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Abstract

A procedure is proposed to simulate numerically experimental capillary condensation and evaporation isotherms
in porous media, and to simulate random microstructures based on such isotherms. The present methodology is
applied to a mesoporous material made of nanometric alumina “platelets”. First, a numerical method is devel-
oped to compute the adsorption and desorption isotherms in digital porous media. The method, based on simple
morphological operators, extends that of Münch and Holzer [15] on mercury porosimetry. The meniscus of the
vapour–liquid interface occurring during adsorption are simulated using a morphological closing [13, 17] of the solid
phase by a sphere. The diameter of the sphere controls the radius of curvature of the vapour–liquid interface. To
simulate desorption, a combination of morphological closing and hole-filling operators is used. For random media,
the desorption curve is strongly sensitive to the volume of the computational domain. We overcome this effect
by a percolation analysis of the gaseous phase during desorption. The present method allows one to predict the
hysteresis and pore size distribution associated to porosimetry. To validate this approach, numerical results on
simple geometries are compared with the work of Štěpánek et al. [19] based on the Kelvin equation. The conden-
sation and evaporation isotherms occurring in various ideal Boolean models simulating different types of porous
media are also computed and interpreted. Second, nitrogen porosimetry data for mesoporous alumina is considered.
Based on results obtained for multiscale microstructures, a random model is proposed for mesoporous alumina. To
control both the size distribution and hysteresis, the porosity is made of a union of Boolean and hard-core models
of spheres. The parameters of the model are identified and numerically adjusted to reproduce the experimental des-
orption isotherm. Finally, we develop a model of mesoporous alumina, consistent with both porosimetry data and
Transmission Electron Microscopy images, made of aggregates of locally-aligned alumina platelets, as introduced in
a previously-developed model [23]. The model contains the following characteristic scales: the platelets’ size, that
of platelets aggregates, and the size-distribution of pores.

Keywords: Capillary condensation, Porosimetry, Adsorption, Random model, Pore size distribution,
Microstructure modelling

1. Introduction

This work focuses on the modelling of the capillary condensation and evaporation phenomena, as described
described by the Kelvin equation, in porous media. The Kelvin equation relates vapour/pressure equilibrium to
the morphology of the pores: the more curved the local vapour/liquid interface is, the lower the equilibrium vapour
pressure is. Accordingly, capillary condensation occurs first along highly curved interfaces. Porosimetry isotherm
represents the amount of liquid (or equivalently, the remaining porosity filled by gas) as a function of pressure.
When represented as a function of curvature radius, the isotherm is frequently interpreted as a cumulative size
distribution for the porous phase [1]. Accordingly, the simulation of the capillary condensation and evaporation is
important to study the relation between morphology of the material microstructure and experimental porosimetry
data. Nevertheless, the question of determining the main microstructure parameters that influence the porosimetry
remains open.



Štěpánek et al. [19] proposed the method of “virtual capillary condensation” to simulate the nitrogen adsorption
and desorption process. The method focuses on the propagation of liquid–vapour interface. At a given temperature
and at a given pressure, the Kelvin equation provides a relationship between radius of curvature and pressure. The
method measures the local radius of curvature on the solid-vapour or the liquid–vapour interface. Wherever the
local radius of curvature is less than the minimum radius, nitrogen liquid is condensed. With liquid condensation
and filling, the curved interfaces becomes smooth and less curved. The algorithm converges when the radius of
curvature of vapour–liquid interface is equal to the minimum value and the radius of curvature of vapour-solid
interface is equal to or larger than the minimum value. At equilibrium, a point in the porosimetry isotherm is
obtained. The pressure is then increased, to achieve other equilibrium points in the isotherm. The method is
validated for simple geometries like ink-bottle pore, and is also applied to microstructures generated by Gaussian
random fields and microstructures of nano-agglomerates and open-cell foams. The pore size distributions of these
models are then estimated from the isotherm. Significant computing power is required to simulate the interface
propagation on volumes of 1003 voxels as considered in [19].

In many cases, it is sufficient to compute equilibrium states during nitrogen condensation. These states are
obtained experimentally by increasing and decreasing pressure very slowly, so that equilibrium is met at any time.
The equilibrium states are governed by the Kelvin equation, which replaces the physical problem by geometri-
cal considerations. In this request, a similar geometrical problem arises in the simulation of Mercury Intrusion
Porosimetry (MIP). The analysis of MIP is based on the Washburn equation, which relates the pressure to the
radius of intruded cylindrical pores, whose role is similar to the curvature radius in the Kelvin equation. In MIP,
mercury intrudes largest pores first, and then, with increasing pressure, intrudes gradually into pores of smaller
size. Garboczi and Bentz [8] simulated the MIP in 2D porous structures by the propagation of disc-shape elements
from the external borders to the centre of the 2D space. The disc element of a given radius, which is determined
by mercury pressure, occupies the maximum amount of space without overlapping with the solid phase. When
the pressure increases, the radius of the disc decreases, and more space is intruded by mercury. Bentz [2] used
the method in 3D space and estimated the pore size distribution. At nearly the same time, Thovert et al. [21]
proposed the notion of critical sphere in the geometrical characterization of porous media: the largest sphere able
to traverse a percolating component. Based on that, Münch and Holzer [15] proposed the notion of “continuous
PSD”: the amount of pore volume that can be covered by critical spheres. The critical spheres are simulated using
double Euclidean distance transforms and thresholds, while the radius of the spheres is equal to the threshold.
The “continuous PSD” is then applied to simulate the MIP: despite the “continuous PSD” operation, a regular
region growth is performed. The region growth takes the connectivity of the mercury phase into account, and the
ink-bottle effect emerges in the simulated intrusion and extrusion curves.

In 1967, Matheron introduced the morphological closing operator – a combination of morphological dilation
and erosion, and noted its equivalence with the capillary condensation with spherical structuring element [13].
Münch’s method in MIP simulation is similar to Matheron’s idea. The double distance transform plus threshold
is a specific case of the closing operator when a spherical structuring element is used. Other thermodynamic
effects, e.g. solid/liquid interaction [9] and physical multilayer adsorption [4] have been addressed in the literature.
Nevertheless, the geometry or the morphology of the porosity dominates the capillary behaviour in meso-pores. For
disordered porous media as γ-alumina, the 3D porous microstructure is complex, and the representative volume for
the capillary behaviour of such disordered porous media is also much larger than ordered porous media. In order to
predict the capillary behaviour of a random porous model, numerical simulation methods should be able to handle
large volumes to ensure the representativity of the simulated result.

In this work, we propose a novel method that draws on the geometrical MIP simulation described by [15].
It extends to nitrogen porosimetry simulation, in particular, adsorption and percolation analysis. The method
is described in Section 2, where simple geometries and a random Boolean model of spheres are considered. The
method is then applied to a microstructure model developed for mesoporous alumina (Section 3). A three-scale
model of platelets is proposed to reproduce the experimental isotherms, and is validated using TEM images. The
limitation of the method is discussed in Section 4. We conclude in Section 5. In Appendix A, we apply the method
to various theoretical random sets.

2. Morphological simulation of nitrogen porosimetry

Hereafter we consider the Kelvin equation, which reads:

pc = ps exp

(
−2γ

rp

Vm
RT

)
(1)
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where pc [Pa] is the equilibrium vapour pressure above a curved interface, rp [m] the local curvature radius of the
interface, γ [N m−1] the interfacial tension, R [J K−1 mol−1] the universal gas constant, Vm [m3 mol−1] the molar
volume of liquid nitrogen, T [K] the absolute temperature and ps [Pa] is the saturation vapour pressure when the
liquid–vapour interface is flat. The Kelvin equation is valid for pores of radius above 2 nm [20]. Hereafter the
curvature radius rp corresponding to the vapour pressure is denoted “Kelvin radius”.

Hereafter, the simulation domain D, a cuboid of length l, is made of a solid phase S, represented by its
characteristic function:

χ(x) =

{
1 if x ∈ S
0 otherwise.

(2)

and a porous phase Sc = D\S. When the porous media is put into a vapour atmosphere, condensation and
evaporation occur and the pore is filled by vapour and condensed liquid. However, not all the pore volume is
accessible from the exterior, i.e. there exists pores enclosed by the solid phase. Therefore, before the condensation
simulation, a preprocessing is needed to fill isolated pores. We denote the accessible pores by P , obtained by a
hole-filling morphological operation H(·) so that P = H(S)c. The hole-filling operation H(S) is computed by filling
all connected components [17] of the porous phase Sc unconnected to any border of the domain.

Capillary condensation and evaporation occurs in P , more specifically, in areas of a high curvature, e.g. corners
and narrow slit pores. During the adsorption process in porosimetry, vapour pressure starts from nearly zero, and
increases until the saturation vapour pressure. At any given pressure, an equilibrium between the condensation and
the evaporation is established. The criterion of the equilibrium is the radius of curvature, indicated by the Kelvin
equation. The maximum radius of curvature of vapour–liquid interface at position x is determined by the radius
of the largest sphere in the porous phase containing x [19]. The menisci of condensed liquid–vapour interface is
formed along the spheres’ boundaries. The filling of areas of high curvature and narrow space and the meniscus
can be generated by a morphological operation, a closing by a spherical structuring element:

L(rp) = ϕrp(S) ∩ P, ϕr(S) = S ⊕B(r)	B(r), (3)

where L is the liquid phase, ϕrp a closing operation, B(r) is the spherical structuring element with radius r and
	 is the Minkowski subtraction (or erosion). In this work, we assume that the system is perfectly wetted and the
contact angle is 0◦.

A textbook example is provided in Fig. 1: capillary condensation in a conical pore. In a conical pore, the
curvature radius decreases linearly in function of pore depth. According to the Kelvin equation, the apex region
is filled first with condensed liquid at low pressure. The local curvature radius of liquid–vapour interface and
solid-vapour interface should be equal or greater than the Kelvin radius. The closing operation fills the regions of
small curvature radius first, and a spherical-cap meniscus is formed on the vapour–liquid interface (Fig. 1a). The
curvature radius of every point on the spherical meniscus equals the Kelvin radius. The spherical cap is tangent to
the conic solid wall, so the curvature radius at the boundary of the meniscus is also equal or greater than the Kelvin
radius. The curvature radius of the remaining vapour-solid interface is greater than the Kelvin radius. Accordingly,
the interface resulting from the closing operation satisfies the Kelvin equation, and the capillary condensation
phenomenon is simulated.

With increasing pressure, the Kelvin radius increases, the meniscus propagates, and fills the space of large size
(Fig. 1b). Even when Kelvin radius is larger than the radius of the cone base, the meniscus becomes the arc of
a larger pore outside the conical pore (Fig. 1c). The contact angles are no longer 0◦, but the curvature radius
becomes negative on the bounary of the arc and still satisfies the Kelvin equation. Another typical example of
capillary condensation is the cylindrical pore (Fig. 1d-f) with one side open and the other side closed. Capillary
condensation occurs first at the corners, where condensed liquid flatten and smoothen the vapour/liquid interface.
The main space of the pores remains empty until the pressure reaches the critical radius, and the pore space is filled
all at once.

In practice, approximate spherical structuring elements are used in a discrete grid. The approximations, like
rhombicuboctahedron, are not accurate to probe the pore size and to reproduce the menisci. Alternatively, the
closing operation with spheres can be realized using Euclidean distance transforms [14] as implemented in [15]. The
distance map, denoted by dS(x), x ∈ P , is the distance from a coordinate x to the closest solid-pore interface. The
dilation δr(S) of the solid phase is obtained simply by a lower threshold:

δr(S) = S ⊕B(r) = {x|x ∈ P, dS(x) < r}. (4)
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Figure 1: 2D sections of closing operations in a conical pore (a-c) and cylindrical pore (d-f) (solid black lines). The dilation operation is
shown with dotted black line in the left column. The erosion operation is shown in the middle column. The resulting liquid condensation
is shown in blue in the right column. Increasing size of the spherical structuring element (dotted red line) are applied (a-b-c and d-e-f).

This transform is followed by an erosion, computed again using the distance function so as to obtain the condensed
liquid:

ϕr(S) = δr(S)	B(r) = {x|x ∈ δr(S), dδr(S)c(x) > r} (5)

The distance map dS(x) for dilation need be calculated once, whereas that for erosion is computed for each value
of the radius r. After the closing operation, the areas where the curvature radius is inferior to rp are filled. The
correct pressure balance is enforced by the spherical opening operation, that leaves interfaces with a given radius of
curvature. The Kelvin equation is locally satisfied, and we obtain an equilibrium state in the adsorption process,
enforced by the spherical closing operation. The increasing pressure during adsorption corresponds to increasing
sphere radius. The procedure is repeated with increasing sphere radius to obtain all equilibrium states.

The volume of condensed liquid at equilibrium state, denoted Ψ(rp), provides a point on the nitrogen isotherm:

Ψ(rp) = L(L(rp)) (6)

where L(·) is the Lebesgue measure. The total volume of adsorbed liquid at saturated pressure is Ψ∞ = limr→+∞Ψ(r).
In porosimetry isotherm plot, we consider the normalized volume of condensed liquid ψ which depends on the relative
pressure (denoted by p/p0), or the equivalent Kelvin radius:

ψ(rp) = Ψ(rp)/Ψ∞. (7)

The continuous pore size distribution, denoted by I(rp), is given by the normalized intensity of pore volume as a
function of pore size. It is evaluated using differentiation [15, 19]:

I(rp) =
dψ(rp)

drp
(8)

2.1. Capillary evaporation simulation with morphological opening

During the adsorption process, each equilibrium state depends only on the pressure and on the solid’s mor-
phology, and is independent of previous states of the condensation. However during the desorption process, the
evaporation depends on the previous state of condensed liquid. Due to the ink-bottle effect, small ”neck pores”
block the large pores from evaporation. A blocked large pore remains filled until at least one of the small ”neck
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porous media closing hole-filling

Figure 2: Closing operation followed by a hole filling operation to block the inner pores due to ink-bottle effect.

pores” is released. In practice, when the geometry is disordered and the porous structure is complex, it is difficult
to judge the role of ”neck pore”.

The evaporation occurs only from exterior to interior. It depends both on the local curvature radius and on the
connection to the exterior vapour reserve. The following criterion is accordingly considered hereafter: at a given
pressure, after the closing operation, if a pore is still connected to the exterior vapour reserve, it is released; if
the pore is blocked by condensed liquid or by the solid phase, then it should remain filled. This rule is enforced
using a hole-filling operation. Assume that the boundaries of the domain ∂D is the vapour reserve. The operation
follows the closing operation, and fills the pores that are not connected to any boundary of the domain. Indeed,
this operation eliminates some vapour–liquid interface and some vapour-solid interface around the blocked large
pores, and does not change the remaining interface. It is accordingly consistent with the Kelvin equation.

Two steps are therefore used to obtain an equilibrium state during desorption: closing and hole-filling. The
liquid phase as a function of sphere radius is given by:

L(rp) = H(ϕrp(S)) ∩ P (9)

where H(·) is the hole-filling operator defined by:

H(A) = [RAc(∂D ∩Ac)]c (10)

where R is the reconstruction operator. The decreasing pressure during the desorption process corresponds to
the decreasing radius of the spherical structuring element (see Fig. 2 for a simulated equilibrium state during
evaporation).

The volume filled by the hole-filling operation creates a gap between the adsorption and the desorption branches,
and is the origin of hysteresis. The width of the gap is the volume of blocked pores.

2.2. Multilayer adsorption simulation with morphological dilation

The phenomenon of physical adsorption of nitrogen molecules on a solid surface is well known. Nitrogen
molecules are adsorbed on the solid walls to minimize the interface energy. The molecules also approach the
existing molecule layers, and forms multilayer molecules on the solid surface, independent of surface curvature. It
happens at low pressures, before the Kelvin equation is valid, but the phenomenon also holds at high pressure. In
the BJH method [1] for pore size distribution analysis, the pore size is determined by both the Kelvin radius and
the multilayer thickness.

According to the BET theory [4], the number of molecules on the solid interface follows a random distribution.
The average number of molecules or layers increases with increasing pressure. We use a dilation operation, denoted
δ(·), with a spherical structuring element to simulate the average thickness of the layers, before the simulation of
capillary condensation:

Lrt = δrt(S) ∩ P (11)

where Lrt is the multilayer nitrogen molecules, S is the solid phase, P is the accessible porosity and rt is the size
of the structuring element, corresponding to the thickness of the multilayer adsorption. In practice, the multilayer
adsorption is thin, and the spherical structuring element is small and discretized. The spherical structuring element
can be replaced by a 3D cross or by the Euclidean distance transform followed by a threshold. The later option is
more accurate and used in the present work.

Multilayer adsorption is followed by capillary condensation. We make use of the dilated microstructure S ∪Lrt
to simulate it. The liquid phase in the microstructure is then obtained by the closing operator:

L(rp) = ϕrp (S ∪ Lrt) ∩ P. (12)

5
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Figure 3: 2D sections of cylindrical (a) and conical (b) pores with multilayer adsorption (left images) and capillary condensation (right
images). Solid phase is in grey. Liquid phase is in blue. Red dotted lines are the structuring elements.

Note that capillary condensation simulation should not start from a zero Kelvin radius. This is because at low pres-
sure, the thermodynamic multilayer adsorption, not the capillary condensation, dominates the volume of condensed
liquid. The Kelvin equation is valid for a Kelvin radius larger than 2 nm [20]. The domain of Eq. 12 is accordingly
set to be rp ≥ 2 nm. The local pore size, denoted r, is then determined by both the multilayer thickness and the
Kelvin radius:

r = rt + rp. (13)

The simulation method by dilation is illustrated for a cylindrical pore with base radius r0 and two open ends in
Fig. 3a. At low pressure, only the multilayer of molecules of thickness rt is adsorbed on the solid interface. With
increasing pressure, when the Kelvin radius satisfies rp = r0 − rt, the pore is filled and the meniscus is formed
at the two ends. The boundaries of the meniscus are tangent to the existing liquid interface. The newly formed
vapour/liquid interface is smooth and satisfies the Kelvin equation. Another schematic illustration of the multilayer
adsorption simulation in a conical pore is shown in Fig. 3b. After multilayer adsorption on the cone surface, the
capillary condensation is simulated with a spherical structuring element of radius 2 nm, instead of radius starting
from 0 nm.

To implement this method, the multilayer thickness rt at low pressure needs to be identified. According to [11],
the thickness of a nitrogen monolayer is 0.354 nm. More precisely, one needs to know how many layers are present
before capillary condensation occurs at rp = 2 nm. According to the Kelvin equation, the Kelvin radius rp = 2
nm corresponds to relative pressure p/p0 ≈ 0.6. As mentioned in the experimental isotherms, the volume fraction
of condensed liquid in the porosity at p/p0 = 0.6. This value corresponds to the volume fraction of the multilayer
adsorption and the initial volume fraction by capillary condensation at rp = 2 nm. With the BET equation, we
obtain the gas quantity adsorbed in a monolayer nitrogen, which takes a volume fraction of the porosity of 8.24%.
The proportion 23%/8.24%, which indicates that the average number of adsorbed layers at p/p0 = 0.6, is strictly
below 3. Thus, in the multilayer adsorption simulation by dilation, the thickness rt is either 1 or 2 layers. This
question is addressed in the following section.

2.3. Ink-bottle pore

An ink-bottle pore consists of two embedded cylindrical pores having the same centre axis (Fig. 4). The diameters
and heights of the cylinders are measured from the figures in [19]. The radius of the outer cylinder, denoted by r1,
is 50 voxels and that of the inner pore, denoted by r2, is 100 voxels. We apply the capillary condensation simulation
on the ink-bottle pore (see 3D view, Fig. 4) and obtain the condensation isotherm represented in Fig. 5.

The condensation occurs first at the corners of the inner pore, when the Kelvin radius rp is lower than the
radius of the outer cylinder pore r1 (Fig. 4a). When the Kelvin radius is larger than r1, the outer pore is filled by
condensed liquid, and the hemispherical menisci is formed with sphere radius r1 (Fig. 4b). Condensation occurs in
the inner pore with increasing curvature radius, until it reaches the radius of the maximum sphere rmax that can
fit in the pore (Fig. 4c). Note that the rmax is less than r2 because the inner pore is not deep enough to fit a larger
sphere.

The Kelvin radius rp decreases during evaporation. When rp is inferior to the maximum sphere radius rmax,
the inner pore would not be released because it is not connected to the outer vapour reserve. Vapourization occurs
solely on the surface of the outer pore. The radius of the menisci decreases (Fig. 4e), until it reaches r1. The outer
cylindrical pore is then released, together with the inner pore (Fig. 4f). Some condensed liquid remains at the
corners of the inner pore. The latter is vaporized with decreasing pressure.

Our results for the capillary condensation/evaporation simulation on slit pore and ink-bottle pore are qualita-
tively consistent with that of [10] obtained by density functional theory. No quantitative data is available in the later
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(a) (b) (c) (d) (e) (f)

Figure 4: Ink-bottle pore with condensed liquid in blue and solid in yellow. The images from (a-d) are equilibrium states during
adsorption at increasing pressure. Images (e) and (f) are equilibrium states during desorption at decreasing pressure. The pressures are
marked in the Fig. 5a-e.
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Figure 5: Nitrogen adsorption-desorption hysteresis curve simulated on the ink-bottle pore by our approach. The shape of the liquid–
vapour interface of each marked pressure point is represented in Fig. 4a-e.

reference. The predicted isotherms are also close to that obtained by virtual capillary condensation method [19], in
particular the filling pressure of the inner pore (Fig. 5 points C to D), the release pressure of the inner pore (Fig. 5,
point E to F). The variation of the pressure when the outer pore is filled (Fig. 5 points A to B) is however different
in the two approaches. This is because the two methods predict two different local minima. Both the hemispherical
vapour/liquid interface produced by our method and the cylindrical vapour/solid interface predicted by the virtual
condensation method satisfy the Kelvin equation. The hypothesis of equilibrium during adsorption is nevertheless
questionable (see [3, 16]). Our simulation on the ink-bottle pore is also consistent with the results obtained by DFT
and Monte Carlo simulation [10].

2.4. Validation of the method on cylinder-sphere grid pore

Consider now a regular porous network made of 8 spherical pores connected by cylindrical pores connected to
the outer space (Fig. 6a), resulting in a porous medium with strong ink-bottle effect. The radii of the cylindrical
and spherical pores take on values rc = 24 and rs = 27 voxels respectively. The pore size distribution of such
structure results, in theory, into two peaks. During adsorption, the capillary condensation does not occur when
the Kelvin radius rp is less than rc. When rs > rp ≥ rc, the cylindrical pores are filled (Fig. 6b-c), whereas, when
rp ≥ rs, the entire porous network is filled by condensed liquid (Fig. 6d). In the simulated isotherm in Fig. 7, we
see two steps, corresponding to the two pore sizes. The ink-bottle effect is also reproduced in this regular pore grid
– the liquid in the spherical pores are released only after the release of the cylindrical pores.

2.5. Boolean model of spheres

Consider as a random isotropic structure the Boolean model of equisized spheres, obtained by an underlying
homogeneous Poisson point process for the sphere centres. The pores are the complementary set of the union
of spheres, so that their shapes and sizes can be seen as random as compared to previous geometries. Spheres
with diameter 50 voxels are used to generate a porous medium with 50% volume fraction, discretized on grids of
256 × 256 × 256 volume in voxels. Condensation and evaporation are illustrated in Fig. 8 (maps a-d and e-h,
respectively) whereas the predicted isotherm is in Fig. 9.

7



(a) (b) (c) (d)

Figure 6: Condensation in a regular cylinder-sphere grid pore.
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Figure 7: Capillary condensation/evaporation isotherm simulated on the regular pore grid.

Condensation (Fig. 8, white zones) first occurs at the corners of intersections and in the narrow space between
two spheres. Small pores are filled as the Kelvin radius increases (Fig. 8b), and vapour “bubbles” are formed
inside the microstructure (Fig. 8c). When the pressure is high enough, the Kelvin radius is sufficiently large for
the condensed liquid to fill the whole porosity. During the desorption process, large pores at the boundary that are
connected to the exterior vapour reserve are released first (Fig. 8e-h). Because of the ink-bottle effect, some large
pores are blocked inside from releasing. Note that the 2D sections cannot correctly present the real curvature of
the meniscus; we have verified that all liquid–vapour interfaces in 3D have equal curvature (not shown).

As shown in the isotherm (Fig. 9, radius R = 40), nearly no hysteresis is obtained for the Boolean model with
equisized spheres. The other curves correspond to Boolean model of equisized spheres discretized on the same grid
of voxels, with the same volume fraction, but with radii R = 20 and 60 voxels. A slight hysteresis is observed
when the spheres are smallest, i.e. when the number of spheres is highest. This difference is due to the relative
representativity of the structures, or to the finite-size effect of the domain, and is discussed hereafter.

2.6. Sensitivity of the isotherms with respect to representativity and resolution

The hysteresis in sorption isotherm should be related to the amount of large pores that are not well-connected to
the boundary of the volume. The system size plays an important role in determining the connection of the porous
network to the exterior vapour reserve. To study the boundary effect of the microstructure on the isotherms, we
consider three realizations of Boolean models of obstacle spheres of radius 20 voxels, in volumes containing 2563,
5123 and 10243 voxels (Fig. 10a). The number of spheres in the three microstructures increase by a factor of 8. As
expected, the hysteresis increases when the number of spheres increases, i.e. when the volume is more representative
of a macroscopic sized mesoporous sample. Furthermore, as expected, the desorption branch is also smoother when
the microstructure is more representative. The difference is amplified for Boolean models of spheres of radius 10
voxels (Fig. 10b). Compared to the desorption branches, the adsorption branches are much less sensitive to the
system size. The adsorption branches converge to an asymptotic curve when the number of spheres becomes very
large (Fig. 10b), however this convergence is very slow for desorption.

The effect of resolution is studied on a Boolean model of spheres of diameter 40 voxels. A microstructure is first
simulated in a volume containing 10243 voxels. Downsampling is performed on the microstructure, with decimation
factors of 2 and 4. The capillary condensation and vapourization simulation isotherms are shown in Fig. 11. The
horizontal axis of the isotherms of the downsampled microstructures have been corrected by multiplying by their

8



Slice# 10 / 122

Level: Window:      1     2 Auto W/L Fine Tune

Slice# 18 / 122

Level: Window:      1     2 Auto W/L Fine Tune

Slice# 26 / 122

Level: Window:      1     2 Auto W/L Fine Tune

Slice# 36 / 122

Level: Window:      1     2 Auto W/L Fine Tune

(a) (b) (c) (d)

Slice# 99 / 122

Level: Window:      1     2 Auto W/L Fine Tune

Slice# 104 / 122

Level: Window:      1     2 Auto W/L Fine Tune

Slice# 109 / 122

Level: Window:      1     2 Auto W/L Fine Tune

Slice# 114 / 122

Level: Window:      1     2 Auto W/L Fine Tune

(e) (f) (g) (h)

Figure 8: 2D sections of equilibrium states during the capillary condensation (a-d) for increasing radii and evaporation (e-h) for
decreasing radii in a 3D Boolean model of solid spheres. Vapour phase is in black, solid phase is in grey and liquid phase is in white.
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Figure 10: Effect of representativity of the domain: capillary condensation isotherm in three Boolean models of spheres of different
sizes. The volume fraction of solid phase is 0.65. (a) The sphere radius is 20 voxels. The number of spheres are 525 (V = 2563 voxels),
4205 (V = 5123) and 33639 (V = 10243). (b) The sphere radius is 10 voxels. The number of spheres are 4205 (for V = 2563 voxels),
33639 (for V = 5123 voxels) and about 2.7× 105 (for V = 10243 voxels).
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Figure 11: Effect of discretization: capillary condensation isotherm in a Boolean models of spheres at coarse, intermediate and fine
resolutions.

decimation factors. As shown in Fig. 11, at low resolution, the adsorption branches and the desorption branches are
both less smooth and are both shifted to the right, resulting in an overestimation of the pore size. The simulated
isotherms are accordingly quite sensitive both to the representativity of the system (volume size with respect to the
spheres radius) and to the resolution (radius in voxels). Changes of the boundary condition, such as the use of a
surface or a point where vapour is injected, or the use of periodic boundary conditions, were considered. The later
are insufficient to overcome the effect of representativity and another, computationaly-efficient method, is sought
for.

In porosimetry, the pores which are directly connected to the exterior will be released once the local curvature
radius satisfies the Kelvin equation. However, most pores will remain filled because of the ink-bottle effect. The
proportion of the released exterior pores tends to 0 when the system volume tends to infinity, which is the case in real
experiments. In the simulations, due to finite-size effect, the desorption branch does not remain constant and equal
to 1, but decreases along with the pressure decreasing. We identify the pressure value when the desorption branch
reaches the desorption threshold of the vapour phase. Thus in capillary evaporation simulation, we should consider
the percolation of the vapour phase as the point where desorption occures. Use of such threshold is consistent
with experimental isotherms (Fig. 13), or typical type-IV isotherm in porosimetry (see [18]) where the desorption
branches remains constant and equal to 1, until the decreasing pressure reaches a threshold. The same phenomenon
has been observed in other works, e.g. [12].

We accordingly check for the percolation of the vapour phase at each equilibrium state. If there exists a connected
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Figure 12: Capillary condensation/evaporation isotherms with percolation correction of Boolean models of spheres with 65% volume
fraction for the solid phase. (a) Representativity effect. Different system sizes and constant sphere radius 10 voxels. (b) Discretization
effect. Identical numbers of spheres (33639) but different sphere radii.

component of the vapour phase which reaches the 6 faces of the cube, the vapour phase percolates. Although other
percolation criteria can be used, no other has been explored in the present work. Using this onset of percolation as
threshold, the desorption branch is adjusted to simulate the evaporation in a system of infinite or very large size as
follows:

ψ′(r) =

{
ψ(r), if ∃j,∀i ∈ {1, 2, ..., 6}, {CG(r)}j ∩ (∂D)i 6= ∅
1, otherwise

(14)

where ψ′ is the normalized volume of condensed liquid for an infinite-size system, (∂D)i, i = 1, 2, ..., 6 are the six faces
of the cubic domain and CG(r) is the set of labeled connected components of the vapour phase G(r) = {P c∪L(r)}c.

For comparison, we take the same Boolean microstructures as studied in Fig. 10, and compute the corrected
desorption branch using percolation (Eq. 14). The desorption branches of infinite-sized systems are shown in dotted
lines. Figure 12a shows that, once the percolation is taken into account, the desorption threshold of the vapour
phase in a Boolean model of spheres varies little with respect to microstructure size.

Fig. 12b shows the effect of discretization. For a fixed number of spheres, a coarse resolution leads to an over-
estimation of the desorption threshold. The isotherms obtained with the two higher resolution are close to each
other. Smoother curves are obtained for the highest resolution. These results suggest that an object with near
spherical shape should be discretized on a grid with voxel size not larger than 1/40 times the lnegth of the object’s
diameter.

The numerical method described in this section to simulate the nitrogen porosimetry hysteresis can be decom-
posed into multilayer adsorption by dilation, capillary condensation by closing, capillary evaporation by opening,
combined with desorption threshold probing by connected components, and multilayer desorption by erosion. Most
of the CPU time and memory required to carry out the computations is spent by the distance transform. We use the
fast algorithm in [14] to compute an exact Euclidean distance transform. A pair of equilibrium states, respectively
in the adsorption branch and in the desorption branch at the same Kelvin radius takes 3 minutes for a system of
10243 voxels (with 24-nodes parallelization on CPU of 2.67 GHz).

3. Application to microstructure modelling of mesoporous alumina

3.1. Nitrogen porosimetry measurement

A mesoporous alumina sample under study was synthesized from commercial boehmite powders. The detailed
synthesis process is described in [23]. It has been characterized by nitrogen porosimetry (see Fig. 13a) which follows
typical type-IV isotherms [18] with gradual adsorption branch and steep desorption branch.

The experimental isotherms contain information on multilayer adsorption, capillary condensation and liquid
compressing. To highlight the capillary condensation and evaporation part, we use the method proposed by [6] to

11



(a) (b)

Figure 13: Fit of the adsorption branch in nitrogen porosimetry by Eq. 16.

preprocess the isotherms. The method removes the effects of liquid compressibility at high pressure with a linear
fit, and removes the effects of multilayer nitrogen molecule adsorption at low pressure with the FHH equation. The
principles of the method are as follows. First, a linear fit of the high pressure part of the isotherm is defined, denoted
Vc(χ) ∝ χ, where χ = p/p0 is the relative pressure. Second, the low pressure part is defined as Vs(χ) = S · h(χ),
where S is the specific surface area, and h(χ) is the thickness of the multilayer molecule film, usually modelled by
the FHH equation [6]

h(χ) =

[
K

− logχ

]1/m
(15)

The prefactor K and exponent m are constants related to the chemical nature of the nitrogen-alumina interface.
The equation is identified by curve fitting for each isotherm. Eq. 15 is rewritten as:

log Vs(χ) = − 1

m
log (− logχ) + logS +

1

m
logK (16)

We use Eq. 16 to fit the linear part of the original experimental isotherms (denoted V (χ) shown in Fig. 13 B).
Therefore, the FHH equation Vs(χ) with identified parameters is obtained:

− 1

m
= −0.465, logS +

1

m
logK = 0.402 (17)

The result in Eq. 17 is sufficient to compute Vs(χ) with Eq. 16, without knowing the exact values of K and m.
The linear curve fit result is shown in Fig. 13. Furthermore, in the rest of this work, we denote the filtered and
normalized isotherms by:

Q(χ) =
Vc(χ)− V (χ)

Vc(χ)− Vs(χ)
(18)

The pore size distribution I(r) defined in Eq. 8 is estimated from the normalized isotherm Q(r) and shown in
Fig. 14.

3.2. Reminder: microstructures of mesoporous alumina

Two microstructures have been introduced in previous works to simulate the alumina sample. The first one is
a tomographic reconstruction [22] (Fig. 15). A few calcined extrudates were crushed in a mortar and the obtained
powder was dispersed in ethanol. A drop of the suspension was put on a holey carbon grid that was dried. Tilt
series projections were acquired on a JEOL JEM-2100F fitted with the Gatan Ultrascan CCD camera, in bright
field mode at 200 kV. 143 projections with an indicated magnification of 40000 times (0.21 nm pixel size) were
acquired at full camera resolution (2048 by 2048 pixels). The 143 tilt angles ranged between −71◦ to +71◦ with
a Saxton spacing scheme. No fiducial marker was put on the grid to avoid the artifacts induced in their vicinity.
Prior to reconstruction, images were binned twice to obtain a 1024 by 1024 pixels tilt series. The 3D volume was
reconstructed with the robust method based on inverse problem approach to align marker-free projections and
reconstruct 3D volume [22].
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Figure 14: Filled volume fraction deduced from nitrogen porosity isotherms and pore size distribution estimated from Eq. 8.

Figure 15: 3D view of the tomographic reconstruction of a small portion of mesoporous alumina. The image has a 0.87 nm voxel size,
and the image field of view is 328 nm× 290 nm× 257 nm.

Figure 16: Prism shape of γ-alumina grain identified with the TEM images of the mesoporous alumina sample.
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(a) (b)

Figure 17: 3D simulation of the microstructure of mesoporous alumina with the two-scale model of platelets identified with TEM images
and specific surface area. The total number of implanted platelets in the microstructure is 63506, including 12141 aligned platelets and
51365 randomly-oriented platelets. The parameters of the model is shown in Table 1 (column “platelets” and column “aggregates”).
(a) Size 300× 300× 300 nm3. (b) Enlargement of a 2D cut of size 50× 50 nm2.

The second one is a two-scale random model of platelets [23, 24] based on TEM images of mesoporous alumina,
and generated by following procedure: (i) a Boolean model of spheres of fixed diameter, each sphere assigned with
a random orientation uniformly sampled on the unit sphere; (ii) two Poisson point processes with two different
densities are generated inside and outside the spheres; (iii) a platelet with a fixed shape is located at each Poisson
point. The platelet has a random direction if the point is outside the sphere. It has the direction assigned to
the sphere if the point is inside a sphere. If the point belongs to several spheres, the platelet direction is chosen
randomly between the directions assigned to the spheres. Such a model has eight parameters, four defining the
shape of the platelets (Fig. 16) and four controlling the aggregation state: the sphere radius rS, the volume fraction
of spheres pS, the volume fraction of platelets in the spheres pA and the volume fraction of platelets outside the
spheres pB. The four latter parameters are related with the porosity ε by:

pB (1− pS) + pApS ≈ 1− ε (19)

Parameters of the model were identified from TEM images of sliced sample by an inverse problem approach with
L2-norm minimization of the correlation function [23]. The parameters are re-identified with high frequency noise
taken into account [24] and are shown in Table 1. The platelet size and shape are in agreement with TEM
image observations and with literature [5]. The model is validated by specific surface area measured by nitrogen
porosimetry. A 3D realization of the identified two-scale model is shown in Fig. 17.

3.3. Capillary condensation simulation of a tomographic reconstruction

The reconstructed 3D image size is 328 nm ×290 nm ×257 nm at resolution 0.66 nm3 per voxel. The capillary
condensation and evaporation simulation were performed on the microstructure, and 2D sections are shown in
Fig. 18. The morphological simulation method is processed directly on the segmented 3D tomographic volume.
The condensation occurs first on the interface of small curvature radius and in the narrow space between solid
walls. The meniscus then propagates gradually from the small pores to large pores, until the whole porosity is filled
by condensed liquid.

Simulated isotherms are shown in Fig. 20 in red. The adsorption branch increases slowly until rp = 17 nm, which
means a smooth pore size distribution. However, it is observed on the 2D sections that some of the pores larger
than 13 nm, are very close to, or directly part of the contour of the sample. It is possible that some of these pores
were formed during the sample crushing by mechanical damage. The weak hysteresis means a good connection of
the pore phase to the exterior, because of the small system volume and the irregular shape. For the same reason,
it is impossible to obtain any information about the desorption threshold. The tomographic reconstruction is not
representative enough to simulate the capillary condensation and evaporation behaviour.
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Figure 18: Capillary condensation simulation on the tomographic reconstruction of a mesoporous sample (2D sections). (a) rp = 0 nm,
(b) rp = 3.5 nm, (c) rp = 7 nm and (d) rp = 10.5 nm.

3.4. Capillary condensation simulation of a two-scale model of platelets

We perform the capillary condensation and evaporation on a 10243-voxels realization of the identified model
(see 2D section, Fig. 19). A compromise is made between spatial resolution, representativity of the domain and
computational capacity. The capillary condensation occurs first in the concave corners of intersected platelets. Then
the narrow slit space between aligned pores are filled by condensed liquid. The meniscus propagates gradually from
small pores to large pores. The large pores locates usually between the aggregates (black zones in Fig. 19b). When
the Kelvin radius reaches 10 nm, the whole pore phase is filled.

During the desorption, the pore phase does not percolate until the Kelvin radius reaches 5 nm and lower. In
Fig. 19f, only pores at the boundaries are released. The ink-bottle effect prevents the inner pores from releasing.
If we compare the 2D sections in Figs. 19b and 19e, when the pore phase percolates at rp = 5 nm, there are still
pores that are blocked by the ”neck pores”, especially the pores surrounded by aggregates.

The isotherms of the two-scale model is shown in green in Fig. 20. Compared to the experimental isotherms, its
pore size distribution is very narrow with smaller average pore size. Indeed, the porosity in the identified two-scale
model consists of small regions located in-between platelets, rather than aggregates of platelets. The pore size
distribution inside the aggregates and in the complementary is rather the same. Virtual experiments have been
performed to study the effects of two scales on the shape of the adsorption/desorption isotherms (Appendix A.4).
For mesoporous alumina, the effect of platelet alignment is weak (not presented).

3.5. Three-scale model of platelets

3.5.1. Modelling

The tomographic reconstruction and the two-scale model of platelets of mesoporous alumina cannot reproduce
the experimental isotherms. A microstructure with larger pores and stronger ink-bottle effect is considered in this
subsection. We propose to add another scale of exclusions into the two-scale model of platelets. The new model has
features of larger pores and better connectivity in the porosity. A three-scale model is constructed in the following
way. We first consider a multi-scale model of spherical exclusions to mimics the large pores in mesoporous alumina:

H =

n⋂
j=m+1

Rcj (20)

where Rj is the solid phase of a Boolean model of spheres of radius rj at volume fraction pj , m is the index of the
radius threshold rm. The sphere radius rj and the corresponding volume fractions pj are chosen according to the
experimental pore size distribution.

Second, we consider a Boolean model, denoted by B, of spheres of radius rS and volume fraction pS in the 3D
domain D. This Boolean model is used to locate the aggregates of platelets, independent of the exclusions. Each
sphere in the Boolean model is associated with a random orientation θl, distributed uniformly on unit sphere.

Third, we consider a primary platelet A′ and implement it randomly inside and outside the aggregates. A
Poisson point process generates random points xk with volume fraction of platelets pA1, in the aggregates and out
of exclusions B ∩Hc. At each point, a platelet A′xk

is located. The platelet is then rotated along the orientation
associated with the sphere that it locates in, denoted A′xk,θl

. If the platelet is located in the intersection of multiple
spheres, it takes an arbitrary orientation of these spheres. The set of aligned platelets inside the aggregates is
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(a) adsorption rp = 0 nm (b) adsorption rp = 5 nm (c) adsorption rp = 6 nm

(d) desorption rp = 4 nm (e) desorption rp = 5 nm (f) desorption rp = 6 nm

Figure 19: Capillary condensation simulation on the identified two-scale model of platelets of mesoporous alumina (2D sections). Maps
(a-c): adsorption; (d-f):desorption.
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Figure 20: Comparison between the hysteresis of experiment and simulations.
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Figure 21: The pore size distribution deduced directly from the experimental isotherm (a) and its regularization (b).

accordingly:

A1 =
⋃
xk

A′xk,θl
(21)

Note that the Poisson point process of xk takes place in the domain B ∩Hc, but the platelets are implemented in
the full domain D.

A homogeneous Poisson point process is simulated outside the aggregates and the exclusions in Bc ∩ Hc. A
platelet A′yk,µk

is implanted at each Poisson point yk with volume fraction pB . The orientations µk are randomly
distributed on unit spheres and are independent. The volume fraction pB is prescribed by the overall porosity,
experimentally fixed at 69%:

pA2(1− pS)(1− pH) + pA1pS(1− pH) = 1− 0.69 (22)

The set of randomly oriented platelets is given by:

A2 =
⋃
yk

A′yk,µk
(23)

The three-scale model of platelets, with solid phase denoted by A, is obtained by:

A = A1 ∪A2 (24)

The parameters of the three-scale model A include: radius threshold rm, reference pore size distribution (rj , pj),
volume fraction pS and radius rS of spherical aggregates, volume fraction of aligned platelets pA1 and shape of
platelets A′. In this work, we take the octagonal prism as the primary platelet, described by the lengths of four
sides (Fig. 16): D1, D2, D3 and D4.

3.5.2. Nitrogen porosimetry simulation

A first microstructure of the three-scale model is generated with the same parameters as the optimized two-scale
model in [24]. The radius threshold rm is initially fixed at 0 nm. The reference pore size distribution is deduced
from the experimental data by regularization and shown in Fig. 21. The resolution of the microstructure is chosen
to be 0.354 nm per voxel, because it is the size of monolayer nitrogen and it guaranties the necessary precision for
the simulation of multilayer adsorption.

The multilayer adsorption at low pressure is simulated first on the microstructure, with 2D sections shown in
Fig. 22a. The number of nitrogen layers on solid interface is fixed at 1 for the initial test. As observed in Fig. 22a,
the monolayer nitrogen is “pasted” on the solid walls. Few pores are filled by the monolayer nitrogen. The volume
fraction of the monolayer in the total porosity is 11.5%.

After the monolayer adsorption has occurred, the capillary condensation is simulated, starting from Kelvin radius
rp = 2 nm. At the corresponding pressure, the small space between platelets begins to be filled. The volume fraction
of condensed liquid at this stage is 23%, which is in agreement with the experimental data. Indeed, the volume
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Figure 22: 2D sections of equilibrium states during porosimetry simulation on the three-scale model of platelets. The parameters of the
microstructure are shown in Table 1A. (a) Multilayer adsorption of thickness rt = 0.354 nm. (b) Capillary condensation simulation at
rp = 2 nm. (c) Capillary condensation simulation at rp = 4.8 nm. (d) Capillary evaporation simulation at rp = 4.8 nm.

Platelets (nm) Aggregates Exclusions
Microstructure D1 D2 D3 D4 pA1 pS rS rm (nm) (rj , pj)

(A) 14.3 2.4 2.0 3.3 0.3 0.2 30 0 Fig. 21
(B) 14.3 2.4 2.0 3.3 0.3 0.2 30 6.4 Fig. 21

Table 1: Parameter identification of the three-scale model of platelets with only desorption branch. The corresponding simulated
isotherms are shown in Fig. 23.

fraction of condensed liquid at low pressure is mainly determined by the specific surface area and the thickness of
multilayer nitrogen. The former is dominated by the platelet size. This agreement validates the assumption of only
one layer of nitrogen molecule at relative pressure p/p0 = 0.6. It validates also the platelet size identification in our
previous work [24].

The simulated isotherms are shown in Fig. 23a. The first point from the origin of the simulated isotherm is
the volume fraction of the monolayer at rp = 0.354 nm (note that here it takes approximately the value of rt).
The second point is the volume fraction of condensed liquid by monolayer adsorption and capillary condensation at
rp = 2 nm. The first two points are connected with dotted line instead of solid line, because at such low pressure
(rp < 2 nm) the Kelvin equation is not valid, and it can only be an approximation.

3.5.3. Parameter Identification with desorption branch

A comparison between Fig. 20 and Fig. 23a, shows that the scale of exclusion allows to enlarge the pore size, but
this is not sufficient to recover the experimental isotherms. The desorption branch is rather close to the experimental
isotherm, but the adsorption branch is still far. Knowing that the Kelvin radius for adsorption is underestimated
with the spherical structuring element and that the desorption branch is more reliable (see Section 4), we use
only the desorption branch to identify the model parameters. We adjust the value of the radius threshold rm to
enlarge more the pore size in the model, and find that rm = 6.4 nm makes the desorption isotherm fitted to the
experimental data with the same desorption threshold. The simulated isotherms is shown in Fig. 23(b). The TEM
image simulation method proposed in [23] and refined in [24] is used to validate the three-scale model of platelets,
independently from the porosimetry constrained modelling. The correlation function of the simulated TEM image
is estimated and compared with the two-scale model and the experimental values in Fig. 24.

The three correlation functions match in general, including the slope at the origin, the intermediate range and
the long range. In order to reproduce the correct porosimetry data, exclusions are used to slightly enlarge the pores
and the desorption threshold, but as we observe in Fig. 24, it has a side effect that the correlation function of the
random structure is also slightly increased. The TEM image simulations bring complementary information on the
material microstructure. The three scale model combined to the desorption simulations gives a desorption curve
closer to the experimental one (Fig. 23b) and a satisfactory correlation function (Fig. 24b).

4. Discussion: limitation of the method

In the capillary adsorption simulation, spherical structuring elements are used to probe the local curvature.
Where it cannot enter in, the local curvature is supposed to be smaller than the sphere radius. It fills these areas,
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Figure 23: Simulated nitrogen porosimetry isotherms from the three-scale models of mesoporous alumina with corresponding parameters
in Table 1.
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Figure 24: Experimental and simulated correlation functions of (a) the two-scale model and (b) the three-scale model of platelets for
mesoporous alumina. The parameters of the microstructures are shown in Table 1.
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Figure 25: Condensation (A→B→C) or evaporation (C→B→A) of liquid between two flat surface.
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Figure 26: Capillary condensation and evaporation hysteresis curve simulated between two flat surfaces.

and produces hemispherical meniscus on the vapour–liquid interface. This probing process describes the reality
during the desorption process, because the entire pore has been filled, and the evaporation depends only on the
curvature of the vapour–liquid interface. The vapour–liquid interface tend to be spherical for a minimum energy
state. However this is not exactly the case for adsorption, because the condensation depends more on the vapour-
solid interface. The vapour–liquid interface tends to be spherical for a minimum energy state. As shown in [3] using
a thermodynamic model for an open cylinder [3, 16] making use DFT calculation [16], the liquid-gas meniscus is
metastable at adsorption and the condensation pressure does not follow a Kelvin equation. Two examples of this
bias are illustrated hereafter: slit pore and the Cohan’s model.

4.1. Slit pore

We consider a slit pore between two flat surfaces (Fig. 25a). With our method, when nitrogen vapour pressure
is low, or more precisely, when the Kelvin radius is less than half of the pore width, no condensation occurs at this
stage. When the vapour pressure increases, the equivalent curvature radius becomes larger than half of the pore
width, condensation occurs and the meniscus is formed (Fig. 25b). Since the pore is open, without ink-bottle effect,
we cannot simulate the hysteresis loop in the isotherm, as shown in Fig. 26.

According to the Kelvin equation, the narrow slit pore between two convex or flat surfaces should not be filled
by liquid during adsorption, because the local vapour-solid interface curvature is zero or negative, which already
satisfies the Kelvin equation. The meniscus formed with our method also satisfies the Kelvin equation, but it is
more realistic for desorption, because during desorption, we consider only the vapour–liquid interface, which remains
well spherical. These are two equilibrium states, formed respectively during adsorption and desorption, and create
hysteresis without ink-bottle effect. Therefore, the first limitation of the method is that it cannot well find all the
equilibrium states in capillary condensation and evaporation.

4.2. Cohan’s model

Cohan’s model [7] is an another example to demonstrate the difference. In a cylindrical pore with one end closed,
the condensation occurs first in the corners where the local curvature is low. With our method, hemispherical
meniscus is formed, as predicted by the Kelvin equation. The meniscus propagates from the initial meniscus formed
in the corners. The entire pore is filled when the Kelvin radius reaches the radius of the cylinder base (denoted
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by r). In this case, it is right to use a spherical structuring element to probe the local curvature, because the
condensation occurs on the hemispherical vapour–liquid interface.

However, in a cylindrical pore with two ends open, the condensation would not occur at the beginning at low
pressure. The condensation occurs on the vapour-solid interface. The local mean curvature on the solid interface
inside the pore is 1/2r. The entire pore is filled suddenly when the Kelvin radius reach 2r. Cohan predicts hysteresis
for the cylindrical pore with two ends open – condensation at rp = 2r and evaporation at rp = r. If we use a spherical
structuring element to probe the local curvature, the result is r, which leads to pore filling for an underestimated
pressure.

Cohan’s model rightly predicts that hysteresis can be produced even without the ink-bottle effect, in the regime
of the Kelvin equation. This effect, the difference in local curvature probing, was not taken into account in our
method. It explains the different adsorption pressure observed on the isotherms of ink-bottle model between our
method and the method of Virtual Capillary Condensation [19] in Section 2. In a slit pore (Fig. 25), this effect
is even more important. The radius of curvature of the flat vapour-solid interface is infinite, and the meniscus
curvature during desorption is d (where d is the pore width). The condensation occurs for a saturated pressure,
and the evaporation occurs at rp = d. Being empty and being filled are two equilibrium states that both satisfy
the Kelvin equation. However, the adsorption and the desorption have different preferences between the two states,
which brings hysteresis.

The second limitation of the method is therefore the underestimation of the pressures obtained with spherical
structuring element during condensation. In order to get closer to reality, the adsorption isotherm should be shifted
to the right, by multiplying it by a coefficient 2 if it is a cylindrical pore, infinite if it is a slit pore, or other values
depending on the pore morphology.

5. Conclusion

In this work, a procedure has been proposed to simulate the capillary condensation and evaporation in porous
media. The method is entirely geometrical and relies on morphological operators. The latter is validated on ink-
bottle pore and on Boolean models. The results are in agreement with the literature. Boundary effects introduce
strong finite-size effects on random media. These effects have been corrected by taking into account the percolation
threshold of the vapour phase.

The method is applied on the microstructure modelling of mesoporous alumina. Nitrogen isotherms are simulated
on existing microstructures using tomographic reconstruction and a two-scale model of platelets. Then, a three-scale
model was proposed with Boolean models of spherical exclusions. The parameters of the three-scale model were
identified to reproduce the desorption isotherm, and validated independently with TEM visualization. A comparison
was made between the behaviours of the two-scale model and the three-scale model in terms of porosimetry and
TEM visualization, which shows a consistency between the two independent experiments.

The main advantages of the method include its fast implementation with morphological operations, its efficiency
in both computing time and computing space, and its robustness in all geometries. The main limitation of the
method is the underestimation of the adsorption pressure, due to the use of spherical elements for the simulation of
the condensation step. Use of locally anisotropic adaptive structuring element could improve this part of the curve,
at the expense of more complex simulations.

Appendix A. Comparison of the capillary behaviours of some random models of porous media

Appendix A.1. Boolean models

In this subsection, we examine how the obstacle shapes affect the capillary condensation isotherms of Boolean
models. Instead of spheres, cylinders with different ratio base/height are considered. These models are compared
for the same volume fraction of solid phase p, the same specific surface area SV , the same microstructure volume
of 5123 voxel and the same resolution. The following obstacle shapes are considered: (i) sphere with diameter 20
voxel, as in the previous part of the paper; (ii) oblate cylinder of diameter 40 voxels and height 10 voxels; (iii)
intermediate cylinder of diameter 20 voxels and height 20 voxels; (iv) elongated cylinder of radius 15 voxels and
height 60 voxels.

The isotherms obtained from the condensation/vapourization simulation are rather close for different obstacle
shapes (Fig. A.27). The deduced pore size distribution of the three models is in the same order as the size of
obstacles. It is explained by the fact that when the obstacles are uniformly dispersed in the 3D space, the pore size
in a Boolean model is mainly determined by the number and size of obstacles in the space, and is not too sensitive
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Figure A.27: Capillary condensation/evaporation isotherms in Boolean models of different obstacle shapes.

to the shape of obstacles. When the volume fraction of the obstacles is fixed, the number of obstacles is strongly
influenced by the specific surface area, that’s to say, the higher the specific surface area is, the smaller the obstacles
are, the more obstacles we need to satisfy the volume fraction, and the smaller the pores’ sizes are. For a Boolean
model, if the volume fraction and the specific surface area are fixed, the pore size distribution is very little affected
when the solid phase is obtained by primary grains. It suggests to use other versions of the Boolean model, like
pores generated by the primary grains, and by introduction of some multi-scale models that will generate porous
media with various size distributions and connectivities.

Appendix A.2. Two-scale Boolean model with spherical pores

We are interested in the capillary behaviours of multi-scale random models, from which we try to explore new
ways to manipulate the isotherms by microstructure modelling. We consider at first a Boolean model of spheres
made of two sizes of spheres to generate the pores. It is equivalent to the union of two Boolean models of spheres: a
Boolean model of spherical pores with a 36 voxels radius, and pore volume fraction pX = 25%; and a Boolean model
of spherical pores with a 12 voxels radius, and pore volume fraction pY = 25%. These values are chosen because
they are lower than the percolation threshold of the Boolean model of equisized spheres of about 29%. The pores
percolate but the small spherical pores will block the large pores from releasing during the desorption. The model
is a probabilistic version of the combination of regular sphere-cylinder pores in Fig. 6. Its behaviour in capillary
condensation simulation is shown in Fig. A.28. The rectangle hysteresis is reproduced in Fig. 6. The small spherical
pores play the role of valves, and the critical pore size of the microstructure is the radius of the small pores.

Figure A.28: Capillary condensation and evaporation isotherm of the two-scale model with spherical pores.

From points A to B in Fig. A.29, the large pores connected to the exterior are released, but the entire vapour
phase does not percolate. The percolation occurs when the curvature radius reaches rp = 14 voxel, before the
release of most of the small pores. It is explained by the fact that the small pores enlarge the intersection zones
between the large pores and improve the connectivity.
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Figure A.29: Desorption process of the two-scale model with spherical pores. Maps (a), (b) and (c) correspond to rp = 37, 36 and 12
voxels respectively (see Fig. A.28).

Appendix A.3. Two-size hardcore spherical pore model and spherical/cylindrical pores mixture

We now try to eliminate the direct connection between the large pores, so as to highlight the connection
functionality of the small pores. In the previous model, we add a repulsion distance (6 voxels) between the large
spherical pores (with radius 36 voxels). As before, the volume fraction of each size is 25%, and the union of the two
models generates a two-scale model of porous medium.

The capillary condensation isotherms simulated on the two-scale model is shown in Fig. A.30. From (a) to (b)
in the desorption process, only the pores directly connected to the boundaries are released. The interior of the
microstructure remains filled by liquid, until the Kelvin radius reaches the radius of the small spherical pores, and
then the whole porosity in the microstructure percolates. A comparison of Figs. A.31b and A.29b shows that the
released pores all lie at the boundaries, hence the repulsion distance reduces the connectivity between the large
pores. The isotherms in Fig. A.30 is also smoother with less perturbation than that in Fig. A.28.

Figure A.30: Capillary condensation and evaporation isotherm of the two-scale model with hardcore spherical pores.

In the above, the threshold for desorption is controlled by the radius of the small pores. Elongated cylinders
could also be used to play the role of valves, replacing the spherical pores. We consider again a model made of
a union of two models for the pores: first, a Boolean model of spheres of radius 36 voxel, with a volume fraction
pX = 25%; second, a model of Poisson fibers with a circular section (radius 12 voxel), with a volume fraction
pF = 25%.

The porosimetry isotherm simulated on the two-scale model is shown in Fig. A.32, together with the 2D sections
illustrated in Fig. A.33. The capillary behaviours of the two-scale models show that pore size distribution can be
manipulated using the combination of various basic models of random sets.

Appendix A.4. Two-scale models obtained by intersections of Boolean models

Consider first a two-scale model with solid phase D1 = X1∩X2 defined as the intersection of two Boolean models
of spheres of much different scales X1 and X2. The spheres in model X1 have radius 40 voxels and volume fraction
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Figure A.31: Desorption process of the two-scale model with hardcore spherical pores. Maps (a), (b) and (c) correspond to rp = 36, 35
and 12 voxels respectively (see Fig. A.30).

Figure A.32: Capillary condensation/evaporation isotherm of the two-scale model with spherical and cylindrical pores.

pX1
= 0.8062, while the radius of the spheres in model X2 is 5 voxels and their volume fraction pX2

= 0.8062. The
larger scale plays the role of aggregations, while the small scale plays the role of primary grains. The model is a
realistic description for materials like mesoporous alumina [23]. Second, consider a two-scale model with the solid
phase D2 = Y c1 ∩Y2 obtained by the intersection of the complementary set of a Boolean model of large spheres and
a Boolean model of small spheres. The spheres in model Y1 have radius 20 voxels and volume fraction pY1

= 0.1.
In model Y2 the spheres radius is 5 voxels and the volume fraction is pY2

= 0.7222.
For comparison purpose, we also consider a one-scale Boolean model of solid spheres of radius 5 voxel, denoted

D3, and volume fraction pD3 = 0.65. The pores in this model, Dc
3, are the complementary of D3. These three

models have the same volume fraction of solid phase p = 0.65. The parameters of D1 are chosen so that the number
of large spheres in the cubic volume is the same as the number of small spheres in a large sphere. The volume
fraction of large spheres in D2 is chosen so that the large spheres do not percolate.

The simulated condensation/vapourization isotherms are shown in Fig. A.34. At low pressure, there is a quick
filling of the small pores, and the three models show quantitatively a similar behaviour. When the pore space
between small spheres in the model D1 was filled, condensed liquid begins a slow filling of the larger pores along
with increasing pressure, as shown in Fig. (A.35). The isotherm well combines the same behaviour of two Boolean
models at different scales.
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Figure A.33: Desorption process of the two-scale model with spherical and cylindrical pores. Maps (a), (b) and (c) correspond to rp =
37, 36 and 11 voxels respectively (see Fig. A.32).

Figure A.34: Capillary condensation isotherm simulated on one-scale and two-scale models.

(a) (b)

Figure A.35: 2D section of capillary condensation simulation during the adsorption at rp=7 voxel. (a) Two-scale model D1. (b)
Two-scale model D2.

In model D2, the scale effect is conspicuous. After the quick filling of the small pores, the large pores remain
empty, until the Kelvin radius reaches the radius of the large spherical pores. At the beginning of the desorption
process, the large spherical pores are partially released (those connected to the exterior vapour reserve). The pores
between small spheres play the role of valves to control the release of the large spherical pores. It is worth mentioning
that the percolation threshold of D1 is much higher than for D2, since the complementary of a Boolean model of
spheres has a much lower percolation threshold.
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