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A B S T R A C T

Ultra-high precision measuring machines enable to measure aspheric shapes with an uncertainty of few tens of
nanometres. The resulting clouds of points are then associated to theoretical model at the same level of accuracy
so as to obtain parameters that indicate about form error. Minimum zone (MZ), defined as the least value of peak
to valley (PV), is widely used to assess form error. Least squares method (L2) is often used to determine MZ but
the resulting value is usually overestimated. For this reason, L2 is replaced by L∞ norm because it gives a more
accurate value of MZ since it directly minimizes PV. Using L∞ norm results in a non-smooth optimization
problem and consequently its resolution becomes more challenging compared to L2.

In this paper, a novel minimax fitting method for accurate metrology of aspheres and freeform based on a
hybrid trust region algorithm (HTR) is proposed. To assess performance of the introduced method, it was
compared to an available minimax fitting algorithm based on a smoothing technique: exponential penalty
function (EPF). The choice of EPF is justified by superior performances in comparison to existing techniques.
Comparison was conducted on reference data, data available in literature and data gathered form measurements
of a real optical high quality asphere. Results show superiority of HTR over EPF in both returned PV values and
execution time.

1. Introduction

Aspheres and freeform optics have replaced spherical components
in several optical systems due to their superiority over classical (sphe-
rical) elements especially for eliminating spherical aberrations [1]. The
emergence of new manufacturing techniques such as glass and plastic
moulding and grinding as well as polishing methods expands its fields
of application in medical imaging, lasers, astronomy, etc. [2].

Form quality of optical aspheres and freeforms is crucial to their
performance and functionality. For this reason, form deviations must be
tracked all over components’ lifetime from design to operational use.
Nowadays, available techniques allow manufacturing complex geome-
tries and provide sub-micrometre-level corrections. On the other hand,
form assessment of optical elements and data processing still a major
issue [3]. Form assessment consists of determining whether form errors
are within tolerance specifications. For complex shapes, aspherics for
instance, data gathered from ultra-high precision CMMs must be treated
in a way to give parameters that indicate about tolerance zone. One of
these parameters is usually taken as the peak to valley (PV). Therefore,
the least value of PV which corresponds to the minimum zone (MZ)

must be determined (Fig. 1).
To determine the PV, deviations of data points from a reference

surface must be determined a priori. There exist several ways to de-
termine the reference surface but the one fitted according to a least
squares (L2) criterion is the widely used [3,4]. The main reason for
using L2 lies in simplicity when solving the resulting minimization
problem compared to other criteria. Nevertheless, L2 usually over-
estimates MZ which causes the rejection of a number of conforming
parts. In another way, L∞ criterion results in a direct minimization of
PV and consequently returns the closest value of MZ to actual.

In this context, a European project 15SIB01-FreeFORM was laun-
ched in 2016 to develop reference L∞ fitting algorithms and traceable
metrology for aspheres and freeform optical lenses with below 30 nm
accuracy [5].

In general, minimum zone determination problem could be math-
ematically formulated as follows:

x x x x T sϕ ϕ fmin ( ) where ( ) max ( ) and { , }x i m i1= =⩽ ⩽ (1)

fi is the Euclidean distance between the measured point P( )i and its
corresponding projection into the surface Q( )i , x Rn∈ could be either
the set of intrinsic shape parameters s, or the motion parameters T :
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rotation and translation applied to P{ }i .
Even that L∞ criterion gives a smaller value of PV, the formulated

objective function is non-differentiable and the resulting problem is
very difficult to solve since a wide range of derivative-based techniques
could not be used.

The choice of a mathematical formulation to describe the aspheric is
also crucial because it affects the obtained MZ. Although there exist
several formulations to describe an aspheric lens: splines, Chebyshev
polynomials, Zernike polynomials, etc. [6]. The one given by ISO
10110-Part 12:2007 [7] called monomial formulation is the most used.
Its mathematical expression is presented in (2).

z r r

R κ
a r( )

1 1 (1 ) r
R

m

M

m
m

2

0
2 4

2 4
2
2

∑=
⎛
⎝

+ − + ⎞
⎠

+
=

+
+

(2)

Where:

z → sag of surface
r → radial distance
R → radius of curvature
κ → conic constant
a m2 4+ →monomial coefficients

The aperture size of the lens Rmax defines the domain of r :
r R0 max⩽ ⩽ for which Eq. (2) is valid. The number of monomial terms

M depends on the targeted accuracy. Despite its simplicity, this for-
mulation represents some serious drawbacks especially those due to its
numerical instability. Thus, when performing L2 fitting, the resulting
Gram matrix is usually ill-conditioned, which outcomes in less accuracy
because of significant loss of digits. Other formulations were proposed
to cope with these drawbacks. They consist of using orthogonal poly-
nomials instead of monomials [8]. As consequence, the obtained Gram
matrix is nearly diagonal and the resulting system is more stable.

This paper is structured as follows. In Section 2, an overview of
minimum zone fitting methods is presented. In Section 3, the im-
plementation of the hybrid trust region (HTR) algorithm is detailed.
Validation of HTR against EPF is carried out on generated reference
data as well as benchmark data in Section 4. In the last section, an
investigation of a real case study of a measured high quality optical
asphere is illustrated.

2. Literature review

Minimum zone determination for classical geometries such as lines,
planes, circles and spheres has been extensively studied and different
methods were developed [9]. Computational geometry techniques were
used in [10–15] to determine minimum zone for straightness, flatness,
circularity, cylindiricity and sphericity tolerance. This class of methods
represent a major advantage since no derivative calculations are re-
quired. Furthermore, they can find the exact solution but their use is
restricted to simple geometries and could not be extended to freeforms.
Another free derivative method based on downhill simplex algorithm
was proposed to determine straightness tolerance [16,17]. Genetic al-
gorithms were also used for form error determination [18–20].

In regards to freeform shapes, many methods were developed for
minimum zone assessment. A first approach makes use of Lp norm [21].

At each iteration the value of p is incremented and the corresponding Lp
based smooth objective function is minimized using classical methods
until a termination criterion is satisfied. This method suffers from ser-
ious instability especially when approaching the optimal solution be-
cause the resulting Lp based objective function becomes nearly non-
differentiable. A heuristic method based on differential evolution al-
gorithm (DE) was recently developed for freeforms [22]. This method
performs poorly especially with large clouds of data points. Moreover,
given results are not deterministic.

In order to make use of differentiation optimization techniques, the
aggregation function method could be used. In [23,24], an exponential
penalty function (EPF) is used to approximate the non-smooth objective
function via a twice differentiable one. The resulting function could be
minimized using Newton based method or any derivative-based opti-
mization technique. This method gives good results but represents some
instabilities due to exponential terms.

The minimum zone determination problem could be formulated as a
nonlinear constrained problem. The formulation were detailed in [25],
and a primal-dual interior point algorithm (PDIP) was implemented to
solve the resulting problem. This method represents lower perfor-
mances compared to EPF since minimization of the resulting La-
grangian function requires the resolution of large linear systems with
ill-conditioned matrices.

3. Hybrid trust region algorithm (HTR)

The main idea of the hybrid trust region algorithm consists of per-
forming either trust region step, line search step or curve search step
according to the specific situation faced at each iteration [26,27]. It
enables to avoid solving the trust region problem many times. For every
iteration, a first stage consists of obtaining a trust region trial step dk by
solving the quadratic problem given in (3).
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where Bk is n by n symmetric positive definite matrix, Δk is the para-
meter defining the trust region domain, z is an introduced parameter
depending on the first derivative of the objective function ϕ, fi∇ is the
gradient of the function fi and . ,.′′ < > ′′ denotes the dot product.

The trust region domain is defined using L∞ instead of L2 so as QP
becomes an easily-solved quadratic problem. It should be mentioned
that the proposed QP in (3) has always a solution since (0,0) lies inside
the feasible domain. This problem could be solved using classical
methods adapted to quadratic problems such as interior point method
[28].

If the resulting trust region trial step dk could not be accepted, a
corrected step d dk k+ ∼ is determined by solving the problem in (4).

B

B

QP x

d d d d z M d z

s t f x d z ϕ x d f x d i m

d d

( , ):

min , ( ) ( , ),

. . ( ), ( ) ( ), 1, ,

‖ ‖ Δ

k

k

k

d z R k k k

i k k k i k k

k k

( , )
1
2n 1⎧

⎨
⎪

⎩
⎪

< + + > + =

< ∇ > − ⩽ + − + = …

+ ⩽

∼ ∼

∼

∼ ∼ ∼

∼

∼

∼

∼
∈

∞

∼ +

(4)

If neither the initial trust region step dk nor the corrected step
d dk k+ ∼ could be acceptable in trust region scheme, a line search along
dk or a curve search is performed if dk is a descent direction (the actual
reduction r 0k > in (6)). Otherwise (r 0k ⩽ ), a curve search is used to
find a step length tk that verifies (5).

Bϕ x t d t d ϕ x αt d d( ) ( ) , kk k k k k k k k k
2+ + ⩽ − 〈 〉∼

(5)

where α (0,1/2)∈ , dk is the solution of (3) and dk
∼

is the solution of (4).
In the case d d‖ ‖ ‖ ‖k k⩽ ∼

, dk
∼

should be taken to be 0. The implemented
algorithm follows the next steps:

Minimum zone envelope

Reference line

D: tolenece value

D

Fig. 1. Tolerance zone definition.
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• Step 1: Give initial values x R ε,n
0 ∈

τ τ α0,Δ ,Δ (0,Δ ),0 1 , (0,1/2)max max0 1 2> ∈ < < < ∈ , β (0,1/2)∈ ,
μ α0 2< < , η (0.5,1)∈ , B I0 = , k: 0= .

• Step 2: Determine (dk, zk) by solving the quadratic problem (3). If
d‖ ‖ εk ⩽ , stop; Otherwise;

• Step 3: Compute the ratio between the actual reduction and the
predicted reduction

r
ϕ x ϕ x d
M M d z

( ) ( )
(0,0) ( , )k

k k k

k k k k
=

− +
− (6)

• Step 4: (Update the iteration point)
(4.1) If r μk > , set s dk k= , x x sk k k1 = ++ , go to step 5; Otherwise;
(4.2) Compute the second-order correction step dk

∼
by solving pro-

blem (4), In the case d d‖ ‖ ‖ ‖k k⩽ ∼
, dk

∼
is set to be 0.

(4.3) Compute corrected rk ̃

r
ϕ x ϕ x d d

M M d z
( ) ( )

(0,0) ( , )k
k k k k

k k k k
̃ = − + +

−

∼

(7)

(4.4) If r μk ̃ > , set r rk k ̃= , s d dk k k= + ∼ , x x sk k k1 = ++ , go to step 5;
Otherwise;
(4.5) If r 0k > , set d 0k =∼ .
(4.6) (Perform curve search) Compute tk : the first number in the
sequence of β β{1, , , }2 … to verify (5). Set s t d t dk k k k k

2= + ∼
and

x x sk k k1 = ++ .

• Step 5: (Update Δk)
If r μk ⩽ , s τΔ [‖ ‖, Δ ]k k k1 1∈+ ;
If r ηk ⩾ , τΔ min( Δ ,Δ )k k max1 2=+ ;
Otherwise, Δ Δk k1 =+ .

• Step 6: (Update Bk), Update Bk to Bk 1+ ; k k: 1= + , go to step 1.

To update Bk, the Powell’s modification of BFGS formula is used
[29]. A simplified flowchart of hybrid trust region algorithm is sum-
marized in Fig. 2 and an illustration of the principle of the trust region
method is shown in Fig. 3.

4. Numerical validation

4.1. Application on reference data

A set of reference datasets (softgauges) with previously known MZ
value (MZref) are generated using a method proposed in [30]. The main
idea of this method is to state optimality conditions for the problem
given in (1) and then derive datasets for which optimality conditions
are automatically met. It should be noted that in the case of aspheric
shapes, this method could only generate vertex solutions.

For the validation process, only transformation parameters are
sought. Surface nominal coefficients are supposed given. Five config-
urations of coefficients are used (Table 1). These coefficients are chosen
in a way to provide different slope values between 5 and 85° at
r R 20 mmmax= = to the nominal aspheric shape. The radius of curva-
ture R varies between 0.75 and 102 mm. The conic constant was given
values with the set { 1− , 0.9− and 0.8− }. For each configuration, data
with predefined number of points (N={121, 1024, 10,404 and
100,489}) and a previously known MZref (MZref=10−4) are generated.

Algorithm configuration

Determine trust region step

Calculate actual reduction

C1

Update the solution

Update trust region domain

Update the matrix 

Corrected trust region step C2 Perform line or curve search 

Input

Output

No

YesYes

C3

C1: satisfies trust region scheme ?

C2: satisfies trust region scheme?

C3: termination criterion is satisfied?
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Fig. 2. A simplified flowchart of the hybrid trust region algorithm.
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Fig. 3. Illustration of trust region method.
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In order to assess the performance of the algorithm proposed in
regards to exponential penalty function algorithm (EPF) [23], each
generated dataset were submitted at the same time to both algorithms:
EPF and HTR. The corresponding PV values respectively PVEPF and
PVHTR, as well as execution time, respectively TEPF and THTR, are com-
pared as described in Fig. 4.

Initial data is rotated by angle π/20 around x axis and π/15 around
y axis as well as translated by−1mm in x direction, 1mm in y direc-
tion and −1mm in z direction (Fig. 5). Both algorithms were im-
plemented on a personal computer based on Intel Core i7/x64 platform
with 8 GB of RAM and a 2.40 GHz processor.

Tables 2–4 illustrate obtained values of PV-MZref as well as

execution time for both algorithms. Concerning PV values, both algo-
rithms give enough accurate results with superiority of HTR for all test
cases. In average, the relative error between PV values obtained using
EPF (resp. HTR) and MZref is 10 %8− (resp. 10 %9− ). In fact, for approxi-
mately all generated data points, HTR returns PV values ten times more
accurate than EPF. In regards to execution time, HTR clearly overcomes
EPF. For the latter algorithm, execution time is five times higher than
the formal, especially for data points that exceed 1000 points. When
multiplying the number of points by 1000, THTR was multiplied by 50
while TEPF by 150 in their corresponding worst cases.

EPF is a smoothing technique that consists of approximating the
non-differentiable objective function by a smooth one at each iteration
and then minimizes it. For this aim, Newton method is used so the
Hessian matrix must be calculated. Since the Hessian matrix calculation
time is proportional to the number of points in the data set, the ex-
ecution time increases even when considering an active set. Moreover,
descent direction determination is not always accurate since the ob-
tained Hessian matrix is not positive definite all the time. Hence, cor-
rections must be brought to the Hessian matrix whenever is needed.

On the other hand, when establishing the QP for HTR algorithm, the
matrix B is chosen to be symmetric positive definite, the Powell’s
modification of BFGS formula proves to be efficient for this purpose and
there is no need to calculate second order derivation terms, which
considerably reduces execution time.

Table 1
Surface nominal coefficients used for reference data generation.

Coefficients

Configuration R (mm) κ a4 (mm−3) a6 (mm−5) a8 (mm−7) a10 (mm−9) Rmax (mm) Slope (°)

I 101.58 −1 −1.70 10−13 −8.51 10−14 −4.25 10−14 −2.12 10−14 20 5
II 19.79 −0.9 −1.51 10−17 −7.55 10−18 −3.77 10−18 −1.88 10−19 20 25
III 8.88 −0.8 −1.94 10−12 −9.72 10−13 −4.86 10−13 −2.43 10−13 20 45
IV 4.14 −0.9 −4.17 10−12 −2.08 10−12 −1.04 10−12 −5.21 10−13 20 65
V 0.77 −1 −2.22 10−11 −1.11 10−11 −5.56 10−12 −2.78 10−12 20 85

Reference data
<Pref,MZref>

LM algorithm

PVHTR and PVEPF
vs.MZref

HTR EPF

PVHTR PVEPF

Coarse fitting:
Least Squares (L2)

Fine fitting:
Minimax (L )

Pref
MZref

Fig. 4. Comparison methodology.
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Fig. 5. An example of generated reference data (10 404 points).

Table 2
Values of PV-MZref and execution time for HTR and EPF (configuration II).

N MZHTR-MZref (mm) MZEPF-MZref (mm) THTR (s) TEPF (s)

121 4.06 10−19 1.45 10−15 0.84 2.68
1024 9.50 10−16 1.11 10−16 2.07 9.15
10,404 1.78 10−16 4.51 10−13 12.1 61.91
100,489 1.64 10−16 4.92 10−15 41.51 226.96

Table 3
Values of PV-MZref and execution time for HTR and EPF (configuration III).

N PVHTR-MZref (mm) PVEPF-MZref (mm) THTR (s) TEPF (s)

121 4.24 10−15 1.13 10−14 2.18 2.48
1024 2.18 10−16 2.61 10−16 4.32 4.47
10,404 1.41 10−15 3.08 10−15 4.27 36.50
100,489 6.73 10−15 6.78 10−15 20.52 255.06

Table 4
Values of PV-MZref and execution time for HTR and EPF (configuration IV).

N PVHTR-MZref (mm) PVEPF-MZref (mm) THTR (s) TEPF (s)

121 4.03 10−15 9.78 10−14 1.14 1.79
1024 8.14 10−16 8.42 10−15 5.23 7.24
10,404 1.15 10−16 2.14 10−15 35.88 200.16
100,489 9.86 10−15 1.05 10−14 50.03 274.75
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4.2. Application on benchmark data

Data available in literature were also used to assess the result given
by the algorithm proposed. We refer to [22] where a heuristic method
based on differential evolution algorithm (DE) was developed and a
data set of 8100 points were used to verify the algorithm. The nominal
coefficients of the aspheric surface are: R 520 mm= , κ 0.7= − ,
a 5.2104

5= − , a 6.5106
6= − − , a 3.11108

8= − , a 3.2221010
9= − . Fractal

Brownian function was used to generate noise with amplitude σ 1 μm=
around the nominal surface. The same data points was adopted for a

comparison between EPF and DE in [23].
Table 5 illustrates a comparison of results obtained by EPF and HTR.

PV value given by the formal algorithm is 3.21 μm. The newly proposed
HTR algorithm provides a lower value of 3.15 μm, which is approxi-
mately 60 nm lower. A 60 nm difference in result could cause an as-
pheric lens to be rejected while it is conforming to specifications. In
regards to execution time, the two values are approximately similar.

5. Experimental investigation

A high quality optical aspherical lens AO775, manufactured by
Anteryon® company using a Single Point Diamond Turning (SPDT)
process and finished with a high precision polishing process and glass
coating, was selected for test (Fig. 6). The intrinsic parameters of the
AO775 asphere are:

Table 5
Comparison of HTR and EPF on benchmark data (8100 points).

HTR EPF

PV (nm) 3.15 3.21
Execution time (s) 2.39 2.34

Fig. 6. Photo of the AO775 aspherical lens.

Fig. 7. Photo of the ultra-high precision Nanomefos measuring machine.
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Table 6
Comparison of HTR, EPF on measured data (31 390 points).

Least squares (L2) Minimax (L∞)

HTR EPF

PV (nm) 536 470.36 479.43
Execution time (s) 10.23 107.69 586.96
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- curvature at the apex is equal to c 10 mm20 1= − − ,
- conic constant is κ 1= − ,
- asphere coefficients are: a 0.02232 = , a 7.293104

6= − , a 4.52106
9= − ,

a 1.061108
11= − − and a 9.8871010

15= − ,
- sag S 3.217 mm= ,
- clear aperture CA 11.74 mm= .

The asphere was scanned at the Netherlands Organisation for
Applied Scientific Research (TNO) using the ultra-high precision
Nanomefos machine (Fig. 7) [31–33], designed specifically for non-
contact measurement of aspherical and freeform optics. As these sur-
faces are in general rotationally symmetric, the Nanomefos machine has
a cylindrical setup resulting in less moving axes and higher measure-
ment speed compared to orthogonal setup machines. To be able of
measuring slopes from -45° concave to +45° convex, the optical probe
can be tilted such that it is perpendicularly aligned to the best-fit as-
phere of the surface.

The measurement uncertainty is mainly determined by the me-
trology loop between the probe and the artefact. It was evaluated to
about 10 nm when the probe is perpendicular to the surface under test.
Further details about the Nanomefos machine are presented in [32,33].

The selected AO775 optical asphere was mounted on the air bearing
table and scanned using the non-contact probe system. A set of 31 390
points was collected, as shown in Fig. 8, and analysed using the im-
plemented minimax EPF and HTR fitting algorithms.

Table 6 illustrates results obtained using HTR and EPF as well as PV
values given by L2 fitting. HTR provides more accurate result than EPF
since PVHTR (470.36 nm) is approximately 9 nm lower than
PVEPF (479.43 nm). This value could be considered as too high when
targeting uncertainty at the nanometre level.

Furthermore, PV value given by L2 (536 nm) is considerably higher
than both other values with a difference of 66 nm which confirms the
statement, made in the introduction, that L2 overestimates MZ.
Similarly to reference data, EPF takes approximately five times execu-
tion time than HTR. Fig. 9 shows the evolution of PV values obtained
using EPF and HTR in function of execution time. It illustrates the ra-
pidity of HTR to converge compared to EPF. The final residuals ob-
tained using HTR is presented in Fig. 10. For all the above reasons,
superiority of the new implemented fitting method for aspheres and
freeforms minimax fitting is proved.

6. Conclusion

Unlike L2, minimax fitting can exactly estimate form error by di-
rectly minimizing the peak to valley (PV). Obtaining the exact
minimum zone for profile or surface tolerance could be achieved at the
expense of facility of the resulting mathematical formulation of the
problem.

In this paper, a novel method for minimax fitting of complex geo-
metries was developed. This method is based on a Hybrid Trust Region
algorithm (HTR). This newly proposed algorithm consists of a combi-
nation of a classical trust region method and a line search or curve
search depending on the situation faced. In order to assess the perfor-
mance of this algorithm against available ones, the novel algorithm was
compared to exponential penalty function algorithm (EPF) based on a
smoothing technique for minimizing non-smooth objective function.

The implemented HTR algorithm was first tested and validated
using generated reference data sets. Softgauges generation was con-
ducted in a way to obtain several shapes that simulate different con-
ditions (number of points, form error and slope). Initial results show
superiority of HTR over EPF in terms of obtained PV values and ex-
ecution time. This result was confirmed, in a second step, when ana-
lysing benchmark data available in literature.

A high quality optical asphere was selected for experimental in-
vestigation. It was scanned using the ultra-high precision Nanomefos
measuring machine. A set of 31 390 points was recorded and submitted

to the two compared algorithms. Once again, results show superiority of
HTR over EPF in both resulting minimum zone values and execution
time.
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