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Abstract

This study employs DNS of two-phase flows to enhance primary atomization

understanding and modeling to be used in numerical simulation in RANS or

LES framework. In particular, the work has been aimed at improving the infor-

mation on the liquid-gas interface evolution for modeling approaches, such as

the Eulerian-Lagrangian Spray Atomization (ELSA) framework. Even though

this approach has been already successfully employed to describe the complete

liquid atomization process from the primary region to the dilute spray, improve-

ments are still expected on the derivation of the drop size distribution (DSD).

The main aim of the present work is the introduction of a new framework to

achieve a continuous description of the DSD formation during the atomization

process. The attention is here focused on the extraction from DNS data of the

behavior of geometrical variable of the liquid-gas interface, such as the mean (H)

and Gauss (G) surface curvatures. The use of a Surface Curvature Distribution

is also proposed and studied.

A Rayleigh-Plateau instability along a column of liquid and a droplet collision

case are first of all considered to analyze and to verify the capabilities of the

code to correctly predicting the curvature distributions. A statistical analysis
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based on the curvatures data, in terms of probability density function, is pre-

sented in order to determine the physical parameters that control the curvatures

on this test case. Then, the same formulation is applied in the analysis of the

two phase Homogeneous Isotropic Turbulence (HIT) configuration to study how

the curvatures evolve all along the atomization process. Joint PDFs are used

to illustrate the topological changes of the interface when increasing the liquid

volume fraction.

Keywords: interface, curvature, DNS, two-phase flows
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symbol definition unit

D Droplet diameter m

G Gauss curvature m−2

H Mean curvature m−1

R Cylinder radius m

α Liquid volume fraction −

Σ Mean surface density m−1

κ Principal curvature m−1

ϕ Distance function from the interface m

ρ Density kg ·m−3

µ Viscosity kg ·m−1.s−1

σ Surface tension kg · s−2

acronym definition

DNS Direct Numerical Simulation

DSD Drop Size Distribution

ICM Interface Capturing Method

LES Large Eddy Simulation

NDD Number Diameter Distribution

RANS Reynolds Averaged Navier-Stokes

SCD Surface Curvature Distribution

CLSVOF Coupled Level Set/Volume Of Fluid

Table 1: Nomenclature and acronyms
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1. Introduction

Liquid fuel atomization and its subsequent combustion nowadays still rep-

resents one of key source for energy production both in aero-engine and auto-

motive context. Considering the difficulties and the high costs of experimental

measurements for two phase flow mainly in the dense spray region, in last years5

numerical simulations have been reliably used to gain a detail insight in liquid

evolution. Several numerical methods, associated to different computational

costs, have been therefore developed to this end (see for instance Gorokhovski

and Herrmann (2008); Demoulin et al. (2013) and references therein) and they

are normally aimed at providing predictive tools to be used to understand the10

various physical mechanisms involved in the atomization context.

A standard output normally expected from any atomization model or theory,

going from DNS studies till experimental correlations is the drop size distribu-

tion (DSD). From a theoretical point of view, several definitions of this function

can be introduced. Generally, it is FN (D) in such way that FN (D′)dD is the15

number of droplet per unit of volume with a diameter ∈ [D′, D′ + dD[. In this

case, it is the number diameter distribution (NDD) and it may be also nor-

malized to define a probability density function PN (D). The function FN (D)

requires the possibility to count the number of droplets. Thus, it is necessary to

separate the liquid phase in a set of discrete elements. However, usual atomiza-20

tion process starts with a continuous liquid flow (for instance a liquid jet) and

during the atomization a splitting of the continuous liquid phase occurs. Once

it is created, for fixed external conditions and generally considering the whole

spray, the NDD may evolve towards an asymptotic state, for which numerous

theoretical and experimental works are reported in the literature (Babinsky and25

Sojka, 2002). To address more complex situations or to determine its function in

space and time, a transport equation for the DSD, like the Williams Boltzmann

Equation (WBE) (Williams, 1958), is required.

Although the flow inside the injector as well as surface instabilities and the

methods to solve the WBE have been the subject of several research works30
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in technical literature, few studies deal with the droplet generation step to

estimate the DSD. One reason is the lack of data to justify any proposal as well

as the absence of a definition of the NDD during the primary breakup. In-fact,

considering a liquid jet before the detachment of a liquid parcel, the notion of a

diameter cannot be reasonably introduced. Nonetheless, considering an initial35

instability over a liquid surface, such unsteadiness should evolve in time and

create wrinkles at a certain length scale that is somehow related on a theoretical

point of view to the diameter of the droplet that will be then generated. It is

clear that a link between these two subsequent steps is missing. Regarding

the data in this transition zone, lately there have been great progresses both40

in experimental techniques (Déjean et al., 2016; Warncke et al., 2017) and in

numerical simulations (Navarro-Martinez, 2014; Dumouchel et al., 2017; Fox,

2012). However, an extended definition of the DSD should be first introduced to

be able to deal with the dense spray region as well as with primary atomization.

It should be pointed out that the same problem appears in defining a mean45

diameter: it is a moment of the NDD and therefore it can be defined only once

the continuous liquid jet has been broken in a set of liquid droplets.

The main goal of the present study is therefore the proposition of an in-

novative extended definition of the drop size distribution to be used all along

the atomization process, leading to the so called Surface Curvature Distribution50

(SCD). In the following, the definition of the SCD will be firstly introduced and

related to some characteristic geometrical properties of the liquid/gas interface,

such as the mean (H) and Gauss (G) curvatures. Then, numerical simulations

will be used to extract the evolution of such geometrical properties on funda-

mental test cases. The well-known Archer code (Tanguy and Berlemont, 2005;55

Ménard et al., 2007), where a combined VOF-Level set approach is used to

capture the interface and a ghost-fluid method is applied to represent accu-

rately the jump of variable across the liquid-gas interface, has been used to this

end. A database of DNS data focused on interfacial geometrical quantities will

be presented to provide valuable information to improve atomization model-60

ing in particular for the Eulerian Lagrangian Spray Atomization (ELSA) model
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(Lebas et al., 2009; Chesnel et al., 2011) in the region where the transition to a

Lagrangian frame for the liquid phase is realized.

The paper is structured as follows: the next section is devoted to the descrip-

tion of the SCD and to the introduction of a relation between the SCD and the65

NDD for a spherical droplet based on surface curvatures. In the second part of

the work, a Rayleigh-Plateau and a droplet collision test case will be presented

to characterize the two curvatures and to show how the breakup/coalescence

process from a liquid jet to the final droplet can be directly described em-

ploying such surface topological properties. Finally, an Homogeneous Isotropic70

Turbulence test case will be considered and the evolution of H and G addressed

for several values of liquid volume fraction in order to mimic the atomization

process.

2. An extended definition of the drop size distribution

The purpose of this section is the proposition of an extended definition of75

the drop size distribution that may applicable all along the atomization pro-

cess including the primary breakup zone. From the pioneering work of Vallet

and Borghi (1999); Vallet et al. (2001), it is known that the definition of the

mean diameter can be replace beneficially by the more general mean surface

density Σ, that is the surface area per unit of volume. This quantity can be80

defined everywhere whatever is the liquid phase topology and, combined with

the liquid volume fraction α, it gives the mean Sauter diameter once the spray

is formed: D32 = 6α
Σ . Recently, Essadki et al. (2018a) used high order fractional

moments of the DSD for disperse phase, where the size is given by the surface

area of droplet, to recover some interface geometrical quantities already used in85

describing the gas-liquid interface in their previous work (Essadki et al., 2016).

These quantities are the volume fraction, the mean surface density and the two

averaged Gauss G = κ1 ∗ κ2 and mean H = κ1+κ2

2 curvatures, where κ1 and κ2

are the two principal curvatures of the surface.

To overcome the limits of the DSD in modeling a gas-liquid interface during90
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the whole atomization process, the first idea here proposed is the exploitation of

some surface characteristics to look at the DSD since they carry the information

of the size distribution which is hidden all along the wrinkling process. The

proposal is to look at the curvature (κ) distribution. In this case the distribution

of curvature is FS(κ) and the FS(κ′)dκ is the area of surface with a curvature95

κ ∈ [κ′, κ′ + dκ[. This leads to the definition of a surface curvature distribution

(SCD). However, an accurate description of the interface cannot be restricted

to one geometrical variable as it is often used in the DSD for disperse phase.

Therefore, the Gauss and mean curvatures are proposed here as phase-space

variables, leading to the definition of the novel bi-variate SCD: FS(H,G). H100

and G are much more meaningful to be used in this context with respect to κ1

and κ2. Indeed, the curvatures κ1 and κ2 need to be distinguished by considering

an order relation κ1 ≤ κ2, while the curvatures H and G are mathematically

well defined and provide some interesting topological properties as proposed in

Essadki et al. (2018b).105

The definition of FS(H,G) and its general link with the standard number

density function is based on the introduction of the Gauss-Bonnet theorem (

See Essadki et al. (2018b) for details). ConsideringM as a 3D object, delimited

by a surface Σ(M), the following relation stands:∫
x∈Σ(M)

G(x)dS(x) = 2πχ(M) (1)

where χ(M) is the Euler characteristic that is equal for any homeomorph object

to M. Such quantity is particularly meaningful since for instance it is equal to 2

for objects homeomorph to a sphere, considering a set of droplets homeomorph

to a sphere, it can be then used to count the number of particles. In the case

of a sphere κ1 = κ2 = 2
D and the Gauss curvature can be simply expressed110

as G = 4π
S , where S = πD2 is the droplet surface area. Hence, the two func-

tions GFS(H=
2√
G,G)

4π and FD(D) are equivalent, since they count the number of

droplets per volume and per radius or Gauss curvature. The demonstration of

this equivalence between the two distributions in a more general case can be

found in Essadki et al. (2018b). In Figure 1, the link between the DSD and for115
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instance the probability distribution of H is shown for a cloud of droplets with

a known normal distribution (i.e. Dmean=5e-05 m and σ=1e-05). A continu-

ous link between the two distributions can be introduced and the DSD can be

easily recast starting from the corresponding curvature values. Nonetheless, the

SCD is defined all along the atomization process and therefore, once the spray120

is formed, the DSD is a particular case of FS(H,G).

Figure 1: Link between the DSD and the SCD for a known cloud of spherical droplets.

We should mention that the SCD is a distribution that measures the proba-

ble surface area having some given interfacial properties. As a matter of fact, it

can not cope with the volume occupied by the liquid or the gas phase. Another

approach to characterized the spray consists in using a volumetric distribution.125

For a spray, the DSD becomes FV (D) in such way that FV (D′)dD is the liquid

volume fraction of droplets with a diameter ∈ [D′, D′+dD[. This volumetric dis-

tribution can be also extended to any liquid topology, leading to the volumetric

distance function distribution (V ϕD), that can be a second proposal to describe

the transport of curvatures. It is defined by FV (ϕ) in such way that FV (ϕ′)dϕ130

is the volume fraction of flow that is at a distance ϕ from the interface, with

ϕ ∈ [ϕ′, ϕ′+dϕ[, ϕ is positive in the liquid phase and negative in the gas phase.

With this definition the following relation stands: The gas volume fraction is

αg =

∫ 0

−∞
FV (ϕ)dϕ, the liquid volume fraction is αl =

∫ +∞

0

FV (ϕ)dϕ, and the

mean surface density Σ = FV (0).135

The V ϕD gives the distribution of the flow with respect to the distance

to the interface. The link with the DSD is not straightforward. However,
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this distribution can be clearly identified on a given geometric object and in

particular for a spherical droplet.

A similar idea has been also explored by Dumouchel et al. (2015, 2017)140

with the concept of scale distribution, E3(d). The definition of this function

for a given object (for instance a droplet) is based on the total object volume

V0 and the volume V (d) defined by all points at a distance d or greater to

the object surface. The scale distribution is given by E3(d) = V0−V (d)
V0

. The

link between the scale distribution and the V ϕD can be express readily by145

E3(d) = FV (ϕ=d)
αl

.Dumouchel et al. (2015) have worked on experimental data

in 2D and more recently they have used numerical simulations to extract 3D

results (Dumouchel et al., 2017). A connection with curvatures is surely present

but further investigations are required on this point.

Following the idea of Essadki et al. (2018b), the emphasis of this work150

is to analyze the surface curvature distribution and the curvature behavior

(Gauss, mean and principal curvatures) in multiple two-phase flows configu-

rations. These quantities give an accurate geometric description of the interface

behavior. This article aims to propose a new framework to study the atomiza-

tion process, based on the curvature and SCD time evolution.155

3. Governing equations and numerical methods

3.1. Navier-Stokes equations and interface capturing method

Here, a joint level set/VOF method are coupled with a projection method

to carry out the direct numerical simulation of incompressible Navier-Stokes

equations:160

∂V
∂t

+ (V.∇)V = −∇p
ρ

+
1

ρ
∇.(2µD) + f +

1

ρ
σHδ(ϕ)n (2)

where p is the fluid pressure, V is the velocity vector, and D is the viscous

deformation tensor. At the interface, the surface tension force can be considered

based on the Dirac function δ(ϕ). Concerning the interface capturing method,

a CLSVOF interface capturing method is used to ensure mass conservation and
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a accurate description of the interface topology (See Ménard et al. (2007) for165

details).

This work benefits for the latest improvements of the ARCHER code : the

convective term is solved using the improved Rudman technique presented in

Vaudor et al. (2017), allowing a better accuracy and description of high density

ratio flows. This method is based on the computation of mass fluxes from the170

VOF method, which can then be used in a conservative formalism of the convec-

tive term. The diffusive term is now computed with the approach of Sussman

et al. (2007), the main advantage of this method is the implicit jump condition

of the viscous tensor. For further details, a review of the numerical methods

dedicated to the computation of the viscous term in two-phase incompressible175

flows is available in Lalanne et al. (2015).

Fluid dynamics equations are solved in the context of a low Mach number

approach, based on a projection method for the direct numerical simulation

of incompressible Navier-Stokes equations (detailed in Vaudor et al. (2017)).

The viscosity depend on the sign of the level set function according to each180

phase (liquid and gas). To finalize the description of the two-phase flow, jump

conditions across the interface are taken into account with the ghost fluid (GF)

method. In the GF method, ghost cells are defined on each side of the interface

(Kang et al. (2000); Liu et al. (2000)). This prolongs each phase to allow

smooth derivatives in the vicinity of the interface. As defined previously, the185

interface is characterized through the distance function, and jump conditions

are extrapolated on a few nodes on each side of the interface.

3.2. Curvature computation

Two methods have been used to extract the curvature distribution. The first

one is based on the distance function (ϕ) that is part of the numerical procedure190

in the resolution of the two-phase flow Navier-Stokes equations. The normal to

the surface ~n = − ~∇ϕ
|~∇ϕ| is first calculated. Then, the matrix P = I − ~n~nT with

I the identity matrix, and the Hessian matrix Hm = ∂2ϕ
∂xi∂xj

are calculated in

order to have the matrix Gm = −PHmP

|~∇ϕ| . Finally, the two principal curvatures
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κ1 and κ2 are obtained as κ1 = T+ 2√2F 2−T 2

2 and κ2 = T− 2√2F 2−T 2

2 with T , the195

trace of the matrix Gm and F , the Frobenius norm of the matrix Gm. The

reader interested in a more detailed explanation of such method is addressed to

Kindlmann et al. (2003). The second one has been instead developed in Essadki

et al. (2018b), where the gas-liquid interface is discretized with a 2D triangulated

mesh using the Marching Cube algorithm. The curvature is computed at each200

vertex of the generated mesh through a spatial-averaging process that preserves

some topological feature of the gas-liquid surface such as the Gauss-Bonnet

formula (Meyer et al., 2002). The topological features of the interface in terms

of computing the droplet number from the bi-variate SCD, while filtering the

noise, are in this way guaranteed. On the other hand, results for the V ϕD have205

been obtained directly through the distance function.

4. Results and discussion

This section is dedicated to the analysis of the curvature behavior and statis-

tics in two different configurations. First, a Rayleigh-Plateau instability and

a droplet collision configurations are investigated to illustrate our analysis on210

simple validation cases. Then, a more complex configuration closer to the atom-

ization regime (high Weber and Reynolds number) presenting liquid structures

of various shape and size is studied. Namely, the two-phase flows Homogeneous

Isotropic Turbulence configuration.

4.1. Rayleigh-Plateau instability215

4.1.1. Numerical configuration

As a first configuration, the Rayleigh-Plateau instability, where a set of

droplets is created from an initial column of liquid, is reported. A quarter of a

cylinder has been here computed and symmetric boundary conditions have been

employed in a computational box of 1, 5.10−4×1, 0.10−4×1, 0.10−4m length. A220

mesh sizing of 96×64×64 elements as in Ménard (2007) has been chosen. This

is a standard test case for the ARCHER code that is able to correctly reproduce
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the dispersion analysis diagram on this configuration (Ménard, 2007). The liquid

and gas properties are reported in Table 2.

ρl µl ρg µg σ

kg.m−3 kg.m−1.s−1 kg.m−3 kg.m−1.s−1 kg.s−2

1000 1, 0.10−3 1.0 1, 879.10−3 0, 072

Table 2: Physical properties of the Rayleigh Plateau instability

The cylinder has a radius R = 3.34.10−5m and the initial perturbation,225

essential to observe the instability, has an amplitude of 10% of the radius of the

cylinder and a wavelength of R = 3.0.10−4m (twice the length of the box). The

initial conditions have been chosen in order to have a wave number satisfying

kwR = 0.7 which correspond to the fastest growth rate.

4.1.2. Comparison between both curvature evaluation method230

Both method aforementioned to extract the curvature distribution are tested

on one time frame of the Rayleigh-Plateau test case, but no significant differ-

ences are observed as shown in Figure 2. The mean and Gauss curvatures are

provided as dimensionless using the radius of the initial cylinder as reference

length, whereas for the Gauss curvature the radius squared has been used to235

this end. Considering that the two approaches behave in a completely consistent

manner, in the following all results have been obtained using Method 1. The

parabola represents the spherical shape (i.e. k1=k2) and the dotted black line

is the cylinder (G = 0).

4.1.3. Curvature evolution and statistics240

To have a deep insight in the evolution of the breakup event, four time

frames have been selected and are shown in Figure 3. It is possible to see the

initial configuration (ta), the deformation of the cylinder with the generation of

the bottle-neck (tb), the moment of the break-up (tc) and the final generation

of droplets (td). It is interesting to analyze the evolution of surface curvatures245

during this breakup process. Five different representations have been realized to
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Figure 2: Rayleigh Plateau instability at t = 1, 88.10−4 (Top) and mean curvature in function

of Gauss curvature with the first method (left) and with the second method (right).

study the evolution of curvature ; a graph showing mean curvature H in func-

tion of Gauss curvature G (Figure 4-top-left), an other showing the two main

curvatures κ1 and κ2 (Figure 4-top-right). For completeness, various kinds of

representation can be used and are also mentioned in this paper : a graph show-250

ing H in function of
√
|G| (Figure 4-center-left) in order to have variables with

the same physical dimension, and a graph S in function of P (Figure 4-center-

right) showing the dual space of H and G graph. S represents R1+R2

2 and P

represents R1R2 with R1 = 1
κ1

and R2 = 1
κ2
, the two curvature radii. The

final graph represents the (κ1 − κ2, κ1 + κ2) space which is the (κ1, κ2) graph255

with a 45˚ rotation. The dashed lines correspond to a cylindrical topology ;

it means that one of the two main curvatures is equal to zero and therefore

the Gauss curvature G. The solid lines correspond to a spherical topology so

κ1 = κ2. On the (H, G) and (S, P ) graphs, it forms a parabola and no points

can be inside this parabola. By the way it is calculated, κ1 is always greater260

than κ2 so κ1 − κ2 is always positive. On the (κ1 − κ2, κ1 + κ2) graph, the

dash-dotted line separates "bubbles" on the left from "droplets" on the right.
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Besides, on the (H, G) and (S, P ) graphes, the limits of the mesh resolution are

also represented by dotted lines. In the following, only the (H, G) graph and

the (κ1 − κ2, κ1 + κ2) graph are conserved, mainly due to their mathematical265

properties (see Section 2). On Figure 9 and 10, the distance function ϕ is also

reported to better understand the obtained results and it is dimensionless using

dx as reference and the curves are shown between −lx and lx.

As long as the cylinder is weakly deformed (Figure 9), in terms of PDF profile

for ϕ, points are very close to the theoretical shape of a cylinder with a linear270

curve inside the liquid part. In the figure, line without markers represents the

initial cumulative profile for a cylinder, whereas the dashed line separates liquid

(positive values) and gas (negative values). For the cumulative of total curva-

ture (i.e. 2H) in Figure 8-left and Gauss curvature in Figure 7-left, a step profile

at values corresponding to this cylinder is derived. On the graph showing mean275

curvature in function of Gauss curvature (Figure 5-top-left), all the points are

at this time step all gathered around the vertical line at G=0.

Then, when such cylinder is deformed (tb), negative values for Gauss curvature

appear (Figure 7-right) related to all the saddle points in the middle of the

cylinder. This portion of the cylinder is visible on the mean and Gauss curva-280

tures graph (Figure 5-top-right) with corresponding points that create an arc.

Besides, on this graph, the points, which represent the big part of the cylinder,

get closer to the parabola representing the sphere.

When the break-up happens (tc), such arc breaks up and two clouds of

points appear (see Figure 5-bottom-left) with one set located on the black curve.285

These points correspond to the big droplet. Indeed, the mean curvature is ap-

proximately 0.5 and the Gauss curvature about 0.25 which correspond to a

radius twice as big as the initial jet radius. The other points, located below the

parabola, correspond to the small ellipsoid. Here, the mean curvature is quite

high because of the small thickness and the Gauss curvature is lower because290

the curvature is close to zero along the length. The big droplet appears also

as the step on the total curvature cumulative shown in Figure 8-right and the

small ellipsoid by all the high positive values. Such break-up process is mainly

14



Figure 3: Top left : Rayleigh Plateau instability at ta = 3, 92.10−7s ; Top right : Rayleigh

Plateau instability at tb = 1, 49.10−4s ; Bottom left : at tc = 1, 86.10−4s ; Bottom right : at

td = 2, 03.10−4s

evident on the curvature plot since small variations on the interface geometry

can lead strong changes in the curvature values.295

Finally, when the two droplets are generated (td), for the mean and Gauss curva-

tures graph (see Figure 5-bottom-right) most of the points are on the spherical

curve. The points corresponding to the big droplet are located approximately at

the same place than the previous time. Conversely, points corresponding to the

small droplet are those having an higher curvature. On Figure 10, PDF profile300

becomes now parabolic in the liquid part, as expected for spheres, with higher

values of the distance function because the generated droplet is bigger than the

initial cylinder. On the (κ1 − κ2, κ1 + κ2) graph (Figure 6), same comments

than on the (H, G) graph can be done ; the arc when the cylinder is deformed,

the two clouds of points when the break-up happens and the location of the305

points with respect to the spherical and cylindrical shapes.

Hence, the analysis of the evolution of Gauss and mean curvatures can be

reliably employed to describe a breakup process from a liquid jet to the final

droplet. Distributions of H and G follow the physical process here investigated

suggesting that their evolution all along the atomization process can be charac-310

terized.

15



1.0 0.5 0.0 0.5 1.0
G [−]

1.0

0.5

0.0

0.5

1.0

H
 [
−

]

Cylindrical Shape

Spherical Shape

∆x
lim

it
3∆
x
lim
it

1.0 0.5 0.0 0.5 1.0

κ2 [−]

1.0

0.5

0.0

0.5

1.0

κ
1
 [
−

]

Cylindrical Shape

Cylindrical Shape

Sp
he
ric
al
Sh
ap
e

1.0 0.5 0.0 0.5 1.0√
|G|  [−]

1.0

0.5

0.0

0.5

1.0

H
 [
−

]

Cylindrical Shape

Sp
he
ric
al
Sh
ap
e

Spherical Shape

1.0 0.5 0.0 0.5 1.0
P [−]

1.0

0.5

0.0

0.5

1.0

S
 [
−

]

Spherical Shape

3∆x
lim

it

∆
x
lim
it

1.0 0.5 0.0 0.5 1.0

κ1 + κ2 [−]

1.0

0.5

0.0

0.5

1.0

κ
1
−
κ

2
 [
−

]

Cylindrical Shape Cy
lin
dr
ica
l S
ha
pe

Spherical Shape : DropletSpherical Shape : Bubble

Figure 4: Different spaces for curvature representation.

16



1.0 0.5 0.0 0.5 1.0
G [−]

6

4

2

0

2

4

6
H

 [−
]

1e 1

Cylindrical Shape

Spherical Shape

1.0 0.5 0.0 0.5 1.0
G [−]

1.0

0.5

0.0

0.5

1.0

H
 [−

]

Cylindrical Shape

Spherical Shape

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
G [−]

4

3

2

1

0

1

2

3

4

H
 [−

]

Cylindrical Shape

Spherical Shape

3∆x limit

0 2 4 6 8 10 12
G [−]

3

2

1

0

1

2

3

H
 [−

]

Cylindrical Shape

Spherical Shape
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ta to td).The solid line represents a spherical shape (κ1 = κ2) and the dashed line represents

a cylindrical shape (G = 0). The dash-dotted line on tc represents the resolution limit 3∆x.

4.2. Droplet collision

4.2.1. Numerical configuration

The capabilities of such geometrical surface properties have been also tested

for a collision test case, which represents another fundamental step in the defor-315

mation of liquid surface. The ARCHER code has been already widely validated

also on this configuration (Tanguy and Berlemont, 2005; Luret et al., 2010)

and here a test point with two spherical water droplets of initial radius of 200

µm and 130 µm, characterized by an impact factor I=0.35, a relative velocity

Vcoll = 3.42ms−1, a Weber liquid number Wel = 33.5 and an Ohnesorge of320

Oh = 0.015 has been considered.
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Figure 6: Mean curvature in function of Gauss curvature (from top left to bottom right from

ta to td).The dash-dotted line represents the separation between droplets and bubbles and

the dashed lines represent a cylindrical shape (κ = 0). The solid line represents a spherical

shape (κ1 = κ2).

4.2.2. Curvature evolution and statistics

In Figure 11 the resulting evolution of the liquid surface on four time frames

is shown, where it should be pointed out the initial configuration (ta), the

moment of coalescence (tb), the generation of one deformed droplet (tc) and325

its subsequent breakup with the generation of a torus structure (td). In Figure

12 the corresponding evolution on the (H, G) plane is reported, where it can

be pointed out that, similarly to the Rayleigh-Plateau test case, the curvatures

evolve consistently with the investigated physical process.

Considering this preliminary assessment on fundamental test cases, in the330

next section, the same surface geometrical properties will be used to analyze a
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Figure 8: Cumulative of the total curvature (Left : at ta ; Right : at tc)

Homogeneous Isotropic Turbulence (HIT) box where breakup and coalescence

events appear together due to the turbulence forcing.

4.3. Homogeneous Isotropic Turbulence configuration

4.3.1. Numerical configuration335

A further assessment and exploitation of the procedure regarding curvature

extraction has been performed using a three dimensional cubical domain with

periodic boundaries similar to the investigation of Duret et al. (2012, 2013).

This configuration represents a extension of single phase mixing studies to two

phase flow and it has been already analyzed to improve the understanding of340

primary atomization (see Duret et al. (2012, 2013)). [h]
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function at ta. The lines with • represent the numerical results, the solid lines represent the

theoretical shape for a cylinder and the dashed lines separate gas (on the left) from liquid (on

the right)

ρl/ρg σ µg µl kkin L

30 0.0135 1.879e-05 5.65e-04 3.6 1.5e-04

Table 3: Properties for DNS simulations of HIT (S.I. units).

The mesh resolution used in the present investigation is based on previous stud-

ies on the same configuration and on single-phase flow simulations to capture

the Kolmogorov length scale (Duret et al., 2012, 2013). In Duret et al. (2013),

two mesh sizing are compared on the same configuration and in the present work345

the fine computational domain counting 2563 mesh elements has been employed.

The validation of this set-up for single-phase simulation is not here shown for

the sake of clarity. The interested reader is addressed to Duret et al. (2012),

where this topic is discussed in detail.

In order to define a configuration with realistic interactions between the liquid350

surface and the turbulent gas flow-field, the following dimensionless parameters

have been selected (i.e. coherently with Duret et al. (2013)): gaseous Weber

number Weg = ρgkkinL/σ = 1, liquid Weber number Wel = ρlkkinL/σ = 30,

liquid based Reynolds number Rel =
√
kkinL/νl = 310 and liquid Ohnesorge

number Ohl =
√
Wel/Rel = 1.77e− 02, where kkin is the mean kinetic energy,355
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function at td. The lines with • represent the numerical results, the solid lines represent the

theoretical shape for a cylinder and the dashed lines separate gas (on the left) from liquid (on

the right)

σ the surface tension, ν the kinematic viscosity in liquid or gas phase, ρ the

density and L is the length of the box. In Table 3 the corresponding set of

physical properties is reported.

Several values of the liquid volume fraction αl inside the box have been studied

in the present work for curvature extraction (i.e. ranging from 1% to 90%) in360

order to mimic the whole atomization process as shown in Figure 13 using the

data obtained from DNS calculation on a diesel jet. The main aim is the ex-

traction of curvatures evolution all along the jet evolution in order to point out

firstly the link between the DSD and the FS(H, G) and also how curvatures

evolve from the dense region up to the dispersed spray (i.e. reducing αl).365

4.3.2. Curvature evolution and statistics

Results obtained for the HIT varying αl are here presented starting from

the 1% test case, which can be reliably considered as representative of the di-

lute spray region. A snapshot of the liquid-gas interface distribution together

with the evolution in time of Σ̄ and H̄, which represent the volume average for370

the whole domain of liquid-gas interface and mean curvature, as well as their

time averaged values is reported in Figure 14. In the following, t∗ is the time
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Figure 11: Top left : Surface evolution for droplet collision test case ; Top left : at ta =

2.97.10−5s ; Top right: at tb = 7.2.10−5s; Bottom left : at tc = 9.9.10−5s ; Bottom right : at

td = 4.3562.10−4s

normalized by the turbulent time scale of the box, i.e. τt = kkin

ε .

It is possible to point out the augmentation and reduction of Σ in time re-

lated to breakup or coalescence events as well as the generation of a cloud of

nearly spherical droplets from the instantaneous time frame. The characteristic

sizing of the generated liquid structures covers a wide range of diameters: big

droplets, which carry the major part of the total mass, can be clearly identified

and from their turbulent collisions smaller particles are generated. Clearly, with

respect to the Rayleigh-Plateau test case, the representation of the breakup pro-

cess is here much more complex due to the local appearance of several different

values of the surface curvatures. Several nearly spherical droplets are generated

together with some liquid structures characterized by high negative Gauss cur-

vature values leading to a non-straightforward discussion of physical phenomena

on the (H, G) graph used in previous section.

Therefore, in order to have a deeper insight into the evolution of surface charac-

teristics in this test case, it has been chosen to analyze some statistical properties

of H and G. In particular, in Figure 16 the time averaged PDF of the mean cur-

vature is shown. Such time averaged distribution has been obtained by dividing

the H-space in a user-defined number of classes and by collecting during the cal-
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Figure 12: Mean curvature in function of Gauss curvature. Top left : at ta ; Top right : at

tb ; Bottom left : at tc ; Bottom right : at td. Solid line represents κ1 = κ2 (sphere) and the

dashed line represents G = 0 (cylinder).

culation the liquid-gas interface associated for each class of H. Such procedure

has been gathered for nearly 15 τ∗ in order to reduce the statistical noise and

to obtain a time-averaged distribution. Black dotted lines represent the mesh

sizing, which can be considered as a numerical limit in curvature calculation. A

similar evolution has been obtained also for the PDF(G), which is not shown

here for the sake of clarity. The peak of PDF(H) is located at positive val-

ues since a dilute spray is here considered, whereas the probability to have gas

bubbles (i.e. H < 0) is negligible. Starting from such distribution, much more

information about the evolution of the liquid-gas interface can be now extracted.

For instance, the spray NDD can be now derived, associating to each curvature

class (Hi) the corresponding number of spherical droplets (Nd.i) characterized
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Figure 13: Regions considered for the extraction of curvature distribution all along the atom-

ization process.
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Figure 14: Visualization of liquid-gas interface for liquid volume fraction of 1%, together with

time evolution of Σ̄ and H̄. The solid lines represent the instantaneous signal of the mean

value of H and Σ. The dashed lines represent the time average of the mean value of H and

Σ.

by the class amount of surface (Ai) collected during the calculation:

Nd,i =
Ai

4π(Hi)−2
(3)

This represents clearly an abrupt approximation since each curvature class is

associated to the corresponding spherical shape, but it highlights a direct link375

between curvature distributions and the NDD. Using this formulation, it has

been possible to extract the NDD and the Volume based Drop size Distribution

(VDD) shown in Figure 16 using solid black lines. The reader interested in the

theoretical link between the NDD and the VDD is addressed to references (Du-

mouchel, 2006; Babinsky and Sojka, 2002; Déchelette et al., 2011) where this380
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topic is discussed in detail. A double peaked NDD is obtained from numerical
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Figure 16: Extraction of NDD and VDD from PDF(H). Solid line : DNS data, dashed lines

: dx representation, ◦ : proposed log-normal distribution.

calculations. It is representative of the generation of a huge number of nearly

spherical droplets together with few ligaments, which bring the major part of

the liquid volume. Such small particles are generated through collisional events,

which are enhanced by the turbulent liquid-gas interactions. The turbulence,385

acting on the liquid surface, increases the probability of collisions and deter-

mines the final spreading of the size distribution.

25



Log-normal probability distributions are calculated to fit the DNS data : first

two separate PDFs have been derived (i.e. PDF1 for the diameter class 1e-

08<d[m]<1e-05 and PDF2 for 1e-05<d[m]<1.5e-04 ) and then the total prob-390

ability distribution, calculated as PDFtot = V1PDF1 + V2PDF2 where V1 and

V2 represent the liquid volume associated to each class, has been obtained (See

Figure 16). It is worth noting that V1 represents nearly the 5% of the total

liquid volume, showing that, even for such low value of liquid volume fraction,

the contribution of collisions is not at all negligible. The resulting log-normal395

PDFtot, both in terms of NDD or VDD, reliably agrees with DNS data.

Hence, starting from the H-PDF it has been possible to derive a NDD that is

consistent with a standard drop-size distribution in the dilute regime like the

log-normal one. Furthermore, it is worth pointing out that the mean value cal-

culated for PDFtot is coherent with the characteristic Sauter Mean Diameter400

(SMD) that can be calculated as SMD = 6αl/Σ. Such evidence enforces the

idea that curvatures PDF can be reliably used to characterized the spray dis-

tribution both in terms of mean value and dispersion.

This comparison clearly shows that, in a test article nearly representative for

a dilute spray (i.e. αl= 1%), a direct link between the spray NDD and the405

curvature evolution can be determined. However, beyond the characterization
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Figure 17: Joint PDF of the surface curvatures for α1 = 1%. Left : joint PDF(H, G), right:

joint PDF(κ1 − κ2, κ1 + κ2).
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of the spray distribution, such DNS analysis can bring also further informa-

tion about the curvature evolution that can be useful to better understand the

topology of the liquid-gas interface under investigation and to give some hints

about the curvature modeling. In particular, in Figure 17 the time averaged410

joint PDF(H, G) is shown together with the time averaged joint PDF of the

(κ1 − κ2, κ1 + κ2) space. On the joint PDF(H, G), the parabola represents the

spherical shape (i.e. H2 = G) whereas the dashed line specifies a cylindrical

topology (i.e. G = 0). On the joint PDF(κ1 − κ2, κ1 + κ2), the dashed lines

represent a cylindrical shape and the spherical shape is shown by the horizon-415

tal solid line. The vertical dash-dotted line separates bubbles topology from

droplets topology. It is possible to extract several interesting information about

the evolution of the liquid-gas interface looking at such joint PDF distributions

of surface curvature:

• the PDF(H, G) shows that, in terms of time-averaged distribution, the420

topology of the liquid surface is mainly stretched along two directions,

i.e. several points are collapsed on the parabola representative of the

spherical shape and in a similar manner also the cylindrical asymptotic

limit appears. Such bi-modal topological distribution derives from the

presence of big cylindrical ligaments that, subjected on the action of the425

turbulence field, collide and generate a cloud of spherical droplets.

• the PDF(κ1 − κ2, κ1 + κ2) gives similar information in terms of time-

averaged properties with respect to the PDF(H, G), but, looking now

at the contour iso-lines, it should be pointed out that the most probable

value of the two principal curvatures is not associated to a spherical shape430

(i.e. it not collapsed on the κ1 − κ2 = 0 line).

Hence, the joint PDFs, which can be extracted from surface curvatures, may

give an idea about the topological evolution of the two phase flow together with

some hints about the generated spray population. Considering these results,

together with data already presented on the Rayleigh-Plateau test case, the435

capabilities of surface curvatures in describing the liquid breakup as well as its
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direct link with the NDD have been clarified.

Therefore, higher values of liquid volume fraction have been then investigated in

order to understand how the curvatures evolve and if it is possible to determine

a general behavior of the curvatures PDFs all along the atomization process.440

In Figure 18 the liquid-gas interface distribution together with the time averaged

PDF(H) is shown for αl = 5%. Clearly, much more ligaments are generated now

due to the augmentation of the liquid volume inside the box with respect to the

previous case: elongated and stretched cylindrical elements appear and from

their turbulent breakup some spherical droplets are produced. The PDF(H)445

shows here an evolution in line with Figure 16 with a mode value shifted towards

negative values of H. Now, the probability of finding H < 0 is no more zero

and this is linked to the presence of regions where gas bubbles are surrounded

by the liquid phase leading to an opposite curvature sign.

Figure 18: Left : Visualization of liquid-gas interface for liquid volume fraction of 5%. Right

: time averaged PDF(H).

In Figure 19 the joint PDF(H, G) and PDF(κ1−κ2, κ1+κ2) are reported for450

the 5% case. Considering the PDF(H, G), with respect to Figure 17 less points

tends now to collapse along the parabola and the probability peak is strongly

stretched along the line at G = 0. This is again representative of the topological

variation in the liquid shape from a sphere to a deformed and elongated cylinder

while increasing the liquid volume fraction. In a similar fashion, looking at the455

PDF(κ1−κ2, κ1 +κ2) the distribution is no more just collapsed on the spherical
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Figure 19: Joint PDF of the surface curvatures for αl = 5%. Left : joint PDF(H, G), right :

joint PDF(κ1 − κ2, κ1 + κ2).

topology, but tends to be straightened also along the line corresponding to a

cylindrical shape (κ2 = 0), with the PDF peak moved away from the spherical

asymptote with respect to the previous test point. This clearly shows that for

αl = 5%, the interface has a wider range of possible curvatures than the previous460

αl = 1% configuration, and is subject to more deformation and wrinkles.

Increasing further the liquid volume fraction, as shown in Figure 20 from

the instantaneous snapshots from αl = 10% up to 90%, an important number of

continuous liquid structures appear and a set of bubbles is at the end generated

for the very dense case. The time averaged PDF(H) as well as the joint

Figure 20: Visualization of liquid-gas interface for liquid volume fraction for 10% (left), 50%

(center) and 90% (right).

465

PDF(H, G) and PDF(κ1 − κ2, κ1 + κ2) are shown respectively in Figures 21
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and 22. Several considerations can be derived from these plots. For αl = 10%,

some pockets of gas are closed inside the continuous liquid structures and indeed,

with respect to previous cases, now the probability of having H<0 is no more

negligible.470
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Figure 21: Time averaged PDF of mean curvature. Top left : αl = 10%, Top right : αl = 50%

, bottom : αl = 90%.

The probability distribution of the mean curvature has a similar shape with

respect to Figure 16 with the mode value that is shifted towards lower H-values.

The topology of the the interface is now strongly modified and the PDF(H, G)

points out a leading cylindrical shape together with two clouds of points col-

lapsed on the parabola. They represents the generation of a set of bubbles and475

droplets nearly spherical. In terms of principal curvatures, the peak is moved

from the κ1 = κ2 limit (κ1 − κ2 = 0), even if a significant stretch along the

spherical line can be still pointed out.

As soon as the liquid volume fraction is further augmented, points characterized

by a positive mean curvature disappear since the probability of having some iso-480
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Figure 22: Time averaged joint PDF(H, G) (left) and PDF(κ1 − κ2, κ1 + κ2) (right) for

αl = 10% (top), αl = 50% (center) and αl = 90% (bottom).
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lated droplets is now negligible. The imposed level of turbulent kinetic energy

is not high enough to disrupt the ligaments and the liquid-gas interface pre-

serves its continuity. The gas phase is trapped inside these structures and on

the (H, G) plot a huge amount of bubbles collapses on the spherical topology.

Coherently, the principal curvatures change their sign. Finally, at αl = 90%485

the characteristic values of H and G are higher (i.e. bubbles with a smaller

radius) and the PDF(κ1 − κ2, κ1 + κ2) changes completely its orientation and

the system is stretched on the negative principal curvatures space. The HIT

now behaves in terms of topology in a complementary manner with respect to

the 10% case as shown also by the time averaged PDF(H), where the peak is490

moved towards negative values because of the generated smaller bubbles.

By comparing all the results shown so far, it is interesting to point out that the

curvature evolution is completely consistent with the observed physical phenom-

ena. Both the PDF(H) and the joint curvature probability distributions evolve

all along the atomization process maintaining the same shape and moving the495

peak of the distribution from positive to negative values. Moreover, as far as

the spray becomes dilute a link between the curvature evolution and a standard

DSD is directly available. This surely represents a novel and general framework

to study the atomization process and the obtained mathematical shape of the

PDF(H) is particularly promising having in mind the introduction of such char-500

acteristics of the liquid-gas interface in the modeling context (for instance in the

ELSA formalism).

5. Conclusions

This study shows how DNS of two-phase flows can be employed to improve

understanding and modeling of primary atomization to be then used in RANS505

or LES framework. In particular, the study is aimed at enhancing the infor-

mation available in ELSA framework through the introduction of liquid/gas

interface curvatures. Firstly, on a mathematical point of view, an extended

definition of the drop size distribution to be used all along the atomization pro-
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cess is proposed, leading to the so called surface curvature distribution. Hence,510

the extraction of surface curvatures is shown for simple configurations such a

Rayleigh-Plateau instability and a droplet collision. Two different methods to

extract the curvatures have been tested and validated. The evolution of Gauss

and mean curvatures is analyzed in detail in order to show how the breakup

process from a liquid jet instability to the final droplet can be easily described515

in terms of such surface geometrical properties. Then, the same procedure has

been applied on the HIT, where several cases, varying the liquid volume fraction,

have been studied. The analysis has been firstly focused on a dilute case (i.e.

α1 = 1%) where the link between the DSD and SCD has been clarified. Indeed,

starting from the PDF(H) it has been possible to extract a NDD and VDD that520

follow a standard log-normal distribution. By investigating higher values of the

liquid volume fraction (up to 90%), it has been shown that the SCD is defined

even if droplets/bubbles or large liquid/gas structures are present. Joint PDFs

ofH and G, as well as joint PDF of κ1−κ2 and κ1+κ2, have been investigated in

this configuration and give a good insight on the behavior of the two-phase flows525

and the evolution of liquid (or gas) structures shapes. It has been found that

curvature distributions are able to describe the transition from a dilute spray

to a bubbly flow and in particular the PDF(H) shows a very similar shape in

all the studied cases.
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