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A COMPLETE CLASSIFICATION OF ECM-FRIENDLY FAMILIES
USING MODULAR CURVES
-PRELIMINARY VERSION-

RAZVAN BARBULESCU AND SUDARSHAN SHINDE

ABSTRACT. The number field sieve, an algorithm with major applications in
cryptography, uses the elliptic curve method of factorization (ECM) as a build-
ing block. It is a motivation to search parameterizations of infinite families
of elliptic curves defined over a given number field K with exceptional image
of f-adic Galois representation. This boils down to making the complete list
of finite indexed subgroups H of GL2(Z;) of genus 0 and 1 and computing
K-rational points on the modular curve X . Fast algorithms for this latter
step are proposed in [SZ17] and [RZB15]. We measure the consequences on
ECM of the newly found families using a heuristic of Montgomery.

1. INTRODUCTION

Integer factorization is an important problem in algorithmic number theory and
cryptology. The factoring algorithms are naturally split into two classes : on the
one hand these whose cost depends only on the size of the integer N to factor, like
the quadratic sieve and the number field sieve (NFS) [Pol93, LLIMP93] and on the
other hand those whose cost depends on the size of the factors we search, except
for a polynomial factor in the bit size of N as it is the case for the trial division and
the elliptic curve method of factorization (ECM) [LJ87]. At the first sight, only the
first class is relevant in cryptology because the numbers to factor in the RSA system
are of the form N = pg where p and ¢ are two primes of equal bit size. However,
ECM is used as a subroutine by NFS and, in computations of cryptologic relevance,
ECM takes an important fraction of the cost of NFS. A second important problem
in cryptology is that of computing discrete logarithms, i.e. in a cyclic group G of
generator g given g” find x, for which the best known algorithm is a variant of NFS.

In brief, ECM works as follows : given an integer N with an unknown prime
factor p, one uses elliptic curves E with rational coefficients and a point P € E(Q)
with denominators relatively prime to N and computes Py; := [M]-P, while keeping
the coordinates modulo N, for some integer M with many prime factors; if # E(F),)
divides M, Py is the neutral element of E(F,), which allows us to find p.

The choice of M varies from one implementation to another, but as a first ap-
proximation we take M = B!'°82 B for some integer B. The condition for success is
then that # E(F,) is B-smooth i.e. all its prime factors are less than B. By Hasse’s
theorem [Has36], we have # E(F,) =~ p. It is then natural to compare the chances
of #E(F,) being B-smooth with the chances of an integer less than p to be B-
smooth. In the original variant of ECM, as proposed by Lenstra [LJ87], one selects
at random uniformly integers z, y and a in [0,p — 1] and sets b = y? — 23 — az so
that (z,y) € E(Fp). Lenstra [LJ87, Prop 2.7] proved that the proportion of elliptic
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2 RAZVAN BARBULESCU AND SUDARSHAN SHINDE

curves selected in this manner for which # E(F,) is B-smooth equals up to a factor
m the proportion of integer in [p — /p, p + /p] which are B-smooth.

In cryptologic applications, ECM is used in its variant where the elliptic curves F
are selected from families of curves with rational coefficients. Soon after ECM was
published, Montgomery [Mon87] introduced a parametrization, By? = 23+ Az?+z,
which speeds up the point addition and doubling. Montgomery also suggested to
use infinite families of elliptic curves in the Montgomery parametrization in order
to guarantee that # E(F,) has known smaller factors. Indeed, by [Sil08, Prop. 3.1
(ch 7)], when E has good reduction modulo p, E(Q)ors embeds in E(F,), so #Eiors
divides #E(F,). Experimentally, this increases the proportion of primes p where
#E(F,) is B-smooth.

An important direction of improvements for ECM was to select families of elliptic
curves over Q. Since the number of curves used to factor a given integer is not known
in advance, we restrict the research to infinite families.

Montgomery gave infinite families of elliptic curves in Mongomery form having
12 and respectively 16 rational torsion points. Suyama [Suy85] proposed an in-
finite family of curves E in Montgomery form having 6 torsion points such that,
for any prime p, 12 divides # E(F,). Later, Atkin and Morain [AM93] proposed
infinite families for each other possible torsion groups over Q. In 2010, Brier and
Clavier [BC10] found families of curves defined over @ which have large torsion
subgroups over Q(¢). In 2010 and 2011, Bernstein, Birkner, Lange [BBL10], and
the same group and Peters [BBLP13] proposed infinite families of Edwards curves,
i.e. of the form z2 + y2 = 1 + dz?y?, which have a faster point addition. The
families they proposed have 6, 8 and respectively 16 torsion points over Q and are
isomorphic over Q to known families of Montgomery curves. In 2016 Heer, McGuire
and Robinson [HMR16] present families defined over number fieds K which have
large torsion subgroups over K.

In 2012, Barbulescu, Bos, Bouvier, Kleinjung and Montgomery [BBB*13] found
better infinite subfamilies of the Suyama family which have the same number of
torsion points over any fixed number field and infinite families of elliptic curves
having a torsion subgroup Z/2 x Z/4 and yet better smoothness properties than the
general curves with this torsion. For this, they related the study of ECM-friendly
curves to the study of a particular Galois group. For a rational elliptic curve E
and an integer m, the m-torsion field Q(E[m]) is the number field generated by
E(Q)[m]. This field is an extension of Q (Prop. 2.3 in [BBB*13]). As E(Q)[m] ~
Z/mZ x Z/mZ, there exists an injective map

PE.m : Gal(Q(E[m])/Q) — GL2(Z/mZ).

By Serre’s work [Ser71] we know that the index of I(pg ) is bounded indepen-
dently of m. Shimura’s work [Shi71] implies that, for a given m, the Galois image
is surjective for all elliptic curve except a subset verifying algebraic equations. Bar-
bulescu et al. proved a formula which relates the smoothness properties to the
Galois groups of torsion fields : it is impossible to change the smoothness proper-
ties of # E(F,) without changing the Galois group of Q(E[m]) for some m.
Recently, Sutherland and Zwyina [SZ17] and Rouse and Zureick-Brown [RZB15]
studied all the infinite families of rational elliptic curves whose Galois group of
Q(E[m)), for a prime power m, is isomorphic to some subgroup H of GL2(Z/mZ).
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They obtained the complete classification when m is a power of 2 and when H
contains —1.
Roadmap:

) Elliptic curve method

) Looking for ECM-friendly curves using computer algebra systems
) ECM-friendly curves using modular curves

) Tools to compare different families of curves

(1
(2
(3
(4

2. CRYPTOLOGIC UTILIZATION OF ECM

In cryptology, ECM is used as an algorithm to test B-smoothness : given an
integer NV, find all its prime factors less than B. Under a conjecture about the
existence of smooth integers in short intervals [Cro07, Conj 1], H. Lenstra Jr. proved
that, if N has a prime factor less than B, ECM will find it with probability at least
1/2 in time M(N)Lp(1/2,v/2)'*°M)  where M(N) = O((log N)?) is the cost of the
arithmetic operations in Z/NZ and we used the L notation

Lp(a,c) = exp(c(log N)*(loglog N)'~%).

Smoothness tests play a key role in cryptology. Indeed, when factoring integers
with NFS, one selects two distinct number fields Q[z]/f(z) and Q[z]/g(z) such
that f and g have a common root m modulo N; we call a (resp. ) a root of
f (resp. g) in its number field. The next stage of NFS consists of enumerating
polynomials ¢(z) € Z[x] and collecting all but a negligible proportio of those ¢
such that N (¢(a)) and Ngg)(¢(B)) are B-smooth for B = Ly(1/3, {/8/9).
The smoothness tests are done using ECM both in the complexity analysis and in
practice, e.g. in the open source implementation CADO-NFS [BGK™]. The next
stage of NF'S consists in solving a linear system to find a tuple (ug)e collected Such
that x1 := H¢ o(a)¥¢ and xs 1= H¢ ¢(B)*¢ are squares. Finally, one computes two
polynomials r; and ro in Z[z] such that ri(a)? = 21 and 72(8)? = 22 and obtain
the solution 3? = y3 (mod N) where y; = 71(m) mod N and ys = ro(m) mod N,
where m id the common root of f and g modulo N. If ged(y1 — y2, N) &€ {1, N},
one finds a factor, otherwise one goes back to the beginning of the algorithm (in
practice one computes many solutions (yi,y2) simultaneously).

When computing discrete logarithms in the multiplicative group of Fp» for a
prime p, the best asymptotic complexity is obtained by the extended tower number
field sieve (exTNF'S) [KB16], which is a variant of NFS. The first step is to select a
factor n of n and a polynomial h(t) € Z[t] of degree n which is irreducible modulo
p. Let ¢ be a root of A in its number field. Then one selects two polynomials f
and ¢ in Z[t, z] such that, if w is a root of h in F,[t]/(h), the polynomial f(w,z)
and g(w, z) have a common irreducible factor ¢ € Fj(w)[z] of degree x :=n/n. If
we call a and 8 roots of f and g respectively in their number fields, we obtain the
following diagram:



4 RAZVAN BARBULESCU AND SUDARSHAN SHINDE

Q@) Q(, B)

Q

Once h, f and g have been selected, the algorithm continues by enumerating a large
number of pairs a(t), b(t) € Z[t] and collecting all but a negligible proportion of the
pairs a and b for which Ng(, o) (a(t) —ab()) and Ny, gy(a(t) — Bb(¢)) are B-smooth
for B = Ly (1/3, ¢/8/9). In the next step, one factors a(t) — ab(t) and respectively
a(t) — Bb(r) into prime ideals and writes a linear system whose coeflicients are the
valuations of prime ideals and the unknowns are in bijection with the prime ideals
of norm less than B. The solution allows us to obtain the discrete logarithm of any
element in a time which is negligible with respect to the cost of collecting the pairs
a(t) and b(t).

As in the factoring variant of NFS, the smoothness tests are done with ECM. We
note that in the case of discrete logarithm we have a larger number of methods to
select the polynomials f and g. For example, in the case of the generalized Joux and
Lercier method [JL03, BGGM15], one can set f to be any irreducible polynomial
in Z[x] having an irreducible factor ¢ of degree k. For example, in [BGGM14], the
authors used f(z) = ¢s(x) so that for any pair (a,b), Ng(a)(a — ab) = a* 4+ b*, so
half of the integers to factor in NFS can be tackled with elliptic curves defined over
Q((s), where (g is a primitive 8th root of unity. Moreover, when h = ho+ hyt+ hoa?
for ho,h1,ha € Z, Ng(,a)(a(t) — ab(r)) = Ng)(a" — ') = hov? + hiuv + hou?,
where u — 1v = Ng(,,a)/0(.)(a(t) — ab(1)).

To sum up, an improvement of ECM adapted to integers of the form hou? +
hiuv 4 hov? would translate in an improvement of the relation collection of NFS
and this can change the systems based on discrete logarithm in fields Fj2n. An
improvement on ECM in the general case would have consequences on the system
based on factoring and discrete logarithm. Hence, for cryptologic applications, it is
then important to find all the infinite families of elliptic curves defined over given
number fields which have exceptional Galois images for some torsion, and to verify
experimentally if they can bring a speed-up of ECM.

3. A RESEARCH OF FAMILIES USING COMPUTER ALGEBRA

The numerous families of ECM-friendly curves in the literature were found by
methods which are not guaranteed to produce the exhaustive list of families. In
this section we discuss a computer algebra algorithm which allows us to find all the
families in the literature in a unified manner.
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FIGURE 1

From a computer algebra point of view, the problem we are tackling is a par-
ticular case of the inverse Galois problem: given an algebraic extension K of
Q(aq,...,at), the field of rational fractions in ¢ variables, and a finite Galois ex-
tension L of K defined by a polynomial f € K[z], compute for each subgroup
H of G := Gal(L/K) a parametrization of the coefficients of f so that Gal(f) is
conjugated in Gal(L/K) to a subgroup of H.

In general, this version of the inverse Galois problem can be solved algorithmi-
cally as follows. First, one factors f in L[z] and obtains the list of automorphisms
of L/K. Then one computes the list of subgroups H of G. Thirdly, for each H, one
solves a linear system to obtain L. Finally, one computes a primitive element 6 of
LH together with its minimal polynomial Fy over K and obtains the equivalence:

Gal(f) c Hifand only if 30 € K, fg(0) =0,

which is illustrated in Figure 1.

The algebraic conditions hence obtained can then be used to create parametriza-
tions. Although the problem of parametrizing an algebraic set is open in the general
case, in this article we will need to treat solely plane curves. Let C be a plane curve
and K a number field for which we search a parametrization of the K-rational
points of C. One starts by computing the genus g of C. If g > 2, Faltings’ theorem
implies that there is no parametrization of the solutions of fgy over K (the set of
solutions is finite). If g = 1 and we can find a K-rational point, C is an elliptic
curve and, if we can find a non-torsion K-rational point then we have an infinite
parametrization. If ¢ = 0 and we are able to find a K-rational point, then C is a
conic and we have a K-rational parametrization of the family. Let us take a first
example.

Exemple 3.1 (Sec 3.4.1 in [BBB'13]). We consider the twisted Edwards curves,
Eaa : ax? +y? = 1+ dz?y?. We are given the family a = —1 and d = —e* for which
Gal(£_1,-.4[8]/Q(e)) is of order 32, and we look for an equation satisfied by the
rational values of e such that, for the elliptic curve E corresponding to e, Gal(E /Q)
is contained in a proper subgroup of Gal(€_; _.4[8]/Q(e)). For a generic value of
d, we consider the irreducible factors of the exact quotient of 8-division polynomial
Uy by the 4-division polynomial ¥,. As ¥, divides Wg, this quotient W5**! is a
polynomial in Q(d)[X]. The roots of ¥§¥? correspond to the points of order 8.
We notice that ¥§*“! has 2 irreducible quartic factors and a factor of degree 16.
Let us denote by these factors by Ps o, Pz 1, Ps2.

We solve the Galois inverse problem for K = Q(e) and L is the function field of
one of the factors of Wg.
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e For Pg, there are exactly 3 non-trivial subfields which are all quadratic.
These fields are defined by 22 + 2e, 22 — (e2 + 1) and 22 + 2e® + 2e. The
last equation is an elliptic curve of rank 0 over QQ thus the familly is finite.
As the first two are the conics with rational points, we parametrize them
to get che following equations to be satisfied by the rational values of e:

e=—-% ore= 922—;1. This ensures that Gal(€_; .(4)[8]/Q(e)) is a proper
subgroup of Gal(€_1,_.4[8]/Q(e)).

e For Pj;, there are once again exactly 3 non-trivial subfields which are all
quadratic. These fields are defined by 22 —2e, 22— (e?+1) and 22 —2¢3 —2e.
As in the previous case, the last equation is an elliptic curve of rank 0 over
Q thus it does not (for now!) interest us (cf Section [***]). Here one can
choose e = % or e = f% to get the necessary equations.

e Finally for Pg 2, we obtain 14 proper non-trivial subfields of which 7 are
quadratic and 7 are quartic. The 7 quadratic subfields are defined by 2% +
efe+1)(e—1), 2> e, 22 + (e + 1)(e — 1) and 2% + 1. Here too, as the
first equation is an elliptic curve of rank 0 over Q and the last one can
not be satisfied over Q, thus these equations do not interest us. Whereas
the second and the third one give us e = —22 or e = 2922;% respectively.
Among the 7 equations defining the quartic subfields, 5 are elliptic curves
of rank 0 over Q and 2 are reducible into two genus 0 components over a
quadratic extension and over this extension these components admit only

finitely many points.

As d = —e*, it would suffice to consider the families up to sign. We thus conclude
that the subfamilies presented in [BBB'13, Table 3] are exhaustive.

For more details about the computation of subfields of algebraic function fields
we refer to Hess’ work [Hes04]. Since it is slow to obtain the exhaustive list of
subfields, we present two types of subfields for which the computation is faster.

3.1. Computing a list of maximal subfamilies. Les us consider the case in
which the ¢-adic image of Galois is surjective for a pair (E, £) and we want to certify
this. In this case it suffices to have a finite set of families which are maximal with
respect to inclusion and each of which satisfies an equation describing a negligible
set of points in the space of parameters. This also justifies that we call generic for
¢ the elliptic curves whose f-adic Galois image is surjective.

Let ¥ be a prime power and E : y? = 2% +az+b be an elliptic curve over Q(a, b).
We put Ko = Q(a,b) and, for i = 1,2,...,k, we construct K; := Q(a,b)(E[¢!]) as
an extension of K; 1 := Q(a, b)(E[¢*~1]). Since the group of £ torsion is isomorphic
to (Z/0'Z)?, we can construct K;/K,_; using four extensions, which correspond to
two x and two gy coordinates. Indeed, we make the first extension by an irreducible
factor f; 1 of \I!Zi‘a“ and call z7 one of its roots. The second extension is by an
irreducible factor f; o of y? — (23 + axy +b), which can be linear, and call y; one
of its roots. Note that Pyi(z1,y;) belongs to E[¢!]. Thirdly, we compute the set
S of x coordinates of the points {[a]P1 + Q | Q € E[¢'~'] anda (Z/¢'Z)*} and we
make an extension by an irreducible factor f; 3 of W5 /[ _o(z — s) and call
x9 one of its roots. Finally we make an extension by an irreducible factor f; 4 of
y? — (23 + awy + b), which can be linear, and call y, one of its roots. Note that
Py(z2,y2) belongs to E[¢*] and, because f; 3 is relatively prime to [[,.q(x — s), the
pair (Pp, P,) is a basis of E[¢!], so K; is the ¢i-torsion field.
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When we instantiate a and b elements ag and by of the number field K, some
of the polynomials f; ; with 1 < ¢ < kand 1 < j < 4 can be reducible. If all
of them remain irreducible, then Gal(Eq, p,[¢']/K) has the same cardinality as
Gal(E,p[l']/K), s0 Eqq b, is generic.

By writing necessary conditions for the polynomials f; ; to factor we obtain a
list of maximal families. If ¥ = 1 we drop the ¢ index and in the general case we
renumber the polynomials so that we have a tower of function fields defined by the
polynomials fi, fo,..., f; for some t. Algorithm 1 obtains a list of equations so
that, if none is satisfied, then the f-adic Galois image is surjective.

Algorithm 1 Finding necessary polynomial conditions

Input: A prime power ¢* and a number field K
Output: A list of necessary polynomial conditions in a and b over an extension
of Q(a,b) such that Gal(K(a,b)(E[(*])) is exceptional for the elliptic curve
E:y?=2%+ax +b.
1: Compute a list of extensions K(a,b) = Lo € Ly € Ly C --- C K; =
K(a,b)(E[¢*]) and call f; an irreducible polynomial which defines L;/L;_1.
2: For each j compute a primitive element of L;/K(a,b) and call F; its minimal
polynomial over K (a,b).
for j=1,2,...,t do
ford=1,...,|degf;] do
for r € maximal partitions of deg(f;) do
Si.» < System of polynomial equations in a,b and a root of f; arising
from equating coefficients

7: C,; » < Triangulation of S;, (Resultant)

8: > Necessary for a certain factorization pattern of f;.
9: end for

10: end for

11: end for

12: return Set of C;

Exemple 3.2. Let E : 2 = 23 + ax + b be a rational elliptic curve. Let ¥3 =
a* + 2ax? + 4bx — $a® be its 3-division polynomial and A = 4a® + 27b? its discrim-
inant. We apply the above algorithm in this case in order to obtain a system of
necessary equations for Gal(Q(a, b)(E[3])/Q(a, b)) to be exceptional. Considering
the construction of torsion fields discussed above, we see that one does not need
more than 4 extension to construct Q(a, b)(E[3]): The first one by an irreducible
factor of U3 to get the field Q(a, b)(x1), where x-coordinate of a point Py of order 3.
The second one is by the quadratic polynomial 22 — Wy (z1), if it is irreducible, in or-
der to get the field Q(a, b)(x1,y1). This extension gives the necessary y-coordinate
y1 of the point P;. Similarly, to create another point P, we make a third exten-
sion by an irreducible factor of ¥3 over Q(a,b)(x1,y1). This extension gives us
the z-coordinate x5 of point P, and the field Q(a, b)(z1,y1,22). Finally we make
a quadratic extension to obtain the y-coordinate y, of P,. These four extensions
construct Q(a, b)(E[3]). In a generic case, the total degree is 4 x 2 x 3 x 2 = 48.
If Gal(Q(a, b)(E[3])/Q(a,b)) is exceptional, one of the above extensions is is not of
its generic degree. We consider the maximal partitions of degree of each extension.
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e U3 has 2 quadratic factors or one linear factor. This we note as [(2,2)] or
(1,3)].
e U3 is irreducible and the second polynomial 22 — Wy (x1) factors into two
linear factor. This we note as [(4), (1,1)].
e If the first two polynomials are irreducible and the third one has a linear
factor, we note it as [(4), (2), (1,2)].
e Finally we have one possibility: [(4), (2), (3), (1, 1)].
Thus there are at most 5 maximal families of elliptic curves with exception Galois
image.
We apply the above algorithm in each case. For (1,3) we obtain a simple condi-
tion that ¥3 has a root. For (2,2), the algorithm considers the following system,

ez + fo=0 fo=—e2

eafo +e1+ f1=2a N fi=2a+ezfr —e;
61f2+€2f1:4b €1 (6224*2(1761)4*10,2:0.
e1fi = —1/3a? €28 + daex* + %egzag —166%2 =0

This system arises from equating the coefficients of the equation x* + 2ax? + 4bx —

%aQ = (2% + eaz + e1) (2% + fox + f1). This enables us to determine for any curve

whether the factorization pattern of ¥s is (2,2). Finally we have the following,

Case Condition
1,3) 3z € Q(a, b) such that 3% + 6azx? + 12bx —a® =0
2,2) 3z € Q(a,b) such that 32° + 12ax? + 16a%2? — 48b*> = 0
1 3z € Q(a,b)(x1) such that 272% + 216 b2% + 18 Azt — A2 =0

Jz € Q(a, b)(x1,y1) such that C;1 =0

2)]
, (1, 1)] -

Here, C) = 27 2'? + 432 ax'® + 2304 a228 + 288 (20 a3 + 39 b2):176 + 1536aAz* —
25642,

We emphasize that the list of families is exhaustive in the sense that all the
families of elliptic curves with exceptional mod 3 Galois image are subfamilies of
the ones presented.

Remark 3.1. Out of possible 5 maximal equations in the above example, we notice
that there are in fact only two maximal equations. The first one being that ¥3 has a
root and the second one being that the polynomial C; has a root in Q(a, b)(x1,y1)-
The later condition is equivalent to j-invariant being a cube as the polynomial 23 —j
has a root in the extension field defined by C; over Q(a,b). Thus in order to test
an elliptic curve E is generic for 3, we check whether its 3-division polynomial has
a root and whether its j-invariant is a cube.

3.2. Computing quadratic subfields.

Let us start with a simple remark: quadratic fields are uniquely determined
by their discriminant. Rouse and Zureick-Brown noted that one can factor the
discriminant of L and then, for each squarefree factor D of Disc(L/Q), test if
K(V/D) is a subfield of L. Let is take an example.

Exemple 3.3 (Sec 3.5.1 and Sec 3.5.3 in [BBB*13]). Let us consider the case of the
Suyama family, which is the set of Montgomery curves, M4 p : By? = 2+ Ax? + .
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The group Gal(Q(M 4, 5)|[8]/Q(¢)) is isomorphic to Dg which has two subgroups
of index 2 : the group of rotations Cg and the group D4. The irreducible factors of
Disc(Q(Ma.p)|[8]) are —1,2,B,A — 2 and A + 2. We test all the 32 function fields
Q(o,V/f) with f product of a subset of these irreducible factors. We obtain that
the subgroup D, corresponds to the condition (A+2)/B = —O, which corresponds
to the family Suyama-11 (Sec 3.5.1) and (A? — 4) = O, which corresponds to the
family Suyama-9/4 (Sec 3.5.3). Note that the method applied allow to conclude
that the list of quadratic subfamilies is exhaustive.

In the next section we present a method which is faster thanks to the theory of
modular curves.

4. MODULAR CURVES APPROACH

An alternative approach to the computer algebra one is due to the following
theorem from Shimura’s theory.

Theorem 4.1 ( [Shi7l] and Prop 3.3 [Zyw15a]). Let E be an elliptic curve such
that j(E) & {0,1728}, N a positive integer and H a subgroup of GLy(Z/NZ) such
that —Is € H and det(H) = (Z/NZ)*. Then there exists a polynomial X (j,t) such
that Gal(Q(E[N])/Q) is conjugated to a subgroup of H if and only if Ity € Q such
that Xu(j(E),t0) = 0.

Contrary to the previous section, where the equations made use of the coefficients
a and b of the elliptic curves, here they contain the j-invariant. On the one hand
equations using j have the advantage that they correspond to plane curves. On the
other hand, the use of the j-invariant can only correspond to a subset of the possible
subgroups H. Indeed, two elliptic curves (resp. families of curves) can have the
same j-invariant yet have different Galois images and therefore different behavior
in the ECM algorithm. For example, for the curve E : 3?2 = 23 — 3362 + 448,
Gal(Q(E[3])/Q) is of order 12 and if we twist E by 7, we reduce the order to 6.
These curves have the same j-invariant however their performance in the ECM
algorithm is different. The twist fares better.

Note that, as stated by the Rademacher-Thompson theorem, the list of subgroups
of PSLy(Z), and therefore of subgroups of GL3(Z) of surjective determinant and
containing —I5, which have genus 0 or 1 is finite. The explicit list was computed
by Cummmins and Pauli [CP03]. One can then apply Theorem 4.1 to obtain a
complete classification of infinite families.

The computation of Xy is done in three steps. First one computes a system
of generators of X, then one computes a primitive element h of the extension
X /Q(CnN, ) (called hauptmodule when H has genus 0) and finally one obtains X
as the minimal polynomial of h. For a complete description we refer to the works of
Rouse and Zureick-Brown [RZB15] and respectively Sutherland and Zywina [Sut15],
who computed the explicit equations for all cingruence subgroups of genus 0 and 1
having surjective determinant and containing —1Is.

In order to obtain the complete list of ECM-friendly infinite families one has to
extend this list to subgroups which don’t contain —1I.

4.1. Modular curves when —I, ¢ H. A simple remark is that any congru-
ence subgroup H of GLy(Z) either contains —Is or is contained in a subgroup
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H := (H,—1I) which contains —I5. Rouse and Zureick-Brown noted that, Xy is a
quadratic subfield of Xﬁ/@((N,j), which can be computed as in Section 3.2.

To our knowledge, the list of subgroups H not containing —I5 is not complete

because the case of subgroups of level ¢* with £ > 2 and k > 1 is not treated
in [RZB15] and [Zyw1ba].
Lemme 4.1. Let E be a non-CM elliptic curve over a field K, m > 1 a an integer.
Let H C GLy(Z/mZ) containing —1 such that pE,m(Gal(K (E[m])/K)) = H. Let
H be an index 2 subgroup of H such that —1 ¢ H and H = (H,—1). Then there
exists a quadratic twist Eq of E such that

pEq.m(Gal(K(Eq[m])/K)) = H.

Proof. Let us consider the fixed subfield L of K(E[m|) by H. As H is of index 2
in H, L is a quadratic extension of K. Let d € K such that L = K(v/d). Let Eg
denote the quadratic twist of E by d. Clearly any basis (1,41), (22, y2) € K(E[m])?
of E[m)] can be transformed into a basis (x1,y1/Vd), (x2,y2/Vd) of Eq[m]. We thus
have K (Eq4[m]) C K(E[m]). Let ¢ be the restriction map from Gal(K (E[m])/K))
to Gal(K (E4[m])/K)). Let o € Gal(K(E[m])/K)) such tha pgm,(c) = —1. We
then have either p(vd) = Vd or p(Vd) = —Vd. As ppm(c) = —1 ¢ H, o(Vd) =
—V/d. Then clearly as o fixes the basis (z1,y1/Vd), (x2,y2/Vd) of Eg[m], it fixes
K (Eg4[m]). So we have o € ker(¢)). On the other hand for any 1 # 7 € ker(v),
we have 7(vd) = —v/d. Then clearly if (z3,y3), (z4,54) € K(Eg[m])? is a ba-
sis of BEy[m] then (z3,y3Vd), (x4,y4v/d) € K(E[m])? is a basis of E[m] and as
7(Vd) = —Vd, pe.m(T) = —1. So we have ker(y)) = {#1}. Thus we conclude
i (Gal (K (Ey[m]) /K)) = H/{#1} = H. .

In the light of the above lemma, we look for quadratic subfields of torsion points
fields when -1 is in Galois image. In practice, as the discriminant of a subfield
divides that of a superfield, we check twists by possible factors of discriminant of
K(E[m)]).

Exemple 4.1. Let E; : y? = 2% — 3(t +27)(¢t + 3)x — 2 (¢ + 181 — 27) (t + 27)
with j(E,) = {200 404 Disce(E,) = 2!235¢(t + 27)2. By Table 1 of [SZ17],

t
for infinitely many values of ¢, pg, 5(Gal(Q(E[3])/Q)) ~ H = ((31),(}2)). H
has two subgroups H; and Hs of index 2 not containing -1. By Lemma 4.1, there
exist quadratic twists Ef, and Eg, of E; such that PEn,3 ~= H;. By specializing
at several values of ¢, we obtain their models. These are the twists by ¢ + 27 and
—3(t + 27).

Table 1, 2 and 3 give models of curves with exceptional mod ["-Galois images
for " € {3,9,27,5,25,7,13}.

Remark 4.1. The families for ¢ € {2,3,5,7,13} are previously computed in
[Zyw1bal.

Theorem 4.2. Let ¢ be an odd prime different than 11 and €™ < 28 be a prime-
power and H C GLo(Z/"Z) such that —1 € H and H arises as a mod - {™ Galois
image for infinitely many rational elliptic curves. Let E be one such curve. Then
E is isomorphic to a specialization of one of the curves in the families give in Table

2, 8,4 or .
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In order to certify the correctness of families given in the above theorem, we
shall need an easy lemma.

Lemme 4.2. Let ¢ be an odd prime. Then if —1 € pg m(Gal(Q(E[("])/Q)) then
—1 € pp.(Gal(Q(E[(])/Q)).

Proof. This is straightforward. Let o € Gal(Q(E[¢"])/Q) such that pg ¢ (0) = —1.
Let P,Q be a basis of E[¢"] in Q(E[¢"]) then P’ = [("~11P,Q’' = [("~1]Q is a basis
of E[¢] which is in Q(E[{]). Let ¢’ be the restriction of o to Q(E[{]). One can verify
that ¢/(P’) = —P' and ¢'(Q") = —Q' and thus pg (0’) = —1. O

Now we prove Theorem 4.2.

Proof. (Of Theorem 4.2) Let H C GLy(Z/("Z) such that —1 ¢ H. Let H =
(H,—1). Let j(t) be j-invariant classifying the elliptic curves whose mod — ("
Galois image lie in H. Let Ey be a model corresponding to H. By the above
lemma, it suffices to verify that the image of pg, ¢ does not contain -1. O
4.2. Families over number fields. In [RZB15], the authors computed equations
for 10 pointless conics and 25 elliptic curves with rank 0 (c.f. Figure 3 in [RZB15]).
The 10 pointless conics correspond to the genus 0 subgroups which do not contain
an element corresponding to complex conjugation. Such an element is required in
order to have infinitely many rational elliptic curves whose associated Galois image
is contained in those subgroups ( [Zyw15b, Prop. 3.5]). However these genus 0 and
genus 1 curves can admit infinitely many points over number fields. Table * * give

such families over Q(i), Q(v/—2) and Q(y/—3).

5. A CRITERION TO COMPARE FAMILIES OF ECM-FRIENDLY CURVES

5.1. Motivation. Let us recall that ECM succeeds if # E(F,) is B-smooth for a
bound B > 0. Since # E(IF,) belongs to Hasse’s interval, [p — 2,/p,p + 2,/p], one
can ask for a bound B if the chances of # E(F,) being B-smooth are the same as
the proportion of B-smooth integers in an interval centered in p of length ¢,/p for
a constant c.

Theorem 5.1 (Lenstra [LJ87]). Let p be a prime and B an integer. Then,

Prob(# E(F,) is B-smooth) = Prob(n € [p — /p,p + /p] is B-smooth),

1
O(logp)
where the sign Prob in the right side denotes the proportion of B-smooth integers
in the interval and the sign Prob in the left side denotes for a fixed prime p the
proportion of triplets (xo,yo,a) € Ff; such that, when putting b = y3 — x3 — ax and

Eup:y? = 2%+ ax + b having the point (zo,yo), the order #E, ,(F,) is B-smooth.

On the one hand, the theorem is precise because the factor O(logp) is hidden
in the o(1)-term in the complexity of ECM. On the other hand, the theorem is not
precise enough because the experiments show that if one restricts to elliptic curves
E from some families, e;g. Montgomery curves M, : by?> = 2® + az? + z, then
the proportion of smooth cardinalities can be improved. This is a motivation to
consider the factor m as all the good properties are hidden in this factor.

As discussed in Section 2, an important application of ECM consists in using
the same elliptic curve to test smoothness of many integers. In this context, several
papers measure the quality of a curve E for ECM as the proportion of primes p
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B logam | oy | 95 | 26 | 27 | 28
400 20.62 | -0.81 | -0.97 | -0.75 | -1.17
600 20.62 | -1.16 | -0.87 | -0.90 | -1.15
800 20.66 | -1.2 | -0.76 | -0.82 | -0.93
1000 20.68 | -1.21 | -0.82 | -0.78 | -0.88

TABLE 1. Values of a(E,n, B) for E : y? = 23+ 32 +5 and various
values of log, n and B.

less than a bound X for which #E(F,) is B-smooth, where X and B are given
parameters. In the rest of this section we study if one can compare this proportion
for two elliptic curves, regardless of the two parameters X and B.

Given an elliptic curve E and two integers n and B, let a(E,n,B) be a real
number such that

#{p ~ n|#E(F,) is B-smooth} _ #{x ~ne® "B |z is B-smooth}
#{p|p~n} #{z |z ~ neeEnB)} ’

where the expression p ~ n denotes that p € [n — 2y/n,n + 2y/n] and the sign
~ denotes the equality up to a difference 1/{z | 2 ~ ne®®™B)}, This notation
comes to correct the common heuristic which states that a cardinality is as smooth
as a random integer of the same size and to replace it by the statement that a
cardinality of a reduction of E to a prime of the same size as n is B-smooth for the
same proportion of primes p as a random integer of logarithm logn + «(E, n, B).

Table 1 shows the values of « for the curve E : 42 = 23 + 3z + 5 and various
values of log, n and B. As suggested by the above example, perhaps we can render
a(E, n, B) independent of n and B. We assume further heuristically that for a fixed
curve E and varying primes p in the neighbourhood of n,

Table 1 determines us to ask whether «(E, n, B) converges when n and B go to
infinity.

Open question 5.1. Let E be an elliptic curve without CM. Find, if it exists, a
real number «(E) such that

Prob(# E(F,) is B-smooth | p ~ n) ~y Prob(random integer ~ ne™™ is B-smooth),

where ~,, denotes the asymptotic equivalence, p ~ n denotes that p € [n—2/n,n+
24/n], the sign Prob in the left side denotes the Chebotarev density and the sign Prob
in the right side denotes the proportion of B-smooth integers in the interval.

A positive answer was by Barbulescu and Lachand to an analoguous question in
Theorem 1.1 of [BL17], where the definition is

a= Y —log({)-val,

¢ prime

where val, is the average value of the valuation in ¢ of the set of integers that
we study minus the average valuation of a random integer, the average being de-
fined rigorously in the sequel of this section. Answering the question goes beyond
the scope of this article. Nevertheless, this offers a new point of view on a tool
that Peter Montgomery used in experiments to compare elliptic curves. Indeed,
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Montgomery [Mon92, pages 75-76] considered the formula
log(2) - valz(E) + log(3) - val3(E),

where valy and vals denote the average value of valy(#E(F,)) and vals(#E(F)))
when p runs through all the primes up to a bound n. These are the first therms of
a numeric series that rigorously defines «, as we explain the the next subsection.

5.2. Formal definition of a. We say that a set S of primes admits a Chebotarev
density J, and we write Prob(S) = ¢, if lim, #igiw exists and is equal to
5. Here II(n) denotes the set of primes less than n. For an elliptic curve E and a
prime £, we define the average valuation at £ of #E(F,) when p is a random prime

by
valy(E) = Z nProb({p prime | val,(#E(F,) =n)}).
n>1
The good definition of valy is proven in [BBB113, Th 2.16], the proof allowing to
compute it explicitely.
Definition 5.1. Given an elliptic curve E and a prime ¢, we put

au(B) = log(£)(valy(n) — val,(E))

and

a(E)= Y al(E).

¢ prime

The good definition of « is due to the fact that we substracted the average
valuation of a random integer (which is a constant with respect to the formula of
Montgomery).

Theorem 5.2. For any elliptic curve E/Q without CM, the series ), oq(E) con-
verges.

Proof. By Serre’s open image theorem, any elliptic curve has a finite set of primes
¢ such that the image of Galois is not surjective in GL3(Z;). Hence, the series
which defines « has the same nature of convergence as the series corresponding to
a curve which would have a surjective Galois image at all primes. From [BBB*13,
Th 2.16], applied for n = 1, we have val,(E) = ;5Prob(E(F,)[{] ~ Z/(Z) +

%Prob(E(Fp)[ﬁ] ~ Z/UZ x Z/{Z). By counting stabilizers, we obtain that

in GL2(Fy) there are £(¢+1)(¢—2) matrices conjugated to (é 2) , £2—1 conjugated

0 (€+1)2(e—1)3

Hence, ay(E) = log(¢) (15 —valy(E)) = (’)(1(’%2(6) ), which is the term of a convergent

series. O

to (1 2) and, by [BBB*13, Prop 2.3], we obtain then val,(E) = UOHE 20 1)

Note that, if a curve E has surjective Galois at all primes, which is the case for all
curves except a finite set of families described by curves, a(E) ~ —0.8119977339443,
which is negative and suggests that the cardinality of an elliptic curve has slightly
more chances of being smooth than a random integer of the same size.
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5.3. Properties of a. Given an elliptic curve a we start by upper bounding the
primes where the Galois image can be non-surjective using e.g. [?, Th 1] or directly
use Zywina’s algorithm [Zyw11].

Exemple 5.1. (1) Let us consider a curve E such that E(Q)iors ~ Z/27Z %
Z/8Z. The family of curves with this torsion has been parametrized by Ku-
bert [Kub76], and corresponds to an index 2 subgroup of Hjgz of [RZB15].
These curves are parametrized by the modular curve Xjg3, in [RZB15].
We see that Serre’s exponent is 2 and by [BBB*13, Th 2.16] we find that
valy changes from the value whe the Galois is surjective, i.e. %, to its new
value ?. Thus,

Q7.)27.x7.)87 = Qgeneric + <194 - ]f) 10g2 ~ —3.4355.

Let us consider a curve from the Suyama-11 family, which is parametrized
in [BBB'13, Sec. ]. For these curves, valy changes from % (generic value)

2)

to 41 and vals changes from 2% (generic value) to 2. Thus,
14 11 87 27
uyama—11 — eneric — — — | log2 — — — ] log3 ~ —3.3825.
“Suyama—it = o +(9 3>°g +(128 16)Og

We can now test the efficiency of o by comparing the smoothness probabilities
of #E(F,) when p is a random prime of a given size n and that of a random integer

of size ne®(¥),

Exemple 5.2. In the following tables, the first two columns give the proportions of
B-smooth integers of size n, ne®. We compare them with the proportion of primes
p ~ n such that # E(F,) is B-smooth. The last two columns indicate relative errors.

The followings averages are taken over several randomly chosen curves in each
family with 2 different values of B and n = 225.

(1) Curves with torsion Z/27 x Z/8Z.

(0%

n ne #E(F,) | error, | errorpeo
B; =30 | 0.000518 | 0.005753 | 0.005126 | 889 % | 10.89 %
By =100 | 0.008892 | 0.03883 | 0.042573 | 378.8 % | 9.63 %
(2) Suyama-11
n ne® #E(F,) | error, | error,eo
By =30 | 0.000518 | 0.005133 | 0.005743 | 1008 % | 11.89 %
B, =100 | 0.008892 | 0.04013 | 0.04101 361%, 2.19%

5.4. ECM-friendly families with the best values of a. Table 6 lists first 8
families for ECM with respect to their values of a(E). We remark that the first
best two values of « are associated with the above two families.

Even the curves with better arithmetic in the sense that the point addition and
multiplication are less expensive can be used in ECM in order to improve its time
consumption. One might thus hope to intersect the families of better values of «
and the families with better arithmetic e.g. twisted Edward’s curves with a = —1 in
order to obtain even better curves. However one can see that the family of elliptic
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curves with torsion group Z/2Z x 7Z/8Z and the family of twisted Edward’s curves
with a=-1 do not intersect.

5.5. Going beyond «. Although « is very easy to compute, one can define more
precice tools, e.g.

E(F) = Z Prob(m divides#E(F,) - Prob(x/m is B-smooth),
m B-smooth integer < n
where = denotes a random integer of the size of n. A key difference between o and
E is that a depends on the probabilities of #FE(F,,) being divisible by prime powers
but not on that of being divisible by composite numbers. Hence, two curves can
have the same value of « yet have different probabilities that 6 divides #E(F)).

Exemple 5.3. Let us consider the following family Fg defined in [BJ16, Theorem
1.4],

G(t) = 2103343 (1 — 4¢%).
For an elliptic curve E in this family we have, Q(E[2]) C Q(E[3]). These curves
arise from the entanglement fields [Mor17]. Let us consider the following numerical

comparison between Fg and a generic family F3 with the same Galois image in
GLy(Z3) as that of Fg.

Family | PRIZ(E(E,)) | POHEE,)) | PO#EE,)) | a
F3 2/3 3/4 1/2 -1.39
Fo 2/3 3/4 7/12> 2/3- 3/4 | -1.39

If the Chebotarev density were a probability one would say that the fact of being
divisible by 2 and that of being divisible by 3 are correlated.

6. CONCLUSION AND FUTURE WORK

The goal of this work was to make a complete classification of infinite families of
ECM-friendly curves. The families given in this paper and the experimental tool
a, even though it does not take into account the correlation, enables us to conclude
that there do not exist other ECM friendly curves over Q than the ones provided.
The question of the same classification over the number fields and the usefulness of
the curves coming from the entanglement fields is yet to be resolved completely.

One might even consider the modular curves of higher genus and finitely many
elliptic curves arising from them for ECM as a natural extension of this work. A
different question is that of proving the smoothness properties of #E(F,) which
make use of a.
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TABLE 2. Curves with exceptional Galois images for 3,9,27.
label Ny First model
a=—3(t+3)(t —27)3,
3B0-3a 2 b= —2(t% + 18t — 27)(t — 27)*
a = —3(t> — 6t + 36) (¢t + 6)t,
3D0-3a | 2* b= —2(t> — 6t — 18)(t* + 6t> 4 542 — 108t + 324)
a = —3(t% + 9t% + 27t + 3)(¢t + 3),
9B0-9a 2 b= (—2t% — 36t°> — 270t* — 1008t> — 1782t% — 972t + 54)
a=—3(t>+3)(t? — 3t + 9)° (¢t + 3)3,
9C0-9a 2 b= —2(t% + 18t% — 27)(t2 — 3t + 9)* (t + 3)*
_ 3 3 2 2 2
a=—3(t>+9)(t> + 3)(#* + 3t + 3)(t> — 3t + 3)(¢* + 3),
9HO0-9a | 2* b= —2(t'2 + 18t + 162t° + 486t> + 729)(+* + 3t2 4+ 9)(¢> — 3)
a = —3(t% — 18t° + 171t* 4+ 180¢> — 297t — 162t + 189)(+> + 9t% — 9t — 9)(¢> — 3t% — 9t + 3),
b= —2(t'% + 126¢'° — 1944¢° + 6723t% + 23328t7 — 21708t° — 58320t° 4 34263t* + 54432t3
9HO0-9b 2 —24786t% — 17496t + 9477)(t° — 18t° — 45t* + 180t> + 135t% — 162t — 27)
a = 144(t% + 9t° 4+ 9t* — 901> 4 272 + 81t 4+ 27) (¢t + 3) (¢t + 1)(t — 1)(t — 3)¢,
b =16(t'2 4+ 18t + 126110 — 18¢% — 2025t% — 972¢7 + 1328415 — 2916t° — 18225
9HO0-9¢ | 2* t* — 48613 4 10206t + 4374t + 729)(t> 4 6t — 3)(t? — 6t — 3)(t% — 3)
a = —3(17t° + 9t% — 144¢® — 918¢° 4 810t* — 3672t> — 648t% — 4131t — 27)(¢> + 3t% — 9t — 3),
b = 142¢'8 4+ 684¢17 — 162¢'° — 10944¢'° — 10152t + 24624113
—131976t'? 4 393984t 4 834948t'° — 1128600t° 4 1628100t® — 7978176¢7 +
910-9a 2 124357685 — 4210704t° + 14154264t* 4 12410496t + 8314974t + 498636t — 1458
a = —144(t3 + 9t — 9t + 15)(#> + 9t + 6)(+> — 3) (¢t + 1) (¢t — 1),
b= 16(t° 4+ 12t° 4 27¢* + 48t> — 9t2 — 108t — 99)
910-9b 2 (5 4+ 1265 — 9t* + 12¢3 — 92 4+ 9) (% — 6t° + 63t* — 132t> 4 207t2 — 54t — 207)
a = —3(t° — 9t + 27t7 — 4815 4 5445 — 45¢* + 273 — 9t% + 1)(¢® — 32 + 1),
b= —2t" 4+ 36t'7 — 270¢'¢ + 1140¢'5 — 3114¢'* + 5940¢*3 — 825612 4 8460t
910-9c¢ 2 —6480t10 4 4064t° — 2718t% + 2160t7 — 1470t° 4 612¢° — 54t — 84> + 36¢% — 2
a=—3(2—0t7 +6t° +18t5 — 9t — 27> + 2742 — Ot + 1)(£> + 3t — 6t + 1)° (2 —t + 1),
b= —2(t"® — 186 4 24¢'° + 81¢'* — 198¢13 — 30¢'2 4 540t — 82810 + 884t — 729¢8
9J0-9a 2 —180t7 + 149145 — 1944¢% + 1341¢* — 552¢% + 135¢2 — 18t + 1)(+3 + 3t2 — 6t + 1)*
a = —3(t° — 9t® — 1800t° — 545 4+ 5022t* — 216t> — 5184t% — 243t 4 1971)
(£ — 9t — 9t + 9)%(+2 + 3),
b= —2(t'® — 1817 4 8116 + 4176t° — 37692¢'* — 1231213 — 559980¢'2 — 208656t
4238188610 — 184140t° — 4348242t% + 1154736t + 67641485 + 635688t> — 8021916t*
9J0-9b 2 —2321136t% + 54478172 + 931662t — 1363959)(t3 — 9t2 — 9t + 9)*
a = —3(5t3 — 9t — 9t — 3)(¢t3 + 9t2 + 27t + 3) (3 — 9t + 12)(t2 + 3)(¢t + 3)3 (¢t — 3)3¢3,
b =2(11t% — 6t° — 63t* + 156t> — 992 — 54t — 9)(t% + 6t° — 9t* — 12t> — 225t% + 486t + 9)
9J0-9¢ 2 (t + 6t° — 48t — 63t% — 54t — 18) (¢ + 3)*(t — 3)*¢*
a = —3(t2 + 9t + 273 + 3)(+3 + 3),
27A0-27a | 2 b= —2t'® — 36t1° — 270¢'? — 1008t° — 1782t5 — 972¢> 4 54
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TABLE 3. Curves with exceptional Galois images for 5,25.

label # of subgroups First model
a = —27t* — 6156t — 13338t% + 6156t — 27,
5D0-5a 2 b = 54(t* — 522t — 10006t> + 522t 4+ 1)(¢t% + 1)

a = —27t* + 324t — 378t% — 324t — 27,
5D0-5b 2 b =54(t* — 183 + 74t% + 18t + 1)(t2 + 1)

a= 27Tt +t7 + 7t — 75 + 73+ 7% —t 4+ 1)
(% — 4t 4 7% — 265 + 15t £ 263 4 7% 4t + 1)1 + 382 — 2 — 3t 4+ 1),
b= 54(% 4 67 4+ 17t% + 185 4 25¢* — 18¢% + 1782 — 6t + 1)
(8 — 4t™ 4+ 17¢5 — 22t 4 5t 4+ 2263 + 17t% + 4t + 1)
5HO0-5a 2 (% =5+ t* — 2+ 1)(t* —2t® —6t2 + 2t + 1) (12 + 1)

a = —27t%0 — 324¢'% — 37810 4+ 324t — 27,
25B0-25a 2 b = 54(t%° 4+ 185 + 74¢10 — 18t° + 1) (18 — tC +¢t* — 2 + 1)(t% + 1)

a = —27t%0 — 6480t'° — 58320t — 181440t7 — 473040t'® — 816156t1° — 1561680t
—1645920t'% — 2157840t'% — 1121040t — 1633338¢1° + 1121040t° — 2157840t%
+1645920t7 — 1561680t° + 816156t> — 473040t* 4+ 181440t> — 58320t% + 6480t — 27,
b= —54(t%° — 510¢1% — 13590¢18 — 32280t17 — 82230¢'6 — 153522t1°
—302910t'* — 273540¢% — 412830¢12 — 268230t — 262006¢1° + 268230t°
—412830t® + 273540t7 — 302910t° + 153522t> — 82230t* + 32280t> — 13590t2 + 510t + 1)

25B0-25b 2 (88 4 67 4 17t% + 18t° 4 25¢* — 18t% + 17t2 — 6t + 1) (2 + 1)

TABLE 4. Curves with exceptional Galois images for 7.

label # of subgroups First model
a = —27(t% + 13t + 49)3(t* + 5t + 1),
7B0-7a 2 b = 54(t* 4 14t> 4 63t2 + 70t — 7)(t 4+ 13t + 49)*

a = —27(t5 4 2295 4+ 270t* — 1695¢> + 1430¢2 — 235t 4+ 1)(¢2 — t + 1),
b = 54t? — 28188t — 483570t10 + 2049300t° — 3833892t% + 7104348t”
TE0-7a 2 —13674906t% 4+ 17079660t> — 11775132t* + 4324860t — 790074t> 4 27540t + 54

a = —432(t5 — 11¢° + 30t* — 15¢3 — 10t% + 5t + 1)(t% —t + 1),
b = 3456t'2 — 62208t'! + 40435210 — 1223424¢° + 1969920t — 1679616t"
7E0-7b 2 +943488t% — 767232t° + 601344t* — 158976t° — 51840t% + 20736t + 3456

a = —189(5t% —t — 1)(3t> — 9t + 5)(¢t> — t + 1)(t* — 3t — 3),
TEO-Tc 2 b= —2646(9t* — 12t — t2 4+ 8t — 3)(3t* — 43 — 512 — 2t — 1)(t* — 6t + 172 — 24t + 9)

TABLE 5. Curves with exceptional Galois images for 13.

label # of subgroups First model

a = —3(t% +235t7 + 12075 + 955¢° + 3840t* — 955¢° + 1207t% — 235t + 1)
(t* — 2+ 52+t +1)3,
b= —2(t'? — 512t — 13079¢1° — 32300¢° — 104792¢% — 111870t"
—419368t5 + 111870t> — 104792¢* + 32300t — 13079¢>
13B0-13a 2 +512t 4+ 1)(¢* — 2 + 562+t + 1)*(#2 + 1)

a=—27(t> — 5t7 4+ 7% — 5t° + 5% + 7% + 5t + 1)(#* —* + 567 + £+ 1),
b =542 — 8t* 4 25¢10 — 44¢° 4 40t% + 18¢7 — 405 — 18¢° + 40t* + 44t3 4 25¢% + 8¢ 4 1)
13B0-13b 2 =2+ 52+t + D22 +1)

X552 = (88— 7066 + 107t =382+ 1) (¢t — 1)* (1 +6)% (2 + 3¢+ 1)° (12 = 3¢+ 1) j4—
4 (£76 — 480 ¢7 4 93576 72 — 9722250 70 + 588106804 198 — 21308406240 £ + 460441048449 154 — 568147722839
(655 + 224 1% 4 58096 14 — 84763480 152 + 14742175064 £3° — 1116040805536 175 + 43275826141572 ¢7° — 86153
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TABLE 6. Best 8 families characterized by «(E)

family E : 42 = z° + a(t)x + b(t)

a(E)

remarks

a(t) = —1769472 t'6 4 3538944 ¢t1* — 1327104 ¢12 — 221184 ¢1°
—1589760 ¢t — 13824t — 5184 t* + 864t — 27
b(t) = 905969664 t>* — 2717908992 %2 + 2378170368 t2° — 396361728 t'8
—1985347584 t16 + 1847328768 t1* + 229146624 t'% 4 115458048 t*°
—7755264 % — 96768 t° + 36288 t* — 259212 + 54

—3.43

torsion : Z/27 x 7./8Z
level:8

a(t) = —27t'% — 864t'° — 12096t'* — 96768t> — 580608t12
—3870720t — 2709504010 — 142884864t° — 500539392t% — 1143078912t7
—1734082560t° — 1981808640t> — 2378170368t%
—3170893824t% — 3170893824¢% — 1811939328t — 452084832
b(t) = 54t2* + 2592t%3 + 57024t%2 4 760320t + 6386688t2°
+25546752t1° — 12773376018 — 293422694417 — 24999321600t*6
—138195763200t1° — 563838713856t — 1862107398144¢12
—5461864611840t12 — 14896859185152t'! — 36085677686784¢0
—70756230758400t° — 102397221273600t° — 96148748500992t7 — 33484638781440t°
+53575422050304t° + 107150844100608t* + 102048422952960t>
+61229053771776t2 + 22265110462464t + 3710851743744

-3.43

torsion : 7Z/27 X Z/4AZ
level: 8

a(t) = —27t'% — 25056t* — 316224¢2 + 2059776¢1°
—4907520t% + 32956416t° — 80953344t* — 102629376¢% — 1769472
b(t) = 54t2* — 111456t%% — 9979200t2° — 8805888¢'8
+75852288t16 4 3849928704t — 25856409600t'2 + 615988592640
+19418185728t% — 36068917248t° — 653996851200t* — 116870086656t + 905969664

-3.43

torsion : Z/2Z x Z/2Z
level: 8

a(t) = —27t'% 4 216t — 324¢'2 — 2160 + 270t% — 216t° — 324¢* + 216¢% — 27
b(t) = 54t3* — 64822 + 2268t2° — 1512¢'® — 3078¢'¢ 4 38884
+1512¢2 4 3888t10 — 3078t% — 1512t° + 2268t* — 648t% + 54

-3.43

torsion : Z/87Z
level:16

a(t) = —27t'% — 864t'° 4 13824t'* + 628992¢'3
+7402752t'2 4 36771840t 4 30965760t°
—514473984t° — 2477924352t% — 4115791872t
+1981808640t° + 18827182080t° + 30321672192t*
+20610809856t> + 3623878656t — 1811939328t — 452984832
b(t) = 54t + 2592t%% 4 165888t22 + 5550336t 4
88687872t20 4 635185152¢1° — 371589120¢18
—45072433152t17 — 383285551104¢'¢ — 1506238267392t° — 1640258076672t1%
+11447323066368t1° + 57189844647936t'2 + 91578584530944¢!
—104976516907008t1° — 771193992904704t° — 1569937617321984¢5
—1476933489524736¢7 — 97409858273280t°
+1332079811887104t% + 1487935585124352t* + 744953487556608t>
+178120883699712t% + 22265110462464t + 3710851743744

-3.43

torsion : Z/47
level:16

a(t) = —27t% — 12960t1° — 232416t1% — 1088640¢'3 — 1975104t12
+1451520¢' + 537753610 + 22394880t° + 48176640t — 89579520t" + 86040576t°
—92897280t% — 505626624t* + 1114767360t> — 951975936¢2 + 212336640t — 1769472
b(t) = 54t3* — 54432t%% — 3595104t%2 — 50730624¢>"
—316540224t2° — 838688256t — 733404672t18
424141680647 4 12561246720t6 + 20149420032t
+16335323136t1* 4 122624409612 — 268429787136t12
—4904976384t'! 4 261365170176t1° — 1289562882048t°
+3215679160320t% — 2472108097536t
—3004025536512t° + 13741068386304t° — 20744780120064t*
+13298728697856t> — 3769739771904t2 + 228304355328t + 905969664

-3.43

torsion Z/27
16

Suyama-11 from [BBBT13]

-3.39

torsion Z/6Z
Serre’s exponent for £ =2 is 1

Suyama from [BBB113]

-3.15

torsion Z/67Z
Serre’s exponent for ¢ =2 is 2
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TABLE 7. Further genus 0 families on Q(¢)

21

Curve j-map some j invariants
Xoy (_121222;3':1“) (4(8t 1))

Xrs (200 2)) o (—2) o (2~ 16) o (L5)
Xao (—250) o (—262 — 1) 0 (L)) (L2

s (28212 o (<#2) o (12— 16) o ()

Xieo (—2) o (—2£2 — 1) 0 (—28 + 1) 0 (L)
Xisa | (520 (—pS5) o (12 +8) o (1 +48>o<tf§6>
Xiss (—gits) o (HAEL) o (27) o (2 — )o(tim
Xigs | (20206 (£222) 0 (242 — 1) 0 (242 + 1) 0 ((LE1D))
Xt | (—22) 0 (85) 0 (<262 — 8) o (—2 + 48) o (1L37)
Xa06 (5520 o (i) o (2 +8) o (12 + 48) o (L5)

4 (%% 41286 196 — 341143 %4 4 21784456 152 + 1211381828 %0 —
— 2246 42411 ¢4 — 215042 + 625)° (4 + 542 +1)° (¢4

(% — 27815 + 3151 — 862 + 1)° (¢8

243163011896 58 + 13430782409076 ¢56

IMJ-PRG, (SORBONNE UNIv., UN1v. PARIS DIDEROT, CNRS), INRIA, PARIS
E-mail address: razvan.barbulescu@imj-prg.fr sudarshan.shinde@imj-prg.fr

— 272+ 9)°

— 40925
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TABLE 8. Further genus 1 families on Q(4)
Xn j-map some j invariants
X —dz o (=% —16) o (+55) -
X 820 (—12 —16) o (+175) -
X3 —dao (2~ 16) o (;5%) ;
Xs4 —8z 0 (t2 — 16) o (155) -
X140 z+1o (=1 +8)o0 (> —16) o () 6112 — 15616, 3375
Xin | Ao Do (P80 0100 (coy) | SRS, S o
X159 220120 (2 — 16) o (575 -
X154 —zot? o (t* —16) o (5 36) -
Xis7 dz o (—t* —8) o (~t* +48) o (5 316) -
Xiss 2z 0 (—12 — 8) o (—t2 + 48) o (; 316) -
X159 20 (— t2+8)0( 2 4 48) o (; 316) -
X160 2+ Lo - o (2 — 16) o (05) 14087 — 256, 16581375
Xi61 2(x—1)o t26f8 ( —16)o (t+316) 432%(75;%5’ 3262%380103298936468542627654302049560101408
X162 z—1o—t*o(—t*-16)0 (5 tdlﬁ) -
X163 2 —2z0—t20 (=2 —16) o (H”'w) 78608, 16974593
X164 —x—1o—t?0(—t>—16)0 (tfm) -
X163 4z o (12 +8) o (—2 +48) o (1) -
Xo52 %O(gtg)o(tz 1) o (t* —16) 0 (t+16) -
X253 _Q(Qi_y) °© tsz_t8+8 °© t2+1 o (t* —16) 0 (tfm) -
Xogs | — 2“;/ fQ(iz;i)z —2t* —80(1? —16) o (tfw) 3
X300 gf Ottﬁo( 25) o (12 = 16) o ( +16) -
X3 o (—1%) o (—t* +8) o (—1> +48) o (135) -
Xysa | —w0 (1) 0 (2 +8) o (1> + 48) o (53g) -
X355 o(=t*)o(—t*+8)o(—t*+48)0 (t+16) -
X356 2300(—tg)o(—t2+8)°(_t2+48)°(ti%) -
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TABLE 9. Further genus 1 families on Q(4)

n

Xo

(4 + 8412 4 1564)° 3 + (—34560 12 + 770560 10 + 675235072 ¢* + 44

(1 + 4242 — 527)" j3 + (28418 + 2755116 — 90104 ¢14 + 15405172 ¢12 + 2980114928 ¢10 —

(# + 8412 +1564)" j3 + (2248 — 66512 6 — 7943936 14 — 452927744 12 — 7950874624 ¢'0 + 504612

(12 —13)" -

(2 +10)" j3 + (7682 + 6400

8 (t* +100) (2 4 6) (¢

—6) 73 + (—2596864 1>* — 921796608 20 — 46565165312 ¢'6 + 22365838675




