to Device
Variations in a Spiking Neural Network with Memristive Nanodevices,”
IEEE Trans. Nanotechnol., vol. 12, no. 3, pp. 288 – 295, 2013.

[64] G. Lecerf, J. Tomas, S. Boyn, S. Girod, A. Mangalore, J. Grollier,
and S. Saighi, “Silicon neuron dedicated to memristive spiking neural
networks,” in 2014 IEEE International Symposium on Circuits and
Systems (ISCAS), Jun. 2014, pp. 1568–1571.

[65] O. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, and
C. Gamrat, “Visual Pattern Extraction Using Energy-Efficient ”2-PCM
Synapse” Neuromorphic Architecture,” IEEE Trans. Electron Devices,
vol. 59, no. 8, pp. 2206 – 2214, 2012.

[66] M. Suri, D. Garbin, O. Bichler, D. Querlioz, D. Vuillaume, C. Gamrat,
and B. DeSalvo, “Impact of PCM resistance-drift in neuromorphic
systems and drift-mitigation strategy,” in 2013 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), Jul. 2013, pp.
140–145.

[67] M. Suri, O. Bichler, D. Querlioz, G. Palma, E. Vianello, D. Vuillaume,
C. Gamrat, and B. DeSalvo, “CBRAM Devices as Binary Synapses for
Low-Power Stochastic Neuromorphic Systems: Auditory (Cochlea) and
Visual (Retina) Cognitive Processing Applications,” IEDM Tech. Dig.,
p. 10.3.1, 2012.

[68] W. Senn and S. Fusi, “Convergence of stochastic learning in perceptrons
with binary synapses,” Phys. Rev. E, vol. 71, no. 6, p. 061907, Jun. 2005.

[69] Y. Kondo and Y. Sawada, “Functional abilities of a stochastic logic
neural network,” IEEE Transactions on Neural Networks, vol. 3, no. 3,
pp. 434 –443, May 1992.

[70] Y. Zhang, W. Zhao, J.-O. Klein, W. Kang, D. Querlioz, Y. Zhang,
D. Ravelosona, and C. Chappert, “Spintronics for low-power com-
puting,” in Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2014, Mar. 2014, pp. 1–6.

[71] A. Vincent, J. Larroque, N. Locatelli, N. Ben Romdhane, O. Bichler,
C. Gamrat, W. Zhao, J.-O. Klein, S. Galdin-Retailleau, and D. Querlioz,
“Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive
Synapse for Neuromorphic Systems,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 9, no. 2, pp. 166–174, Apr. 2015.

[72] S. Gaba, P. Sheridan, J. Zhou, S. Choi, and W. Lu, “Stochastic memris-
tive devices for computing and neuromorphic applications,” Nanoscale,
vol. 5, no. 13, pp. 5872–5878, Jun. 2013.

[73] S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, and H.-S. P. Wong, “Stochastic
learning in oxide binary synaptic device for neuromorphic computing,”
Front Neurosci, vol. 7, Oct. 2013.

[74] Y. Zhang, W. Zhao, G. Prenat, T. Devolder, J.-O. Klein, C. Chappert,
B. Dieny, and D. Ravelosona, “Electrical Modeling of Stochastic Spin
Transfer Torque Writing in Magnetic Tunnel Junctions for Memory and
Logic Applications,” IEEE Transactions on Magnetics, vol. 49, no. 7,
pp. 4375–4378, Jul. 2013.

[75] A. Fukushima, T. Seki, K. Yakushiji, H. Kubota, H. Imamura, S. Yuasa,
and K. Ando, “Spin dice: A scalable truly random number generator
based on spintronics,” Appl. Phys. Express, vol. 7, no. 8, p. 083001,
Aug. 2014.

[76] J. Joshua Yang, M. X. Zhang, M. D. Pickett, F. Miao, J. Paul Strachan,
W.-D. Li, W. Yi, D. A. A. Ohlberg, B. Joon Choi, W. Wu, J. H.
Nickel, G. Medeiros-Ribeiro, and R. Stanley Williams, “Engineering
nonlinearity into memristors for passive crossbar applications,” Appl.
Phys. Lett., vol. 100, no. 11, pp. 113 501–113 501–4, Mar. 2012.

PROCEEDINGS OF THE IEEE 17

[77] O. Bichler, D. Querlioz, S. J. Thorpe, J.-P. Bourgoin, and C. Gamrat,
“Extraction of temporally correlated features from dynamic vision sen-
sors with spike-timing-dependent plasticity,” Neural Networks, vol. 32,
pp. 339–348, 2012.

[78] O. Bichler, D. Roclin, C. Gamrat, and D. Querlioz, “Design exploration
methodology for memristor-based spiking neuromorphic architectures
with the Xnet event-driven simulator,” in 2013 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), Jul. 2013, pp.
7–12.

[79] D. Querlioz, W. S. Zhao, P. Dollfus, J.-O. Klein, O. Bichler, and
C. Gamrat, “Bioinspired Networks with Nanoscale Memristive Devices
that Combine the Unsupervised and Supervised Learning Approaches,”
in Proc. of NANOARCH, 2012.

[80] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep
Big Simple Neural Nets Excel on Handwritten Digit Recognition,” CoRR
abs/1003.0358, Mar. 2010.

[81] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x 128 120 dB 15
mus Latency Asynchronous Temporal Contrast Vision Sensor,” IEEE J.
Solid-State Circuits, vol. 43, no. 2, pp. 566–576, 2008.

[82] http://sourceforge.net/p/jaer/wiki/AER data/.
[83] A. F. Vincent, J. Larroque, W. S. Zhao, N. Ben Romdhane, O. Bichler,

C. Gamrat, J.-O. Klein, S. Galdin-Retailleau, and D. Querlioz, “Spin-
transfer torque magnetic memory as a stochastic memristive synapse,” in
2014 IEEE International Symposium on Circuits and Systems (ISCAS),
Jun. 2014, pp. 1074–1077.

[84] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A Matched Silicon
Cochlea Pair With Address Event Representation Interface,” IEEE Trans.
Circuits Syst. Regul. Pap., vol. 54, no. 1, pp. 48–59, 2007.

[85] W. Maass, “Noise as a Resource for Computation and Learning in
Networks of Spiking Neurons,” Proceedings of the IEEE, vol. 102, no. 5,
pp. 860–880, May 2014.

[86] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from
Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[87] R. Beach, T. Min, C. Horng, Q. Chen, P. Sherman, S. Le, S. Young,
K. Yang, H. Yu, X. Lu, W. Kula, T. Zhong, R. Xiao, A. Zhong,
G. Liu, J. Kan, J. Yuan, J. Chen, R. Tong, J. Chien, T. Torng, D. Tang,
P. Wang, M. Chen, S. Assefa, M. Qazi, J. DeBrosse, M. Gaidis,
S. Kanakasabapathy, Y. Lu, J. Nowak, E. O’Sullivan, T. Maffitt, J. Sun,
and W. Gallagher, “A statistical study of magnetic tunnel junctions for
high-density spin torque transfer-MRAM (STT-MRAM),” in Electron
Devices Meeting, 2008. IEDM 2008. IEEE International, Dec. 2008,
pp. 1–4.

[88] D. Worledge, G. Hu, P. Trouilloud, D. Abraham, S. Brown, M. Gaidis,
J. Nowak, E. O’Sullivan, R. Robertazzi, J. Sun, and W. Gallagher,
“Switching distributions and write reliability of perpendicular spin
torque MRAM,” in Electron Devices Meeting (IEDM), 2010 IEEE
International, Dec. 2010, pp. 12.5.1–12.5.4.

[89] C. Bartolozzi, O. Nikolayeva, and G. Indiveri, “Implementing homeo-
static plasticity in VLSI networks of spiking neurons,” in IEEE Int. Conf.
Electronics, Circuits and Systems (ICECS 2008), 2008, pp. 682–685.

[90] H. S. Stone, “A Logic-in-Memory Computer,” IEEE Transactions on
Computers, vol. C-19, no. 1, pp. 73–78, Jan. 1970.

[91] S. Matsunaga, J. Hayakawa, S. Ikeda, K. Miura, H. Hasegawa, T. Endoh,
H. Ohno, and T. Hanyu, “Fabrication of a Nonvolatile Full Adder Based
on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions,”
Appl. Phys. Express, vol. 1, no. 9, p. 091301, Sep. 2008.

[92] W. Zhao, M. Moreau, E. Deng, Y. Zhang, J.-M. Portal, J.-O. Klein,
M. Bocquet, H. Aziza, D. Deleruyelle, C. Muller, D. Querlioz,
N. Ben Romdhane, D. Ravelosona, and C. Chappert, “Synchronous Non-
Volatile Logic Gate Design Based on Resistive Switching Memories,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,
no. 2, pp. 443–454, Feb. 2014.

[93] N. Locatelli, A. F. Vincent, A. Mizrahi, J. S. Friedman, D. Vodenicarevic,
J.-V. Kim, J.-O. Klein, W. Zhao, J. Grollier, and D. Querlioz, “Spintronic
devices as key elements for energy-efficient neuroinspired architectures,”
in Design, Automation Test in Europe Conference Exhibition (DATE),
2015, Mar. 2015, pp. 994–999.

[94] M. Natsui, D. Suzuki, N. Sakimura, R. Nebashi, Y. Tsuji, A. Morioka,
T. Sugibayashi, S. Miura, H. Honjo, K. Kinoshita, S. Ikeda, T. Endoh,
H. Ohno, and T. Hanyu, “Nonvolatile logic-in-memory array processor
in 90nm MTJ/MOS achieving 75% leakage reduction using cycle-based
power gating,” in Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2013 IEEE International, Feb. 2013, pp. 194–195.

[95] Y. Pershin and M. Di Ventra, “Neuromorphic, Digital, and Quantum
Computation With Memory Circuit Elements,” Proceedings of the IEEE,
vol. 100, no. 6, pp. 2071 –2080, Jun. 2012.

[96] F. Traversa and M. Di Ventra, “Universal Memcomputing Machines,”
IEEE Transactions on Neural Networks and Learning Systems, vol. PP,
no. 99, pp. 1–1, 2015.

PLACE
PHOTO
HERE

Damien Querlioz received the M. S. degree from
Ecole Normale Superieure, Paris in 2005 and the
Ph.D. degree from the Univ. Paris-Sud, France, in
2008. After postdocs at Stanford University and at
CEA LIST, he became a CNRS research scientist
with Univ. Paris-Sud in 2010. He develops new
concepts in nanoelectronics and spintronics relying
on bio-inspiration. His research interests have also
included the physics of advanced nanodevices. He
leads the ANR CogniSpin project, which investigates
the use of magnetic memory as synapses. He leads

the CNRS/MI DEFIBAYES project and is a one of the lead PI of the
FP7 FETOPEN BAMBI project, which explore the new paradigms for
nanolectronics based on Bayesian inference.

PLACE
PHOTO
HERE

Olivier Bichler received the M.S. degree in embed-
ded systems from the Ecole Normale Superieure de
Cachan, France, in 2009 and the Ph. D. degree from
the Universite Paris-Sud, Orsay, France, in 2012. He
is now a Research Engineer at CEA LIST, France,
and develops novel architectures based on nanoelec-
tronics and bio-inspired neuromorphic computing.

PLACE
PHOTO
HERE

Adrien Francis Vincent received the M.S. degree
from the Ecole Normale Superieure de Cachan,
France, in 2013. During his Ph.D. at Univ. Paris-
Sud, he is studying the integration of spintronic
nanodevices in neuromorphic architectures.

PLACE
PHOTO
HERE

Christian Gamrat received a degree in electri-
cal engineering from the Université Joseph Fourier,
Grenoble, France, in 1979 and a degree in infor-
mation processing in 1993 from Ecole Nationale
Supérieure dElectronique et de Radioélectricité,
Grenoble, France. In 1981, he started his career at
CEA/DSM Grenoble on the design of high speed
data acquisition systems for solid state and nuclear
physics experiments, got involved in the study and
design of neural networks computing machines in
1987, and led the team for the MIND-1024 neu-

rocomputer project in 1989. In 1994, he joined the Parallel Computing
Architecture Lab of CEA near Paris, where he finalized the development of
the SYMPHONIE embedded massively parallel computer for use on board
military fighter aircraft. In 1997 he started activity on hardware reconfigurable
computing, and in 2003, he initiated research on novel computing architectures
aimed at nanotechnologies. He is currently a Senior Expert in the field
of advanced computing architectures and nanocomputing, and he leads the
Nanocomputing group with CEA LIST, Gif-sur-Yvette, France.

