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Abstract. This article presents a method to ease the generation of room floor
plans with a Project Tango device. Our method takes as input range images as
well as camera poses. It is based on the extraction of vertical planar surfaces we
label as wall or clutter. While the user is scanning the scene, we estimate the room
layout from the labeled planar surfaces by solving a shortest path problem. The
user can intervene in this process, and affect the estimated layout by changing the
label of the extracted planar surfaces. We compare our approach with other mo-
bile applications and demonstrate its validity. Index Terms— Floor plan, Mobile

device, RGB-D cameras, 2D/3D mapping

1 Introduction

Floor plan generation is the problem of generating a drawing or a digital model to scale
of an existing room or building. A common workflow consists in taking individual mea-
surements reported on a freehand sketch of the floor, then in using a CAD software to
draw the floor plan. This approach is mostly manual and requires the user to collect
all the measurements, typically with a laser range finder. The task is not trivial, as it
requires the correct use of the measurement tool and the collection of all the necessary
measurements to fully define the floor plan: missing measurements may lead to incom-
plete plans, thus requiring costly do-overs on site. Moreover, the task can be challeng-
ing when dealing with furnished or cluttered environments, preventing, e.g., the direct
measurement of certain distances. In order to provide more automatic and efficient so-
lutions, the use of desktop or mobile applications performing the drawing on-site has
gained a lot of interest over the last years.

With the latest advancement in 3D scanning technologies, 3D scanners placed on
tripods have become an interesting solution for the generation of the floor plan. The
generated 3D point cloud enables to perform Building Information Modeling (BIM) and
floor plan generation in a semi-automatic way, through the use of a dedicated software.
The operating cost is generally higher than the previous method, due to the investment
of the scanner and the scanning time which can be quite long when there are several
small rooms. The automatic creation of floor plans or BIM from such scanners has been
extensively researched for single rooms [1,2] and multiple rooms [3,4,5,6,7,8]. These
methods, are called offline because they start the processing after the scan is complete
and all the data is available.

At the opposite, for handheld scanners, online methods provide results incremen-
tally during the scanning process. Several online approaches have been proposed [9,10,11]



to extract some walls of indoor scenes, but none of them focus on the creation of single
or multiple room floor plans.

On common smartphones, user-driven approaches have been proposed [12,13,14].
Knowing the phone orientation and the vertical distance of the device to the floor (as-
sumed constant and calibrated), they estimate the distances between the user and the
room corners. More recently, as mobile devices started to sport depth sensors, user-
driven approaches have been proposed for the Project Tango mobile devices: the user is
required to manually select the walls with FloorPlanEx [15] or the edge corners of the
indoor scene [16].

In this paper, we propose an online approach for the Tango Tablet Development
Kit(TDK) Fig. 1a, which is a tablet equipped with a depth sensor and a fish eye camera
running on Android. It offers dedicated libraries to perform localization and 3D recon-
structions in the form of 3D textured meshes. Our method can generate a room floor
plan with optional user interaction. We rely on the ability of this device to localize itself
and capture depth maps, in order to have a better understanding of the scene and hence
reduce the user efforts. Given the complexity of the task and the diversity of the scenes,
the user interaction is yet helpful to improve the robustness of the approach: large oc-
clusions, lack of physical separation between rooms, missing data, incorrect depth per-
ception (e.g. glasses and mirrors), and other issues that could be challenging for a fully
automatic system, can be easily solved by the operator. [17] enumerates and classifies
all the issues related to the problem of indoor mapping and modeling. While the Tango
TDK addresses most of the acquisitions and sensors problems (variable lighting con-
ditions, sensor fusion, mobility support), our works also tackles acquisition problems
(variable occupancy support), data structure and modeling issues (real-time modeling,
dynamic abstraction), visualization problems (on mobile visualization, real-time change
visualization) and legal issues (user privacy).

2 Overview of the Method

Hypotheses. We assume the considered rooms are made of a horizontal ceiling and
floor, and vertical planar walls, the latters not necessarily orthogonal w.r.t. each other.
They can contain clutter (furniture, movable objects, . . . ) occluding the walls. With the
Tango TDK, we observed objects located 4.2m away suffer from a depth uncertainty
over 25± 9mm, and lack of texture (e.g. walls and ceiling of uniform color) can lead
to incorrect camera poses from the Tango motion tracking. Therefore, our approach is
limited to rooms with reasonable texture and where all the walls and the ceiling can be
observed by the depth sensor without too many efforts (medium size room with a 5m
ceiling height maximum).

Pipeline. Figure 1b summarizes the proposed pipeline. The Tango Tablet Development
Kit middleware provides at each iteration the depth map of the scene, as well as the
camera pose. The depth map is processed in order to extract sets of 3D points corre-
sponding to candidate walls, what we call planar patches (detailed in Sect. 3). Thanks
to the known camera pose, the planar patches are brought into a global world coordi-
nate system, so that they can be associated and then fused with the existing patches of
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Fig. 1: (a) Tango Tablet Development Kit image sensors: RGB-IR camera (1), Fisheye
camera (2), IR pattern emitter (3). (b) Our pipeline.

the model (Sect. 4). Whenever the model is updated, the visibility polygon of the dis-
covered area(s) is also updated (Sect. 5), which can be used as a visual feedback for the
user. Furthermore, the visibility polygon is used by the labeling module to automatically
classify the planar patches as wall or clutter (Sect. 6), thus allowing the disambiguation
between actual walls and other objects that may be lying inside the room. This classifier
was trained beforehand against 900 manually labeled vertical planar regions from our
training dataset. This last task can take advantage of the interaction of the user, who
can correct and change the automatic labeling of the vertical planar patches into wall or
clutter (Sect. 7). Finally, the layout generation module computes the room layout from
the labeled vertical planes and the boundary given by the visibility polygon (Sect. 8).

3 Planar Patches Extraction

A planar patch is defined as a list of 3D points associated with the equation of the fitted
infinite plane and the boundaries of this patch. We define the planar patches extraction
problem as a function which takes as input a range image (also called depth map) and
returns a list of planar patches.

The common strategies to extract planar patches are the Hough Transform ap-
proaches [18], the region growing algorithms [19], the normal map segmentation [20]
and the split and merge approaches [21].

In our preliminary tests, we noticed that normal map segmentation approaches were
too sensitive to the data noise and required higher computational time. We chose instead
a region growing approach, similar to the algorithm described by Poppinga et al. [19]. In
this approach, a random seed point and its neighbors are picked and extended by taking
into consideration neighboring points. A plane is estimated on this set of points and a
new point is considered valid when its distance to the plane is small enough. The planar
patch keeps growing iteratively until no valid point can be found in the neighborhood
of the patch. A new seed point is picked until all points have been considered. We
made some modifications to the original algorithm in order to get better results with the
point cloud provided by the Tango TDK. We ignore the 3D points with a distance to the
camera farther to 3.7m as they revealed to be very noisy. To cope with the low density



of the depth map, the neighboring selection is not pixel-wise but performed on a 3× 3
pixel window. In a post-processing step, we remove isolated points of the planar patches
with a neighborhood pixel analysis performed in the segmented depth map. This ensure
our planar patches are more compact. Finally, we perform a validation of the planar
patch with the RANSAC algorithm. Without implementing the optimizations suggested
by [19], we can process 10k points in 47ms with our C++ implementation.

The ceiling and the floor are incrementally estimated with the minimal and max-
imal height of the considered vertical planar patches and validated with the fitting of
horizontal planes at the considered heights. In the following sections, we consider only
the vertical planar patches for which we compute a rectangle boundary.

4 Planar Patches Model Update

We create a model of planar patches in the world coordinates which is initialized with
the patches of the first frame. For each successive frame, we compute planar patches
which are associated with the model with the help of an association function. We update
the associated planar patches of the model with a fusion function.

Planar Patch Association. Given a list of planar patches from the model and a list of
planar patches from the current frame the association function computes a list of planar
patches pairs where each patch appears only once. We consider a distance between
planar patches which takes into account the normal angle difference of the planes and
the mean distance of the points-to-plane distances, using the points of the rectangle
boundary of the planar patches. This distance defines the candidate pairs of associated
patches, which are validated with an overlapping test between the rectangle boundaries.

Planar Patch Fusion After two planar patches have been associated, we need to create
a new planar patch combining the two. We compute and update the covariances ma-
trices of the planes using [22]. The plane equations of the fused patch is updated with
a Principal Component Analysis, in order to avoid the costly storage of the 3D points
associated with the planar patches. We then update the rectangular boundary to include
the two planar patches.

5 Visibility Polygon Computation

During a scan, the user needs to know which parts of the scene he visited or not. We
provide this information with a top-down 2D view representation of the area observed
by the camera in the form of a visibility polygon, similarly to [9], but computed dif-
ferently from the vertical planar patches model and the history of the camera positions.
We denote sv the line segment obtained from the projection of a vertical planar patch
on a horizontal plane. We consider the visibility view polygon P s associated to each
line segment sv, which is formed by the union of all the triangles formed by the camera
position and the two extremities of sv, see Fig. 2. Each triangle is made of one wall
segment and two frustum segments. The geometric union of all the polygons P s forms
the visibility polygon.
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Fig. 2: Left: the three blue, cyan and green triangles represent the part of the camera
frustum viewing sv and associated with the camera poses c1, c2 and c3 respectively.
Their union form P s: the visibility view polygon associated with the line segment sv.
Right: the visibility polygon is the union of the visibility view polygons P s, here rep-
resented with different colors.

We implemented the computation of the visibility polygon with the help of the
geometry engine GEOS [23].

6 Wall-Clutter Separation

While clutter often consists of irregular shapes, such as plants, sofas, etc., which are
eliminated in planar primitive approaches, it can also consist of piecewise planar shapes
such as cupboards, radiators, etc. In this section, we propose a method to classify the
planar primitive as wall or clutter in order to reduce the number of potential irrelevant
planes considered by the room layout estimations component. The segmentation of the
primitives can be performed individually [6,24,4], i.e. using features on each primitive
considered independently, or globally [7,2], i.e. considering the adjacent primitives,
which provide contextual information.

Our objective is to build the room layout incrementally, during the scan progress,
which means all the adjacencies are only known at the end of the scan. Therefore we
favored a classification with an individual approach. Our features take the form of a
vector (dc, df , l, dv). They include the distances dc between the highest point of the
vertical planar patch and the estimated ceiling and df between the lowest point of the
vertical planar patch and the estimated floor. Intuitively, a planar patch both close to the
ceiling and floor is likely to be a wall. Similarly, a segment sv with a longer length l
has a higher probability to correspond to a wall. We also consider the distance dv =
maxp∈sv d(p, ∂ Pv) between a segment sv and the exterior boundary of the visibility
polygon ∂ Pv. A high distance dv corresponds to a segment with at least one extremity
far from the visibility polygon, which is likely to correspond to clutter.

We compute a wall probability P(sv) for each segment sv of the model with a
Multi-layer Perceptron classifier using one hidden layer and a logistic sigmoid activa-
tion, trained on our dataset. When a new frame is ingested, we compute P(sv) if sv

was modified since the previous frame or the ceiling/floor estimation changed. Our im-
plementation based on the Python Scikit-learn module can label 50 planar patches in
29ms on average.



Fig. 3: Visualization of the scan progress of the scene House2. Planar patches classified
as wall and clutter are represented in green and blue respectively. Intermediate colors
represent intermediate probabilities. Left: augmented view of the device camera with
the detected and classified planar patches. The estimated room layout is displayed with
black lines. Right: visibility polygon in light gray, camera view polygon in black.

7 User Interaction

Automatic approaches for floor plan generation or scan to BIM can be prone to errors.
These errors can come from missing data, clutter, sensor noise or some specificities in
the scene (e.g. small walls, large openings, cavities in the walls, obstacles fully covering
a wall, etc.). Depending on the progress of the scan, it may not be possible for an
algorithm to determine whether a planar patch corresponds to a wall or clutter.

The user interaction schemes proposed in the literature are usually corrective [25,7,26],
where the user intervenes at the end to correct a proposed solution (commonly consid-
ered for offline approaches), or user-driven [14,12,13,16,15] where no solution can be
computed without user interaction (mostly found in online approaches).

We wanted to propose a collaborative interaction scheme where the interaction
would be optional and could be performed at any time. The first way to interact is
to move the Tango TDK to make it observe new parts of the scene. A first view displays
the camera image augmented with the detected planar patches colored relatively to their
wall probability and the estimated layout, while a second view provides a top view of
the scene with the visibility polygon and the estimated layout too. The two views shown
in Fig. 3 are updated at the frame rate of the depth sensor, giving an immediate feed-
back to the user who can decide to visit the area(s) with missing data. The user can
interchange the wall/clutter labels of the detected patches by touching them in the aug-
mented view, which directly affects the room layout estimation component. At the end
of the scan, we let the user perform further editions: suppress forgotten clutter patches
and merge planar patches. At the time of writing, we only designed a desktop prototype
which can replay a recorded scan or process live data transmitted by the application.
The presented results were obtained by performing the interactions on replays of the
scans.



8 Room Layout Estimation

The Room Layout Estimation takes as input the model of line segments sv coarsely
classified as wall or clutter and generates a simplified floor plan (see Fig. 1b). In order
to compute the room layout, we need to retrieve the topological relationships between
the walls, i.e. their adjacencies.

Related Work. A simple approach is to consider the topology of the room can be recov-
ered by connecting adjacent segments [27,2,24], which works well for rooms with low
clutter, and when the walls are well separated from the clutter. The use of cell-complex
is very popular for both single rooms [1,28] and multiple rooms [5,6,7,8] layout esti-
mation. The line segments are replaced by infinite lines which partition the 2D space
into polygonal cells. A graph connecting the adjacent cells is defined: instead of con-
sidering topological information on the segments, adjacency relationship between the
cells is taken into account. The inside/outside label of the cells are computed with a
graph-cut algorithm. This approach is robust to missing data because the extension of
the segments is automatically considered, but it does not simplifies the layout.

Weighted graph construction. In our approach, the visibility polygon provides the
topology, and we try to compute a simple chain of segments sv which explains the
visibility polygon. We create a graph from the adjacency relationships between the
segments. For simplification purpose, the segments with a low wall probability (infe-
rior to 0.5 in practice) are discarded. The remaining segments S are very likely to be
close to the boundary of the visibility polygon, but they might not cover this bound-
ary completely due to missing data. We complete the boundary with segments sc from
the relative complement of S with respect to the visibility polygon. A node is created
at each segment extremity and each segment intersection as illustrated in Fig. 4a. The
nodes belonging to the same segments are linked by an edge. We assign to each edge e
a weight proportional to 1− P(sv), where sv is the segment associated to e. The edges
corresponding to frustum segments and completion segments sc are assigned a penalty
weight. With this design, the shortest path, which minimizes the sum of the weights of
its edges, gives more importance to segments with a high wall probability and favors
solutions with a low number of planar patches.

Solving and discussion. We use the Dijkstra’s algorithm to find a cycle in our graph
which minimizes the sum of our weights. To avoid trivial solutions, we use a start point
on the segment with a high P(sv), an endpoint which is adjacent, and we remove the
edge between them. As shown in Fig. 4a, the graph may contain several cycles which
can lead to incorrect layouts. In order to avoid finding an incorrect cycle, we impose
the segments along the visibility polygon to correspond to directed edges following
a clockwise orientation in the visibility polygon. This method cannot handle the cy-
cles non adjacent to the visibility polygon, which revealed to be non-existent in our
dataset. In a post-processing step, we replace, whenever possible, the chains of frus-
tum/completion segments by lines segments extending their adjacent segments, other-
wise we simply join them. Figure 4b illustrates the solution computed from a simplified
scene. We also apply the Ramer-Douglas-Peucker algorithm [29] with a low threshold
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(a) Creation of a weighted graph (bottom) from
the set of segments with their probabilities (top).
The visibility polygon is represented by a gray
thick line. Some edges are overlapping, for vi-
sualization purpose, we represented them with a
curved dashed arrow line. Red edges correspond
to segments from sc (including frustum edges).

(b) Room layout toy example illustrating
various cases: open door on the top, miss-
ing data in the upper right corner, clutter
at the bottom. Orange dashed lines cor-
respond to segments created during the
post-processing step.

Fig. 4: Toy examples illustrating the graph creation and the solving. Faded colors repre-
sent the segments which are not part of the solution. Red edges correspond to frustum
edges, purple for the other edges.

(1 cm) to simplify near parallel adjacent segments. Contrary to the offline approaches
mentioned earlier, ours can deliver an immediate room layout. Our Python implemen-
tation of this component takes 200ms to generate the graph, and 11ms to compute the
shortest path and apply the post-processing steps.

For a satisfying user experience, the layout of previously seen areas should not
change when the user visits a new part of the scene. This behavior cannot be guaran-
teed with an offline approach. When the ceiling and the floor are detected, our method is
suitable for incremental changes of the model: the wall probability P(sv) of the previ-
ously observed segments sv does not change, which means the computed path restricted
to the previously seen segments is the same and has the same cost.

Fig. 5: Four steps of our room layout estimation : the extracted segments, the generated
graph, the shortest path solution, and the layout obtained after post-processing. See
Fig. 3 and Fig. 4 for the signification of the colors.



9 Experimental Results

In this section, we compare –the geometry accuracy of– the room floor plans generated
with our approach, Magic Plan [14] (run on iPad Air 1, prior to ARKit release) and
FloorPlanEx from Google [15].

Evaluation protocol. We considered five indoor scenes Lab1MW, Lab2, House1MW,
House2MW and House3MW, where MW denotes the scenes respecting the Manhattan
World assumption. The ground truth room layouts of these scenes were created with a
Bosh DLE 50 laser ranger finder. We evaluated the geometry accuracy of the obtained
layouts with the ground truth and the reproducibility of the measurements by repeat-
ing the measurements five times. Each estimated layout was aligned with the ground
truth by computing the transformation which minimizes the distances between their
corresponding vertices. The mean of these distances defines our residual error. We also
evaluated the user effort during the use of the considered mobile applications. Magic
Plan and FloorPlanEx are user-driven applications where the user selects the walls and
the corners, respectively. The number of interactions is equal to the number of corners
(plus one for Magic Plan). We did not count the interactions required for Magic Plan
calibration processes. For our approach, we evaluated the number of labels corrections
on the planar patches and the number of post-scan modifications.

Results and analysis. Table 1 and Fig. 6 show the obtained results. Magic Plan esti-
mates the camera-to-corner distances from the device orientation instead of taking ad-
vantage of a localization module or a depth sensor. Consequently, even the best results
of the application are less accurate than the results obtained with the other approaches.
Due to the amount of clutter, most of the corners were captured on the ceiling, which
reduces the accuracy of the measurements. Magic Plan assumes the angle between two
consecutive walls is 90◦ or 45◦, for this reason, the results are unsatisfactory on the
scene Lab2 which does not follow the MW assumption. We can also observe the resid-
ual increases with the area of the room, which is coherent when there is a small error
with the device height estimation.

For selling or renting a property in France, the Alur law defines the maximal error
of the measured area to 5%. The area errors from the FloorPlanEx application and our
approach are inferior or equal to this threshold, which may not be enough for some
official uses. The results show our method is generally more accurate and provides
more repeatable results than FloorPlanEx. One explanation is that we consider the 3D
points from multiple frames to estimate the planes of the walls when the FloorPlanEx
only considers the points from one frame.

The last column of Table 1 describes the degree of interaction. It confirms our ap-
proach generally requires fewer screen interactions than user-driven approaches, except
for the scene House3MW which contained a fireplace, high furnitures and many curtains.
The Lab1MW was also quite challenging because of the presence of a high cupboard and
pillars which were incorrectly labeled as wall.



Scene Method Mean
area err.

Max
area err.

Mean
residual

σresid. Min
residual

Max
residual

Number
Interact.

Lab1MW

(25m2)

Ours 2.3 % 4.2 % 29mm 14mm 14mm 48mm 3.25
FloorPlanEx 2.2 % 4.5% 47mm 26mm 18mm 84mm 4
Magic Plan 12 % 17 % 164mm 52mm 106mm 231mm 5

Lab2
(47m2)

Ours 1.1 % 2.4 % 38mm 3mm 35mm 43mm 0.75
FloorPlanEx 3.3 % 4.3 % 73mm 19mm 45mm 100mm 6
Magic Plan 15 % 24% 264mm 65mm 199mm 329mm 7

House1MW

(11m2)

Ours 1.8 % 2.4 % 30mm 12mm 14mm 44mm 0.5
FloorPlanEx 2.6 % 4.5 % 53mm 9mm 38mm 60mm 6
Magic Plan 4.9 % 8.8 % 66mm 18mm 46mm 87mm 7

House2MW

(13m2)

Ours 3.0 % 5.0 % 29mm 12mm 17mm 49mm 0
FloorPlanEx 3.3 % 4.2 % 41mm 11mm 28mm 58mm 4
Magic Plan 5.4 % 9.2 % 50mm 23mm 22mm 89mm 5

House3MW

(48m2)

Ours 1.9 % 2.3 % 32mm 5mm 27mm 37mm 7.5
FloorPlanEx 2.8 % 4.0 % 105mm 23mm 78mm 144mm 6
Magic Plan 15.4 % 24.9 % 233mm 79mm 163mm 344mm 7

Table 1: Results of the geometry accuracy and reproducibility comparison experiment.

10 Conclusion

We presented an online approach to estimate and measure the room layout of an indoor
scene using a Project Tango mobile device. The various components of our pipeline
were evaluated on a desktop computer, using scans recorded from a Project Tango mo-
bile device. Compared to existing online works, the proposed method relies on scene
understanding to compute the room layout. In order to cope with the complexity of
some rooms, the user can interact in a cooperative way to add or remove walls among
the observed planes. The comparison with other mobile applications demonstrates that
in general, we achieve higher accuracy. In term of efficiency, the number of user in-
teractions depends on the complexity of the scenes, which may contain clutter data
incorrectly classified as walls. Some limitations of the proposed method are implicitly
associated to the Tango TDK: drift of the device pose and surfaces not handled by the
depth sensors, such as mirrors and glasses. Applications of our works include floor plan
generation, area estimation and room reconstruction for virtual reality games.
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