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A COMPLETE CLASSIFICATION OF ECM-FRIENDLY FAMILIES
USING MODULAR CURVES
-PRELIMINARY VERSION-

RAZVAN BARBULESCU AND SUDARSHAN SHINDE

Abstract. The number field sieve, an algorithm with major applications in
cryptography, uses the elliptic curve method of factorization (ECM) as a build-
ing block. It is a motivation to search parameterizations of infinite families
of elliptic curves defined over a given number field K with exceptional image
of `-adic Galois representation. This boils down to making the complete list
of finite indexed subgroups H of GL2(Z`) of genus 0 and 1 and computing
K-rational points on the modular curve XH . Fast algorithms for this latter
step are proposed in [SZ17] and [RZB15]. We measure the consequences on
ECM of the newly found families using a heuristic of Montgomery.

1. Introduction

Integer factorization is an important problem in algorithmic number theory and
cryptology. The factoring algorithms are naturally split into two classes : on the
one hand these whose cost depends only on the size of the integer N to factor, like
the quadratic sieve and the number field sieve (NFS) [Pol93,LLJMP93] and on the
other hand those whose cost depends on the size of the factors we search, except
for a polynomial factor in the bit size of N as it is the case for the trial division and
the elliptic curve method of factorization (ECM) [LJ87]. At the first sight, only the
first class is relevant in cryptology because the numbers to factor in the RSA system
are of the form N = pq where p and q are two primes of equal bit size. However,
ECM is used as a subroutine by NFS and, in computations of cryptologic relevance,
ECM takes an important fraction of the cost of NFS. A second important problem
in cryptology is that of computing discrete logarithms, i.e. in a cyclic group G of
generator g given gx find x, for which the best known algorithm is a variant of NFS.

In brief, ECM works as follows : given an integer N with an unknown prime
factor p, one uses elliptic curves E with rational coefficients and a point P ∈ E(Q)
with denominators relatively prime to N and computes PM := [M ]·P, while keeping
the coordinates modulo N , for some integer M with many prime factors; if # E(Fp)
divides M , PM is the neutral element of E(Fp), which allows us to find p.

The choice of M varies from one implementation to another, but as a first ap-
proximation we take M = B!log2 B for some integer B. The condition for success is
then that # E(Fp) is B-smooth i.e. all its prime factors are less than B. By Hasse’s
theorem [Has36], we have # E(Fp) ≈ p. It is then natural to compare the chances
of # E(Fp) being B-smooth with the chances of an integer less than p to be B-
smooth. In the original variant of ECM, as proposed by Lenstra [LJ87], one selects
at random uniformly integers x, y and a in [0, p− 1] and sets b = y2 − x3 − ax so
that (x, y) ∈ E(Fp). Lenstra [LJ87, Prop 2.7] proved that the proportion of elliptic
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curves selected in this manner for which # E(Fp) is B-smooth equals up to a factor
1

O(log p) the proportion of integer in [p−√p, p+√p] which are B-smooth.
In cryptologic applications, ECM is used in its variant where the elliptic curves E

are selected from families of curves with rational coefficients. Soon after ECM was
published, Montgomery [Mon87] introduced a parametrization, By2 = x3+Ax2+x,
which speeds up the point addition and doubling. Montgomery also suggested to
use infinite families of elliptic curves in the Montgomery parametrization in order
to guarantee that # E(Fp) has known smaller factors. Indeed, by [Sil08, Prop. 3.1
(ch 7)], when E has good reduction modulo p, E(Q)tors embeds in E(Fp), so #Etors
divides #E(Fp). Experimentally, this increases the proportion of primes p where
#E(Fp) is B-smooth.

An important direction of improvements for ECM was to select families of elliptic
curves over Q. Since the number of curves used to factor a given integer is not known
in advance, we restrict the research to infinite families.

Montgomery gave infinite families of elliptic curves in Mongomery form having
12 and respectively 16 rational torsion points. Suyama [Suy85] proposed an in-
finite family of curves E in Montgomery form having 6 torsion points such that,
for any prime p, 12 divides # E(Fp). Later, Atkin and Morain [AM93] proposed
infinite families for each other possible torsion groups over Q. In 2010, Brier and
Clavier [BC10] found families of curves defined over Q which have large torsion
subgroups over Q(i). In 2010 and 2011, Bernstein, Birkner, Lange [BBL10], and
the same group and Peters [BBLP13] proposed infinite families of Edwards curves,
i.e. of the form x2 + y2 = 1 + dx2y2, which have a faster point addition. The
families they proposed have 6, 8 and respectively 16 torsion points over Q and are
isomorphic over Q to known families of Montgomery curves. In 2016 Heer, McGuire
and Robinson [HMR16] present families defined over number fieds K which have
large torsion subgroups over K.

In 2012, Barbulescu, Bos, Bouvier, Kleinjung and Montgomery [BBB+13] found
better infinite subfamilies of the Suyama family which have the same number of
torsion points over any fixed number field and infinite families of elliptic curves
having a torsion subgroup Z/2×Z/4 and yet better smoothness properties than the
general curves with this torsion. For this, they related the study of ECM-friendly
curves to the study of a particular Galois group. For a rational elliptic curve E
and an integer m, the m-torsion field Q(E[m]) is the number field generated by
E(Q̄)[m]. This field is an extension of Q (Prop. 2.3 in [BBB+13]). As E(Q̄)[m] '
Z/mZ× Z/mZ, there exists an injective map

ρE,m : Gal(Q(E[m])/Q) ↪→ GL2(Z/mZ).

By Serre’s work [Ser71] we know that the index of =(ρE,m) is bounded indepen-
dently of m. Shimura’s work [Shi71] implies that, for a given m, the Galois image
is surjective for all elliptic curve except a subset verifying algebraic equations. Bar-
bulescu et al. proved a formula which relates the smoothness properties to the
Galois groups of torsion fields : it is impossible to change the smoothness proper-
ties of # E(Fp) without changing the Galois group of Q(E[m]) for some m.

Recently, Sutherland and Zwyina [SZ17] and Rouse and Zureick-Brown [RZB15]
studied all the infinite families of rational elliptic curves whose Galois group of
Q(E[m]), for a prime power m, is isomorphic to some subgroup H of GL2(Z/mZ).
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They obtained the complete classification when m is a power of 2 and when H
contains −I.

Roadmap:

(1) Elliptic curve method
(2) Looking for ECM-friendly curves using computer algebra systems
(3) ECM-friendly curves using modular curves
(4) Tools to compare different families of curves

2. Cryptologic utilization of ECM

In cryptology, ECM is used as an algorithm to test B-smoothness : given an
integer N , find all its prime factors less than B. Under a conjecture about the
existence of smooth integers in short intervals [Cro07, Conj 1], H. Lenstra Jr. proved
that, if N has a prime factor less than B, ECM will find it with probability at least
1/2 in time M(N)LB(1/2,

√
2)1+o(1), where M(N) = O((logN)2) is the cost of the

arithmetic operations in Z/NZ and we used the L notation

LB(α, c) = exp(c(logN)α(log logN)1−α).

Smoothness tests play a key role in cryptology. Indeed, when factoring integers
with NFS, one selects two distinct number fields Q[x]/f(x) and Q[x]/g(x) such
that f and g have a common root m modulo N ; we call α (resp. β) a root of
f (resp. g) in its number field. The next stage of NFS consists of enumerating
polynomials φ(x) ∈ Z[x] and collecting all but a negligible proportio of those φ
such that NQ(α)(φ(α)) and NQ(β)(φ(β)) are B-smooth for B = LN (1/3, 3

√
8/9).

The smoothness tests are done using ECM both in the complexity analysis and in
practice, e.g. in the open source implementation CADO-NFS [BGK+]. The next
stage of NFS consists in solving a linear system to find a tuple (uφ)φ collected such
that x1 :=

∏
φ φ(α)uφ and x2 :=

∏
φ φ(β)uφ are squares. Finally, one computes two

polynomials r1 and r2 in Z[x] such that r1(α)2 = x1 and r2(β)2 = x2 and obtain
the solution y2

1 ≡ y2
2 (mod N) where y1 = r1(m) mod N and y2 = r2(m) mod N ,

where m id the common root of f and g modulo N . If gcd(y1 − y2, N) 6∈ {1, N},
one finds a factor, otherwise one goes back to the beginning of the algorithm (in
practice one computes many solutions (y1, y2) simultaneously).

When computing discrete logarithms in the multiplicative group of Fpn for a
prime p, the best asymptotic complexity is obtained by the extended tower number
field sieve (exTNFS) [KB16], which is a variant of NFS. The first step is to select a
factor η of n and a polynomial h(t) ∈ Z[t] of degree η which is irreducible modulo
p. Let ι be a root of h in its number field. Then one selects two polynomials f
and g in Z[t, x] such that, if ω is a root of h in Fp[t]/〈h〉, the polynomial f(ω, x)
and g(ω, x) have a common irreducible factor ϕ ∈ Fp(ω)[x] of degree κ := n/η. If
we call α and β roots of f and g respectively in their number fields, we obtain the
following diagram:
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Q(ι)

Q(ι, α) Q(ι, β)

Q

Once h, f and g have been selected, the algorithm continues by enumerating a large
number of pairs a(t), b(t) ∈ Z[t] and collecting all but a negligible proportion of the
pairs a and b for which NQ(ι,α)(a(ι)−αb(ι)) and NQ(ι,β)(a(ι)−βb(ι)) are B-smooth
for B = Lpn(1/3, 3

√
8/9). In the next step, one factors a(ι)−αb(ι) and respectively

a(ι)− βb(ι) into prime ideals and writes a linear system whose coefficients are the
valuations of prime ideals and the unknowns are in bijection with the prime ideals
of norm less than B. The solution allows us to obtain the discrete logarithm of any
element in a time which is negligible with respect to the cost of collecting the pairs
a(t) and b(t).

As in the factoring variant of NFS, the smoothness tests are done with ECM. We
note that in the case of discrete logarithm we have a larger number of methods to
select the polynomials f and g. For example, in the case of the generalized Joux and
Lercier method [JL03, BGGM15], one can set f to be any irreducible polynomial
in Z[x] having an irreducible factor ϕ of degree κ. For example, in [BGGM14], the
authors used f(x) = φ8(x) so that for any pair (a, b), NQ(α)(a − αb) = a4 + b4, so
half of the integers to factor in NFS can be tackled with elliptic curves defined over
Q(ζ8), where ζ8 is a primitive 8th root of unity. Moreover, when h = h0 +h1t+h2x

t

for h0, h1, h2 ∈ Z, NQ(ι,α)(a(ι) − αb(ι)) = NQ(ι)(a′ − ιb′) = h0v
2 + h1uv + h2u

2,
where u− ιv = NQ(ι,α)/Q(ι)(a(ι)− αb(ι)).

To sum up, an improvement of ECM adapted to integers of the form h2u
2 +

h1uv + h0v
2 would translate in an improvement of the relation collection of NFS

and this can change the systems based on discrete logarithm in fields Fp2n . An
improvement on ECM in the general case would have consequences on the system
based on factoring and discrete logarithm. Hence, for cryptologic applications, it is
then important to find all the infinite families of elliptic curves defined over given
number fields which have exceptional Galois images for some torsion, and to verify
experimentally if they can bring a speed-up of ECM.

3. A research of families using computer algebra

The numerous families of ECM-friendly curves in the literature were found by
methods which are not guaranteed to produce the exhaustive list of families. In
this section we discuss a computer algebra algorithm which allows us to find all the
families in the literature in a unified manner.
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Figure 1

From a computer algebra point of view, the problem we are tackling is a par-
ticular case of the inverse Galois problem: given an algebraic extension K of
Q(a1, . . . , at), the field of rational fractions in t variables, and a finite Galois ex-
tension L of K defined by a polynomial f ∈ K[x], compute for each subgroup
H of G := Gal(L/K) a parametrization of the coefficients of f so that Gal(f) is
conjugated in Gal(L/K) to a subgroup of H.

In general, this version of the inverse Galois problem can be solved algorithmi-
cally as follows. First, one factors f in L[x] and obtains the list of automorphisms
of L/K. Then one computes the list of subgroups H of G. Thirdly, for each H, one
solves a linear system to obtain LH . Finally, one computes a primitive element θ of
LH together with its minimal polynomial FH over K and obtains the equivalence:

Gal(f) ⊂ H if and only if ∃ θ ∈ K, fH(θ) = 0,
which is illustrated in Figure 1.

The algebraic conditions hence obtained can then be used to create parametriza-
tions. Although the problem of parametrizing an algebraic set is open in the general
case, in this article we will need to treat solely plane curves. Let C be a plane curve
and K a number field for which we search a parametrization of the K-rational
points of C. One starts by computing the genus g of C. If g ≥ 2, Faltings’ theorem
implies that there is no parametrization of the solutions of fH over K (the set of
solutions is finite). If g = 1 and we can find a K-rational point, C is an elliptic
curve and, if we can find a non-torsion K-rational point then we have an infinite
parametrization. If g = 0 and we are able to find a K-rational point, then C is a
conic and we have a K-rational parametrization of the family. Let us take a first
example.

Exemple 3.1 (Sec 3.4.1 in [BBB+13]). We consider the twisted Edwards curves,
Ea,d : ax2 +y2 = 1 +dx2y2. We are given the family a = −1 and d = −e4 for which
Gal(E−1,−e4 [8]/Q(e)) is of order 32, and we look for an equation satisfied by the
rational values of e such that, for the elliptic curve E corresponding to e, Gal(E /Q)
is contained in a proper subgroup of Gal(E−1,−e4 [8]/Q(e)). For a generic value of
d, we consider the irreducible factors of the exact quotient of 8-division polynomial
Ψ8 by the 4-division polynomial Ψ4. As Ψ4 divides Ψ8, this quotient Ψexact

8 is a
polynomial in Q(d)[X]. The roots of Ψexact

8 correspond to the points of order 8.
We notice that Ψexact

8 has 2 irreducible quartic factors and a factor of degree 16.
Let us denote by these factors by P8,0, P8,1, P8,2.

We solve the Galois inverse problem for K = Q(e) and L is the function field of
one of the factors of Ψ8.
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• For P8,0, there are exactly 3 non-trivial subfields which are all quadratic.
These fields are defined by x2 + 2e, x2 − (e2 + 1) and x2 + 2e3 + 2e. The
last equation is an elliptic curve of rank 0 over Q thus the familly is finite.
As the first two are the conics with rational points, we parametrize them
to get the following equations to be satisfied by the rational values of e:
e = − g

2

2 or e = g2−1
2g . This ensures that Gal(E−1,e(g)[8]/Q(e)) is a proper

subgroup of Gal(E−1,−e4 [8]/Q(e)).
• For P8,1, there are once again exactly 3 non-trivial subfields which are all

quadratic. These fields are defined by x2−2e, x2−(e2+1) and x2−2e3−2e.
As in the previous case, the last equation is an elliptic curve of rank 0 over
Q thus it does not (for now!) interest us (cf Section [***]). Here one can
choose e = g2

2 or e = − g
2−1
2g to get the necessary equations.

• Finally for P8,2, we obtain 14 proper non-trivial subfields of which 7 are
quadratic and 7 are quartic. The 7 quadratic subfields are defined by x2 ±
e(e + 1)(e − 1), x2 ± e, x2 ± (e + 1)(e − 1) and x2 + 1. Here too, as the
first equation is an elliptic curve of rank 0 over Q and the last one can
not be satisfied over Q, thus these equations do not interest us. Whereas
the second and the third one give us e = −x2 or e = 2g2+2+1

2g+1 respectively.
Among the 7 equations defining the quartic subfields, 5 are elliptic curves
of rank 0 over Q and 2 are reducible into two genus 0 components over a
quadratic extension and over this extension these components admit only
finitely many points.

As d = −e4, it would suffice to consider the families up to sign. We thus conclude
that the subfamilies presented in [BBB+13, Table 3] are exhaustive.

For more details about the computation of subfields of algebraic function fields
we refer to Hess’ work [Hes04]. Since it is slow to obtain the exhaustive list of
subfields, we present two types of subfields for which the computation is faster.

3.1. Computing a list of maximal subfamilies. Les us consider the case in
which the `-adic image of Galois is surjective for a pair (E, `) and we want to certify
this. In this case it suffices to have a finite set of families which are maximal with
respect to inclusion and each of which satisfies an equation describing a negligible
set of points in the space of parameters. This also justifies that we call generic for
` the elliptic curves whose `-adic Galois image is surjective.

Let `k be a prime power and E : y2 = x3 +ax+b be an elliptic curve over Q(a, b).
We put K0 = Q(a, b) and, for i = 1, 2, . . . , k, we construct Ki := Q(a, b)(E[`i]) as
an extension of Ki−1 := Q(a, b)(E[`i−1]). Since the group of `i torsion is isomorphic
to (Z/`iZ)2, we can construct Ki/Ki−1 using four extensions, which correspond to
two x and two y coordinates. Indeed, we make the first extension by an irreducible
factor fi,1 of Ψexact

`i and call x1 one of its roots. The second extension is by an
irreducible factor fi,2 of y2 − (x3

1 + ax1 + b), which can be linear, and call y1 one
of its roots. Note that P1(x1, y1) belongs to E[`i]. Thirdly, we compute the set
S of x coordinates of the points {[a]P1 + Q | Q ∈ E[`i−1] anda (Z/`iZ)∗} and we
make an extension by an irreducible factor fi,3 of Ψexact

`i /
∏
s∈S(x − s) and call

x2 one of its roots. Finally we make an extension by an irreducible factor fi,4 of
y2 − (x3

2 + ax2 + b), which can be linear, and call y2 one of its roots. Note that
P2(x2, y2) belongs to E[`i] and, because fi,3 is relatively prime to

∏
s∈S(x− s), the

pair (P1, P2) is a basis of E[`i], so Ki is the `i-torsion field.
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When we instantiate a and b elements a0 and b0 of the number field K, some
of the polynomials fi,j with 1 ≤ i ≤ k and 1 ≤ j ≤ 4 can be reducible. If all
of them remain irreducible, then Gal(Ea0,b0 [`i]/K) has the same cardinality as
Gal(Ea,b[`i]/K), so Ea0,b0 is generic.

By writing necessary conditions for the polynomials fi,j to factor we obtain a
list of maximal families. If k = 1 we drop the i index and in the general case we
renumber the polynomials so that we have a tower of function fields defined by the
polynomials f1, f2, . . . , ft for some t. Algorithm 1 obtains a list of equations so
that, if none is satisfied, then the `-adic Galois image is surjective.

Algorithm 1 Finding necessary polynomial conditions
Input: A prime power `k and a number field K
Output: A list of necessary polynomial conditions in a and b over an extension

of Q(a, b) such that Gal(K(a, b)(E[`k])) is exceptional for the elliptic curve
E : y2 = x3 + ax+ b.

1: Compute a list of extensions K(a, b) = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Kt =
K(a, b)(E[`k]) and call fj an irreducible polynomial which defines Lj/Lj−1.

2: For each j compute a primitive element of Lj/K(a, b) and call Fj its minimal
polynomial over K(a, b).

3: for j = 1, 2, . . . , t do
4: for d = 1, . . . , bdeg fjc do
5: for r ∈ maximal partitions of deg(fj) do
6: Si,r ← System of polynomial equations in a, b and a root of fi arising

from equating coefficients
7: Ci,r ← Triangulation of Si,r (Resultant)
8: . Necessary for a certain factorization pattern of fj .
9: end for

10: end for
11: end for
12: return Set of Ci,r

Exemple 3.2. Let E : y2 = x3 + ax + b be a rational elliptic curve. Let Ψ3 =
x4 + 2ax2 + 4bx− 1

3a
2 be its 3-division polynomial and ∆ = 4a3 + 27b2 its discrim-

inant. We apply the above algorithm in this case in order to obtain a system of
necessary equations for Gal(Q(a, b)(E[3])/Q(a, b)) to be exceptional. Considering
the construction of torsion fields discussed above, we see that one does not need
more than 4 extension to construct Q(a, b)(E[3]): The first one by an irreducible
factor of Ψ3 to get the field Q(a, b)(x1), where x-coordinate of a point P1 of order 3.
The second one is by the quadratic polynomial x2−Ψ2(x1), if it is irreducible, in or-
der to get the field Q(a, b)(x1, y1). This extension gives the necessary y-coordinate
y1 of the point P1. Similarly, to create another point P2, we make a third exten-
sion by an irreducible factor of Ψ3 over Q(a, b)(x1, y1). This extension gives us
the x-coordinate x2 of point P2 and the field Q(a, b)(x1, y1, x2). Finally we make
a quadratic extension to obtain the y-coordinate y2 of P2. These four extensions
construct Q(a, b)(E[3]). In a generic case, the total degree is 4 × 2 × 3 × 2 = 48.
If Gal(Q(a, b)(E[3])/Q(a, b)) is exceptional, one of the above extensions is is not of
its generic degree. We consider the maximal partitions of degree of each extension.
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• Ψ3 has 2 quadratic factors or one linear factor. This we note as [(2, 2)] or
[(1, 3)].

• Ψ3 is irreducible and the second polynomial x2 − Ψ2(x1) factors into two
linear factor. This we note as [(4), (1, 1)].

• If the first two polynomials are irreducible and the third one has a linear
factor, we note it as [(4), (2), (1, 2)].

• Finally we have one possibility: [(4), (2), (3), (1, 1)].
Thus there are at most 5 maximal families of elliptic curves with exception Galois
image.

We apply the above algorithm in each case. For (1, 3) we obtain a simple condi-
tion that Ψ3 has a root. For (2, 2), the algorithm considers the following system,

e2 + f2 = 0
e2f2 + e1 + f1 = 2a
e1f2 + e2 f1 = 4b
e1f1 = −1/3 a2

⇒


f2 = −e2
f1 = 2a+ e2f2 − e1
e1
(
e2

2 + 2 a− e1
)

+ 1
3 a

2 = 0.
e2

6 + 4 ae2
4 + 16

3 e2
2a2 − 16 b2 = 0

This system arises from equating the coefficients of the equation x4 + 2ax2 + 4bx−
1
3a

2 = (x2 + e2x+ e1)(x2 + f2x+ f1). This enables us to determine for any curve
whether the factorization pattern of Ψ3 is (2, 2). Finally we have the following,

Case Condition
[(1, 3)] ∃x ∈ Q(a, b) such that 3x4 + 6ax2 + 12bx− a2 = 0
[(2, 2)] ∃x ∈ Q(a, b) such that 3x6 + 12ax4 + 16a2x2 − 48b2 = 0

[(4), (1, 1)] ∃x ∈ Q(a, b)(x1) such that 27x8 + 216 bx6 + 18 ∆x4 −∆2 = 0
[(4), (2), (1, 2)] ∃x ∈ Q(a, b)(x1, y1) such that C1 = 0

[(4), (2), (3), (1, 1)] –

Here, C1 = 27x12 + 432 ax10 + 2304 a2x8 + 288
(
20 a3 + 39 b2

)
x6 + 1536a∆x4 −

256∆2.

We emphasize that the list of families is exhaustive in the sense that all the
families of elliptic curves with exceptional mod 3 Galois image are subfamilies of
the ones presented.

Remark 3.1. Out of possible 5 maximal equations in the above example, we notice
that there are in fact only two maximal equations. The first one being that Ψ3 has a
root and the second one being that the polynomial C1 has a root in Q(a, b)(x1, y1).
The later condition is equivalent to j-invariant being a cube as the polynomial x3−j
has a root in the extension field defined by C1 over Q(a, b). Thus in order to test
an elliptic curve E is generic for 3, we check whether its 3-division polynomial has
a root and whether its j-invariant is a cube.
3.2. Computing quadratic subfields.

Let us start with a simple remark: quadratic fields are uniquely determined
by their discriminant. Rouse and Zureick-Brown noted that one can factor the
discriminant of L and then, for each squarefree factor D of Disc(L/Q), test if
K(
√
D) is a subfield of L. Let is take an example.

Exemple 3.3 (Sec 3.5.1 and Sec 3.5.3 in [BBB+13]). Let us consider the case of the
Suyama family, which is the set of Montgomery curves,MA,B : By2 = x3+Ax2+x.
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The group Gal(Q(MA,B)|[8]/Q(σ)) is isomorphic to D8 which has two subgroups
of index 2 : the group of rotations C8 and the group D4. The irreducible factors of
Disc(Q(MA,B)|[8]) are −1,2,B,A− 2 and A+ 2. We test all the 32 function fields
Q(σ,

√
f) with f product of a subset of these irreducible factors. We obtain that

the subgroup D4 corresponds to the condition (A+2)/B = −�, which corresponds
to the family Suyama-11 (Sec 3.5.1) and (A2 − 4) = �, which corresponds to the
family Suyama-9/4 (Sec 3.5.3). Note that the method applied allow to conclude
that the list of quadratic subfamilies is exhaustive.

In the next section we present a method which is faster thanks to the theory of
modular curves.

4. Modular curves approach

An alternative approach to the computer algebra one is due to the following
theorem from Shimura’s theory.

Theorem 4.1 ( [Shi71] and Prop 3.3 [Zyw15a]). Let E be an elliptic curve such
that j(E) 6∈ {0, 1728}, N a positive integer and H a subgroup of GL2(Z/NZ) such
that −I2 ∈ H and det(H) = (Z/NZ)∗. Then there exists a polynomial XH(j, t) such
that Gal(Q(E[N ])/Q) is conjugated to a subgroup of H if and only if ∃t0 ∈ Q such
that XH(j(E), t0) = 0.

Contrary to the previous section, where the equations made use of the coefficients
a and b of the elliptic curves, here they contain the j-invariant. On the one hand
equations using j have the advantage that they correspond to plane curves. On the
other hand, the use of the j-invariant can only correspond to a subset of the possible
subgroups H. Indeed, two elliptic curves (resp. families of curves) can have the
same j-invariant yet have different Galois images and therefore different behavior
in the ECM algorithm. For example, for the curve E : y2 = x3 − 336x + 448,
Gal(Q(E[3])/Q) is of order 12 and if we twist E by 7, we reduce the order to 6.
These curves have the same j-invariant however their performance in the ECM
algorithm is different. The twist fares better.

Note that, as stated by the Rademacher-Thompson theorem, the list of subgroups
of PSL2(Z), and therefore of subgroups of GL2(Z) of surjective determinant and
containing −I2, which have genus 0 or 1 is finite. The explicit list was computed
by Cummmins and Pauli [CP03]. One can then apply Theorem 4.1 to obtain a
complete classification of infinite families.

The computation of XH is done in three steps. First one computes a system
of generators of XH

N , then one computes a primitive element h of the extension
XH
N /Q(ζN , j) (called hauptmodule when H has genus 0) and finally one obtains XH

as the minimal polynomial of h. For a complete description we refer to the works of
Rouse and Zureick-Brown [RZB15] and respectively Sutherland and Zywina [Sut15],
who computed the explicit equations for all cingruence subgroups of genus 0 and 1
having surjective determinant and containing −I2.

In order to obtain the complete list of ECM-friendly infinite families one has to
extend this list to subgroups which don’t contain −I2.

4.1. Modular curves when −I2 6∈ H. A simple remark is that any congru-
ence subgroup H of GL2(Z) either contains −I2 or is contained in a subgroup
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H̃ := 〈H,−I2〉 which contains −I2. Rouse and Zureick-Brown noted that, XH is a
quadratic subfield of XH̃

N /Q(ζN , j), which can be computed as in Section 3.2.
To our knowledge, the list of subgroups H not containing −I2 is not complete

because the case of subgroups of level `k with ` > 2 and k > 1 is not treated
in [RZB15] and [Zyw15a].

Lemme 4.1. Let E be a non-CM elliptic curve over a field K, m > 1 a an integer.
Let H̃ ⊂ GL2(Z/mZ) containing −1 such that ρE,m(Gal(K(E[m])/K)) = H̃. Let
H be an index 2 subgroup of H̃ such that −1 6∈ H and H̃ = 〈H,−1〉. Then there
exists a quadratic twist Ed of E such that

ρEd,m(Gal(K(Ed[m])/K)) = H.

Proof. Let us consider the fixed subfield L of K(E[m]) by H. As H is of index 2
in H̃, L is a quadratic extension of K. Let d ∈ K such that L = K(

√
d). Let Ed

denote the quadratic twist of E by d. Clearly any basis (x1, y1), (x2, y2) ∈ K(E[m])2

of E[m] can be transformed into a basis (x1, y1/
√
d), (x2, y2/

√
d) of Ed[m]. We thus

have K(Ed[m]) ⊂ K(E[m]). Let ψ be the restriction map from Gal(K(E[m])/K))
to Gal(K(Ed[m])/K)). Let σ ∈ Gal(K(E[m])/K)) such tha ρE,m(σ) = −1. We
then have either ρ(

√
d) =

√
d or ρ(

√
d) = −

√
d. As ρE,m(σ) = −1 6∈ H, σ(

√
d) =

−
√
d. Then clearly as σ fixes the basis (x1, y1/

√
d), (x2, y2/

√
d) of Ed[m], it fixes

K(Ed[m]). So we have σ ∈ ker(ψ). On the other hand for any 1 6= τ ∈ ker(ψ),
we have τ(

√
d) = −

√
d. Then clearly if (x3, y3), (x4, y4) ∈ K(Ed[m])2 is a ba-

sis of Ed[m] then (x3, y3
√
d), (x4, y4

√
d) ∈ K(E[m])2 is a basis of E[m] and as

τ(
√
d) = −

√
d, ρE,m(τ) = −1. So we have ker(ψ) = {±1}. Thus we conclude

ρEd,m(Gal(K(Ed[m])/K)) = H̃/{±1} = H. �

In the light of the above lemma, we look for quadratic subfields of torsion points
fields when -1 is in Galois image. In practice, as the discriminant of a subfield
divides that of a superfield, we check twists by possible factors of discriminant of
K(E[m]).

Exemple 4.1. Let Et : y2 = x3 − 3 (t+ 27)(t+ 3)x − 2
(
t2 + 18 t− 27

)
(t+ 27)

with j(Et) = (t+27)(t+3)3

t and Disc(Et) = 21236t(t + 27)2. By Table 1 of [SZ17],
for infinitely many values of t, ρEt,3(Gal(Q(Et[3])/Q)) ' H̃ = 〈( 0 1

2 1 ), ( 1 2
0 2 )〉. H̃

has two subgroups H1 and H2 of index 2 not containing -1. By Lemma 4.1, there
exist quadratic twists EH1 and EH2 of Et such that ρEHi ,3 ' Hi. By specializing
at several values of t, we obtain their models. These are the twists by t + 27 and
−3(t+ 27).

Table 1, 2 and 3 give models of curves with exceptional mod ln-Galois images
for ln ∈ {3, 9, 27, 5, 25, 7, 13}.

Remark 4.1. The families for ` ∈ {2, 3, 5, 7, 13} are previously computed in
[Zyw15a].

Theorem 4.2. Let ` be an odd prime different than 11 and `n < 28 be a prime-
power and H ⊆ GL2(Z/`nZ) such that −1 6∈ H and H arises as a mod - `n Galois
image for infinitely many rational elliptic curves. Let E be one such curve. Then
E is isomorphic to a specialization of one of the curves in the families give in Table
2, 3 ,4 or 5.
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In order to certify the correctness of families given in the above theorem, we
shall need an easy lemma.

Lemme 4.2. Let ` be an odd prime. Then if −1 ∈ ρE,`n(Gal(Q(E[`n])/Q)) then
−1 ∈ ρE,`(Gal(Q(E[`])/Q)).

Proof. This is straightforward. Let σ ∈ Gal(Q(E[`n])/Q) such that ρE,`n(σ) = −1.
Let P,Q be a basis of E[`n] in Q(E[`n]) then P ′ = [`n−1]P,Q′ = [`n−1]Q is a basis
of E[`] which is in Q(E[`]). Let σ′ be the restriction of σ to Q(E[`]). One can verify
that σ′(P ′) = −P ′ and σ′(Q′) = −Q′ and thus ρE,`(σ′) = −1. �

Now we prove Theorem 4.2.

Proof. (Of Theorem 4.2) Let H ⊆ GL2(Z/`nZ) such that −1 6∈ H. Let H̃ =
〈H,−1〉. Let j(t) be j-invariant classifying the elliptic curves whose mod − `n

Galois image lie in H̃. Let EH be a model corresponding to H. By the above
lemma, it suffices to verify that the image of ρEH ,` does not contain -1. �
4.2. Families over number fields. In [RZB15], the authors computed equations
for 10 pointless conics and 25 elliptic curves with rank 0 (c.f. Figure 3 in [RZB15]).
The 10 pointless conics correspond to the genus 0 subgroups which do not contain
an element corresponding to complex conjugation. Such an element is required in
order to have infinitely many rational elliptic curves whose associated Galois image
is contained in those subgroups ( [Zyw15b, Prop. 3.5]). However these genus 0 and
genus 1 curves can admit infinitely many points over number fields. Table * * give
such families over Q(i),Q(

√
−2) and Q(

√
−3).

5. A criterion to compare families of ECM-friendly curves

5.1. Motivation. Let us recall that ECM succeeds if # E(Fp) is B-smooth for a
bound B > 0. Since # E(Fp) belongs to Hasse’s interval, [p − 2√p, p + 2√p], one
can ask for a bound B if the chances of # E(Fp) being B-smooth are the same as
the proportion of B-smooth integers in an interval centered in p of length c

√
p for

a constant c.

Theorem 5.1 (Lenstra [LJ87]). Let p be a prime and B an integer. Then,

Prob(# E(Fp) is B-smooth) = 1
O(log p)Prob(n ∈ [p−√p, p+√p] is B-smooth),

where the sign Prob in the right side denotes the proportion of B-smooth integers
in the interval and the sign Prob in the left side denotes for a fixed prime p the
proportion of triplets (x0, y0, a) ∈ F3

p such that, when putting b = y2
0 − x3

0 − ax and
Ea,b : y2 = x3 + ax+ b having the point (x0, y0), the order #Ea,b(Fp) is B-smooth.

On the one hand, the theorem is precise because the factor O(log p) is hidden
in the o(1)-term in the complexity of ECM. On the other hand, the theorem is not
precise enough because the experiments show that if one restricts to elliptic curves
E from some families, e;g. Montgomery curves Ma,b : by2 = x3 + ax2 + x, then
the proportion of smooth cardinalities can be improved. This is a motivation to
consider the factor 1

O(log p) as all the good properties are hidden in this factor.
As discussed in Section 2, an important application of ECM consists in using

the same elliptic curve to test smoothness of many integers. In this context, several
papers measure the quality of a curve E for ECM as the proportion of primes p
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PPPPPPPPB
log2 n 24 25 26 27 28

400 -0.62 -0.81 -0.97 -0.75 -1.17
600 -0.62 -1.16 -0.87 -0.90 -1.15
800 -0.66 -1.2 -0.76 -0.82 -0.93
1000 -0.68 -1.21 -0.82 -0.78 -0.88

Table 1. Values of α(E, n,B) for E : y2 = x3 +3x+5 and various
values of log2 n and B.

less than a bound X for which #E(Fp) is B-smooth, where X and B are given
parameters. In the rest of this section we study if one can compare this proportion
for two elliptic curves, regardless of the two parameters X and B.

Given an elliptic curve E and two integers n and B, let α(E, n,B) be a real
number such that

#{p ∼ n |# E(Fp) is B -smooth}
#{p | p ∼ n} ≈ #{x ∼ neα(E,n,B) |x is B -smooth}

#{x |x ∼ neα(E,n,B)}
,

where the expression p ∼ n denotes that p ∈ [n − 2
√
n, n + 2

√
n] and the sign

≈ denotes the equality up to a difference 1/{x | x ∼ neα(E,n,B)}. This notation
comes to correct the common heuristic which states that a cardinality is as smooth
as a random integer of the same size and to replace it by the statement that a
cardinality of a reduction of E to a prime of the same size as n is B-smooth for the
same proportion of primes p as a random integer of logarithm logn+ α(E,n,B).

Table 1 shows the values of α for the curve E : y2 = x3 + 3x + 5 and various
values of log2 n and B. As suggested by the above example, perhaps we can render
α(E, n,B) independent of n and B. We assume further heuristically that for a fixed
curve E and varying primes p in the neighbourhood of n,

Table 1 determines us to ask whether α(E,n,B) converges when n and B go to
infinity.

Open question 5.1. Let E be an elliptic curve without CM. Find, if it exists, a
real number α(E) such that

Prob(# E(Fp) is B-smooth | p ∼ n) ∼n Prob(random integer ∼ neα(E) is B-smooth),

where ∼n denotes the asymptotic equivalence, p ∼ n denotes that p ∈ [n−2
√
n, n+

2
√
n], the sign Prob in the left side denotes the Chebotarev density and the sign Prob

in the right side denotes the proportion of B-smooth integers in the interval.

A positive answer was by Barbulescu and Lachand to an analoguous question in
Theorem 1.1 of [BL17], where the definition is

α =
∑

` prime
− log(`) · val`,

where val` is the average value of the valuation in ` of the set of integers that
we study minus the average valuation of a random integer, the average being de-
fined rigorously in the sequel of this section. Answering the question goes beyond
the scope of this article. Nevertheless, this offers a new point of view on a tool
that Peter Montgomery used in experiments to compare elliptic curves. Indeed,
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Montgomery [Mon92, pages 75-76] considered the formula

log(2) · val2(E) + log(3) · val3(E),

where val2 and val3 denote the average value of val2(#E(Fp)) and val3(#E(Fp))
when p runs through all the primes up to a bound n. These are the first therms of
a numeric series that rigorously defines α, as we explain the the next subsection.

5.2. Formal definition of α. We say that a set S of primes admits a Chebotarev
density δ, and we write Prob(S) = δ, if limn→∞

#(S∩Π(n))
#Π(n) exists and is equal to

δ. Here Π(n) denotes the set of primes less than n. For an elliptic curve E and a
prime `, we define the average valuation at ` of #E(Fp) when p is a random prime
by

val`(E) =
∑
n≥1

nProb({p prime | val`(#E(Fp) = n)}).

The good definition of val` is proven in [BBB+13, Th 2.16], the proof allowing to
compute it explicitely.

Definition 5.1. Given an elliptic curve E and a prime `, we put

α`(E) = log(`)(val`(n)− val`(E))

and
α(E) =

∑
` prime

α`(E).

The good definition of α is due to the fact that we substracted the average
valuation of a random integer (which is a constant with respect to the formula of
Montgomery).

Theorem 5.2. For any elliptic curve E/Q without CM, the series
∑
l αl(E) con-

verges.

Proof. By Serre’s open image theorem, any elliptic curve has a finite set of primes
` such that the image of Galois is not surjective in GL2(Z`). Hence, the series
which defines α has the same nature of convergence as the series corresponding to
a curve which would have a surjective Galois image at all primes. From [BBB+13,
Th 2.16], applied for n = 1, we have val`(E) = `

`−1Prob(E(Fp)[`] ' Z/`Z) +
`((2`+1))

(`−1)(`+1)Prob(E(Fp)[`] ' Z/`Z × Z/`Z). By counting stabilizers, we obtain that

in GL2(F`) there are `(`+1)(`−2) matrices conjugated to
(

1 0
0 α

)
, `2−1 conjugated

to
(

1 0
0 α

)
and, by [BBB+13, Prop 2.3], we obtain then val`(E) = `(`3+`2−2`−1)

(`+1)2(`−1)3 .

Hence, α`(E) = log(`)( 1
`−1−val`(E)) = O( log(`)

`2 ), which is the term of a convergent
series. �

Note that, if a curve E has surjective Galois at all primes, which is the case for all
curves except a finite set of families described by curves, α(E) ≈ −0.8119977339443,
which is negative and suggests that the cardinality of an elliptic curve has slightly
more chances of being smooth than a random integer of the same size.
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5.3. Properties of α. Given an elliptic curve α we start by upper bounding the
primes where the Galois image can be non-surjective using e.g. [?, Th 1] or directly
use Zywina’s algorithm [Zyw11].

Exemple 5.1. (1) Let us consider a curve E such that E(Q)tors ' Z/2Z ×
Z/8Z. The family of curves with this torsion has been parametrized by Ku-
bert [Kub76], and corresponds to an index 2 subgroup of H193 of [RZB15].
These curves are parametrized by the modular curve X193n in [RZB15].
We see that Serre’s exponent is 2 and by [BBB+13, Th 2.16] we find that
val2 changes from the value whe the Galois is surjective, i.e. 14

9 , to its new
value 16

3 . Thus,

αZ/2Z×Z/8Z = αgeneric +
(

14
9 −

16
3

)
log 2 ≈ −3.4355.

(2) Let us consider a curve from the Suyama-11 family, which is parametrized
in [BBB+13, Sec. ]. For these curves, val2 changes from 14

9 (generic value)
to 11

3 and val3 changes from 87
128 (generic value) to 27

16 . Thus,

αSuyama−11 = αgeneric +
(

14
9 −

11
3

)
log 2 +

(
87
128 −

27
16

)
log 3 ≈ −3.3825.

We can now test the efficiency of α by comparing the smoothness probabilities
of #E(Fp) when p is a random prime of a given size n and that of a random integer
of size neα(E).

Exemple 5.2. In the following tables, the first two columns give the proportions of
B-smooth integers of size n, neα. We compare them with the proportion of primes
p ∼ n such that # E(Fp) is B-smooth. The last two columns indicate relative errors.

The followings averages are taken over several randomly chosen curves in each
family with 2 different values of B and n = 225.

(1) Curves with torsion Z/2Z× Z/8Z.

n neα # E(Fp) errorn errorneα
B1 = 30 0.000518 0.005753 0.005126 889 % 10.89 %
B2 = 100 0.008892 0.03883 0.042573 378.8 % 9.63 %

(2) Suyama-11

n neα # E(Fp) errorn errorneα
B1 = 30 0.000518 0.005133 0.005743 1008 % 11.89 %
B2 = 100 0.008892 0.04013 0.04101 361%, 2.19%

5.4. ECM-friendly families with the best values of α. Table 6 lists first 8
families for ECM with respect to their values of α(E). We remark that the first
best two values of α are associated with the above two families.

Even the curves with better arithmetic in the sense that the point addition and
multiplication are less expensive can be used in ECM in order to improve its time
consumption. One might thus hope to intersect the families of better values of α
and the families with better arithmetic e.g. twisted Edward’s curves with a = −1 in
order to obtain even better curves. However one can see that the family of elliptic
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curves with torsion group Z/2Z×Z/8Z and the family of twisted Edward’s curves
with a=-1 do not intersect.

5.5. Going beyond α. Although α is very easy to compute, one can define more
precice tools, e.g.

E(E) =
∑

m B-smooth integer ≤ n
Prob(m divides#E(Fp) · Prob(x/m is B-smooth),

where x denotes a random integer of the size of n. A key difference between α and
E is that α depends on the probabilities of #E(Fp) being divisible by prime powers
but not on that of being divisible by composite numbers. Hence, two curves can
have the same value of α yet have different probabilities that 6 divides #E(Fp).

Exemple 5.3. Let us consider the following family F6 defined in [BJ16, Theorem
1.4],

j(t) = 21033t3(1− 4t3).
For an elliptic curve E in this family we have, Q(E[2]) ⊂ Q(E[3]). These curves
arise from the entanglement fields [Mor17]. Let us consider the following numerical
comparison between F6 and a generic family F3 with the same Galois image in
GL2(Z3) as that of F6.

Family P(2|#(E(Fp)) P(3|#(E(Fp)) P(6|#(E(Fp)) α
F3 2/3 3/4 1/2 -1.39
F6 2/3 3/4 7/12> 2/3· 3/4 -1.39

If the Chebotarev density were a probability one would say that the fact of being
divisible by 2 and that of being divisible by 3 are correlated.

6. Conclusion and future work

The goal of this work was to make a complete classification of infinite families of
ECM-friendly curves. The families given in this paper and the experimental tool
α, even though it does not take into account the correlation, enables us to conclude
that there do not exist other ECM friendly curves over Q than the ones provided.
The question of the same classification over the number fields and the usefulness of
the curves coming from the entanglement fields is yet to be resolved completely.

One might even consider the modular curves of higher genus and finitely many
elliptic curves arising from them for ECM as a natural extension of this work. A
different question is that of proving the smoothness properties of #E(Fp) which
make use of α.
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and Paul Zimmermann. Crible algébrique: Distribution, optimisation—number field
sieve (cado-nfs).

[BJ16] Julio Brau and Nathan Jones. Elliptic curves with 2-torsion contained in the 3-torsion
field. Proceedings of the American Mathematical Society, 144(3):925–936, 2016.

[BL17] Razvan Barbulescu and Armand Lachand. Some mathematical remarks on the poly-
nomial selection in nfs. Mathematics of Computation, 86(303):397–418, 2017.

[CP03] C.J. Cummins and S. Pauli. Congruence subgroups of psl(2,z) of genus less than or
equal to 24. Experimental Mathematics, 12(2):243–255, 2003.

[Cro07] Ernie Croot. Smooth numbers in short intervals. International Journal of Number
Theory, 3(01):159–169, 2007.

[Has36] Helmut Hasse. Zur theorie der abstrakten elliptischen funktionenkörper i. die struk-
tur der gruppe der divisorenklassen endlicher ordnung. Journal für die reine und
angewandte Mathematik, 175:55–62, 1936.

[Hes04] Florian Hess. An algorithm for computing isomorphisms of algebraic function fields.
In Algorithmic Number Theory – ANTS VI, volume 3076 of Lecture notes in computer
science, pages 263–271, 2004.

[HMR16] Henriette Heer, Gary McGuire, and Oisin Robinson. JKL-ECM: an implementation of
ECM using hessian curves. LMS Journal of Computation and Mathematics, 19(A):83–
99, 2016.

[JL03] A. Joux and R. Lercier. Improvements to the general number field for discrete loga-
rithms in prime fields. Mathematics of Computation, 72(242):953–967, 2003.

[KB16] T. Kim and R. Barbulescu. The extended tower number field sieve: A new complexity
for the medium prime case. In Advances in Cryptology – CRYPTO 2016, volume 9814
of Lecture notes in computer science, pages 543–571, 2016.

[Kub76] Daniel Sion Kubert. Universal bounds on the torsion of elliptic curves. Proceedings
of the London Mathematical Society, 3(2):193–237, 1976.

[LJ87] Hendrik W Lenstra Jr. Factoring integers with elliptic curves. Annals of mathematics,
pages 649–673, 1987.

[LLJMP93] Arjen K Lenstra, Hendrik W Lenstra Jr, Mark S Manasse, and John M Pollard.
The number field sieve. In The development of the number field sieve, pages 11–42.
Springer, 1993.

[Mon87] Peter L Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation, 48(177):243–264, 1987.

[Mon92] Peter Lawrence Montgomery. An FFT extension of the elliptic curve method of fac-
torization. PhD thesis, UNIVERSITY OF CALIFORNIA Los Angeles, 1992.

[Mor17] J. S. Morrow. Composite images of galois for elliptic curves over Q & entanglement
fields. ArXiv e-prints, jul 2017.

[Pol93] John M Pollard. The lattice sieve. In The development of the number field sieve,
pages 43–49. Springer, 1993.

[RZB15] Jeremy Rouse and David Zureick-Brown. Elliptic curves over Q and 2-adic images of
galois. Research in Number Theory, 1(1):1–34, 2015.

[Ser71] Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes ellip-
tiques. Inventiones mathematicae, 15(4):259–331, 1971.
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Table 2. Curves with exceptional Galois images for 3,9,27.

label Nt First model

3B0-3a 2
a = −3(t+ 3)(t− 27)3,

b = −2(t2 + 18t− 27)(t− 27)4

3D0-3a 2∗
a = −3(t2 − 6t+ 36)(t+ 6)t,

b = −2(t2 − 6t− 18)(t4 + 6t3 + 54t2 − 108t+ 324)

9B0-9a 2
a = −3(t3 + 9t2 + 27t+ 3)(t+ 3),

b = (−2t6 − 36t5 − 270t4 − 1008t3 − 1782t2 − 972t+ 54)

9C0-9a 2
a = −3(t3 + 3)(t2 − 3t+ 9)3(t+ 3)3,

b = −2(t6 + 18t3 − 27)(t2 − 3t+ 9)4(t+ 3)4

9H0-9a 2∗
a = −3(t3 + 9)(t3 + 3)(t2 + 3t+ 3)(t2 − 3t+ 3)(t2 + 3),

b = −2(t12 + 18t9 + 162t6 + 486t3 + 729)(t4 + 3t2 + 9)(t2 − 3)

9H0-9b 2

a = −3(t6 − 18t5 + 171t4 + 180t3 − 297t2 − 162t+ 189)(t3 + 9t2 − 9t− 9)(t3 − 3t2 − 9t+ 3),
b = −2(t12 + 126t10 − 1944t9 + 6723t8 + 23328t7 − 21708t6 − 58320t5 + 34263t4 + 54432t3

−24786t2 − 17496t+ 9477)(t6 − 18t5 − 45t4 + 180t3 + 135t2 − 162t− 27)

9H0-9c 2∗

a = 144(t6 + 9t5 + 9t4 − 90t3 + 27t2 + 81t+ 27)(t+ 3)(t+ 1)(t− 1)(t− 3)t,
b = 16(t12 + 18t11 + 126t10 − 18t9 − 2025t8 − 972t7 + 13284t6 − 2916t5 − 18225

t4 − 486t3 + 10206t2 + 4374t+ 729)(t2 + 6t− 3)(t2 − 6 t− 3)(t2 − 3)

9I0-9a 2

a = −3(17t9 + 9t8 − 144t6 − 918t5 + 810t4 − 3672t3 − 648t2 − 4131t− 27)(t3 + 3t2 − 9t− 3),
b = 142t18 + 684t17 − 162t16 − 10944t15 − 10152t14 + 24624t13

−131976t12 + 393984t11 + 834948t10 − 1128600t9 + 1628100t8 − 7978176t7+
12435768t6 − 4210704t5 + 14154264t4 + 12410496t3 + 8314974t2 + 498636t− 1458

9I0-9b 2

a = −144(t3 + 9t2 − 9t+ 15)(t3 + 9t+ 6)(t3 − 3)(t+ 1)(t− 1),
b = 16(t6 + 12t5 + 27t4 + 48t3 − 9t2 − 108t− 99)

(t6 + 12t5 − 9t4 + 12t3 − 9t2 + 9)(t6 − 6t5 + 63t4 − 132t3 + 207t2 − 54t− 207)

9I0-9c 2

a = −3(t9 − 9t8 + 27t7 − 48t6 + 54t5 − 45t4 + 27t3 − 9t2 + 1)(t3 − 3t2 + 1),
b = −2t18 + 36t17 − 270t16 + 1140t15 − 3114t14 + 5940t13 − 8256t12 + 8460t11

−6480t10 + 4064t9 − 2718t8 + 2160t7 − 1470t6 + 612t5 − 54t4 − 84t3 + 36t2 − 2

9J0-9a 2

a = −3(t9 − 9t7 + 6t6 + 18t5 − 9t4 − 27t3 + 27t2 − 9t+ 1)(t3 + 3t2 − 6t+ 1)3(t2 − t+ 1),
b = −2(t18 − 18t16 + 24t15 + 81t14 − 198t13 − 30t12 + 540t11 − 828t10 + 884t9 − 729t8

−180t7 + 1491t6 − 1944t5 + 1341t4 − 552t3 + 135t2 − 18t+ 1)(t3 + 3t2 − 6t+ 1)4

9J0-9b 2

a = −3(t9 − 9t8 − 1800t6 − 54t5 + 5022t4 − 216t3 − 5184t2 − 243t+ 1971)
(t3 − 9t2 − 9t+ 9)3(t2 + 3),

b = −2(t18 − 18t17 + 81t16 + 4176t15 − 37692t14 − 12312t13 − 559980t12 − 208656t11

+2381886t10 − 184140t9 − 4348242t8 + 1154736t7 + 6764148t6 + 635688t5 − 8021916t4

−2321136t3 + 5447817t2 + 931662t− 1363959)(t3 − 9t2 − 9t+ 9)4

9J0-9c 2

a = −3(5t3 − 9t2 − 9t− 3)(t3 + 9t2 + 27t+ 3)(t3 − 9t+ 12)(t2 + 3)(t+ 3)3(t− 3)3t3,
b = 2(11t6 − 6t5 − 63t4 + 156t3 − 99t2 − 54t− 9)(t6 + 6t5 − 9t4 − 12t3 − 225t2 + 486t+ 9)

(t6 + 6t5 − 48t3 − 63t2 − 54t− 18)(t+ 3)4(t− 3)4t4

27A0-27a 2
a = −3(t9 + 9t6 + 27t3 + 3)(t3 + 3),

b = −2t18 − 36t15 − 270t12 − 1008t9 − 1782t6 − 972t3 + 54
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Table 3. Curves with exceptional Galois images for 5,25.

label # of subgroups First model

5D0-5a 2
a = −27t4 − 6156t3 − 13338t2 + 6156t− 27,

b = 54(t4 − 522t3 − 10006t2 + 522t+ 1)(t2 + 1)

5D0-5b 2
a = −27t4 + 324t3 − 378t2 − 324t− 27,
b = 54(t4 − 18t3 + 74t2 + 18t+ 1)(t2 + 1)

5H0-5a 2

a = −27(t8 + t7 + 7t6 − 7t5 + 7t3 + 7t2 − t+ 1)
(t8 − 4t7 + 7t6 − 2t5 + 15t4 + 2t3 + 7t2 + 4t+ 1)(t4 + 3t3 − t2 − 3t+ 1),

b = 54(t8 + 6t7 + 17t6 + 18t5 + 25t4 − 18t3 + 17t2 − 6t+ 1)
(t8 − 4t7 + 17t6 − 22t5 + 5t4 + 22t3 + 17t2 + 4t+ 1)

(t8 − t6 + t4 − t2 + 1)(t4 − 2t3 − 6t2 + 2t+ 1)(t2 + 1)

25B0-25a 2
a = −27t20 − 324t15 − 378t10 + 324t5 − 27,

b = 54(t20 + 18t15 + 74t10 − 18t5 + 1)(t8 − t6 + t4 − t2 + 1)(t2 + 1)

25B0-25b 2

a = −27t20 − 6480t19 − 58320t18 − 181440t17 − 473040t16 − 816156t15 − 1561680t14

−1645920t13 − 2157840t12 − 1121040t11 − 1633338t10 + 1121040t9 − 2157840t8
+1645920t7 − 1561680t6 + 816156t5 − 473040t4 + 181440t3 − 58320t2 + 6480t− 27,

b = −54(t20 − 510t19 − 13590t18 − 32280t17 − 82230t16 − 153522t15

−302910t14 − 273540t13 − 412830t12 − 268230t11 − 262006t10 + 268230t9
−412830t8 + 273540t7 − 302910t6 + 153522t5 − 82230t4 + 32280t3 − 13590t2 + 510t+ 1)

(t8 + 6t7 + 17t6 + 18t5 + 25t4 − 18t3 + 17t2 − 6t+ 1)(t2 + 1)

Table 4. Curves with exceptional Galois images for 7.

label # of subgroups First model

7B0-7a 2
a = −27(t2 + 13t+ 49)3(t2 + 5t+ 1),

b = 54(t4 + 14t3 + 63t2 + 70t− 7)(t2 + 13t+ 49)4

7E0-7a 2

a = −27(t6 + 229t5 + 270t4 − 1695t3 + 1430t2 − 235t+ 1)(t2 − t+ 1),
b = 54t12 − 28188t11 − 483570t10 + 2049300t9 − 3833892t8 + 7104348t7

−13674906t6 + 17079660t5 − 11775132t4 + 4324860t3 − 790074t2 + 27540t+ 54

7E0-7b 2

a = −432(t6 − 11t5 + 30t4 − 15t3 − 10t2 + 5t+ 1)(t2 − t+ 1),
b = 3456t12 − 62208t11 + 404352t10 − 1223424t9 + 1969920t8 − 1679616t7
+943488t6 − 767232t5 + 601344t4 − 158976t3 − 51840t2 + 20736t+ 3456

7E0-7c 2
a = −189(5t2 − t− 1)(3t2 − 9t+ 5)(t2 − t+ 1)(t2 − 3t− 3),

b = −2646(9t4 − 12t3 − t2 + 8t− 3)(3t4 − 4t3 − 5t2 − 2t− 1)(t4 − 6t3 + 17t2 − 24t+ 9)

Table 5. Curves with exceptional Galois images for 13.

label # of subgroups First model

13B0-13a 2

a = −3(t8 + 235t7 + 1207t6 + 955t5 + 3840t4 − 955t3 + 1207t2 − 235t+ 1)
(t4 − t3 + 5t2 + t+ 1)3,

b = −2(t12 − 512t11 − 13079t10 − 32300t9 − 104792t8 − 111870t7
−419368t6 + 111870t5 − 104792t4 + 32300t3 − 13079t2

+512t+ 1)(t4 − t3 + 5t2 + t+ 1)4(t2 + 1)

13B0-13b 2

a = −27(t8 − 5t7 + 7t6 − 5t5 + 5t3 + 7t2 + 5t+ 1)(t4 − t3 + 5t2 + t+ 1)3,
b = 54(t12 − 8t11 + 25t10 − 44t9 + 40t8 + 18t7 − 40t6 − 18t5 + 40t4 + 44t3 + 25t2 + 8t+ 1)

(t4 − t3 + 5t2 + t+ 1)4(t2 + 1)

X252 =
(
t8 − 70 t6 + 107 t4 − 38 t2 + 1

)4 (t− 1)8 (1 + t)8 (
t2 + 3 t+ 1

)8 (
t2 − 3 t+ 1

)8
j4−

4
(
t76 − 480 t74 + 93576 t72 − 9722250 t70 + 588106804 t68 − 21308406240 t66 + 460441048449 t64 − 5681477228392 t62 + 27910654087474 t60 + 327247603956256 t58 − 9403548733282692 t56 + 119697748474085020 t54 − 877829918600993568 t52 + 4196741351159816560 t50 − 14159289577705927358 t48 + 34927552269554735328 t46 − 62125239714217028629 t44 + 71842657244132592368 t42 − 28583528487632459128 t40 − 74479585805606244926 t38 + 185859388463492522392 t36 − 234358474162740512736 t34 + 199805639613321357915 t32 − 123872157201745288992 t30 + 57411289475525052450 t28 − 20098616923700406832 t26 + 5313914617395748480 t24 − 1050348081306223332 t22 + 151452443906318748 t20 − 15089024722009472 t18 + 890035175212050 t16 − 7169996496616 t14 − 3923699884303 t12 + 377280670032 t10 − 15346414780 t8 + 82093302 t6 + 14462136 t4 − 300240 t2 − 3375

)
(t− 1)4 (1 + t)4

j3+(
6 t88 + 224 t86 + 58096 t84 − 84763480 t82 + 14742175064 t80 − 1116040805536 t78 + 43275826141572 t76 − 861538837293056 t74 + 7418430254371100 t72 + 28043853513999848 t70 − 1462638623454834336 t68 + 18793877238117084656 t66 − 98953138524697852954 t64 − 754637447629210027616 t62 + 13521645776860183909608 t60 − 93208433958093539644352 t58 + 396118803316181236308010 t56 − 1134607266347594149871632 t54 + 2176919913330934580345584 t52 − 2391756682830138403069832 t50 − 193350462492003899525508 t48 + 6280067564100179642607904 t46 − 12802387121012623847314804 t44 + 14251712670735294326371168 t42 − 8254711867904074286003012 t40 − 1229511432893798402765192 t38 + 7837265473500223546758192 t36 − 8860455844134975295785168 t34 + 6259157333701425894315498 t32 − 3188441884691943191716416 t30 + 1230043314021424290775528 t28 − 368779689987154638645984 t26 + 87961572032529502575526 t24 − 17226173623318623259344 t22 + 2873573023142380406944 t20 − 413987161771415653912 t18 + 49434652505367915100 t16 − 4504954296977286336 t14 + 291236412619074692 t12 − 13121431792381152 t10 + 395967650136984 t8 − 4185617366232 t6 − 413441269200 t4 + 12203460000 t2 + 68343750

)
j2−
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Table 6. Best 8 families characterized by α(E)

family E : y2 = x3 + a(t)x+ b(t) α(E) remarks

a(t) = −1769472 t16 + 3538944 t14 − 1327104 t12 − 221184 t10

−1589760 t8 − 13824 t6 − 5184 t4 + 864 t2 − 27
b(t) = 905969664 t24 − 2717908992 t22 + 2378170368 t20 − 396361728 t18

−1985347584 t16 + 1847328768 t14 + 229146624 t12 + 115458048 t10

−7755264 t8 − 96768 t6 + 36288 t4 − 2592 t2 + 54 −3.43
torsion : Z/2Z× Z/8Z

level:8

a(t) = −27t16 − 864t15 − 12096t14 − 96768t13 − 580608t12

−3870720t11 − 27095040t10 − 142884864t9 − 500539392t8 − 1143078912t7
−1734082560t6 − 1981808640t5 − 2378170368t4

−3170893824t3 − 3170893824t2 − 1811939328t− 452984832
b(t) = 54t24 + 2592t23 + 57024t22 + 760320t21 + 6386688t20

+25546752t19 − 127733760t18 − 2934226944t17 − 24999321600t16

−138195763200t15 − 563838713856t14 − 1862107398144t13

−5461864611840t12 − 14896859185152t11 − 36085677686784t10

−70756230758400t9 − 102397221273600t8 − 96148748500992t7 − 33484638781440t6
+53575422050304t5 + 107150844100608t4 + 102048422952960t3

+61229053771776t2 + 22265110462464t+ 3710851743744 -3.43
torsion : Z/2Z× Z/4Z

level: 8

a(t) = −27t16 − 25056t14 − 316224t12 + 2059776t10

−4907520t8 + 32956416t6 − 80953344t4 − 102629376t2 − 1769472
b(t) = 54t24 − 111456t22 − 9979200t20 − 8805888t18

+75852288t16 + 3849928704t14 − 25856409600t12 + 61598859264t10

+19418185728t8 − 36068917248t6 − 653996851200t4 − 116870086656t2 + 905969664 -3.43
torsion : Z/2Z× Z/2Z

level: 8

a(t) = −27t16 + 216t14 − 324t12 − 216t10 + 270t8 − 216t6 − 324t4 + 216t2 − 27
b(t) = 54t24 − 648t22 + 2268t20 − 1512t18 − 3078t16 + 3888t14

+1512t12 + 3888t10 − 3078t8 − 1512t6 + 2268t4 − 648t2 + 54 -3.43
torsion : Z/8Z

level:16

a(t) = −27t16 − 864t15 + 13824t14 + 628992t13

+7402752t12 + 36771840t11 + 30965760t10

−514473984t9 − 2477924352t8 − 4115791872t7
+1981808640t6 + 18827182080t5 + 30321672192t4

+20610809856t3 + 3623878656t2 − 1811939328t− 452984832
b(t) = 54t24 + 2592t23 + 165888t22 + 5550336t21+

88687872t20 + 635185152t19 − 371589120t18

−45072433152t17 − 383285551104t16 − 1506238267392t15 − 1640258076672t14

+11447323066368t13 + 57189844647936t12 + 91578584530944t11

−104976516907008t10 − 771193992904704t9 − 1569937617321984t8
−1476933489524736t7 − 97409858273280t6

+1332079811887104t5 + 1487935585124352t4 + 744953487556608t3
+178120883699712t2 + 22265110462464t+ 3710851743744 -3.43

torsion : Z/4Z
level:16

a(t) = −27t16 − 12960t15 − 232416t14 − 1088640t13 − 1975104t12

+1451520t11 + 5377536t10 + 22394880t9 + 48176640t8 − 89579520t7 + 86040576t6
−92897280t5 − 505626624t4 + 1114767360t3 − 951975936t2 + 212336640t− 1769472

b(t) = 54t24 − 54432t23 − 3595104t22 − 50730624t21

−316540224t20 − 838688256t19 − 733404672t18

+2414168064t17 + 12561246720t16 + 20149420032t15

+16335323136t14 + 1226244096t13 − 268429787136t12

−4904976384t11 + 261365170176t10 − 1289562882048t9
+3215679160320t8 − 2472108097536t7

−3004025536512t6 + 13741068386304t5 − 20744780120064t4
+13298728697856t3 − 3769739771904t2 + 228304355328t+ 905969664 -3.43

torsion Z/2Z
16

Suyama-11 from [BBB+13] -3.39
torsion Z/6Z

Serre’s exponent for ` = 2 is 1

Suyama from [BBB+13] -3.15
torsion Z/6Z

Serre’s exponent for ` = 2 is 2
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Table 7. Further genus 0 families on Q(i)

Curve j-map some j invariants
X21 (− 12 it2−i−4 t

12 t2+1 ) ◦ ( 4 (8 t−1)
t4 )

X72 (− 8 (9 it−4 t2+2)
7 (2 t2+1) ) ◦ (−t2) ◦ (−t2 − 16) ◦ ( t3

t+16 )

X59 (− it
2+i
2 t ) ◦ (−2t2 − 1) ◦ ( 8 (t2+3)

t−1 ) ◦ ( t3

t+16 )

X88 (− 4 (5 it−2 t2+2)
3 (t2+1) ) ◦ (−t2) ◦ (−t2 − 16) ◦ ( t3

t+16 )

X182 (− 2 it2+i
2 t ) ◦ (−2 t2 − 1) ◦ (−2 t2 + 1) ◦ ( 8 (t2+3)

t−1 )
X184 (− it

2+4 i
2 t ) ◦ (− 8

t2+2 ) ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 )
X186 (− 4 it

2 t2+1 ) ◦ ( t
2+2 t−1
t2+1 ) ◦ ( 8

t2−1 ) ◦ (t2 − 16) ◦ ( t3

t+16 )

X198 (− 2 (it2−2 i)
t2+2 ) ◦ ( t

2+2
t2−2 ) ◦ (−2 t2 − 1) ◦ (−2 t2 + 1) ◦ ( 8 (t2+3)

t−1 )

X201 (− 2 (it2−2 i)
t2+2 ) ◦ ( 8 t

t2−2 ) ◦ (−2t2 − 8) ◦ (−t2 + 48) ◦ ( t3

t+16 )
X206 (− it

2+2 i
2 t ) ◦ (− 4

t2+1 ) ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 )

4
(
t68 + 1286 t66 − 341143 t64 + 21784456 t62 + 1211381828 t60 − 243163011896 t58 + 13430782409076 t56 − 409256695107864 t54 + 6467455117414418 t52 − 74308903375988380 t50 − 578719749768305926 t48 + 9414787783598067680 t46 − 62581616372286548056 t44 + 266525969865821334440 t42 − 768824003619000913712 t40 + 1488712731761049750552 t38 − 1790042406568545744941 t36 + 854366610699020993842 t34 + 1221170602518812518779 t32 − 3138629695913357883616 t30 + 3672035444579515808680 t28 − 2848823046618545160312 t26 + 1594236213810802447088 t24 − 662281942546582583304 t22 + 206034281975133788970 t20 − 48083066280527325316 t18 + 8483845882234231946 t16 − 1170230507409631432 t14 + 133652476678635964 t12 − 12374009484691664 t10 + 725224936011860 t8 − 14628475422000 t6 + 247485065625 t4 − 3100781250 t2 − 52734375

) (
t4 + 5 t2 + 1

)3 (
t4 − 27 t2 + 9

)3
j+(

t8 − 278 t6 + 315 t4 − 86 t2 + 1
)3 (

t8 − 22 t6 + 2411 t4 − 2150 t2 + 625
)3 (

t4 + 5 t2 + 1
)6 (

t4 − 27 t2 + 9
)6

IMJ-PRG, (Sorbonne Univ., Univ. Paris Diderot, CNRS), Inria, Paris
E-mail address: razvan.barbulescu@imj-prg.fr sudarshan.shinde@imj-prg.fr
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Table 8. Further genus 1 families on Q(i)

Xn j-map some j invariants
X51 −4x ◦ (−t2 − 16) ◦ ( t3

t+16 ) -
X52 8x ◦ (−t2 − 16) ◦ ( t3

t+16 ) -
X53 −4x ◦ (t2 − 16) ◦ ( t3

t+16 ) -
X54 −8x ◦ (t2 − 16) ◦ ( t3

t+16 ) -
X149 x+ 1 ◦ (−t2 + 8) ◦ (t2 − 16) ◦ ( t3

t+16 ) 6112i− 15616, 3375
31

X151 2(x− 1) ◦ (−t2 + 8) ◦ (t2 − 16) ◦ ( t3

t+16 ) 9869198625
614656 , −4987112077182710979766592

154766099193094612161
X152 2x ◦ t2 ◦ (t2 − 16) ◦ ( t3

t+16 ) -
X154 −x ◦ t2 ◦ (t2 − 16) ◦ ( t3

t+16 ) -
X157 4x ◦ (−t2 − 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
X158 2x ◦ (−t2 − 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
X159 2x ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
X160 x+ 1 ◦ − 64

t2−8 ◦ (t2 − 16) ◦ ( t3

t+16 ) −1408i− 256, 16581375
X161 2(x− 1) ◦ − 64

t2−8 ◦ (t2 − 16) ◦ ( t3

t+16 ) 4869777375
92236816 , 326248139966576753245001408

300283484326400961
X162 x− 1 ◦ −t2 ◦ (−t2 − 16) ◦ ( t3

t+16 ) -
X163 2− 2x ◦ −t2 ◦ (−t2 − 16) ◦ ( t3

t+16 ) 78608, 16974593
256

X164 −x− 1 ◦ −t2 ◦ (−t2 − 16) ◦ ( t3

t+16 ) -
X168 4x ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
X252

x+y−1
x−1 ◦ ( t

2+2
t2−2 ) ◦ ( 8

t2−1 ) ◦ (t2 − 16) ◦ ( t3

t+16 ) -
X253 − 2 (2 x−y)

x ◦ t2−8
t2+8 t+8 ◦

8
t2+1 ◦ (t2 − 16) ◦ ( t3

t+16 ) -

X285 − 2 x
2 x−y ◦

2 (t2−2)
t2+4 t+2 ◦ −2t2 − 8 ◦ (t2 − 16) ◦ ( t3

t+16 ) -
X300 −x−y−1

x−1 ◦
t2+2
t ◦ (− 64

t2−8 ) ◦ (t2 − 16) ◦ ( t3

t+16 ) -
X353 2x ◦ (−t2) ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
X354 −x ◦ (−t2) ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
X355 x ◦ (−t2) ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
X356 2x ◦ (−t2) ◦ (−t2 + 8) ◦ (−t2 + 48) ◦ ( t3

t+16 ) -
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Table 9. Further genus 1 families on Q(i)

n XH some j invariants

X51

j3t4 − 16777216
(
t4 + 3969

)3 − 256
(
7817 t4 + 4096

)
j2

+65536
(
247 t8 + 15288210 t4 + 32006016

)
j -

X52

j3t4 − 1048576
(
16 t4 + 65025

)3 − 256
(
129545 t4 + 4096

)
j2

+655360
(
1624 t8 + 419567157 t4 + 53060400

)
j -

X53

j3t4 − 16777216
(
t2 + 63

)3(
t2 − 63

)3 − 256
(
7817 t4 − 4096

)
j2

−65536
(
247 t8 − 15288210 t4 + 32006016

)
j -

X54

j3t4 − 1048576
(
4 t2 + 255

)3(4 t2 − 255
)3 − 256

(
129545 t4 − 4096

)
j2

−655360
(
1624 t8 − 419567157 t4 + 53060400

)
j -

X149

−
(
t4 + 98 t2 − 299

)3(
t2 + 7

)3(
t2 − 21

)3 +
(
t4 + 42 t2 − 527

)2
j3

−(468 t12 + 61208 t10 + 2242763 t8
+811132 t6 − 789396634 t4 + 2935312772 t2+

19697518291)j2 − (56 t18 − 14990 t16 − 784000 t14

+41424188 t12 + 505442336 t10 − 48220476881 t8
+781280108140 t6 − 4568155012610 t4

+11142299358932 t2 − 10182268295171)j

X151
(
t4 + 84 t2 + 1564

)2
j3 +

(
−34560 t12 + 770560 t10 + 675235072 t8 + 44845316096 t6 + 852380901376 t4 − 4323839442944 t2 − 190015829180416

)
j2 +

(
114688 t18 + 93876224 t16 + 26770014208 t14 + 3974398345216 t12 + 353701939118080 t10 + 19956258823995392 t8 + 721096397067124736 t6 + 16180955692201410560 t4 + 205249618564140236800 t2 + 1123439026096824123392

)
j − 65536

(
t2 + 64

)3 (
t2 + 48

)3 (
t4 + 56 t2 + 352

)3
X152 j3t8 +

(
4096 t12 − 2001152 t8 + 32768 t4 + 16777216

)
j2 +

(
3182592 t16 + 4092067840 t12 + 1002062348288 t8 + 3170893824 t4 − 33560740233216

)
j − 65536

(
t4 + 196

)3 (
t2 + 18

)3 (
t2 − 18

)3 -

X154 j3t8 +
(
−64 t12 − 4352 t8 − 131072 t4 + 16777216

)
j2 + 16

(
3 t4 + 128

) (
19 t12 − 1664 t8 + 368640 t4 − 28311552

)
j −

(
t4 + 576

)3 (
t2 − 8

)3 (
t2 + 8

)3 -

X157 t4
(
t4 + 225

)
j3 +

(
7995392 t12 − 5756684544 t8 − 1700020743376 t4 − 921600

)
j2 +

(
11855988785152 t16 + 31944511441600512 t12 + 20859261743025750016 t8 + 3211190124467186098176 t4 + 6963284253204480

)
j − 4096

(
4096 t8 + 937216 t4 + 14753281

)3 -

X158 t4
(
t4 + 2304

)
j3 +

(
6656 t12 − 3836160 t8 − 44171382784 t4 − 150994944

)
j2 +

(
7892992 t16 + 74645569536 t12 + 221978496729088 t8 + 211725505863352320 t4 + 2894696691007488

)
j − 65536

(
t8 + 2512 t4 + 595984

)3 -

X159 t4
(
t4 + 6400

)
j3 +

(
−9728 t12 − 115181824 t8 − 338704715776 t4 − 419430400

)
j2 +

(
18378752 t16 − 173567049728 t12 − 1163402245177344 t8 + 4481416358900269056 t4 + 22197035901911040

)
j − 65536

(
t8 + 6096 t4 + 1648656

)3 -

X160
(
t4 + 42 t2 − 527

)4
j3 +

(
28 t18 + 2755 t16 − 90104 t14 + 15405172 t12 + 2980114928 t10 − 317769344270 t8 + 9393055898072 t6 − 165933637617740 t4 + 646998363810708 t2 − 2482483260499549

)
j2 +

(
158 t20 − 18144 t18 − 5513973 t16 + 605815560 t14 + 59250245768 t12 − 11454673155912 t10 + 761012137665114 t8 − 27545618134265672 t6 + 282058463717669490 t4 + 5100882422215867112 t2 + 10191109431337690499

)
j +

(
t4 − 182 t2 + 8481

)3 (
t4 + 266 t2 + 193

)3 −1408i− 256, 16581375

X161
(
t4 + 84 t2 + 1564

)4
j3 +

(
−224 t18 − 66512 t16 − 7943936 t14 − 452927744 t12 − 7950874624 t10 + 504612860416 t8 + 34891427852288 t6 + 852166649442304 t4 + 6986194130657280 t2 − 26782427660406784

)
j2 +

(
7808 t20 + 3784704 t18 + 775785216 t16 + 87989981184 t14 + 6120731500544 t12 + 279934837604352 t10 + 9219120255836160 t8 + 236243659697618944 t6 + 3926406772831911936 t4 + 5468544888735531008 t2 − 720546566486515056640

)
j + 256

(
t4 + 196 t2 + 9612

)3 (
t4 − 28 t2 − 1748

)3 4869777375
92236816 , 326248139966576753245001408

300283484326400961

X162
(
t2 − 13

)4
j3 +

(
−436 t12 + 21912 t10 − 393035 t8 + 2564380 t6 + 3196266 t4 − 128495036 t2 + 156717981

)
j2 +

(
56 t18 + 24782 t16 + 365696 t14 − 30892188 t12 + 71035424 t10 + 7357298353 t8 − 22099625716 t6 − 465837788910 t4 + 1617960156692 t2 + 14182532526867

)
j −

(
t8 − 52 t6 + 3798 t4 + 73388 t2 + 425153

)3 -

X163
(
t2 + 10

)4
j3 +

(
768 t12 + 64000 t10 + 2069248 t8 + 34129920 t6 + 307134464 t4 + 1441431552 t2 + 2769977344

)
j2 +

(
16384 t18 + 2183168 t16 + 122552320 t14 + 3899064320 t12 + 78364803072 t10 + 1037738442752 t8 + 9081880313856 t6 + 50729242853376 t4 + 164207001600000 t2 + 234640707158016

)
j − 65536

(
t8 + 40 t6 + 656 t4 + 5376 t2 + 19584

)3
X164

(
t2 − 5

)4
j3 +

(
12 t12 − 680 t10 + 9973 t8 − 59460 t6 + 76106 t4 + 759396 t2 − 2894531

)
j2 +

(
−8 t18 + 398 t16 − 7040 t14 + 66980 t12 − 79584 t10 − 5564623 t8 + 78708012 t6 − 514308366 t4 + 1478396340 t2 − 581556429

)
j −

(
t8 − 20 t6 + 374 t4 − 2292 t2 + 11169

)3 -

X168 t4
(
t2 − 15

) (
t2 + 15

)
j3 +

(
−7995392 t12 − 5756684544 t8 + 1700020743376 t4 − 921600

)
j2 +

(
11855988785152 t16 − 31944511441600512 t12 + 20859261743025750016 t8 − 3211190124467186098176 t4 + 6963284253204480

)
j − 4096

(
4096 t8 − 937216 t4 + 14753281

)3 -

X252 -

X253 -

X285 -

X300 -

X353 t8
(
t4 + 100

) (
t2 + 6

) (
t2 − 6

)
j3 +

(
−2596864 t24 − 921796608 t20 − 46565165312 t16 + 2236588867584 t12 + 27200331828480 t8 + 7880704 t4 − 235929600

)
j2 +

(
−268435456 t36 + 587478335488 t32 − 161745247141888 t28 + 6912485679431680 t24 + 1179432763359494144 t20 − 125803218040517427200 t16 + 4341789351230723588096 t12 − 51379046956166623920128 t8 + 118723954235408384 t4 + 1782600768820346880

)
j − 1048576

(
16 t16 + 1024 t12 − 54480 t8 − 492416 t4 + 14753281

)3 -

X354 t12 (t− 4) (4 + t)
(
t2 + 16

)
j3 − 32 t4

(
17 t20 − 4656 t16 + 77896 t12 − 18432 t8 + 30720 t4 + 524288

)
j2 + 16 t4

(
4 t32 + 1543 t28 − 555008 t24 − 25406720 t20 − 190324736 t16 + 119480320 t12 − 46137344 t8 − 10106175488 t4 + 1577058304

)
j −

(
t16 − 256 t12 + 3840 t8 + 57344 t4 + 4096

)3 -

X355 t12 (t4 + 256
)
j3 − 32 t4

(
17 t20 + 4656 t16 + 77896 t12 + 18432 t8 + 30720 t4 − 524288

)
j2 − 16 t4

(
4 t32 − 1543 t28 − 555008 t24 + 25406720 t20 − 190324736 t16 − 119480320 t12 − 46137344 t8 + 10106175488 t4 + 1577058304

)
j −

(
t16 + 256 t12 + 3840 t8 − 57344 t4 + 4096

)3 -

X356 t8
(
t2 − 10

) (
t2 + 10

) (
t4 + 36

)
j3 +

(
−2596864 t24 + 921796608 t20 − 46565165312 t16 − 2236588867584 t12 + 27200331828480 t8 − 7880704 t4 − 235929600

)
j2 +

(
268435456 t36 + 587478335488 t32 + 161745247141888 t28 + 6912485679431680 t24 − 1179432763359494144 t20 − 125803218040517427200 t16 − 4341789351230723588096 t12 − 51379046956166623920128 t8 − 118723954235408384 t4 + 1782600768820346880

)
j − 1048576

(
16 t16 − 1024 t12 − 54480 t8 + 492416 t4 + 14753281

)3 -


