Rémi Imbach
email: imbach@mathematik.uni-kl.dewww.mathematik.uni

Victor Y Pan
email: victor.pan@lehman.cuny.edu

Chee Yap
email: yap@cs.nyu.edu

Implementation of a Near-Optimal Complex Root Clustering Algorithm

) is near-optimal when applied to the benchmark problem of isolating all complex roots of an integer polynomial. It is one 4 of the first implementations of a near-optimal algorithm for complex roots. We describe some low level techniques for speeding up the algorithm. Its performance is compared with the well-known MPSolve library and Maple.

Introduction

The problem of root finding for a polynomial f (z) is a classical problem from antiquity, but remains the subject of active research to the present [START_REF] Emiris | Algebraic algorithms[END_REF]. We consider a classic version of root finding:

Local root isolation problem: Given: a polynomial f (z) ∈ C[z], a box B 0 ⊆ C, ε > 0. Output: a set {∆ 1 , . . . , ∆ k } of pairwise-disjoint discs of radius ≤ ε, each containing a unique root of f (x) in B 0 .

It is local because we only look for roots in a locality, as specified by B 0 . The local problem is useful in applications (especially in geometric computation) where we know where to look for the roots of interest. There are several variants of this problem: in the global version, we are not given B 0 , signifying that we wish to find all the roots of f . The global version is easily reduced to the local one by specifying a B 0 that contains all roots of f . If we omit ε, it amounts to setting ε = ∞, representing the pure isolation problem.

Our main interest is a generalization of root isolation, to the lesser-studied problem of root clustering [START_REF] Hribernig | Detection and validation of clusters of polynomial zeros[END_REF][START_REF] Niu | A verified method for bounding clusters of zeros of analytic functions[END_REF][START_REF] Giusti | On location and approximation of clusters of zeros of analytic functions[END_REF]. It is convenient to introduce two definitions: for any set S ⊆ C, let Z f (S) denote the set of roots of f in S, and let # f (S) count the total multiplicity of the roots in Z f (S). Typically, S is a disc or a box. For boxes and discs, we may write kS (for any k > 0) to denote the dilation of S by factor k, keeping the same center. The following problem was introduced in [START_REF] Yap | Analytic root clustering: A complete algorithm using soft zero tests[END_REF]:

Local root clustering problem: Given: a polynomial f (z), a box B 0 ⊆ C, ε > 0. Output: a set of pairs {(∆ 1 , m 1), . . . , (∆ k , m k)} where -∆ i 's are pairwise-disjoint discs of radius ≤ ε, -m i = # f (∆ i) = # f (3∆ i) for all i, and -Z f (B 0) ⊆ k i=1 Z f (∆ i).
This generalization of root isolation is necessary when we consider polynomials whose coefficients are non-algebraic (or when f (z) is an analytic function, as in [START_REF] Yap | Analytic root clustering: A complete algorithm using soft zero tests[END_REF]). The requirement that # f (∆ i) = # f (3∆ i) ensures that our output clusters are natural [START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF]; a polynomial of degree d has at most 2d -1 natural clusters (see [START_REF] Yap | Analytic root clustering: A complete algorithm using soft zero tests[END_REF]Lemma 1]). The local root clustering algorithm for analytic functions of [START_REF] Yap | Analytic root clustering: A complete algorithm using soft zero tests[END_REF] has termination proof, but no complexity analysis. By restricting f (z) to a polymomial, Becker et al. [START_REF] Becker | A near-optimal subdivision algorithm for complex root isolation based on the pellet test and newton iteration[END_REF] succeeded in giving an algorithm and also its complexity analysis based on the geometry of the roots. When applied to the benchmark problem, where f (z) is an integer polynomial of degree d with L-bit coefficients, the algorithm can isolate all the roots of f (z) with bit complexity O(d 2 (L + d)). Pan [START_REF] Pan | Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding[END_REF] calls such bounds nearoptimal (at least when L ≥ d). The clustering algorithm studied in this paper comes from [START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF], which in turn is based on [START_REF] Becker | A near-optimal subdivision algorithm for complex root isolation based on the pellet test and newton iteration[END_REF]. Previously, the Pan-Schönhage algorithm has achieved near-optimal bounds with divide-and-conquer methods [START_REF] Pan | Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding[END_REF], but [START_REF] Becker | A near-optimal subdivision algorithm for complex root isolation based on the pellet test and newton iteration[END_REF][START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF] was the first subdivision algorithm to achieve the near-optimal bound for complex roots. For real roots, Sagraloff-Mehlhorn [START_REF] Sagraloff | Computing real roots of real polynomials[END_REF] had earlier achieved near-optimal bound via subdivision.

Why the emphasis on "subdivision"? It is because such algorithms are implementable and quite practical (e.g., [START_REF] Rouillier | Efficient isolation of polynomial's real roots[END_REF]). Thus the near-optimal real subdivision algorithm of [START_REF] Sagraloff | Computing real roots of real polynomials[END_REF] was implemented shortly after its discovery, and reported in [START_REF] Kobel | Computing real roots of real polynomials... and now for real[END_REF] with excellent results. In contrast, all the asymptotically efficient root algorithms (not necessarily near-optimal) based on divide-and-conquer methods of the last 30 years have never been implemented; a proof-of-concept implementation of Schönhage's algorithm was reported in Gourdon's thesis [START_REF] Gourdon | Algorithmique et Géométrie des Polynomes[END_REF]). Computer algebra systems mainly rely on algorithms with a priori guarantees of correctness. But in practice, algorithms without such guarantees are widely used. For complex root isolation, one of the most highly regarded multiprecision software is MPSolve [START_REF] Bini | Design, analysis, and implementation of a multiprecision polynomial rootfinder[END_REF]. The original algorithm in MPSolve was based on Erhlich-Aberth (EA) iteration; but since 2014, a "hybrid" algorithm [START_REF] Bini | Solving secular and polynomial equations: A multiprecision algorithm[END_REF] was introduced. It is based on the secular equation, and combines ideas from EA and eigensolve [START_REF] Fortune | An iterated eigenvalue algorithm for approximating roots of univariate polynomials[END_REF]. These algorithms are inherently global solvers (they must approximate all roots of a polynomial simultaneously). Another theoretical limitation is that the global convergence of these methods is not proven.

In this paper, we give a preliminary report about Ccluster, our implementation of the root clustering algorithm from [START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF]. 1 has four timings τ X (for X = , g, u, s) in seconds: τ is the time for solving the local problem over a box B 0 = [-1, 1] 2 ; τ g is the time for the global problem over the box B 0 = [-150, 150] 2 (which contains all the roots). The other two timings from MPSolve (τ u for unisolve, τ s for secsolve) will be explained later. For each instance, we also indicate the numbers of solutions (#Sols) and clusters (#Clus). When #Sols equals #Clus, we know the roots are isolated. Subdivision algorithms like ours naturally solve the local problem, but MPSolve can only solve the global problem. Table 1 shows that MPSolve remains unchallenged for the global problem. But in applications where locality can be exploited, local methods may win, as seen in the last two rows of the table. The corresponding time for Maple's fsolve is also given; fsolve is not a guaranteed algorithm and may fail.

Overview of Paper

In Section 2, we describe the experimental setup for Ccluster. Sections 3-5 describe some techniques for speeding up the basic algorithm. We conclude with Section 6.

Ccluster local (B

0 = [-1, 1] 2) Ccluster global (B 0 = [-150, 150] 2) unisolve secsolve fsolve d (#Sols:#Clus) (depth:size) τ (s) (#Sols:#Clus) (depth:size) τ g (s) τ u (s) τ s (s) τ f (

Implementation and Experiments

The main implementation of Ccluster is in C language. We have an interface for Julia 5 . We based our big number computation on the arb6 library. The arb library implements ball arithmetic for real numbers, complex numbers and polynomials with complex coefficients. Each arithmetic operation is carried out with error bounds.

Test Suite We consider 7 families of polynomials, classic ones as well as some new ones constructed to have interesting clustering or multiple root structure. Timing Running times are sequential times on a Intel(R) Core(TM) i3 CPU 530 @ 2.93GHz machine with linux. Ccluster implements the algorithm described in [START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF] with differences coming from the improvements described in Sections 3-5 below. Unless explicitly specified, the value of ε for Ccluster is set to 2 -53 ; roughly speaking, it falls back to asking for 15 guaranteed decimal digits. MPSolve For external comparison, we use MPSolve. It was shown to be superior to major software such as Maple or Mathematica [START_REF] Bini | Design, analysis, and implementation of a multiprecision polynomial rootfinder[END_REF]. There are two root solvers in MPSolve: the original unisolve [START_REF] Bini | Design, analysis, and implementation of a multiprecision polynomial rootfinder[END_REF] which is based on the Ehrlich-Aberth iteration and the new hybrid algorithm called secsolve [START_REF] Bini | Solving secular and polynomial equations: A multiprecision algorithm[END_REF]. These are called with the commands mpsolve -au -Gi -oγ -j1 and mpsolve -as -Gi -oγ -j1 (respectively). -Gi means that MPSolve tries to find for each root a unique complex disc containing it, such that Newton iteration is guaranteed to converge quadratically toward the root starting from the center of the disc. -oγ means that 10 -γ is used as an escape bound, i.e., the algorithm stops when the complex disc containing the root has radius less that 10 -γ , regardless of whether it is isolating or not. Unless explicitly specified, we set γ = 16. -j1 means that the process is not parallelized. Although MPSolve does not do general local search, it has an option to search only within the unit disc. This option does not seem to lead to much improvement.

Improved Soft Pellet Test

The key predicate in [START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF] is a form of Pellet test denoted T G k (∆ , k) (with implicit f (z)). This is modified in Figure 3 by adding an outer while-loop to control the number of Graeffe-Dandelin iterations. We try to get a definite decision (i.e., anything other than a unresolved) from the soft comparison for the current Graeffe iteration. This is done by increasing the precision L for approximating the coefficients of f in the innermost while-loop. Thus we have two versions of our algorithm: (V1) uses the original T G k (∆ , k) in [START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF], and (V2) uses the modified form in Figure 3. Let τV1 and τV2 be timings for the 2 versions. Table 2 shows the time τV1 (in seconds) and the ratio τV1/τV2. We see that (V2) achieves a consistent 2.3 to 3-fold speed up.

In (V2), as in [START_REF] Becker | Complexity analysis of root clustering for a complex polynomial[END_REF], we use T G 0 (∆) (defined as T G k (∆ , 0)) to prove that a box B has no root. We propose a new version (V3) that uses T G * (∆) (defined as T G k (∆ , d), where d is the degree of f) instead of T G 0 (∆) to achieve this goal: instead of just showing that B has no root, it upper bounds # f (B). Although counter-intuitive, this yields a substantial improvement because it led to fewer Graeffe iterations overall. The timing for (V3) is τV3, but we display only the ratio τV1/τV3 in the last column of Table 2. This ratio shows that (V3) enjoys a 3.3-7.7 fold speedup. Comparing n3 for (V2) and (V3) explains this speedup.

T G k (∆ , k) f (z) is implicit argument Output: r ∈ {-1, 0 . . . , k} ASSERT: if r ≥ 0, then # f (∆) = r L ← 53, d ← deg(f), N ← 4 + log 2 (1 + log 2 (d)) , i ← 0 f ←getApproximation(f , L) f ←TaylorShift(f , ∆) While i ≤ N Let f be the i-th Graeffe iteration of f r ← 0 While r ≤ k j ← IntCompare(| f | r , ∑ k =r | f | k ,2 -L) a While j = unresolved L ← 2L f ←getApproximation(f , L) f ←TaylorShift(f , ∆) Let f be i-th Graeffe iteration of f j ←IntCompare(| f | r , ∑ k =r | f | k ,2 -L) If j = true then Return r r ← r + 1 i ← i + 1 Return -1 a IntCompare(ã, b, 2 -L) compares L-

Filtering

A technique for speeding up the evaluation of predicates is the idea of filters (e.g., [START_REF] Brönnimann | Interval arithmetic yields efficient dynamic filters for computational geometry[END_REF]). The various Pellet tests can be viewed as a box predicate C that maps a box B ⊆ C to a value7 in {true, false}. If C -is another box predicate with property that C -(B) = false implies C(B) = false, we call C -a falsehood filter. If C -is efficient relatively to C, and "efficacious" (informally, C(B) = false is likely to yield

C -(B) = false), then it is useful to first compute C -(B). If C -(B) = false, we do not need to compute C(B). The predicate C 0 used in Ccluster is defined as follows: C 0 (B) is true if T G * (∆ B) returns 0 (then B contains no root of f) and is false if T G * (∆ B) returns -1 or k > 0 (then B may contain some roots of f). We next present the falsehood filter C - 0 (B) for C 0 . Let f ∆ denote the Taylor shift of f in ∆ , f [i] ∆ its i-th Graeffe iterate, (f [i] ∆) j the j-th coefficient of f [i] ∆ , and | f [i]
∆ | j the absolute value of the j-th coefficient. Let d be the degree of f . The assertion below is a direct consequence of the classical test of Pellet (see [START_REF] Becker | A near-optimal subdivision algorithm for complex root isolation based on the pellet test and newton iteration[END_REF][p. 12]) and justify the correctness of our filters:

(A) if | f [N] ∆ | 0 ≤ | f [N] ∆ | 1 + | f [N] ∆ | d then T G * (∆) returns -1 or k > 0. Our C - 0 filter computes | f [N] ∆ | 0 , | f [N] ∆ | 1 and | f [N]
∆ | d and checks hypothesis of (A) using IntCompare. | f

[N] ∆ | 0 and | f [N] ∆ | d can respectively be computed as (| f ∆ | 0) 2 N and (| f ∆ | d) 2 N . | f [N]
∆ | 1 can be computed with the following well known formula:

(f [i+1] ∆) k = (-1) k ((f [i] ∆) k) 2 + 2 k-1 ∑ j=0 (-1) j (f [i] ∆) j (f [i] ∆) 2k-j (1)
Obtaining | f

[N]

∆ | 1 with eq. (1) requires to know 2 N-1 + 1 coefficients of f ∆ , 2 N-2 + 1 coefficients of f . In particular, it requires to compute entirely the iterations f

[i]
∆ such that 2 N-i ≤ d, and it is possible to do it more efficiently that with eq. (1) (for instance with the formula given in definition 2 of [START_REF] Becker | A near-optimal subdivision algorithm for complex root isolation based on the pellet test and newton iteration[END_REF]).

Our C - 0 filter takes as input a precision L, the Taylor shift f ∆ of the L bit approximation of f and its i-th Graeffe iteration f

[i] ∆ such that 2 N-i ≤ d 4 and 2 N-(i+1) > d 4 . It computes | f [N] ∆ | 0 , | f [N] ∆ | d and the 2 N-j + 1 first coefficients of f [j]
∆ for i < j ≤ N with eq. (1). Then it checks the hypothesis of (A) using IntCompare, and returns false if it is verified, and true otherwise. In practice, it is implemented within the procedure implementing T G * (∆ B). Incorporating C - 0 into Version (V3), we obtain (V4) and the speed up can be seen in Table 3. Filtering with C - 0 becomes more effective as degree grows and this is because one has 2

Escape Bound

The ε parameter is usually understood as the precision desired for roots. But we can also view it as an escape bound for multiple roots as follows: we do not refine a disc that contains a simple root, even if its radius is ≥ ε. But for clusters of size greater than one, we only stop when the radius is < ε. MPSolve has a similar option. This variant of (V4) is denoted (V4'). We see from

Conclusion

Implementing subdivision algorithms is relatively easy but achieving state-of-art performance requires much optimization and low-level development. This paper explores several such techniques. We do well compared to fsolve in Maple, but the performance of MPSolve is superior to the global version of Ccluster. But Ccluster can still shine when looking for local roots or when ε is large.

Fig. 1 .

 1 Fig. 1. Left: the connected components isolating all roots of the Bernoulli polynomial of degree 100. Right: the connected components isolating all roots of the Spiral polynomial of degree 64.

(Figure 2

 2 Figure 2 for the natural ε-clusters of NestClu (3) (z).

Fig. 2 .

 2 Fig. 2. Left: 3 clusters of NestClu (3) found with ε = 1. Right: Zoomed view of 9 clusters of NestClu (3) found with ε = 1 10 . Note: The initial box is in thick lines; the thin lines show the subdivisions tree.

 bit approximations of real numbers a and b. It returns true (resp. false) only if a > b (resp. a < b). It returns unresolved when L is too small to conclude.

Fig. 3 .

 3 Fig. 3. T G k (∆ , k). | f | i is the absolute value of the coefficient of the monomial of degree i of f , for 0 ≤ i ≤ d.

[2]

 2 ∆ , . . . , and finally3 = 2 1 + 1 coefficients of f [N-1] ∆

Table 1 .

 1 Bernoulli Polynomials with five timings: local (τ), global (τ), unisolve (τ), secsolve (τ) and Maple's fsolve(τ f).

	s)

Table 2 .

 2 Solving within the initial box [-50, 50] 2 with ε = 2 -53 with versions (V1), (V2) and (V3) of Ccluster. n1: number of discarding tests. n2: number of discarding tests returning -1 (inconclusive). n3: total number of Graeffe iterations. τV1 (resp. τV2, τV3): sequential time for V1 (resp. V2, V3) in seconds.

 N-i ≤ d 4 for smaller i (recall that N = 4 + log 2 (1 + log 2 (d))).

			V3		V4
			n3 τV3	n3 τV3/τV4
		d = 64	2291 2.61 2084	1.08
	Bern d (z)	d = 128 d = 256	4496 14.5 3983 8847 94.5 7714	1.13 1.19
		d = 512	15983 620 11664 1.42
		d = 767	19804 1832 13863 1.53
		(d, a) = (64, 14)	2080 2.41 1808	1.22
	Mign d (z; a)	(d, a) = (128, 14) (d, a) = (256, 14)	3899 12.1 3257 7605 88.3 6339	1.21 1.33
		(d, a) = (512, 14)	15227 674 10405 1.57
		d = 64	2140 3.27 1958	1.05
	Wilk d (z)	d = 128 d = 256	2240 10.0 1942 2414 36.6 2108	1.09 1.21
		d = 512	2557 129 1841	1.43
		d = 64	2670 4.43 2364	1.08
	Spir d (z)	d = 128 d = 256	5090 28.8 4405 9746 182 8529	1.07 1.10
		d = 512	19159 1340 14786 1.19
		(D, d) = (11, 66)	2065 2.87 1818	1.14
	WilkMul (D) (z)	(D, d) = (12, 78) (D, d) = (13, 91)	2313 3.95 2053 2649 5.89 2336	1.12 1.18
		(D, d) = (14, 105)	2892 8.56 2537	1.29
		(d, a, k) = (64, 14, 3) 2481 2.94 2145	1.13
	MignClu d (z; a, k)	(d, a, k) = (128, 14, 3) 4166 14.4 3555 (d, a, k) = (256, 14, 3) 7658 86.0 6523	1.16 1.27
		(d, a, k) = (512, 14, 3) 15044 650 10472 1.63
		(D, d) = (4, 27)	1628 0.77 1459	1.07
	NestClu (D) (z)	(D, d) = (5, 81) (D, d) = (6, 243)	4588 13.2 4085 13056 358 11824 1.26 1.12

Table 3 .

 3 Solving within the initial box[-50, 50]

2

with ε = 2 -53 with versions (V3), (V4) of Ccluster. n3: number of Graeffe iterations. τV3 and τV4: sequential time in seconds.

Table 4 .

 4 Table 4 that (V4') gives a modest improvement (up to 25% speedup) over (V4) whenlog ε = 53. This improvement generally grows withlog ε (but WilkMul[START_REF] Kobel | Computing real roots of real polynomials... and now for real[END_REF] (z) shows no difference). Solving within the box [-50, 50] 2 with versions (V4) and (V4') of Ccluster with three values of ε. τ53 (resp. τ530, τ5300): sequential time for (V4) and (V4') in seconds.

			(V4)			(V4')	
	ε:	2 -53	2 -530	2 -5300	2 -53	2 -530	2 -5300
		τ53 (s) τ530/τ53 τ5300/τ53 τ53 (s) τ530/τ53 τ5300/τ53
	Bern 64 (z)	2.42	1.26	4.22	1.99	0.94	0.94
	Mign 64 (z; 14)	1.97	1.63	4.56	1.61	1.45	1.38
	Wilk 64 (z)	3.22	1.10	2.16	2.91	0.96	1.01
	Spir 64 (z)	4.09	1.33	5.25	3.05	0.95	0.95
	WilkMul (11) (z)	2.51	1.12	2.03	2.50	1.13	1.98
	MignClu 64 (z; 14, 3) 2.60	1.89	4.15	2.20	1.70	1.80
	NestClu 4 (z)	11.9	1.08	2.67	10.4	1.00	0.99

https://julialang.org/. Download our code in https://github.com/rimbach/Ccluster.

http://arblib.org/. Download our code in https://github.com/rimbach/Ccluster.jl.

We treat two-valued predicates for simplicity; the discussion could be extended to predicates (like T G *) which returns a finite set of values.

Rémi's work has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 676541. Victor's work is supported by NSF Grants # CCF-1116736 and # CCF-1563942 and by PSC CUNY Award 698130048. Chee's work is supported by NSF Grants # CCF-1423228 and # CCF-1564132. 4 Irina Voiculescu informed us that her student Dan-Andrei Gheorghe has independently implemented the same algorithm in a Masters Thesis Project (May 18, 2017) at Oxford University. Sewon Park and Martin Ziegler at KAIST,