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Abstract.—Testing whether some species traits have a significant effect on

diversification rates is central in the assessment of macroevolutionary theories.

However, we still lack a powerful method to tackle this objective. I present a

new method for the statistical analysis of diversification with species traits. The

required data are observations of the traits on recent species, the phylogenetic

tree of these species, and reconstructions of ancestral values of the traits.

Several traits, either continuous or discrete, and in some cases their interactions,

can be analyzed simultaneously. The parameters are estimated by the method

of maximum likelihood. The statistical significance of the effects in a model can

be tested with likelihood ratio tests. A simulation study showed that past

random extinction events do not affect the type I error rate of the tests, whereas

statistical power is decreased, though some power is still kept if the effect of the

simulated trait on speciation is strong. The use of the method is illustrated by

the analysis of published data on Primates. The analysis of these data showed

that the apparent overall positive relationship between body mass and species

diversity is actually an artefact due to a clade-specific effect. Within each clade

the effect of body mass on speciation rate was in fact negative. The present

method allows to take both effects (clade and body mass) into account

simultaneously.

Keywords.—diversification, extinction, maximum likelihood, phylogeny,

generalized linear models, speciation.
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The connection between models and reality is the central issue.

Another theorem cannot help, because we cannot prove by pure

mathematics that mathematical models apply to real problems.

Freedman (1995/96)

Elucidating the mechanisms behind the variation in species diversity is one

of the fundamental questions of evolutionary biology. The great disparity in

numbers of species among higher taxonomic units (phyla, classes, or orders)

implies that there must be some explanatory reasons for this variation.

Remarkable progress has been accomplished recently by theoreticians to

untangle the variables that affect speciation and/or extinction rates (see

Gavrilets 2003, for an overview of some results). Characterizing these variables

in empirical studies is not straightforward. Ideally, one would collect data

through time using the geological and fossil records, then analyze them with

standard statistical methods. However, paleontological and paleoenvironmental

data have been found difficult to interpret in this respect (Nichols et al. 1986;

Marshall 1997; Bleiweiss 1998; Tipper 1998; Weiss and Marshall 1999; Benton

et al. 2000; Foote and Sepkoski 1999; Foote et al. 1999; Jablonski 2000;

Archibald and Deutschman 2001).

During the last decade, there has been an increased interest in the use of

phylogenies reconstructed from recent species to study evolutionary processes

(Barraclough and Nee 2001). The characteristics of phylogenetic trees (topology,

branch lengths, balance, . . . ) are affected by the processes of diversification of

the clade under consideration (Aldous 1995, 2001; Mooers and Heard 1997).

Several methods have been developed to use phylogenetic data in order to

estimate speciation and extinction rates (Nee et al. 1994; Paradis 2003), or test

for constancy of diversification through time (Wollenberg et al. 1996; Paradis

1997, 1998b; Pybus and Harvey 2000) or among clades (Sanderson and
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Bharathan 1993; Sanderson and Donoghue 1994; Paradis 1998a; Bokma 2003).

Other methods aim to test whether some traits are significantly correlated

with species diversification (Slowinski and Guyer 1993; Barraclough et al. 1998).

This category of methods is of particular relevance since they allow test of

hypotheses about the effects of some biological traits on species diversification.

Examples of such traits include suspected evolutionary key-innovations (Hunter

1998), body size (Gittleman and Purvis 1998; Bokma 2002; Orme et al. 2002a),

or other traits (e.g., Cardillo et al. 2003; Fisher et al. 2003). However, these

methods suffer from the fact that they consider the product of evolution

(namely species richness) rather than the process of evolution per se (speciation

and/or extinction). Even analyzing species richness in a phylogenetic framework

is not straightforward because of the possibility to use various indices of species

richness differences, and the difficulty in combining several traits in the analysis

(Isaac et al. 2003).

In this paper, I present a new method to analyze whether some traits affect

diversification rate using observations of these traits on recent species and the

phylogenetic tree of these species. This method is based on a new model of

diversification which can be called the ‘Yule model with covariates’. The

parameters of the model are estimated by maximum likelihood. Several traits,

either continuous or discrete, can be analyzed simultaneously. The statistical

significance of the effects of these traits can be tested with likelihood ratio tests.

Since the present method is parametric, it is possible to predict how speciation

rate varies with respect to the variables that have been found to be significant.

I develop below the model, the estimation procedure, and the statistical

tests. I then report the results from a simulation study to assess the statistical

properties of the method. To illustrate the use of the method, I analyzed some

data on Primates.
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Methods

The Model

For simplicity, I will assume that the lineage diversify following a birth-only

process (i.e. no extinction). In this model, each species has an instantaneous

probability of splitting in two daughter-species, called the speciation rate in this

paper, and denoted λ. Let us assume that the value of λ for species i (λi) is

determined by a set of species characters. For convenience, I will assume a

linear relationship that can be written as:

λi = β1xi1 + β2xi2 + . . . + βpxip + α, (1)

where x1, . . . , xp are the species characters under consideration (xi1 . . . , xip are

the values of these characters for species i), and β1, . . . , βp, α are coefficients.

Since λi is a probability, it can take values between 0 and 1; it is thus preferable

to transform the left-hand side term above so that it varies between −∞ and

+∞. Various functions can be used to this aim: I chose a logit function which is

widely used in statistical analyses (e.g. in logistic regression):

ln
λi

1− λi

= β1xi1 + β2xi2 + . . . + βpxip + α. (2)

It is convenient to rewrite this equation in matrix form:

ln
λi

1− λi

= xT
i β, (3)

where β is a vector composed with the p + 1 coefficients, and xT
i is the

transposed vector of the p characters for species i binded with a 1 for the

intercept (α). Thus, giving some values of x and β, the speciation rate is given

by the inverse logit function:



6

λi =
1

1 + e−xT
i β

. (4)

Note that there is no direct time dependence in the speciation rate in this

model: if the species characters vary through time, then λ will also vary, but if

the former do not, then the latter will be constant through time.

The species characters (or variables) can be continuous or discrete. In the

latter case, a suitable numeric coding may be used as common practice in

generalized linear modeling (McCullagh and Nelder 1989). For instance, a

discrete variable with two states would be coded as a variable taking the values

0 or 1 (see Appendix). Interactions between discrete variables, and between a

continuous one and a discrete one can also be included in the model.

Parameter Estimation

The problem is to estimate the vector of coefficients β. I will assume that the

available data are a phylogenetic tree that includes all species and with branch

lengths proportional to time, and the values of the p species characters for the

N species and for the N − 1 nodes of the tree (assuming that the latter is fully

dichotomous). A series of speciation events can be inferred from the tree; it is

also inferred that no speciation occurred between two such consecutive events.

Let us denote t1, . . . , tq the times defined by the speciation events, and

n1, . . . , nq the number of species living after each of these events (nq = N). The

first speciation event is given by the root of the tree, so that t1 is the age of the

root, and n1 = 2. I will admit that there may be ties in these times (i.e.

speciation events occurring at the same time), so the number of species may

increase by more than 1 through time, and q may be less than N − 1. The

probabilities of these events are proportional to the number of species living at

a given time and the corresponding value of speciation rates; if two speciation
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events occurred at the same time (i.e. a tie), then this is the product of the

number of species and the corresponding values of the two speciation rates (and

so on with three or more speciation events).

The probability of a species not having a speciation event between times t′

and t′′ is (Cox and Oakes 1984):

exp

{
−

∫ t′′

t′
λ(τ)dτ

}
, (5)

where λ(τ) is a function describing how the speciation rate changes between

times t′ and t′′. The probability of n species not having any speciation event

between times t′ and t′′ is (see Darwin 1956):

exp

{
−

n∑
i=1

∫ t′′

t′
λi(τ)dτ

}
. (6)

We can now write the likelihood of the data under the model described

above:

L = exp
[
−

{∫ t2
t1

λ1(τ)dτ +
∫ t2
t1

λ2(τ)dτ
}]

n2ν2×

exp
[
−

{∫ t3
t2

λ1(τ)dτ +
∫ t3
t2

λ2(τ)dτ +
∫ t3
t2

λ3(τ)dτ
}]

n3ν3×

. . .×

exp
[
−

{∫ tq
tq−1

λ1(τ)dτ + . . . +
∫ tq
tq−1

λN(τ)dτ
}]

,

where ν2, . . . , νq are the probabilities of the events observed at times t2, . . . , tq

(namely one or more speciation events). A logarithmic transformation gives:

ln L = −
{∫ t2

t1
λ1(τ)dτ +

∫ t2
t1

λ2(τ)dτ
}

+ ln n2 + ln ν2+

−
{∫ t3

t2
λ1(τ)dτ +

∫ t3
t2

λ2(τ)dτ +
∫ t3
t2

λ3(τ)dτ
}

+ ln n3 + ln ν3+

. . . +

−
{∫ tq

tq−1
λ1(τ)dτ + . . . +

∫ tq
tq−1

λN(τ)dτ
}

.
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Using the additive property of integrals, it is easy to see that all integrals

add up over all branches. The log-likelihood thus becomes:

ln L = −
2N−2∑
j=1

∫ t′′j

t′j

λ(τ)dτ +
q∑

i=1

ln ni +
q∑

i=1

ln νi, (7)

where t′j and t′′j are the end-point times of the jth branch (2N − 2 is the number

of branch in a rooted dichotomous tree with N tips). A further simplification is

given by the fact that ν is a product of λ values, so we have:

ln L = −
2N−2∑
j=1

∫ t′′j

t′j

λ(τ)dτ +
q∑

i=1

ln ni +
N−1∑
k=1

ln λk. (8)

The way λ(τ) is integrated over the branch lengths will depend on how the

speciation rate varies through time. The simplest way is to assume a linear

change:

∫ t′′j

t′j

λ(τ)dτ =
λt′j

+ λt′′j

2
lj, (9)

where lj is the length of the jth branch. Under this assumption, we end up with

the log-likelihood:

ln L = −
2N−2∑
j=1

λt′j
+ λt′′j

2
lj +

q∑
i=1

ln ni +
N−1∑
k=1

ln λk, (10)

which can be solved after substituting λ by the expression in equation 4.

Practically, maximizing ln L would require to find its first partial derivatives

with respect to the different parameters; however these expression are too

complex to be solved analytically. I used instead a numerical minimization

method. The likelihood was transformed as the deviance (equal to −2 ln L);

finding the maximum likelihood was equivalent to minimizing the deviance.

This was done with the nonlinear minimization function of R (Ihaka and
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Gentleman 1996) which uses a Newton-type algorithm for unconstrained

minimization (Schnabel et al. 1985). This method allows one to find the

minimum of a function even when its partial and second derivatives are

unknown. However, these derivatives can be computed numerically by this

algorithm, allowing to calculate the standard-errors of the MLEs with:

SE(β̂) =

[
−∂2 ln L

∂β2

]
β̂

− 1
2

. (11)

It is interesting to note that if we fix β = 0, then the estimated speciation

rate λ̂, after logit back-transformation of the estimated parameter α̂ using

equation 4, is equal to the Kendall–Moran estimate (see Nee 2001, for details),

as can be found with the function yule in APE (Paradis et al. 2004). The

maximum likelihood found by both fitting procedures is the same.

Hypothesis Testing

To test whether the species variables x have a significant effect on speciation

rate, it is possible to use standard statistical methodologies. Two models can be

compared with a likelihood ratio test provided they are nested (i.e. one model is

a particular case of the other). The hypothesis then tested is that the additional

parameter(s) in the second model is (are) significantly different from zero. This

likelihood ratio test follows a χ2 distribution with a number of degrees of

freedom equal to the difference in numbers of parameters between both models.

Diagnostics of Fit

Whereas statistical tests, such as likelihood ratio tests, indicate whether a model

better describes the data than another one, they do not inform us whether this

particular model adequately fits the data in some absolute ways. Diagnostics of

fit are statistical tools to examine whether the observed data are well predicted
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by a particular model. For instance in a linear regression, residuals (the

difference between the observed and the predicted values of the response) may

indicate whether some potential predictors have not been included in the model,

or whether the relationship may be nonlinear (Venables and Ripley 2002).

With the method presented in this paper, it is possible to assess whether the

branch lengths observed in a tree are well predicted by the Yule model with

covariates using equation 5. This equation gives the probability of no speciation

event, and so corresponds to the probability of observing a particular branch in

the reconctructed tree. Under the above assumption on character change (i.e.

linear change), equation 9 can be used practically.

Simulation Analysis

Some simulations were run to assess some statistical properties of the present

method. Specifically, four questions were addressed. What is the type I error

rate of the method? What is the statistical power of the method? What is the

precision of the parameter estimators? What is the statistical robustness of the

method with respect to extinction?

The evolution of a clade was numerically simulated using a non-homogeneous

birth–death process where the speciation rate was determined by

λ =
1

1 + eβx−α
,

where α and β were parameters, and x was a continuous variable which evolved

following a randow walk process, and the extinction rate µ was constant

throughout time and all lineages.

The simulations were started with a single species. At each time step, each

species living in the clade had a probability equal to µ to die. If it survived,

each species had then a probability given by λ to generate two daughter-species,
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otherwise it simply survived to the next time step. This evolution process was

simulated during 100 time-steps.

The evolution of x was so that at each time-step xt+1 = xt + ε with

ε ∼ N(0, σ2). All values of ε were independent among all lineages and

throughout time. Such a model may not describe properly the evolution of

many biological characters, but it was chosen because it can be simulated easily,

and it conforms to the assumption of linear change along a branch of the tree.

The simulation parameters were given the following values: α = −3,

β = {0,−1,−2,−3,−4}, σ = {0.01, 0.02}, and µ = {0, 0.0005, 0.001}. For each

combination of parameters the simulation was replicated 100 times. Note that

when β = 0, the simulated process was a homogeneous birth–death process with

λ = 1/(1 + e3) = 0.047. Fig. 1 illustrates how the speciation rate varied withFig. 1

respect to x for the values of β used in these simulations.

Since the simulations were fully stochastic, so were the number of species

living at the end of the simulation. The simulations with 0, 1, or 2 species at

the end of the simulation were not considered. In some replications, the number

of species were very large (up to 6,807,203 in the present study) which raised

some problems because of the data manipulation subsequently needed. I thus

considered only the trees with at most 2000 species. When a tree did not meet

the selection criterion (between 3 and 2000 species), the simulation was

repeated with the same parameter values until 100 trees were obtained for

further analyses.

At the end of each simulation, the tree (topology with branch lengths)

considering only the species living at the end of the simulation was output

together with the values of x at its tips and nodes. Note that in real

applications, the values at the nodes must be reconstructed separately. These

data were analyzed with the method described in this paper. The estimates β̂,
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α̂, their standard-errors, the P -value of the likelihood ratio test of the

hypothesis β = 0, the number of species living at the end of the simulation, and

the depth of the tree (age of the most recent common ancestor of all living

species) were stored for further analyses.

All analyses were done with R version 1.8.1 (R Development Core Team

2003). The simulations were done with a program written in C specially for the

present study which was dynamically linked to R. The data analyses were

performed with APE, a package written in R for phylogenetic analyses (Paradis

et al. 2004).

Primates Data

A complete phylogeny of Primates has been recently reconstructed with the

method of supertrees (Purvis 1995). The phylogeny is ultrametric, and has

branch lengths in million years (Fig. 2). The tree had several multichotomiesFig. 2

(191 nodes for 259 tips): it was necessary to accomodate this since the model

used here considers only dichotomous trees. The simplest solution to this

problem, and the one adopted here, is to treat these multichotomies as a series

of dichotomies with zero-lengthed branches (Purvis and Garland 1993).

It was interesting to assess whether some biological traits could explain the

variation in speciation rate in this order. An obvious candidate was body mass

which relationship with diversification rate of Primates has been studied with

another approach (Gittleman and Purvis 1998). Furthermore, one of the critical

parameters that control speciation is the rate of fixation of new genetic

mutations, and this rate is expected to be critically influenced by demography

(Gavrilets et al. 2000). Small-bodied species have generally demographic

features that make them likely to have a higher rate of fixation than

large-bodied ones, such as largely fluctuating numbers (Krebs and Myers 1974),
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short dispersal distances (Paradis et al. 1998), or short generation times (Peters

1983). It is therefore logical to expect a negative effect of body size on

speciation rate.

Data on body mass were taken from Smith et al. (2003). For the species

with no data on body mass in this reference, the mean of the other species

belonging to the same genus was calculated: this was done for 43 species. Body

mass was still missing for three species which genus is monospecific (Cebuella

pygmaea, Simias concolor, and Homo sapiens): data were found for these

species in Nowak (1991).

The values of body mass at the nodes of the phylogenies were estimated

assuming a Brownian model of trait evolution (Felsenstein 1985). Under this

model of trait evolution, the assumption in equation 9 is valid.

Results

Simulation Analysis

In eight cases out of the 3000 simulations the fitting algorithm did not converge

which was clearly due to a small sample size since there were three species in

these eight simulated trees.

The overall type I error rate at the nominal level of 5% calculated over all

simulations with β = 0 was 0.022. For each combination of σ and µ, the

estimated type I error rates ranged between 0.01 and 0.06. Given that these

estimates are based on only 100 replications, there is no evidence that the

probability of rejecting the null hypothesis when it is true overrates the nominal

level of 5%, or that it is substantially affected by the extinction rate being

different from zero.

The estimated power increased with greater values of β, larger values of σ,

and smaller values of µ (Table 1). When β was large, the effect of the speciesTable 1
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trait on speciation rate was stronger, and the likelihood ratio test detected this

effect with a higher frequency. When σ was high the variation in the species

trait was larger, and thus the relation between this trait and speciation rate was

tighter and found statistically significant with a higher proportion. When

µ > 0, the assumptions of the method were not fulfilled, and it may be expected

that its statistical properties are affected. This was the case here, but this result

depended on the values of the other parameters of the simulations. For

instance, the likelihood ratio test was less powerful when β = −1 and µ = 0,

than when β = −4 and µ = 0.001, even though the assumptions of the method

were met in the former case.

An effect of sample size (number of species) was observed only when µ = 0

(Fig. 3). As could have been expected, the power of the test was higher for theFig. 3

largest sample sizes. The relation was loose for β = −1, whereas the power was

high (≈ 1) for β ≤ −2 when there was 150 or more species. It cannot be

excluded that a relationship between power and sample size exists beyond the

limit fixed in this study (2000) in the cases with µ > 0.

When considering the precision of the estimators, the results were quite

sensitive to the depth of the tree: trees with a most recent common ancestor

younger than 60 gave highly dispersed estimates of both parameters. Thus only

trees with a depth of at least 60 were considered in the present analysis. The

estimates of β were nearly unbiased when µ = 0, whereas a bias was observed

when µ > 0, particularly when σ = 0.01 (Fig. 4). This bias was stronger for theFig. 4

larger values of β. On the other hand, the estimates of α were nearly unbiased

in all situations and their distribution showed no variation with respect to β or

σ. The median of this distribution was −3.04 (first and third quartiles: −3.17,

and −2.92; 98% of the values were distributed between −4 and −2).
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Primates

Fitting the Yule model (i.e. the null model where λ is constant) gave a deviance

of 95.20, and an estimate λ̂ = 0.146 (SE = 0.009). Fitting a model with an

effect of ln(body mass) on λ resulted in a deviance of 76.51. The likelihood ratio

test of the effect of ln(body mass) was statistically significant: χ2
1 = 18.69,

P < 0.0001. Surprisingly, the effect of ln(body mass) was positive: β̂ = 0.21 (SE

= 0.03).

Previous analyses showed a strong contrast between different clades of

Primates in terms of diversification rates (Purvis et al. 1995; Paradis 1998a).

Particularly, Old World monkeys (Catarrhini) appeared to have diversified at a

much higher rate than the other groups of Primates. Given that Old World

monkeys have on average larger body masses than New World ones

(Platyrrhini), the positive effect of body mass on speciation rate could be due to

an artefact. To assess this hypothesis, I fitted a model with a ‘clade’ effect

where clade was a categorical variable with five categories: Ape, Catarrhini,

Platyrrhini, Strepsirhini (Malagasy lemurs), and Tarsius. The states of this

variable on the basal nodes of the phylogeny were reconstructed using a

parsimony criterion. The deviance of this model was 11.46, and the likelihood

ratio test comparing it with the null (Yule) model was χ2
4 = 83.74, P = 0. Thus,

the improvement in the model fit was dramatic.

I further tested whether ln(body mass) had a possible effect on this ‘clade’

effect model. The deviance of this ‘clade + ln(body mass)’ model was 7.21. The

likelihood ratio test comparing this model with the ‘clade’ model was slightly

significant: χ2
1 = 4.25, P = 0.039. Interestingly, the effect of ln(body mass) was

now negative (Table 2). I finally selected this last model for parameter

estimation. Using equation 4 it is possible to compute the predicted values ofTable 2

speciation rates according to the selected model (Fig. 5). Considering theFig. 5
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observed distributions of body mass in each clade of Primates, the ‘clade’ effect

now explains the overall positive relationship between body mass and speciation

rate. However, within each clade there is a negative effect of body mass on

speciation rate.

A plot of the diagnostics of model fit shows that the terminal branches were

particularly well predicted by the selected model (Fig. 2). Long or basal

branches were less well predicted, though most branches had a probability

greater than or equal to 0.2.

Discussion

Recent theoretical works on speciation and diversification have been taken in

several directions such as characterizing the factors at the origin of speciation

(Kaneko and Yomo 2000; Gavrilets 2003; Hochberg et al. 2003; Streelman and

Danley 2003), the patterns of phylogenetic diversity (Aldous 1995, 2001; Losos

and Adler 1995), or the evolution of genomic complexity (Lynch and Conery

2003). With the increasing quantity of various kinds of data (DNA sequences,

ecological and biological data, . . . ), it is crucial to have some statistical methods

to test the above theories. The goal of the method presented in this paper is to

contribute to fill this need.

There are two main assumptions in the present method: extinction has been

absent, and the fully resolved (species-level) phylogeny and the values of the

traits under consideration at the tips and the nodes of the phylogeny are all

known. These assumtions are discussed in the next four paragraphs.

The model used here (Yule model with covariates) assumes there is no

extinction. This assumption is unlikely to be true in many situations as clearly

shown by the fossil record of many taxonomic groups. The reason for this

assumption is that it makes possible the development of the likelihood function
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presented above. It cannot be excluded that a likelihood function may be

derived taking extinction into account, but this still needs to be found.

Interestingly, the simulation study showed that the type I error rate of the

present method is not affected by random extinction: the probability of

rejecting the null hypothesis when it was true was not increased when there

were extinctions occurring at a constant rate. This suggests that the present

method is unlikely to reveal false significant effect of a trait on diversification

rate. However, we cannot generalize this result to the cases where extinction

rate is heterogeneous. Particularly, it would be interesting to assess whether an

extinction rate varying with respect to a species trait (e.g. in the same way

modeled here for speciation rate) would be detected by the present method as a

significant effect on speciation rate because of the ‘signal’ left on the tree by this

heterogeneous extinction rate. This needs to be studied with more extensive

simulations than done here.

The power of the test (probability of rejecting the null hypothesis when it is

false) was affected by the value of extinction rate: the greater the latter, the

smaller the former. However, it should be noted that this depended on the

strength of the effect of the trait on the speciation rate: the test of the null

hypothesis had a significant power when this effect was strong even though

there were extinctions. It should be noted that the simulations were run with a

relatively short timespan (100 time steps) which may explain the relative poor

performance of the likelihood ratio test in this situation: it was observed that a

significant effect was found mostly when β = −4. However, the analysis of the

Primates data showed statistically significant estimated coefficients which were

much smaller than four in absolute value (as the preliminary analyses of other

data did). The fact that the depth of the tree was important for the results of

the simulation suggests that the discreteness of the time scale may be critical
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here. Ideally, it would be needed to run some simulations with a more realistic

time scale (> 1000) but these may be computationally hard to tract. Though

the estimated power of the tests may not be generalized to real applications, it

seems reasonable to assume that the patterns revealed by the simulations

(increase in power with sample size, variation in the trait, and strength of the

effect) may be generalized.

On a more general note, the estimation of extinction rates with phylogenies

of recent species is a subject that should retain more attention. Kubo and Iwasa

(1995) showed that the variance of the estimator of extinction rate obtained

from molecular phylogenies is too large to be reliable. Paradis (2004) showed

that the estimates of extinction rates are negatively biased in a wide range of

situations, and that correct estimation of this parameter is possible only when

the reconstructed tree is close to the true historical tree of the clade. These

results are intuitive since no extinction events are observed in a phylogeny of

recent species. Most of the information in this kind of data relates to speciation

rate. This justifies, at least partially, to focus the attention on speciation rate. I

even suspect that it is not feasible to model extinction rates in the way done

here for speciation rates. An additional consideration is that the extinct

lineages may have parameters different from those of the extant ones such an a

higher extinction rate. Thus, in addition to the problem that these lineages are

not observed, it is possible that there is a problem of heterogeneity in the

parameters as well.

The present method requires to know the fully resolved phylogeny of the

species, and the values of the traits for these species at the tips and at the

nodes of the phylogeny. It is generally not possible to have direct observations

of the traits for the nodes of the trees, so they must be estimated using

ancestral character reconstruction methods (Webster and Purvis 2002, and
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references therein). The assumption of a fully resolved tree can also be relaxed

since a tree with multichotomies can be analyzed. Ideally, one needs to take

such uncertainty into account in the estimation procedure so that the

standard-errors of the parameters may be corrected. One possible approach is

to repeat the analysis with different trees and different values of the ancestral

traits, and then quantify the resulting variability on the parameter estimates as

a component of their standard-errors due to this uncertainty (Anderson et al.

2001). Another, more sophisticated, approach is to use directly the confidence

intervals on trees and ancestral trait values (see Schluter et al. 1997) to

compute a component of the variance of the estimators due to model selection

uncertainty (Buckland et al. 1997; Burnham and Anderson 2002).

The method in the form presented here considers only linear effects. Though

this gives many possibilities such as including several variables and possible

interactions between them, it is possible that nonlinear models may be more

biologically realistic models of the effects of species traits on speciation rates.

Such candidate models are threshold models where the effect of a variable

differs depending on some threshold values. It is straightforward to extend the

present method to nonlinear models: the only condition is that it must be

possible to derive the value of speciation rate with respect to the variables

included in the model (such as equation 4).

Throughout this paper, it has been assumed that continuous traits evolved

in a simple way (Brownian motion), but another model of change may be used

provided that the integration along each branch may be expressed in a way that

it can be incorporated in the likelihood function. It should be noted that it is

not required to know the exact temporal variation in species traits and

speciation rate, but only the integral of the latter along each branch of the tree.

For instance, it does not matter whether the speciation rate changed linearly or
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with some random fluctuations along a branch, the integral will be the same in

both cases.

The present method gives some emphasis on parameter estimation by

contrast to hypothesis testing. With this respect, it is in agreement with some

recent trends in statistical science and data analysis (Johnson 1995, 1999;

Nelder 1999; Anderson et al. 2000; Venables and Ripley 2002). In evolutionary

biology, null hypothesis testing is still extremely popular. I believe much could

be gained from giving more emphasis on parameter estimation in this field.

This would allow the development of predictive models from the data (i.e. with

an empirical ground). Null hypotheses usually focus on simple models whereas

more complex models are often needed to describe biological processes. Another

advantage of parameter estimation approaches is that the estimates (under

some obvious conditions) are comparable among studies. Considering more

carefully parameter estimation does not deny the importance of statistical tests

as illustrated here where likelihood ratio tests were used to select models with

the appropriate variables.

The results presented in this paper are an illustration of the potentialities of

the present method, but they clearly need some comments. The data analyzed

here were nearly the same than in Gittleman and Purvis (1998). With respect

to body size, the results from both studies were in the same direction: a positive

effect on diversification was found for primates; however, the studies disagree

with respect to the significance of this effect. This may come either from the

different methods used, or from differences in the data. Gittleman and Purvis

(1998) used the phylogenetically-based contrasts method (Barraclough et al.

1998) which is likely to explain the discrepancy with the present study.

An important issue raised by the Primates example is the treatment of

multichotomies by the present method. The Yule model (with or without
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covariates) assumes that all speciation events are dichotomous, and thus that a

phylogenetic tree under analysis should be fully dichotomous as well. However,

many phylogenies at the species level have multichotomies. If the latter are the

results of a series of speciation events so close in time that they cannot be

resolved in the reconstructed phylogeny, then it is valid to treat them as a series

of dichotomies with zero-lengthed branches. However, if the multichotomy is a

consequence of a lack of knowledge (a so-called “soft polytomy”), then resolving

the multichotomy in this way may be more problematic. The crucial point is

that ancestral traits should be correctly estimated. Several studies suggest that

unresolved multichotomies do not bias the estimation of ancestral traits

(Felsenstein 1985; Purvis and Garland 1993; Garland and Dı́az-Uriarte 1999).

On the other hand, errors in the topology of the tree is a more serious problem

for the estimation of ancestral trait values (Symonds 2002). It seems that

unresolved multichotomies will tend to hide actual relationships, and thus

increase type II error rates, rather than increase type I error rates (Garland and

Dı́az-Uriarte 1999; Symonds 2002). This obviously needs further study.

It has been possible to show that the apparent overall positive effect of body

mass on speciation rate was actually an artefact due to differences among the

different clades of Primates. The most rapidly diversifying clades (Catarhini,

Ape) have, on average, larger body sizes than the slowly diversifying clades

(Tarsius, Strepsirhini): this created an apparent positive relationship between

body size and speciation rate when the clade-effect was not taken into account.

This among-clade heterogeneity in diversification has already been characterized

in previous studies (Purvis et al. 1995; Paradis 1998a). Similar clade-specific

diversification has been shown in Hawaiian birds (Lovette et al. 2002). An

interesting result from the present analysis is that, after taking into account this

among-clade heterogeneity, the effect of body mass on speciation rate was
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negative, though only slightly statistically significant. It is possible that the

effect of body mass, if any, on speciation rate is too weak in this mammal order

to be characterized clearly, as was suggested by Gittleman and Purvis (1998).

Furthermore, recent assessments of the effect of body size on species diversity

on a large scale have not given clear-cut results (Orme et al. 2002a,b).

To conclude, I believe the present method will bring the opportunity to

assess many hypotheses about macroevolutionary processes. It will hopefully fill

a gap between the approach of estimating speciation and extinction rates and

biological and ecological hypotheses on diversification.
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Appendix

Some details are given here on how discrete (categorical) variables are handled

in the present method, and how the corresponding parameters must be

interpreted. For instance, consider color as such a variable which could take two

values: red or green. To include this variable in a model, it will be substituted

by a numeric in the following way:

red → 0

green → 1

The model fit will give two parameter estimates: β̂ and α̂. The predicted

values of speciation rate are then obtained with:

red: logit(λ) = α̂

green: logit(λ) = β̂ + α̂

where logit(λ) = ln[λ/(1− λ)].

In the general case of a categorical variable with n categories, n− 1 binary

variables are created. For instance, with the primate data above, the four

numeric variables were:

Ape → 0 0 0 0

Catarrhini → 1 0 0 0

Platyrrhini → 0 1 0 0

Strepsirhini → 0 0 1 0

Tarsius → 0 0 0 1

This led to the estimation of five parameters: β̂1, β̂2, β̂3, β̂4, and α̂. The

predicted values of speciation rate were obtained with:
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Ape: logit(λ) = α̂

Catarrhini: logit(λ) = β̂1 + α̂

Platyrrhini: logit(λ) = β̂2 + α̂

Strepsirhini: logit(λ) = β̂3 + α̂

Tarsius: logit(λ) = β̂4 + α̂

In a model with a categorical variable (as color above) and a continuous

variable (say x), it is possible to include, in addition to the main effects of both

variables, an interaction term which is numerically coded as the product of the

numeric variable coding for color and x:

red → 0

green → x

The model fit will give four parameter estimates: β̂1 (for x), β̂2 (for color),

β̂3 (for the interaction), and α̂. The predicted values of speciation rate are then

obtained with:

red: logit(λ) = β̂1x + α̂

green: logit(λ) = (β̂1 + β̂3)x + β̂2 + α̂

This shows clearly that the interaction term is interpreted as a contrast in

the effect of x with respect to the different categories of color (if β̂3 = 0, then

only the intercept will be different). In the general case of a categorical variable

with n categories, n− 1 variables will be created with the product of the n− 1

binary variables with x.

Similarly, a model with two categorical variables may have an interaction

term numerically coded by all possible products of the individual numeric

variables: a full model including the main and interaction effects of two

categorical variables with n1 and n2 categories, respectively, will thus have

n1n2 − 1 parameters (n1 − 1 for the main effect of the first variable, n2 − 1 for

the second, and (n1 − 1)(n2 − 1) for the interaction).
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Fig. 1. Examples of variation of speciation rate (λ) with respect to a trait (x).

These values were used in the simulation study.

Fig. 2. Phylogeny of Primates from Purvis (1995), and barplot of ln(body

mass) for each species. The grey level indicates the probability that the given

branch is observed according to the selected model.

Fig. 3. Relationship between the P-values of the likelihood ratio test of the

hypothesis β = 0 and the number of species in the simulated trees for the

different values of β and extinction rate (µ).

Fig. 4. Relationship between the true values of β and its estimates β̂ for the

different values of rate of trait evolution (σ) and extinction rate (µ). The

dashed lines are x = y. Only the simulated trees with a depth of at least 60

were considered.

Fig. 5. Predicted values of speciation rate (λ) with respect to body mass for

the different clades of primates according to the selected model. The bold parts

of the curves show the range of observed values of body mass for each clade.

The observed values of body mass for each species are indicated on the inner

side of the x-axis.
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Table 1: Estimated statistical power for each combination of strength of effect of

species trait on speciation rate (β), trait evolution rate (σ), and extinction rate

(µ).

β σ µ

0 0.0005 0.001

−1 0.01 0.05 0.01 0.03

0.02 0.15 0.05 0.01

−2 0.01 0.17 0.03 0.02

0.02 0.49 0.10 0.06

−3 0.01 0.38 0.10 0.04

0.02 0.68 0.26 0.12

−4 0.01 0.58 0.05 0.09

0.02 0.58 0.26 0.22
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Table 2: Parameter estimates for Primates.

Effect Estimate SE

clade Ape - -

Catarrhini 1.22 0.24

Platyrrhini −0.36 0.27

Strepsirhini −0.86 0.30

Tarsius −1.91 0.46

ln(body mass) −0.17 0.06

intercept −0.32 0.60
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