
Implementation of a Near-Optimal Complex Root
Clustering Algorithm

Rémi Imbach1 ?, Victor Y. Pan2 ??, and Chee Yap3 ???

1 TU Kaiserslautern
Email: imbach@mathematik.uni-kl.de

www.mathematik.uni-kl.de/en/agag/members/
2 City University of New York

Email: victor.pan@lehman.cuny.edu
http://comet.lehman.cuny.edu/vpan/

3 Courant Institute of Mathematical Sciences
New York University, USA
Email: yap@cs.nyu.edu
www.cs.nyu.edu/yap/

Abstract. We describe Ccluster, a software for computing natural ε-clusters
of complex roots in a given box of the complex plane. This algorithm from
Becker et al. (2016) is near-optimal when applied to the benchmark problem
of isolating all complex roots of an integer polynomial. It is one4 of the first
implementations of a near-optimal algorithm for complex roots. We describe
some low level techniques for speeding up the algorithm. Its performance is
compared with the well-known MPSolve library and Maple.

1 Introduction

The problem of root finding for a polynomial f (z) is a classical problem from an-
tiquity, but remains the subject of active research to the present [6]. We consider a
classic version of root finding:

Local root isolation problem:
Given: a polynomial f (z) ∈ C[z], a box B0 ⊆ C, ε > 0.
Output: a set {∆1, . . . ,∆k} of pairwise-disjoint discs of radius ≤ ε,
each containing a unique root of f (x) in B0.

? Rémi’s work has received funding from the European Unions Horizon 2020 research and
innovation programme under grant agreement No. 676541.

?? Victor’s work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and by
PSC CUNY Award 698130048.

??? Chee’s work is supported by NSF Grants # CCF-1423228 and # CCF-1564132.
4 Irina Voiculescu informed us that her student Dan-Andrei Gheorghe has independently

implemented the same algorithm in a Masters Thesis Project (May 18, 2017) at Ox-
ford University. Sewon Park and Martin Ziegler at KAIST, Korea, have implemented a
modified version of Becker et al. (2016) for polynomials having only real roots being the
eigenvalues of symmetric square matrices with real coefficients. See the technical report
CS-TR-2018-415 at https://cs.kaist.ac.kr/research/techReport.

2 Imbach-Pan-Yap

It is local because we only look for roots in a locality, as specified by B0. The
local problem is useful in applications (especially in geometric computation) where
we know where to look for the roots of interest. There are several variants of this
problem: in the global version, we are not given B0, signifying that we wish to find
all the roots of f . The global version is easily reduced to the local one by specifying a
B0 that contains all roots of f . If we omit ε, it amounts to setting ε =∞, representing
the pure isolation problem.

Our main interest is a generalization of root isolation, to the lesser-studied prob-
lem of root clustering [10, 12, 8]. It is convenient to introduce two definitions: for
any set S ⊆ C, let Z f (S) denote the set of roots of f in S, and let # f (S) count the
total multiplicity of the roots in Z f (S). Typically, S is a disc or a box. For boxes
and discs, we may write kS (for any k > 0) to denote the dilation of S by factor k,
keeping the same center. The following problem was introduced in [16]:

Local root clustering problem:
Given: a polynomial f (z), a box B0 ⊆ C, ε > 0.
Output: a set of pairs {(∆1,m1), . . . ,(∆k,mk)} where

– ∆i’s are pairwise-disjoint discs of radius ≤ ε,
– mi = # f (∆i) = # f (3∆i) for all i, and
– Z f (B0)⊆

⋃k
i=1 Z f (∆i).

This generalization of root isolation is necessary when we consider polynomials whose
coefficients are non-algebraic (or when f (z) is an analytic function, as in [16]). The
requirement that # f (∆i) = # f (3∆i) ensures that our output clusters are natural [1];
a polynomial of degree d has at most 2d−1 natural clusters (see [16, Lemma 1]).
The local root clustering algorithm for analytic functions of [16] has termination
proof, but no complexity analysis. By restricting f (z) to a polymomial, Becker et
al. [2] succeeded in giving an algorithm and also its complexity analysis based on the
geometry of the roots. When applied to the benchmark problem, where f (z) is an
integer polynomial of degree d with L-bit coefficients, the algorithm can isolate all
the roots of f (z) with bit complexity Õ(d2(L+d)). Pan [13] calls such bounds near-
optimal (at least when L≥ d). The clustering algorithm studied in this paper comes
from [1], which in turn is based on [2]. Previously, the Pan-Schönhage algorithm has
achieved near-optimal bounds with divide-and-conquer methods [13], but [2, 1] was
the first subdivision algorithm to achieve the near-optimal bound for complex roots.
For real roots, Sagraloff-Mehlhorn [15] had earlier achieved near-optimal bound via
subdivision.

Why the emphasis on “subdivision”? It is because such algorithms are imple-
mentable and quite practical (e.g., [14]). Thus the near-optimal real subdivision
algorithm of [15] was implemented shortly after its discovery, and reported in [11]
with excellent results. In contrast, all the asymptotically efficient root algorithms (not
necessarily near-optimal) based on divide-and-conquer methods of the last 30 years
have never been implemented; a proof-of-concept implementation of Schönhage’s
algorithm was reported in Gourdon’s thesis [9]). Computer algebra systems mainly
rely on algorithms with a priori guarantees of correctness. But in practice, algo-
rithms without such guarantees are widely used. For complex root isolation, one of

Implementation of Complex Root Clustering 3

the most highly regarded multiprecision software is MPSolve [3]. The original algo-
rithm in MPSolve was based on Erhlich-Aberth (EA) iteration; but since 2014, a
“hybrid” algorithm [4] was introduced. It is based on the secular equation, and com-
bines ideas from EA and eigensolve [7]. These algorithms are inherently global
solvers (they must approximate all roots of a polynomial simultaneously). Another
theoretical limitation is that the global convergence of these methods is not proven.

In this paper, we give a preliminary report about Ccluster, our implementation
of the root clustering algorithm from [1].

Fig. 1. Left: the connected components isolating all roots of the Bernoulli polynomial of
degree 100. Right: the connected components isolating all roots of the Spiral polynomial
of degree 64.

To illustrate the performance for the local versus global problem, consider the
Bernoulli polynomials Bernd(z) := ∑

d
k=0
(d

k

)
bd−kzk where bi’s are the Bernoulli num-

bers. Figure 1(Left) shows the graphical output of Ccluster for Bern100(z). Table 1
has four timings τX (for X = `,g,u,s) in seconds: τ` is the time for solving the lo-
cal problem over a box B0 = [−1,1]2; τg is the time for the global problem over
the box B0 = [−150,150]2 (which contains all the roots). The other two timings
from MPSolve (τu for unisolve, τs for secsolve) will be explained later. For each
instance, we also indicate the numbers of solutions (#Sols) and clusters (#Clus).
When #Sols equals #Clus, we know the roots are isolated. Subdivision algorithms
like ours naturally solve the local problem, but MPSolve can only solve the global
problem. Table 1 shows that MPSolve remains unchallenged for the global problem.
But in applications where locality can be exploited, local methods may win, as seen
in the last two rows of the table. The corresponding time for Maple’s fsolve is also
given; fsolve is not a guaranteed algorithm and may fail.

Overview of Paper In Section 2, we describe the experimental setup for Ccluster.
Sections 3-5 describe some techniques for speeding up the basic algorithm. We
conclude with Section 6.

4 Imbach-Pan-Yap

Ccluster local (B0 = [−1,1]2) Ccluster global (B0 = [−150,150]2) unisolve secsolve fsolve

d (#Sols:#Clus) (depth:size) τ` (s) (#Sols:#Clus) (depth:size) τg (s) τu (s) τs (s) τ f (s)

64 (4:4) (9:164) 0.12 (64:64) (17:1948) 2.10 0.13 0.01 0.1
128 (4:4) (9:164) 0.34 (128:128) (16:3868) 9.90 0.55 0.05 6.84
191 (5:5) (9:196) 0.69 (191:191) (17:5436) 32.5 2.29 0.16 50.0
256 (4:4) (9:164) 0.96 (256:256) (17:7300) 60.6 3.80 0.37 > 1000
383 (5:5) (9:196) 2.06 (383:383) (17:11188) 181 > 1000 1.17 > 1000
512 (4:4) (9:164) 2.87 (512:512) (16:14972) 456 > 1000 3.63 > 1000
767 (5:5) (9:196) 6.09 (767:767) (17:22332) 1413 > 1000 10.38 > 1000

Table 1. Bernoulli Polynomials with five timings: local (τ`), global (τ`), unisolve (τ`),
secsolve (τ`) and Maple’s fsolve(τ f).

2 Implementation and Experiments

The main implementation of Ccluster is in C language. We have an interface for
Julia5. We based our big number computation on the arb6 library. The arb library
implements ball arithmetic for real numbers, complex numbers and polynomials with
complex coefficients. Each arithmetic operation is carried out with error bounds.

Test Suite We consider 7 families of polynomials, classic ones as well as some new
ones constructed to have interesting clustering or multiple root structure.

(F1) The Bernoulli polynomial Bernd(z) of degree d is described in Section 1.
(F2) The Mignotte polynomial Mignd(z;a) := zd−2(2az−1)2 for a positive integer

a, has two roots whose separation is near the theoretical minimum separation
bound.

(F3) The Wilkinson polynomials Wilkd(z) := ∏
d
k=1(z− k).

(F4) The Spiral Polynomial Spird(z) := ∏
d
k=1

(
z− k

d e4kiπ/n
)
. See Figure 1(Right)

for Spir64(z).
(F5) Wilkinson Multiple: WilkMul(D)(z) := ∏

D
k=1(z−k)k. WilkMul(D)(z) has degree

d = D(D+1)/2 where the root z = k has multiplicity k (for k = 1, . . . ,D).
(F6) Mignotte Cluster: MignClud(z;a,k) := xd−2(2az−1)k(2az+1)k. This polyno-

mial has degree d (assuming d ≥ 2k) and has a cluster of k roots near 2−a and
a cluster of k roots near −2−a.

(F7) Nested Cluster: NestClu(D)(z) has degree d = 3D and is defined by induc-

tion on D: NestClu(1)(z) := z3−1 with roots ω,ω2,ω3 = 1 where ω = e2πi/3.

Inductively, if the roots of NestClu(D)(z) are
{

r j : j = 1, . . . ,3D
}

, then we de-

fine NestClu(D+1)(z) := ∏
3D

j=1

(
z− r j− ω

16D

)(
z− r j− ω2

16D

)(
z− r j− 1

16D

)
See

Figure 2 for the natural ε-clusters of NestClu(3)(z).

Timing Running times are sequential times on a Intel(R) Core(TM) i3 CPU 530 @
2.93GHz machine with linux. Ccluster implements the algorithm described in [1]
with differences coming from the improvements described in Sections 3-5 below. Un-
less explicitly specified, the value of ε for Ccluster is set to 2−53; roughly speaking,
it falls back to asking for 15 guaranteed decimal digits.

5 https://julialang.org/. Download our code in https://github.com/rimbach/Ccluster.
6 http://arblib.org/. Download our code in https://github.com/rimbach/Ccluster.jl.

Implementation of Complex Root Clustering 5

Fig. 2. Left: 3 clusters of NestClu(3) found with ε = 1. Right: Zoomed view of 9 clusters

of NestClu(3) found with ε = 1
10 . Note: The initial box is in thick lines; the thin lines show

the subdivisions tree.

MPSolve For external comparison, we use MPSolve. It was shown to be superior
to major software such as Maple or Mathematica [3]. There are two root solvers
in MPSolve: the original unisolve [3] which is based on the Ehrlich-Aberth itera-
tion and the new hybrid algorithm called secsolve [4]. These are called with the
commands mpsolve -au -Gi -oγ -j1 and mpsolve -as -Gi -oγ -j1 (respec-
tively). -Gi means that MPSolve tries to find for each root a unique complex disc
containing it, such that Newton iteration is guaranteed to converge quadratically
toward the root starting from the center of the disc. -oγ means that 10−γ is used
as an escape bound, i.e., the algorithm stops when the complex disc containing the
root has radius less that 10−γ , regardless of whether it is isolating or not. Unless
explicitly specified, we set γ = 16. -j1 means that the process is not parallelized.
Although MPSolve does not do general local search, it has an option to search only
within the unit disc. This option does not seem to lead to much improvement.

3 Improved Soft Pellet Test

The key predicate in [1] is a form of Pellet test denoted T̃ G
k (∆ ,k) (with implicit f (z)).

This is modified in Figure 3 by adding an outer while-loop to control the number of
Graeffe-Dandelin iterations. We try to get a definite decision (i.e., anything other
than a unresolved) from the soft comparison for the current Graeffe iteration. This
is done by increasing the precision L for approximating the coefficients of f̃ in the
innermost while-loop. Thus we have two versions of our algorithm: (V1) uses the
original T̃ G

k (∆ ,k) in [1], and (V2) uses the modified form in Figure 3. Let τV1 and
τV2 be timings for the 2 versions. Table 2 shows the time τV1 (in seconds) and the
ratio τV1/τV2. We see that (V2) achieves a consistent 2.3 to 3-fold speed up.

In (V2), as in [1], we use T̃ G
0 (∆) (defined as T̃ G

k (∆ ,0)) to prove that a box B
has no root. We propose a new version (V3) that uses T̃ G

∗ (∆) (defined as T̃ G
k (∆ ,d),

where d is the degree of f) instead of T̃ G
0 (∆) to achieve this goal: instead of just

6 Imbach-Pan-Yap

T̃ G
k (∆ ,k) / f (z) is implicit argument

Output: r ∈ {−1,0 . . . ,k}
ASSERT: if r ≥ 0, then # f (∆) = r

L← 53, d← deg(f), N← 4+ dlog2(1+ log2(d))e, i← 0
f̃ ←getApproximation(f , L)
f̃ ←TaylorShift(f̃ , ∆)
While i≤ N

Let f̃ be the i-th Graeffe iteration of f̃
r← 0
While r ≤ k

j← IntCompare(| f̃ |r, ∑k 6=r | f̃ |k,2−L) a

While j = unresolved
L← 2L
f̃ ←getApproximation(f , L)
f̃ ←TaylorShift(f̃ ,∆)
Let f̃ be i-th Graeffe iteration of f̃
j←IntCompare(| f̃ |r, ∑k 6=r | f̃ |k,2−L)

If j = true then Return r
r← r+1

i← i+1
Return −1

a IntCompare(ã, b̃,2−L) compares L-bit approximations of real
numbers a and b. It returns true (resp. false) only if a > b (resp.
a < b). It returns unresolved when L is too small to conclude.

Fig. 3. T̃ G
k (∆ ,k). | f̃ |i is the absolute value of the coefficient of the monomial of degree i of

f̃ , for 0≤ i≤ d.

V1 V2 V3
(n1, n2, n3) τV1 (n1, n2, n3) τV1/τV2 (n1, n2, n3) τV1/τV3

Bern64(z) (2308,686,20223) 19.6 (2308,686,6028) 2.84 (2308,8,2291) 7.06
Mign64(z;14) (2060,622,18018) 17.3 (2060,622,5326) 3.03 (2060,20,2080) 7.68
Wilk64(z) (2148,674,18053) 23.6 (2148,674,5692) 2.74 (2148,0,2140) 7.23
Spir64(z) (2512,728,22176) 22.2 (2512,728,6596) 2.39 (2512,15,2670) 4.46
WilkMul(11)(z) (724,202,6174) 9.69 (724,202,2684) 2.30 (724,18,2065) 3.37
MignClu64(z;14,3) (2092,618,18515) 20.0 (2092,618,5600) 3.00 (2092,12,2481) 6.57
NestClu(4)(z) (3532,1001,30961) 90.2 (3532,1001,9654) 3.09 (3532,24,4588) 6.81

Table 2. Solving within the initial box [−50,50]2 with ε = 2−53 with versions (V1), (V2)
and (V3) of Ccluster. n1: number of discarding tests. n2: number of discarding tests
returning -1 (inconclusive). n3: total number of Graeffe iterations. τV1 (resp. τV2, τV3):
sequential time for V1 (resp. V2, V3) in seconds.

showing that B has no root, it upper bounds # f (B). Although counter-intuitive, this
yields a substantial improvement because it led to fewer Graeffe iterations overall.
The timing for (V3) is τV3, but we display only the ratio τV1/τV3 in the last column
of Table 2. This ratio shows that (V3) enjoys a 3.3-7.7 fold speedup. Comparing n3
for (V2) and (V3) explains this speedup.

Implementation of Complex Root Clustering 7

4 Filtering

A technique for speeding up the evaluation of predicates is the idea of filters (e.g.,
[5]). The various Pellet tests can be viewed as a box predicate C that maps a box
B ⊆ C to a value7 in {true, false}. If C− is another box predicate with property
that C−(B) = false implies C(B) = false, we call C− a falsehood filter. If C− is
efficient relatively to C, and “efficacious” (informally, C(B) = false is likely to yield
C−(B) = false), then it is useful to first compute C−(B). If C−(B) = false, we do not
need to compute C(B). The predicate C0 used in Ccluster is defined as follows:
C0(B) is true if T̃ G

∗ (∆B) returns 0 (then B contains no root of f) and is false if
T̃ G
∗ (∆B) returns −1 or k > 0 (then B may contain some roots of f). We next present

the falsehood filter C−0 (B) for C0.

Let f∆ denote the Taylor shift of f in ∆ , f [i]
∆

its i-th Graeffe iterate, (f [i]
∆
) j the

j-th coefficient of f [i]
∆

, and | f [i]
∆
| j the absolute value of the j-th coefficient. Let d be

the degree of f . The assertion below is a direct consequence of the classical test of
Pellet (see [2][p. 12]) and justify the correctness of our filters:

(A) if | f [N]
∆
|0 ≤ | f [N]

∆
|1 + | f [N]

∆
|d then T̃ G

∗ (∆) returns −1 or k > 0.

Our C−0 filter computes | f [N]
∆
|0, | f [N]

∆
|1 and | f [N]

∆
|d and checks hypothesis of (A)

using IntCompare. | f [N]
∆
|0 and | f [N]

∆
|d can respectively be computed as (| f∆ |0)2N

and (| f∆ |d)2N
. | f [N]

∆
|1 can be computed with the following well known formula:

(f [i+1]
∆

)k = (−1)k((f [i]
∆
)k)

2 +2
k−1

∑
j=0

(−1) j(f [i]
∆
) j(f [i]

∆
)2k− j (1)

Obtaining | f [N]
∆
|1 with eq. (1) requires to know 2N−1+1 coefficients of f [1]

∆
, 2N−2+1

coefficients of f [2]
∆
, . . . , and finally 3 = 21 +1 coefficients of f [N−1]

∆
. In particular, it

requires to compute entirely the iterations f [i]
∆

such that 2N−i ≤ d, and it is possible
to do it more efficiently that with eq. (1) (for instance with the formula given in
definition 2 of [2]).

Our C−0 filter takes as input a precision L, the Taylor shift f∆ of the L bit approx-

imation of f and its i-th Graeffe iteration f [i]
∆

such that 2N−i ≤ d
4 and 2N−(i+1) > d

4 .

It computes | f [N]
∆
|0, | f [N]

∆
|d and the 2N− j + 1 first coefficients of f [j]

∆
for i < j ≤ N

with eq. (1). Then it checks the hypothesis of (A) using IntCompare, and returns
false if it is verified, and true otherwise. In practice, it is implemented within the
procedure implementing T̃ G

∗ (∆B).

Incorporating C−0 into Version (V3), we obtain (V4) and the speed up can be
seen in Table 3. Filtering with C−0 becomes more effective as degree grows and this

is because one has 2N−i ≤ d
4 for smaller i (recall that N = 4+ dlog2(1+ log2(d))e).

7 We treat two-valued predicates for simplicity; the discussion could be extended to pred-
icates (like T̃ G

∗) which returns a finite set of values.

8 Imbach-Pan-Yap V3 V4
n3 τV3 n3 τV3/τV4

Bernd(z)

d = 64 2291 2.61 2084 1.08
d = 128 4496 14.5 3983 1.13
d = 256 8847 94.5 7714 1.19
d = 512 15983 620 11664 1.42
d = 767 19804 1832 13863 1.53

Mignd(z;a)

(d,a) = (64,14) 2080 2.41 1808 1.22
(d,a) = (128,14) 3899 12.1 3257 1.21
(d,a) = (256,14) 7605 88.3 6339 1.33
(d,a) = (512,14) 15227 674 10405 1.57

Wilkd(z)

d = 64 2140 3.27 1958 1.05
d = 128 2240 10.0 1942 1.09
d = 256 2414 36.6 2108 1.21
d = 512 2557 129 1841 1.43

Spird(z)

d = 64 2670 4.43 2364 1.08
d = 128 5090 28.8 4405 1.07
d = 256 9746 182 8529 1.10
d = 512 19159 1340 14786 1.19

WilkMul(D)(z)

(D,d) = (11,66) 2065 2.87 1818 1.14
(D,d) = (12,78) 2313 3.95 2053 1.12
(D,d) = (13,91) 2649 5.89 2336 1.18
(D,d) = (14,105) 2892 8.56 2537 1.29

MignClud(z;a,k)

(d,a,k) = (64,14,3) 2481 2.94 2145 1.13
(d,a,k) = (128,14,3) 4166 14.4 3555 1.16
(d,a,k) = (256,14,3) 7658 86.0 6523 1.27
(d,a,k) = (512,14,3) 15044 650 10472 1.63

NestClu(D)(z)

(D,d) = (4,27) 1628 0.77 1459 1.07
(D,d) = (5,81) 4588 13.2 4085 1.12
(D,d) = (6,243) 13056 358 11824 1.26

Table 3. Solving within the initial box [−50,50]2 with ε = 2−53 with versions (V3), (V4)
of Ccluster. n3: number of Graeffe iterations. τV3 and τV4: sequential time in seconds.

5 Escape Bound

The ε parameter is usually understood as the precision desired for roots. But we can
also view it as an escape bound for multiple roots as follows: we do not refine a disc
that contains a simple root, even if its radius is ≥ ε. But for clusters of size greater
than one, we only stop when the radius is < ε. MPSolve has a similar option. This
variant of (V4) is denoted (V4’). We see from Table 4 that (V4’) gives a modest
improvement (up to 25% speedup) over (V4) when − logε = 53. This improvement
generally grows with − logε (but WilkMul(11)(z) shows no difference).

(V4) (V4’)

ε: 2−53 2−530 2−5300 2−53 2−530 2−5300

τ53 (s) τ530/τ53 τ5300/τ53 τ53 (s) τ530/τ53 τ5300/τ53

Bern64(z) 2.42 1.26 4.22 1.99 0.94 0.94
Mign64(z;14) 1.97 1.63 4.56 1.61 1.45 1.38
Wilk64(z) 3.22 1.10 2.16 2.91 0.96 1.01
Spir64(z) 4.09 1.33 5.25 3.05 0.95 0.95
WilkMul(11)(z) 2.51 1.12 2.03 2.50 1.13 1.98
MignClu64(z;14,3) 2.60 1.89 4.15 2.20 1.70 1.80
NestClu4(z) 11.9 1.08 2.67 10.4 1.00 0.99

Table 4. Solving within the box [−50,50]2 with versions (V4) and (V4’) of Ccluster with
three values of ε. τ53 (resp. τ530, τ5300): sequential time for (V4) and (V4’) in seconds.

Implementation of Complex Root Clustering 9

6 Conclusion

Implementing subdivision algorithms is relatively easy but achieving state-of-art per-
formance requires much optimization and low-level development. This paper explores
several such techniques. We do well compared to fsolve in Maple, but the perfor-
mance of MPSolve is superior to the global version of Ccluster. But Ccluster

can still shine when looking for local roots or when ε is large.

References

1. R. Becker, M. Sagraloff, V. Sharma, J. Xu, and C. Yap. Complexity analysis of root
clustering for a complex polynomial. In Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation, pages 71–78. ACM, 2016.

2. R. Becker, M. Sagraloff, V. Sharma, and C. Yap. A near-optimal subdivision algorithm
for complex root isolation based on the pellet test and newton iteration. Journal of
Symbolic Computation, 86:51–96, 2018.

3. D. A. Bini and G. Fiorentino. Design, analysis, and implementation of a multiprecision
polynomial rootfinder. Numerical Algorithms, 23(2-3):127–173, 2000.

4. D. A. Bini and L. Robol. Solving secular and polynomial equations: A multiprecision
algorithm. Journal of Computational and Applied Mathematics, 272:276–292, 2014.

5. H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic
filters for computational geometry. Discrete Applied Mathematics, 109(1-2):25–47,
2001.

6. I. Z. Emiris, V. Y. Pan, and E. P. Tsigaridas. Algebraic algorithms. In Computing
Handbook, Third Edition: Computer Science and Software Engineering, pages 10: 1–
30. Chapman and Hall/CRC, 2014.

7. S. Fortune. An iterated eigenvalue algorithm for approximating roots of univariate
polynomials. Journal of Symbolic Computation, 33(5):627–646, 2002.

8. M. Giusti, G. Lecerf, B. Salvy, and J.-C. Yakoubsohn. On location and approximation
of clusters of zeros of analytic functions. Foundations of Computational Mathematics,
5(3):257–311, 2005.

9. X. Gourdon. Combinatoire, Algorithmique et Géométrie des Polynomes. PhD thesis,
École Polytechnique, 1996.

10. V. Hribernig and H. J. Stetter. Detection and validation of clusters of polynomial
zeros. Journal of Symbolic Computation, 24(6):667–681, 1997.

11. A. Kobel, F. Rouillier, and M. Sagraloff. Computing real roots of real polynomials...
and now for real! In Proceedings of the ACM on International Symposium on Symbolic
and Algebraic Computation, pages 303–310. ACM, 2016.

12. X.-M. Niu, T. Sakurai, and H. Sugiura. A verified method for bounding clusters of zeros
of analytic functions. Journal of computational and applied mathematics, 199(2):263–
270, 2007.

13. V. Y. Pan. Univariate polynomials: nearly optimal algorithms for numerical factorization
and root-finding. Journal of Symbolic Computation, 33(5):701–733, 2002.

14. F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots. Journal
of Computational and Applied Mathematics, 162(1):33–50, 2004.

15. M. Sagraloff and K. Mehlhorn. Computing real roots of real polynomials. Journal of
Symbolic Computation, 73:46–86, 2016.

16. C. Yap, M. Sagraloff, and V. Sharma. Analytic root clustering: A complete algorithm
using soft zero tests. In Conference on Computability in Europe, pages 434–444.
Springer, 2013.

