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Abstract.—The analysis of diversification and character evolution using phylogenetic1

data attracts increasing interest from biologists. Recent statistical developments have2

resulted in a variety of tools for the inference of macroevolutionary processes in a3

phylogenetic context. In a recent paper Maddison (2006) pointed out that uncareful4

use of some of these tools could lead to misleading conclusions on diversification or5

character evolution, and thus to difficulties in distinguishing both phenomena. I here6

present guidelines for the analyses of macroevolutionary data that may help to avoid7

these problems. The proper use of recently developed statistical methods may help to8

untangle diversification and character change, and so will allow us to address9

important evolutionary questions.10

Keywords.—diversification, extinction, maximum likelihood, phylogeny, speciation.11
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The last twenty years have witnessed a remarkable change in paradigm for12

evolutionists: the variation in speciation and extinction rates (i.e., the tempo of13

evolution), and the variation in the rates of character change (the mode of evolution)14

are now ideally studied with molecular phylogenies and data collected on recent15

species. These issues, traditionally called macroevolution, were the domain of16

paleontologists during several decades (Simpson 1953), whereas molecular data were17

used to address microevolutionary mechanisms (to have an idea of this changing18

paradigm, compare the two editions of the same book by Futuyma 1986, 1998).19

In a recent paper, Maddison (2006) used simulated data following two scenarios to20

bring attention to some limits of this new paradigm. In the first scenario, some clades21

were simulated starting from the root, and a character evolved along the tree: two22

states were allowed (0 and 1) with a constant probability of change between them.23

The speciation rate was related to the state of the character so that species in state 124

split at a higher rate than those in state 0. Maddison showed that the estimates of25

the ratio of character transition rates was correlated with the ratio of the speciation26

rates. In the second scenario, Maddison used a similar setting except that the27

speciation rate was constant, but the rates of transition of the character in one28

direction was four times higher than in the other. He then showed that the analysis of29

diversification led to infer, more frequently than by chance, that the speciation rate30

was different between the states of the character.31

Maddison (2006) concludes that, if simple data analyses are done, biased32

diversification with respect to a character may lead to wrong conclusions on the33

evolution of this character. On the other hand, biased character evolution may lead to34

falsely associate this character to biased diversification. In other words, this raises the35

question whether we may be able to untangle differential evolution of character from36

differential diversification. The question may be framed in more specific terms from37

Maddison’s simulation study: if a character state is observed to be relatively rare in a38

clade, can we distinguish whether this state is associated with a low speciation rate,39

or evolution towards this state occurs at a low rate? (Or both?)40

This issue is of great importance because, if we can answer positively, we could41
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point which effect most contributes to the generation of diversity. Heterogeneous42

diversification rates and heterogeneous character change rates are likely linked to43

different evolutionary mechanisms. Character states with a high transition rate may44

be the result of counter-selection, developmental instability, or low plasticity of the45

character. On the other hand, a high speciation rate related to a character state may46

be the result of its adaptative value, or its association with the rate of reproductive47

isolation.48

My aim in the present paper is to show that appropriate data analysis methods49

can separate the effects of biased character change and biased diversification. This50

suggests that heterogeneous character evolution and heterogeneous diversification51

rates can be untangled in future analyses of macroevolutionary data. I point to some52

recommendations for data analyses in macroevolutionary studies with recent species,53

as well as further needs for future research in this area.54

Methods55

Analysis of Character Change56

Maddison (2006) showed that the maximum likelihood estimates of the ratio of57

character transition rates was correlated with the actual ratio in speciation rates. One58

may be tempted to interpret a high ratio of character transition rates as evidence for59

a strong bias in character change, thus concluding that rates are actually different.60

However, Maddison did not address the issue of testing whether these rates are61

significantly different. Indeed, looking at parameter estimates is not the ideal way to62

assess the validity of an hypothesis. The results from Maddison’s analyses illustrate63

that these parameter estimates can be strongly biased when a wrong model is used,64

not that they are significantly different.65

With simulated data, we know the model used to generate the data, but with real66

data we have to test whether a given model is appropriate. In a likelihood framework,67

the likelihood ratio test (LRT) is the canonical way for hypothesis testing (Lindsey68

1996; Ewens and Grant 2005). To fix ideas, let us write explicitly the model used to69
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simulate the data in Maddison’s first scenario (this model is referred to as model 1 in70

the text); its rate matrix (often denoted Q) is:71

0 1

0

1

 −r r

r −r

 ,
(1)

where the row labels denote the initial states of the character (denoted x in this72

paper), the column labels the final ones, and r is the instantaneous rate of change,73

that is the probability that x changes of state during a very short interval of time. It74

is difficult to interpret the parameter r biologically, but its virtue is that it is75

independent of time. To obtain real probabilities, we have to fix a time interval, say t,76

and compute the matrix exponential etQ (see below).77

Maddison estimated the rates ratio using the following two-parameter model78

(referred to as model 2):79

 −r1 r1

r2 −r2

 . (2)

We know, in this particular situation, that this model has an extra parameter because80

the data were simulated with r2 = r1. Models 2 and 1 can be compared with a LRT81

because they are nested: the latter is a particular case of the former (Pagel 1994;82

Nosil and Mooers 2005). The test follows a χ2 distribution with df = 1 (the difference83

in number of parameters).84

In real situations we cannot be sure that either model 1 or model 2 generated the85

observed data. If neither of them are the true model, the tests of hypotheses could be86

biased in the same way than Maddison showed that parameter estimates are biased.87

It is thus necessary to assess the goodness-of-fit of a model in a general way. In the88

present context, the shape of the likelihood function is an indication of the poor or89

good fit of a model. If a model poorly fits the data, the likelihood function is90

relatively flat. It is possible to examine the shape of the likelihood function by91

plotting it against a range of parameter values, but an easier procedure is to look at92
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the estimated standard-errors of the parameters which are derived, under the93

standard likelihood method, from the second derivatives of the likelihood function.94

Thus, the smaller these standard-errors, the narrower the likelihood function. When95

no analytical expression of the second derivatives are possible, which is precisely the96

case for the Markovian models considered here, a numerical computation may be done97

using nonlinear optimization (Schnabel et al. 1985). The ratio of the parameter98

estimate, r̂, on its standard-error, se(r̂), can be used as an indication of the shape of99

the likelihood. This ratio is in fact a formulation of the Wald test which, under the100

null hypothesis that r is equal to zero, follows a standard normal distribution (see101

Rao 1973):102

r̂

se(r̂)
∼ N (0, 1) if r = 0.

The LRT and the Wald test can thus be used to test the same hypothesis, but the103

latter is rarely used because it has generally poorer statistical performance than the104

LRT, particularly for small sample sizes (Agresti 1990; McCulloch and Searle 2001).105

However, both tests are expected to give the same results for large sample sizes (Rao106

1973; McCulloch and Searle 2001).107

I propose the following rule of thumb: when this ratio is less than two, it is likely108

that the model under consideration is not appropriate. A justification for this rule is109

that, under the assumption that the maximum likelihood estimates are normally110

distributed, (a standard assumption of the likelihood theory of estimation), then a111

95% confidence interval may be calculated with r̂ ± 1.96× se(r̂). Consequently, if112

r̂/se(r̂) < 2 then zero is included in this interval suggesting the presence of a flat113

likelihood function. The method should be used as follows. First, perform the LRT114

comparing both models. If this test is significant, then examine the ratios of the rate115

estimates of model 2 on their standard-errors: if one of them is less than two, then it116

is likely that the LRT is biased and the null hypothesis is true.117
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Analysis of Diversification118

Maddison (2006) inferred differences in speciation rates by comparing the number of119

species between sister-clades that are different with respect to the character, but all120

species within each clade have the same character state. This method does not use all121

available information as it considers only a subset of the nodes of the tree, and it122

ignores branch lengths. Several methods have been proposed to analyze diversification123

that essentially differ in the type of data under consideration (see reviews in124

Sanderson and Donoghue 1996; Mooers and Heard 1997; Pagel 1999). For instance,125

some methods consider tree topology and balance (e.g., Aldous 2001), whereas others126

consider the distribution of branch lengths (e.g., Pybus and Harvey 2000). When the127

topology and branch lengths of the analyzed phylogeny are available, it is possible to128

refine the analyses and use more elaborate methods. Recent developments have been129

done in the inference of diversification, particularly the Yule model with covariates130

which takes full account of all phylogenetic information (tree topology and branch131

lengths) to infer the effects of species traits on speciation rates (Paradis 2005). In this132

model the speciation rate depends on a linear combination of some variables133

measured on each species. This approach is similar to a standard linear regression134

where the mean of the response is given by a linear combination of variables.135

Consequently, a wide variety of models may be fitted to the same phylogenetic and136

species traits data. The latter could be continuous and/or discrete.137

Because the Yule model with covariates is fitted by maximum likelihood, different138

models can be compared with a LRT if they are nested. In the present context of139

testing the effect of x on the speciation rate (λ), the general model is:140

log
λ

1− λ
= βx + α,

where α and β are parameters, so that the right-hand side of the above equation is141

equal to α if x = 0, or to α + β if x = 1 (see Paradis 2005, for details). The LRT142

comparing this model to the standard Yule model tests the hypothesis of the effect of143

x on λ, i.e., whether β is significantly different from zero. The Wald test may also be144
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performed by computing β̂/se(β̂). The same criterion proposed above for the analysis145

of character was applied as well.146

Data Simulation147

I simulated some data with known parameters in order to assess the statistical148

performance of the methods described above. The idea was to generate some data149

sets where the majority of the species are in a state due to, either different speciation150

rates, or different rates of character change, or both. The data were then analyzed to151

assess whether the two processes can be untangled. The simulations were started152

from the root of the tree, that is the initial bifurcation. At each time-step, each153

species present in the clade had a given probability (λ) to split into two, and a154

probability (p) to change the state of its character x. When a species split, the155

daughter-species inherited its value of x. Both λ and p depend on x, and so are156

hereafter denoted λ0, p0, λ1, and p1, where the subscript indicates the value of x.157

Two of these parameters were fixed for all simulations: λ0 = 10−4 and p0 = 5× 10−5.158

Three different combinations of parameters were used for λ1 and p1: (1) λ1 = 5λ0,159

p1 = p0, (2) λ1 = λ0, p1 = p0/10, and (3) λ1 = 2.5λ0, p1 = p0/4.160

These settings correspond to the three plausible biological scenarios leading to the161

abundance of a trait in a clade: (1) this trait is associated with a high speciation rate,162

(2) species without this trait tend to evolve towards acquiring it, and (3) a mixture of163

both processes. The parameter values were chosen so that ca. 90% of species had164

x = 1 at the end of the simulation. These were found analytically in setting (2), since165

speciation was homogeneous, using the matrix exponentiation explained above, and166

the fact that the expected number of species after t time-steps is given by 2eλt
167

(Kendall 1948). It was obviously unnecessary to consider here the null setting λ1 = λ0168

and p1 = p0 because this would yield 50% of species in each state, and so little169

difficulty for data analysis. The first setting is similar to Maddison’s (2006) first170

scenario, whereas the second setting is close to his second one: the difference is that171

he used a ratio of 4 instead of 10.172

The time-step of the simulations was transformed in time unit equal to 0.001.173
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Giving a probability of change of 5× 10−5 for t = 0.001, we can find by174

back-transformation with the matrix exponentiation and interpolation that the actual175

parameter of the first setting was r ≈ 0.05. All simulations were run until 100 species176

were present. This was replicated 100 times for each possible initial state at the root177

(0 or 1) and each combination of the parameters. The trees and values for x at the178

end of the simulation were saved (the files are available from the author). All179

simulations were programmed in R version 2.4.0 (R Development Core Team 2006).180

The data were analyzed as if they were real data: the procedures described above181

were applied to all replicates using R’s standard looping functions. Both LRTs and182

Wald tests were computed, as well as the proportion of cases where the tests agreed in183

rejecting the null hypothesis. The analyses of character change and of diversification184

were done with the package ape (Paradis et al. 2004).185

Results186

The results were slightly affected by the state of the root as it changed slightly the187

proportion of species in state 1 at the end of the simulation: 83.8% and 91.6%, for a188

root in state 0 or 1, respectively (data pooled over all simulations). This proportion189

had in fact a skewed distribution when calculated for each replicate; the190

corresponding medians were thus slightly larger: 85% (range: 28–99) and 92%191

(63-99). For simplicity, the results below are presented for the two series of192

simulations pooled since they were overall consistent.193

Analysis of Character Change194

The proportions of replicates where the LRT comparing models 1 and 2 was195

significant at the 5% level were 0.18, 0.405, and 0.175 for the three scenarios of equalTable 1 196

rate of change, strong, and moderate biases, respectively (Table 1). On the other197

hand, the Wald test had relatively poor performance as the rejection rate of the null198

hypothesis was almost the same whatever the scenario (ca. 0.25). After examining the199

standard-errors of the parameter estimates, the proportions of cases where the LRT200

was significant and the ratios r̂1/se(r̂1) and r̂2/se(r̂2) were greater than 2 were lowered201
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to 0.055, 0.26, and 0.1. Only the first one was not significantly different from 0.05202

(two-sided exact binomial test: P = 0.744, P < 0.0001, and P = 0.003, respectively).203

Figure 1 gives a summary of the distributions of the estimates under both modelsFig. 1 204

for the three settings. As observed by Maddison (2006), a few cases resulted in205

extremely dispersed estimates, so I focused on the median and first and third206

quartiles. In the first setting, the median of the estimator r̂ was very close to the true207

value (0.049, instead of 0.05). Remarkably, the dispersion of all parameter estimates208

and their standard-errors were smaller when model 2 was true.209

The reconstruction of ancestral states is also informative. Under model 2 nearly210

all nodes (except the most terminal ones) had a relative likelihood of 0.5 for each211

state, meaning that these reconstructions were in fact indeterminate under this212

model. Under model 1 most nodes were estimated to be in state 1 with a high213

probability (relative likelihood greater than 0.9): this was particularly the case for the214

root even if the actual state was 0 (Fig. 2). Thus the models failed to estimateFig. 2 215

correctly the ancestral states of the simulated character.216

Analysis of Diversification217

The simulated trees and phenotypic values were analyzed with the Yule model with218

covariates testing for the effect of x on λ. The method requires us to reconstruct the219

values of x at the nodes of the tree: this was done with a simple parsimony criterion.220

The branch lengths were back-transformed to the original time scale of the221

simulations prior to analysis in order to ease the fitting procedure. The proportion of222

significant LRT were 0.415, 0.01, and 0.13. All these proportions are significantly223

different from 0.05 (two-sided exact binomial test: P ≤ 0.005 in all cases). The Wald224

test gave similar results, but with slightly larger rejection rates of the null hypothesis.225

However, in all cases where the LRT was significant the Wald test was as well226

(Table 1). It is interesting to note that though the estimated ancestral states were227

inaccurate, the test was able to reject the null hypothesis in more than 5% of the228

cases, and so is robust, at least partially, to inexact ancestral character estimation (at229

least in the present situation).230
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Discussion231

The combined use of the LRT and Wald test here revealed an interesting contrast232

between analyses. In the analysis of character change, the proposed criterion derived233

from the Wald test helped to keep the type I error rate at a reasonable value. In the234

analysis of diversification, the LRT performed well and there is, in the present235

scenarios, no need to use the proposed criterion. How to explain this difference?236

There are three possible, nonexclusive explanations of the relatively poor performance237

of the models of character change. Firstly, the departures from the Markovian238

assumptions may be too strong so that the models considered here are too ‘ill-defined’239

for the present data. Secondly, the maximization of the likelihood functions of these240

models is not straightforward as it requires iterative calculations of likelihoods along241

the nodes of the tree which may be difficult for current optimization methods. By242

contrast, the likelihood function of the Yule model with covariates is a linear function243

of the parameters (Paradis 2005). Thirdly, the current formulation of the model of244

character change may not be adequate for likelihood maximization, and a245

reparametrization resulting in a linear combination of parameters might be more246

appropriate.247

Mooers and Schluter (1999) were cautious about the approximation of the LRT248

with a χ2 distribution, and recommended using conservative values to assess the249

increase in likelihood when fitting model 2. They also called for more work to verify250

the validity of this approximation. In the present study, I observed in some cases a251

difficulty to fit the models which required to repeat the fitting procedure with252

different starting values. Some further study is needed to assess whether this is due to253

the inadequacy of these models, or a failure of our current algorithms of likelihood254

maximization.255

All simulations were run with parameter values that gave equal number of species,256

and similar frequencies of the states of x. So the differences in the results of the tests257

were due to the internal structure of the data, not to the prevalence of species with258

x = 1. The Yule model with covariates will tend to be accepted when shorter259
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branches are associated with a character state. Such an association may be significant260

even if a state is at low frequency. Another interesting property of the Yule model261

with covariates revealed here is that it is robust to inexact estimation of ancestral262

states. This is likely to be important giving difficulties in reconstructing ancestral263

states (see below).264

The simulations strongly suggest that the methods considered here are265

statistically consistent: they had greater power to reject the null hypothesis when the266

difference between the parameters were larger. Mooers and Schluter (1999) suggested267

that most data sets are too small to yield enough statistical power to reject model 1.268

Interestingly, most data sets they considered have many fewer than 100 species. With269

the increasing size of biological databases, and the advent of supertree techniques270

(e.g., Agnarsson et al. 2006; Beck et al. 2006; Bininda-Emonds et al. 2007), we are271

likely to have now the possibility to fit more complex models of character change.272

A possible limitation of the current Markovian models of character change is the273

assumption of equilibrium (Nosil and Mooers 2005). When this is violated, and this is274

certainly true in real situations, then our methods will lose some power. However, the275

simulations presented here suggest that this is apparently a question of degree.276

Though the method loses some power, it remains statistically consistent. In a more277

general context, the statistical consistency of data analysis methods is important in278

the face of confounding factors in realistic situations. The critical point is that the279

methods can still detect significant effects even when their assumptions are not met.280

An important confounding factor not considered here is extinction and the variation281

of its rate. If extinction rate is related with a species character, then this will likely282

result in biases for both methods considered here because this character will be283

associated with long branches in the tree. With respect to the Yule model with284

covariates, a previous simulation study showed that random extinction resulted in a285

loss of statistical power but the method remained statistically consistent (Paradis286

2005).287

The present paper considered separate analyses of character change and288

diversification with currently available methods. From a statistical point of view, this289
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can be viewed as each analysis was conditioned on the other: the analysis of character290

change was done assuming constant and homogeneous diversification, whereas the291

analysis of diversification was done assuming given reconstruction of the ancestral292

states. An interesting perspective would be to develop a joint analysis of these293

processes. Since each analysis is done by maximum likelihood, it is possible to294

combine both likelihood functions in a joint likelihood function that would be295

maximized over all parameters (r and λ). It remains to be seen whether this would296

increase the statistical performance of our methods.297

Estimation of Ancestral States298

The results of the analyses of character change show that the inferred state at the root299

is likely to be misleading (see also Mooers and Schluter 1999, Fig. 1b). This failure to300

estimate correctly the state at the root is due to the assumption of equilibrium301

common to most Markovian models. A consequence of this assumption is that302

whatever the initial state, the probability to be in any state is given by its relative303

transition rate. For model 1, these probalilities are 0.5 since the transition rates are304

equal. This is concretely visualized by calculating etQ whose values tend to 0.5 when t305

increases. Consequently, if one state is rare this implies that the initial state (i.e., the306

root) was in the other state, and so the system is in transition towards its equilibrium.307

On the other hand, it was observed that the estimates of the rate of change were308

nearly unbiased. This suggests that, while we are able to correctly assess how309

frequently a character changed, our estimates of its ancestral states may not be310

meaningful. This is an important issue because there is more interest in ancestral311

states than on rates of change (e.g., Webster and Purvis 2002; Oakley 2003). This312

clearly needs further study because if the relative poor performance of inferring313

ancestral states is confirmed, this would require a revision of some previous results314

and ideas.315

It must be pointed out that the ancestral states were estimated assuming uniform316

priors on the root (i.e., it could a priori be in any state). This can be relaxed, for317

instance, by assuming that the prior probabilities of the root are equal to the318
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observed proportions of the states (Maddison 2006). It will be interesting to examine319

whether this has an effect on ancestral state estimates.320

Conclusion321

To conclude, I would echo Maddison’s (2006) view that uncareful analyses of322

evolutionary data can lead to wrong conclusions. Though the modern approach to323

macroevolution has certainly some limitations, there are reasons to be optimistic.324

Future data analyses should include several tools based on model fitting, hypothesis325

testing, model checking, and parameter estimation. There is clearly a need to study326

the statistical behavior of our models in a wide range of realistic situations. There is327

also space for many methodological developments. One issue that still remains328

challenging is how extinction can be considered efficiently in these methods.329
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Table 1. Proportions of cases where the null hypothesis was rejected (200 replications).

A star indicates where the tested null hypothesis was actually true. The columns labeled

‘Both’ give the proportions of cases where the likelihood-ratio test (LRT) and the Wald

test agreed on rejecting the null hypothesis.

Character change Diversification

p1 λ1 LRT Wald Both LRT Wald Both

p0 5λ0 0.18* 0.265* 0.055* 0.415 0.53 0.415

0.1p0 λ0 0.405 0.31 0.26 0.01* 0.01* 0.01*

0.25p0 2.5λ0 0.175 0.235 0.1 0.13 0.23 0.13
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Fig. 1. Distribution summaries of the estimates of the rates of character change and394

their standard-errors. The dots indicate the median, and the error-bars the first and395

third quartiles. The panels correspond to the three simulated scenarios.396

Fig. 2. For each simulated data set, the relative likelihood that the root was in state397

x = 0 was calculated under both models of character change. This series of398

histograms shows the distribution of these values for each combination of parameters399

(as rows) and each actual initial state of the root (as pairs of columns). A value close400

to zero implies that the root state was inferred to be x = 1, a value close to one401

implies it was x = 0, and a value close to 0.5 implies that the inference of the root402

state was indeterminate by this model.403
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