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ARTICLE

Vectorial dispersive shock waves in optical fibers
J. Nuño1,2, C. Finot 1, G. Xu1, G. Millot1, M. Erkintalo3,4 & J. Fatome1*

Dispersive shock waves are a universal phenomenon encountered in many fields of science,

ranging from fluid dynamics, Bose-Einstein condensates and geophysics. It has been estab-

lished that light behaves as a perfect fluid when propagating in an optical medium exhibiting a

weakly self-defocusing nonlinearity. Consequently, this analogy has become attractive for the

exploration of dispersive shock wave phenomena. Here, we observe of a novel class of

vectorial dispersive shock waves in nonlinear fiber optics. Analogous to blast-waves, iden-

tified in inviscid perfect fluids, vectorial dispersive shock waves are triggered by a non-

uniform double piston imprinted on a continuous-wave probe via nonlinear cross-phase

modulation, produced by an orthogonally-polarized pump pulse. The nonlinear phase

potential imparted on the probe results in the formation of an expanding zone of zero

intensity surrounded by two repulsive oscillating fronts, which move away from each other

with opposite velocities.
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The formation of dispersive shock waves (DSWs) is a fun-
damental mechanism encountered in many fields of sci-
ence, such as hydrodynamics, geophysics, atmospheric

science, socioeconomics, chemistry, acoustics, quantum fluids,
and nonlinear optics1–28. One of the most fascinating manifes-
tations of DSWs in nature is the appearance of the popular
mascaret wave, which can be generated in specific river estuaries
due to a counter-flow between tide and current, resulting in the
formation of large undular tidal bores traveling up-stream. This
phenomenon is particularly well-appreciated by the surfing
community1,2. Another spectacular manifestation of DSWs in
atmospheric air-flow is the emergence of Morning Glory roll
clouds and mountain waves3. In general, DSW phenomena occur
in conservative (or weakly dissipative) non-viscous systems, and
they rely on two fundamental ingredients: nonlinearity and wave
dispersion. The most common situation involves the dispersive
regularization of a step-like initial condition (in amplitude or
velocity)—an example of the so-called Riemann problem—and
gives rise to the expansion of non-stationary oscillating fan
structures connecting both upper and lower initial non-oscillating
states5–7. Because of their universal role in counteracting
unphysical singularities in dispersive conservative media, DSW
prototypes have become the subject of intense research in physics,
with groundbreaking results obtained in diverse areas ranging
from fluid dynamics to two-component Bose-Einstein con-
densates (BEC)6–11,23–28.

DSWs have also been observed and extensively studied in
the context of nonlinear optics10–22. In particular, it is well-known
that light behaves as an ideal inviscid perfect fluid in an
optical medium that exhibits a weakly self-defocusing Kerr
nonlinearity11,18–21. Accordingly, the propagation of light through
such a medium can be modeled using shallow water wave Euler
equations, which predict that any initial modulations experience a
strong steepening that leads to the formation of a gradient cata-
strophe and subsequently DSWs6,7,19–21,29. This analogy has
attracted significant attention, as it highlights the elegant prospect
of using nonlinear optical systems as convenient laboratory test-
beds for the exploration of universal DSW physics.

Ever since the pioneering work by Rothenberg and co-workers
in optical fibers about two decades ago10, tremendous efforts have
been dedicated to develop powerful testbed platforms, which are
capable of mimicking fluid-type DSWs with nonlinear optics11–18.
Unfortunately, despite extensive attempts, the experimental
generation and characterization of pure optical DSW remain
challenging. In the vast majority of previous works, the DSWs are
generated through the nonlinear steepening of an intense bright
pulse superimposed on a continuous-wave (CW) background
propagating in a self-defocusing nonlinear Kerr medium17,22.
Due to self-phase modulation, the high-intensity gradient region
of the pulse generates new frequencies, which then disperse onto
the plane-wave background creating an interference pattern that
triggers the formation of DSWs7,11,17. Although such experi-
mental configurations have enabled valuable insights into DSW
dynamics, they share a common deficiency: the CW landscape
and the intense pump share a common optical mode. Because of
this issue, a significant part of the physical information encoded
on the CW landscape is hidden by the intense pump pulse itself,
preventing its examination. Therefore, neither blast-waves (sud-
den disturbances creating a sharp area of supersonically
expanding pressure or density), nor pistons or DSW collision
problems can be emulated6–9,30–34. To overcome these issues, one
has to dissociate the DSW formation from the initial high
intensity pump in such a way as to imprint the dispersive
hydrodynamics phenomenon only on the CW landscape. An
easy-to-implement laboratory platform capable of such dissocia-
tion would dramatically expand the DSW phenomena that can be

investigated, enabling for instance the study of blast-wave
dynamics, complex piston problems, and the full emulation of a
supersonic object (in the sense that it travels faster than the
“speed of sound” within the medium), moving in a purely dis-
persive fluid11,30,35.

In this contribution, we propose and experimentally demon-
strate a novel nonlinear optical scheme that allows for the full
isolation of DSW dynamics. Our approach leverages the two
orthogonal polarizations supported by silica glass optical fibers:
an intense pump pulse acts as a moving piston that imprints a
nonlinear phase shift through cross-phase-modulation (XPM) on
an orthogonally polarized CW probe that is co-propagating in a
normally dispersive optical fiber, resulting in the generation of
two DSWs that are moving away from each other. More speci-
fically, thanks to the orthogonal polarizations of the CW land-
scape and the intense piston pulse, the DSW dynamics can be
straightforwardly isolated, permitting direct experimental obser-
vation of a depletion zone induced by two repulsive piston shock
effects. Almost 30 years after the pioneering work of Joshua E.
Rothenberg reporting the observation of wave-breaking induced
buildup of modulational instability in a birefringent optical
fiber36, our results represent the experimental observation of
vectorial DSWs in nonlinear optics. Finally, we have also inves-
tigated how group-velocity mismatch between the CW landscape
and the piston pulse impacts the DSW dynamics. Our work
provides significant insights on the mechanism for the generation
of DSWs and demonstrates a convenient platform that allows for
the systematic and detailed experimental study of DSW physics.

Results
Modeling and principle of operation. As schematically illu-
strated in Fig. 1, the system under study exploits the vectorial
XPM interaction between a weak CW probe and an orthogonally
polarized intense short pulse, both propagating within a normally
dispersive optical fiber.

In the framework of nonlinear fiber optics37, the evolution of
the complex slowly varying amplitudes of the pump pulse u(z,t)
and the CW probe v(z,t) are described by a set of two coupled
nonlinear Schrödinger (NLS) equations. In standard optical
fibers, random longitudinal fluctuations of the residual birefrin-
gence occur along the fiber in a length-scale of a few meters.
Averaging out the nonlinear contribution over these fast
polarization fluctuations in km-long fibers leads to the so-called
Manakov model38,39:

i ∂u∂z þ β2
2
∂2u
∂t2 þ 8

9 γ uj j2 þ vj j2� �
uþ i α2 u ¼ 0;

i ∂v∂z þ iδ ∂v
∂t þ β2

2
∂2v
∂t2 þ 8

9 γ uj j2þ vj j2� �
v þ i α2 v ¼ 0

(
ð1Þ

here, z and t denote the propagation distance coordinate and time
in the co-moving frame of the piston pump pulse, respectively.
γ corresponds to the nonlinear Kerr parameter of the fiber, β2 is
the group velocity dispersion coefficient, and α indicates
propagation losses. The corrective factor of 8/9 is applied to the
Kerr effect due to the polarization randomness assumed in the
Manakov model. The term δ= 2π β2 δf describes the walk-off

Fig. 1 Principle of operation. Schematic of the vectorial dispersive shock
wave phenomenon
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between the pulse and the CW landscape when the central
frequencies of the two waves are separated by a small frequency
offset δf. Let us stress that no transfer of energy occurs between
the two waves during the nonlinear interaction. Indeed, it should
be clear from Eq. (1) that the two waves are only coupled by a
phase term, which is proportional to the intensity of the waves.
Accordingly, the energy initially contained in the CW probe (or
piston pulse) remains unchanged (except for linear losses). Note
that we neglect higher-order effects such as third-order disper-
sion, self-steepening and Raman scattering, as they have been
found to play a negligible role in the present dynamics. This
assumption is verified a posteriori by the excellent agreement
between our experimental observations and numerical modeling.

In terms of fluid-like or condensate variables, the set of coupled
NLS equations above can be cast into their hydrodynamic forms
by means of the well-known Madelung transformation6,9,11,18

(see Supplementary notes 1 and 2). In this configuration, the
intensity and the gradient of the phase (chirp profile) assume
respectively the roles of the density and velocity of the fluid. It
then turns out that the exchange of momentum during the shock
process is here induced by the XPM coupling term which acts as a
sharp defocusing potential for the fluid. In a sense, our
experiment constitutes the 1-D counterpart of the “blast-wave”
or double piston shock problem already studied in quantum
superfluid and induced by a laser beam9,11,31,32. The background
density which sets the reference speed of sound is here dictated by
the intensity level of the CW landscape, while strong density
perturbations (here the high-power pump beam) naturally
correspond to supersonic sources11,23.

Dynamics of the vectorial dispersive shock wave. We begin by
numerically illustrating the formation and evolution of vectorial
DSWs. To this end, we consider the following set of parameters
which mimics the experiments that will follow. The piston pump
wave is a Gaussian-like chirp-free pulse with the following
characteristics: temporal half-width at 1/e of its maximum
intensity t0= 41 ps, peak power Pc= 1.5W and central wave-
length λp= 1550 nm. The orthogonally polarized CW probe
propagates with the same group velocity as the piston beam (δf=
0) and its average power is set to be 5 mW. The normally dis-
persive fiber is a 13-km-long dispersion compensating fiber
(DCF) typically used in the field of dispersion managed data
transmission (for parameters, see Methods). It is important to
emphasize that the above physical parameters place our problem
in the weakly dispersive regime of the NLS (at least in the initial
stage of propagation), for which the ratio between the nonlinear
and dispersive effects—given by the usual soliton number Ν —is
much larger than unity (see Supplementary note 3 for more
discussions dealing with the balance between nonlinear and dis-
persive effects along the propagation distance, as well as Sup-
plementary note 4 for the influence of the CW probe power).
Indeed, with the maximum pump power in our experiments, we
have N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ld=Lnl
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ0Pc t20=β2
p � 1437, where γ0 ¼ 8 γ=9.

Accordingly, the analogy between nonlinear optics and shallow
water hydrodynamics is fully appropriate for our study, at least in
the early stage of propagation (see the Supplementary notes 1 and
2 for further details on the analogy).

Figure 2 shows numerically simulated dynamics of vectorial
DSW generation. These simulations were obtained through the
numerical integration of Eq. (1) by means of the split-step Fourier
algorithm37. Note also that for clarity, the XPM coupling term
arising from the probe and acting on the pump wave is
perturbative and can be neglected to first order in Eq. (1).
Focusing first on the piston field u(z,t) [Fig. 2a, b], we see
dynamics typical for an intense pulse propagating in a defocusing

Kerr medium40,41. The initial stages of the evolution are
dominated by self-phase-modulation, which gives rise to strong
spectral broadening [cf. Fig. 2a]. This initial spectral broadening
ceases at the so-called wave breaking distance zc at which point
the spectral width reaches the maximum value of Δfmax. Both zc
and Δfmax can be accurately estimated using theories of the
ubiquitous wave-breaking phenomenon40,41 (more details on the
following formulas are given in the Supplementary note 5):

zc ’
1:61 t0ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 γ0Pc

p ð2Þ

Δfmax ¼
1

21=4π

ffiffiffiffiffiffiffiffi
γ0Pc
β2

s
¼ N

21=4π t0
ð3Þ

As shown with the cyan dashed-line and open circles in Fig. 2a,
these estimates are in good agreement with our simulations.

Following the initial stage of spectral broadening, chromatic
dispersion dominates, resulting in strong temporal expansion
[Fig. 2b]. In accordance with the principles of dispersive Fourier
transform42–44, the piston pulse spectrum maps into the temporal
domain during propagation; in the far-field, both the spectral and
temporal profiles of the pulse exhibit similar parabolic
profiles42,45. The maximal temporal width Δtmax of the piston
pulse at position z can be estimated by:

Δtmax ¼ 23=4z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0Pc β2

p ’ 2:71 t0 z=zc ð4Þ
As highlighted with the dashed white lines in Fig. 2b, this
expression agrees very well with the temporal expansion of the
piston pulse observed in our numerical simulations.

Let us now consider the CW probe beam v(z,t). In the initial
stage of evolution (during which the piston pulse temporal profile
stays almost constant), XPM coupling gives rise to a non-uniform
nonlinear phase shift that increases linearly with propagation
ϕnlðz; tÞ � γ0 uð0; tÞj j2z46. As evidenced by the strong spectral
broadening of the probe beam [Fig. 2c], this nonlinear phase shift
gives rise to an instantaneous frequency shift (chirp) δωðz; tÞ ¼
�∂t ϕnlðz; tÞ ¼ �γ0 ∂t uð0; tÞj j2z across the CW landscape: the
region overlapping with the leading (trailing) edge of the piston
pulse is redshifted (blueshifted). Since blue light travels slower
than red light in normally dispersive media, this chirp manifests
itself in the temporal domain as an instantaneous change of
velocity V around the central portion of the probe/piston pulse,
with δVðz; tÞ / �β2 δωðz; tÞ. We consequently observe the
emergence of two fronts with opposite velocities that are traveling
away from each other, as well as the concomitant removal of
energy (decompression of photons) from the central region
defined by the initial piston pulse [see Fig. 2d]. With subsequent
propagation, chromatic dispersion begins to regulate the steep
edges of the fronts (compression), giving rise to the development
of fast non-stationary oscillations surrounding a temporal gap—a
characteristic imprint of double piston DSW7,9,33. We identify the
present dynamics to belong in the “slow piston regime” as defined
by Hoefer et al.31, which means that the initial group velocity
jump imposed by the piston wave is moderate. Indeed, we do not
observe any vacuum state in the oscillations and the two DSWs
are not connected. However, we attribute the absence of a plateau
area usually induced by the classical double piston shock problem
to the development of both rarefaction waves in the center of the
probe via the action of XPM decompression (see Supplementary
notes 1 and 2 for more details dealing with the hydrodynamic
description of this vectorial DSW phenomenon, as well as
Supplementary notes 6 for the key role of the XPM coupling
coefficient). On the other hand, the overall dynamics can be very
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well captured when illustrating the evolution of the probe beam
by means of a spectro-temporal approach47,48. To this aim, we
have displayed in Fig. 2e–g, h–j, the spectrograms of the piston
and probe waves at z= 0.05, 0.7, and 5.6 zc, respectively. As can
be observed, the piston pulse experiences a large temporal and
spectral expansion, while the interplay between dispersion and
nonlinearity subsequently induces, after the wave breaking
distance zc, a close-to-linear chirp with a slope given by 1/(β2
z), indicated with red lines in panels (g and j)42.

The dynamics of the cw probe is markedly more complex than
the dynamics of the pump. Because of the XPM coupling, the
piston beam induces on the CW landscape a chirp profile
proportional to the gradient of its intensity profile. Note in
particular that, during the early stage of propagation (Fig. 2i at
z= 0.7 zc), a typical N-wave shape of the chirp profile forms
through a process analogous to the formation of a pressure wave
occurring during a supersonic boom event30,49. Then, as the
piston pulse expands and develops steeper and steeper edges, the
redshifted and blueshifted parts of the probe are pushed away
from the center due to chromatic dispersion, creating a temporal
gap which continuously expands over propagation. On both sides
of this rarefaction area, a DSW emerges from the fast oscillations
occurring between the remaining continuous wave background
and new frequencies17.

Because the nonlinear phase imparted on the probe beam is
dominated by XPM, Eqs. (2–4) also apply when describing the
temporal and spectral spreading of the DSW, as shown in Fig. 2c,
d. Here, it is worth emphasizing that Eq. (4) in particular captures
the universal fact that the rate of expansion of a DSWs is a
square-root function of the medium density, portrayed in our
optical system by the intensity jump6,9,35. Moreover, we note that,
when plotted versus the normalized distance z/zc, the shock cone
imposed by the piston pulse is only determined by the sharpness
of the source, i.e., t0. That is to say, the angle of the white dashed-
lines cone is simply provided by tan−1(2.71 to).

By considering the peak power reduction of the piston pulse
due to temporal broadening along the propagation distance and
neglecting fiber losses, we can also derive an estimate for the

rarefaction area Δtmin that describes the width of the temporal
gap created within the probe landscape:

Δtmin ¼ 23=4z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ0Pminβ2

p ð5Þ
where

Pmin ¼ Pc
t0

Δtmax
ð6Þ

As highlighted with the dash dotted white line in Fig. 2d, this
estimate of Δtmin agrees well with our simulation results and
illustrates the fact that the rate of expansion of the rarefaction
area is not constant but rather decelerates with propagation.

Experimental setup. To experimentally generate and observe such
vectorial DSWs, we have implemented the setup depicted in Fig. 3a
[see Methods for additional details]. 68-ps Gaussian-like optical
pulses are first generated by intensity modulating a 1550 nm CW
laser. This pulse train is then amplified using an Erbium doped
fiber amplifier (EDFA) and used as the piston pump wave. The
probe wave consists of a 5-mW CW which can be generated at
the same central wavelength as the piston pulse or at a distinct
wavelength to explore the effect of a variable velocity mismatch
between the piston and the probe signals. Both waves are then
orthogonally polarized using a polarization beam splitter (PBS),
and injected into a 13-km-long segment of normally dispersive
compensating fiber (see Methods for detailed parameters). At the
output of the system, the piston and the probe waves are polar-
ization demultiplexed and subsequently characterized in the
temporal and spectral domains. Note that this experimental
testbed platform relies exclusively on commercial devices widely
used in the telecommunication industry, and that the all-fibered
nature of the setup ensures stable operation for several con-
secutive hours.

Experimental observation of vectorial DSWs. Figure 3b shows
experimentally measured DSW dynamics when a single CW laser
is used for both the piston pulse and the probe wave (null

Fig. 2 Illustrative numerical simulations. a Longitudinal evolution of the spectrum of the piston pulse. The cyan dashed-line indicates the distance zc
predicted by Eq. (2) (1.8 km), while the open circles highlight Δfmax/2 predicted by Eq. (3). b Longitudinal evolution of the temporal intensity profiles of the
piston pulse (normalized to its maximum); au: arbitrary unit. c Same as (a) for the probe wave. d Longitudinal evolution of the temporal intensity profiles of
the probe wave (normalized to the continuous wave background). In panels (b) and (d), analytical predictions of the temporal expansion provided by Eqs.
(4) and (5) are plotted using white dashed-line and dash dotted-line, respectively. The simulation results are obtained using parameters corresponding
to our experiments (see Methods) and for a pulse peak power of 1.5W. e–g Spectrograms of the piston pulse at z= 0.05, 0.7 and 5.6 zc, respectively.
h–j Corresponding spectrograms of the probe wave. The spectrograms are plotted on a linear scale and extend from −300 ps to 300 ps (horizontal axis)
and from −80GHz to 80 GHz (vertical axis). The red lines in panels (g) and (j) indicate the far field chirp profile of slope 1/(β2 z)
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walk-off configuration, δf= 0). Specifically, here we depict the
probe beam intensity profile recorded on our sampling oscillo-
scope for a range of piston powers. (Note that varying the piston
peak power at constant fiber length yields similar insights as
recording the longitudinal evolution of the fields at maximum
power, but avoids the use of a destructive cutback method). In
accordance with the qualitative description presented above, we
see very clearly that the CW landscape of the probe beam is
broken by two repulsive fronts imposed by the double piston
effect. As the piston peak-power increases (and the shock
becomes more abrupt), the oscillations in the tails of the fronts
increase in frequency. This process is analogous to the 1-D
behavior of blast DSWs created by a laser beam injected through
a quantum fluid or BEC9, with the defocusing potential imposed
in our system by the pump-induced XPM.

Our experimental observations are in quantitative agreement
with theoretical predictions and numerical modeling, as shown in
Fig. 4. Here we compare the experimentally measured intensity
profiles of the probe [Fig. 4a] and piston [Fig. 4b] beams as a
function of the piston pulse peak power with corresponding
results from numerical simulations [Fig. 4c,d]. The agreement
between our experiments and simulations is remarkable. We
emphasize that no free-running fitting parameters were used: the
simulations make exclusive use of experimental parameters.
Moreover, as highlighted by the white dashed curves and dash-
dotted lines in Fig. 4, we see how the experimentally-resolved
dynamics of the DSW process (e.g., width of the gap region in the
probe wave and the width of the piston pulse beam) agrees
extremely well with the analytical predictions based on Eqs. (4)
and (5).

To gain further insights, Fig. 5 shows a comprehensive input-
output analysis of the piston and probe waves for an injected
pulse peak-power of 1.5W. First, Fig. 5a compares the input and
output intensity profiles of the piston pulse, revealing the large
temporal broadening that takes place in the DCF: the half-width
of the piston pulse increases from 68 ps (blue solid line) to more
than 1.4 ns (yellow line). As highlighted by the open circles, we
also see that the profile of the output pulse can be very well
approximated with a parabolic profile of width Δtmax given by Eq.
(4). However, small oscillations that deviate from the parabolic
shape are visible on the edges of the pump profile. These

oscillations originate from the back-action of the DSW on the
piston pulse through XPM, as confirmed by the fact that no
oscillation is observed when only the pulse propagates through
the fiber (magenta solid curve).

Figure 5b compares the input and output intensity profiles of
the probe wave. Here the dramatic transformation of the CW
landscape into a blast-like DSW can be readily observed. Indeed,
the output intensity profile is characterized by a wide-open
temporal gap surrounded by two strongly modulated wave trains.
We must emphasize that the oscillating fan structure of the fronts
can be fully resolved in our system, underlining its potential to

Fig. 3 Experimental setup and illustrative observations of vectorial dispersive shock wave dynamics. a Experimental setup: CW Continuous Wave, PPG
Pulse Pattern Generator, IM Intensity Modulator, EDFA Erbium Doped Fiber Amplifier, Att Optical Attenuator, PC Polarization Controller, PBS Polarization
beam splitter, DCF Dispersion Compensating Fiber, OBPF Optical BandPass Filter, OSA Optical Spectrum Analyzer. b False-color plot showing the
experimentally recorded evolution of the output intensity profile of the probe beam as a function of the input piston pulse peak power (a. u.: arbitrary unit).
Data values are normalized with respect to the CW landscape equal to 1 and mapped to colors linearly

Fig. 4 Comparison between experimental, theoretical, and numerical
results. a, b Pseudo-color plots depicting the evolution of the output
temporal intensity profile of the (a) probe wave and (b) the piston beam as
a function of the injected piston peak-power. c, d Corresponding numerical
simulation results. For the probe panels, data values are normalized by the
level of the continuous wave landscape, while the piston panels are
normalized by the maximum available peak power. The white dashed lines
and dash-dotted lines highlight theoretically predicted dynamics of the
shock expansion based on Eqs. (4) and (5), respectively
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provide exquisitely detailed insights into DSW dynamics. More-
over, the absence of any major asymmetry, typically caused by
e.g., third-order dispersion, self-steepening or Raman scattering,
confirms the purity of the system. Indeed, the small amplitude
asymmetry observed between the two DSW is attributed to the
small asymmetry of the input pulse which can be mitigated by
further optimization. It is interesting to note that the oscillations
displayed by the DSWs are chirped, i.e., their period is changing,
in agreement with classical regularization of DSW6. This feature
is fully reproduced by our numerical simulations, as shown by the
vertical dashed lines in Fig. 5b, which highlight the positions of
the oscillation maxima extracted from our simulations. As
illustrated in Supplementary Fig. 7, this feature can be readily
explained in terms of the dispersion-induced spectro-temporal
mapping of the DSW.

Figure 5c compares the input and output spectral profiles of
the probe and piston pulse beams. As can be seen, both waves
undergo significant spectral broadening, characterized by an
output total spectral expansion above 150 GHz—a value very
close to the theoretical prediction Δfmax (blue dashed lines). In
this context, it is worth noting that the piston pump and the
probe spectra exhibit very similar profiles, underlining the fact
that XPM dominates the nonlinear evolution of the probe. We
must also emphasize that, in accordance with the theoretical
description presented above [see spectrograms in Fig. 2],
the different spectral components of the probe beam are
temporally segregated amongst the two DSWs, with redshifted

(blueshifted) frequency components associated with the leading
(trailing) edge of the DSW. We have experimentally confirmed
this feature by recording the spectral and temporal intensity
profiles of the probe beam after it has passed through a 1-nm
optical bandpass filter off-set from the 1550 nm center
wavelength. Results are shown in Fig. 5d, e, and they readily
show that filtering induces a striking asymmetry in the
temporal intensity profile. Indeed, by filtering the output
spectrum of the probe, we are able to annihilate half of the
shock. More precisely, after canceling the higher frequencies
(red curves), the temporal fan recorded for t > 0 vanishes. In
contrast, when higher frequencies and the continuous compo-
nent are preserved (blue curves), the leading fan disappears. In
both cases, the central hole still occurs since no energy is
present in this part of the shock.

Influence of a velocity mismatch. Before concluding, we discuss
the impact of relative walk-off between the probe and the piston
beams. In this case, the DSW is triggered by a pulse that is moving
relative to the CW landscape (in analogy with a counter-flow or
over-flow collisions), resulting in asymmetric DSW dynamics. To
experimentally engineer such a scenario, we create the piston pulse
and the probe beams using two separate lasers with an adjustable
frequency offset δf. (This should be contrasted with the experiments
reported in the preceding section that only used a single laser.)
Thanks to group-velocity dispersion, the probe and the piston

Fig. 5 Input-output comparison of the piston pulse and probe wave for a peak power of 1.5W. a Blue solid line shows the input temporal profile of the
piston pulse, while the yellow and purple lines show the corresponding output profiles in the presence and absence of the continuous wave probe,
respectively. Open circles correspond to a parabolic profile of width Δtmax. (a. u.: arbitrary unit). b Temporal profile of the probe wave at the fiber input
(blue dashed line) and output (red solid line). Vertical black dashed lines indicate the positions of the oscillation maxima predicted by numerical
simulations based on Eq. (1). Note that, in panel (b), data values are normalized with respect to the output CW landscape, while in panel (a) an arbitrary
normalization is used for convenience and clarity. c Experimental spectra of the initial and output probe beam compared to the output pump spectrum.
Theoretical prediction of the maximum spectral expansion Δfmax is also displayed with blue dashed lines. Note that the measured spectrum of the injected
pump wave coincides with the initial probe spectrum since both signals are generated from the same CW laser source. d–e Spectro-temporal
characterization of vectorial dispersive shock waves. d Experimental output spectrum after optical filtering obtained for a piston pulse peak power of 1W.
e Output temporal intensity profile of the probe signal after spectral filtering. Resulting profile in red (blue), when only the low (high) frequencies are
conserved
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beams travel with slightly different (group) velocities through the
fiber, while nonlinearly interacting through XPM.

In Fig. 6a, we show the temporal intensity profile of the probe
beam at the fiber output, when the piston pulse peak power is set
to 2W and the frequency offset δf= 100 GHz (corresponding to
a counter-flow configuration with a total walk-off of 1.29 ns over
the 13-km-long fiber). We see clear signatures of asymmetric
DSW dynamics, with an enhanced fan structure observed
exclusively on the trailing part of the shock. By inverting the
sign of the frequency offset (δf=−100 GHz), the asymmetry is
correspondingly inverted, with a clear fan structure on the
leading part of the shock [see Fig. 6b]. A more comprehensive
picture of the effect of relative walk-off is provided in Fig. 6c,
where we show the probe beam intensity profile at the fiber
output over a wide range of frequency offsets. Also shown as
the dashed line is the trajectory of the piston pulse (i.e.,
the temporal position of the pump pulse center at the fiber
output), which precisely follows the dispersive walk-off imposed
by the frequency offset between the two waves. As expected, the
shock waves vanish when the group-velocity difference between
the two beams becomes larger than the expansion speed of
the shock—dictated by the maximum frequency chirp (here
around 70 GHz). These experimental results are again
in excellent agreement with the corresponding numerical
simulations, shown in Fig. 6d. Note finally that, in contrast to
previous works50,51, which involve two high-density or high-
power counter-flow components propagating in the defocusing
regime of NLS, here no modulational instability process has
been observed between the two orthogonal waves, essentially
because of the strong power imbalance between the two
components.

Discussion
In conclusion, we have reported on the experimental demon-
stration of vectorial dispersive shock waves in the context of
nonlinear fiber optics. Our scheme leverages the nonlinear
XPM interaction between a weak CW probe co-propagating in

a normally dispersive optical fiber and an orthogonally polar-
ized intense piston pulse. In contrast to previous studies, which
have exclusively operated in the scalar regime, our system
enables the generation of DSWs in a two-component vectorial
configuration. Since the generated DSW is orthogonally
polarized with respect to the intense piston beam, it can be fully
isolated and characterized without being obscured by the pump
pulse. Using this scheme and the correspondence between
nonlinear optics and non-viscous hydrodynamics, we have been
able to realize an optical analog of a double piston DSWs
induced by a supersonic object moving across a superfluid-like
medium, as characterized by the appearance of two repulsive,
rapidly oscillating fronts surrounding a region of zero intensity.
All our experimental observations are in excellent agreement
with numerical simulations of the celebrated Manakov model,
and they adhere to simple analytical guidelines predicted from
established theories of wave breaking and spectro-temporal
mapping induced by chromatic dispersion.

We anticipate that the presented results will stimulate ana-
lytical and statistical research that is above the scope of the
present paper. We have shown how the piston pulse drives the
evolution towards the shock and continuously affects its evo-
lution; future works may for example focus on how the use of a
chirped piston pulse could be beneficial to control the long-
itudinal evolution of the probe wave and associated DSWs.
More generally, shock wave phenomena are often difficult to
study in their natural environment, and also hard to reproduce
in laboratory. Therefore, we believe that the present numerical
and experimental research fully demonstrates that fiber optics
may constitute a remarkable testbed platform for the experi-
mental characterization of DSWs. Moreover, in contrast to
numerous other implementations, our fiber-based vectorial
approach constitutes a new avenue to non-destructively pro-
duce and study complex DSW phenomena such as blast-waves,
non-uniform piston problems or ballistic impacts, by means of
a compact, highly stable and high reproducible system. We
therefore expect that other fields of physics involving two
component interactions may be inspired by this research52.

Methods
Additional details on the experimental setup. Further details are given with
reference to Fig. 3. The testbed platform involved in the observation of vectorial
DSW is all-fibered and relies exclusively on commercial devices widely used in
the telecommunication industry. First-of-all, a train of 68-ps pulses at a repetition
rate of 312.5 MHz is generated at 1550 nm by means of a CW laser from Exfo
modulated thanks to a 14-Gbit.s−1 pulse-pattern generator (PPG form Anritsu
Corporation). Two LiNbO3 intensity modulators from Ixblue photonics (IM1 and
IM2) are subsequently cascaded in order to improve the extinction-ratio (ER) of
the generated piston pulses. In this way, an ER higher than 40 dB is achieved, thus
preventing any spurious interference between the piston pulse and the residual
background17,22. This pulse train is then amplified by means of a 33-dBm Erbium
doped fiber amplifier (EDFA from Manlight) and used as piston pump beam
whose power can be continuously tuned thanks to a programmable variable
optical attenuator (Exfo), thus ensuring an efficient stability of the setup, espe-
cially on polarization states. The probe wave consists of a 5-mW CW landscape
which can be a simple replica of the initial 1550-nm signal to ensure a perfect
velocity matching (null walk-off configuration, δ= 0 in Eq. (1)) or a distinct CW
generated from a second external cavity laser from Exfo so as to induce a variable
velocity mismatch between the piston and probe signals. Piston and probe waves
are then orthogonally polarized by means of two polarization controllers, com-
bined in a first polarization beam splitter (PBS), and injected into a 13-km-long
dispersion compensating fiber (DCF from OFS). The DCF fiber spool is char-
acterized by a normal chromatic dispersion D= –130 ps.nm−1.km−1 at 1550 nm
(β2= 166 ps2.km−1), an attenuation parameter α= 0.4 dB.km−1 and a nonlinear
Kerr coefficient γ’= 5.5 W−1.km−1. At the output of the system, the piston pulse
beam and the CW probe are polarization demultiplexed using a second PBS and
characterized both in the temporal and spectral domains by means of two high-
speed photodetectors from U2T connected to a dual-channel 70-GHz electrical
sampling oscilloscope (Agilent DCA 86118 A) and an optical spectrum analyzer
(OSA Yokogawa AQ6370), respectively. Note that before temporal detection, a
tunable optical bandpass filter from Exfo may be inserted in such a way to carry

Fig. 6 Influence of a velocity mismatch. a, b Temporal intensity profile of
the probe beam at the fiber output for an offset frequency of (a) δf= 100
GHz and (b) δf= –100 GHz. c Experimentally measured output intensity
profile of the probe wave as a function of frequency detuning δf.
d Corresponding simulation results. Data in (c) and (d) are normalized by
the level of the continuous wave intensity landscape. The dashed line
shows the relative position of the piston pulse center (initially at zero) at
the fiber output
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out a spectral-temporal analysis (see Fig. 5d). Finally, the entire experimental
platform was automatically controlled from a single computer, which enables us
to accumulate up to 150 measurements in a very short time scale, providing
perfect stability whilst mapping the entire shock dynamics.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Received: 3 June 2019; Accepted: 10 October 2019;

References
1. Coleman, T. A., Knupp, K. R. & Herzmann, D. The spectacular undular bore

in Iowa on 2 October 2007. Mon. Wea. Rev. 137, 495 (2009).
2. Chanson, H. Tidal bores Aegir, Eagre, Mascaret, Proroca: Theory and

Observations (World Scientific, 2012).
3. Clarke, R. H., Smith, R. K. & Reid, D. G. The Morning Glory of the gulf of

Carpentaria: an atmospheric undular bore. Mon. Wea. Rev. 109, 1726 (1981).
4. Hodges, S. & Carverhill, A. Quasi-mean reversion in an efficient stock market;

the characterization of economic equilibria which support Black–Scholes
option pricing. Econom. J. 103, 395 (1993).

5. Whitham, G. B. Linear and Nonlinear Waves (Wiley, 1974).
6. El, G. A. & Hoefer, M. A. Dispersive shock waves and modulation theory.

Phys. D. 333, 11–65 (2016).
7. Bendahmane, A. et al. Experimental Realization of Riemann Problem in

Nonlinear Fiber Optics. In Nonlinear Optics (NLO). paper NTu1A.4 (Optical
Society of America, 2019).

8. Rolley, E., Guthmann, C. & Pettersen, M. S. The hydraulic jump and ripples in
liquid helium. Phys. B 394, 46–55 (2007).

9. Hoefer, M. A. et al. Dispersive and classical shock waves in Bose-Einstein
condensates and gas dynamics. Phys. Rev. A 74, 023623 (2006).

10. Rothenberg, J. E. & Grischkowsky, D. Observation of the formation of an
optical intensity shock and wave-breaking in the nonlinear propagation of
pulses in optical fibers. Phys. Rev. Lett. 62, 531–534 (1989).

11. Wan, W., Jia, S. & Fleischer, J. W. Dispersive superfluid-like shock waves in
nonlinear optics. Nat. Phys. 3, 46–51 (2007).

12. Jia, S., Wan, W. & Fleischer, J. W. Forward four-wave mixing with defocusing
nonlinearity. Opt. Lett. 32, 1668 (2007).

13. Ghofraniha, N., Gentilini, S., Folli, V., DelRe, E. & Conti, C. Shock waves in
disordered media. Phys. Rev. Lett. 109, 243902 (2012).

14. Wetzel, B. et al. Experimental generation of Riemann waves in optics: a route
to shock wave control. Phys. Rev. Lett. 117, 073902 (2016).

15. Fatome, J., Finot, C., Millot, G., Armaroli, A. & Trillo, S. Observation of optical
undular bores in multiple four-wave mixing. Phys. Rev. X 4, 021022 (2014).

16. Varlot, B., Wabnitz, S., Fatome, J., Millot, G. & Finot, C. Experimental
generation of optical flaticon pulses. Opt. Lett. 38, 3899–3902 (2013).

17. Xu, G. et al. Shock wave generation triggered by a weak background in optical
fibers. Opt. Lett. 41, 2656–2659 (2016).

18. Xu, G., Conforti, M., Kudlinski, A., Mussot, A. & Trillo, S. Dispersive dam-
break flow of a photon fluid. Phys. Rev. Lett. 118, 254101 (2017).

19. Trillo, S. & Valiani, A. Hydrodynamic instability of multiple four-wave
mixing. Opt. Lett. 35, 3967–3969 (2010).

20. Kodama, Y. & Wabnitz, S. Analytical theory of guiding-center nonreturn-to-
zero and return-to-zero signal transmission in normally dispersive nonlinear
optical fibers. Opt. Lett. 20, 2291–2293 (1995).

21. Wabnitz, S., Finot, C., Fatome, J. & Millot, G. Shallow water rogue wavetrains
in nonlinear optical fibers. Phys. Lett. A 377, 932–939 (2013).

22. Parriaux, A. et al. Spectral broadening of picosecond pulses forming dispersive
shock waves in optical fibers. Opt. Lett. 42, 3044–3047 (2017).

23. Kamchatnov, A. M., A., G. & Kraenkel, R. A. Dissipationless shock waves in
Bose–Einstein condensates with repulsive interaction between atoms. Phys.
Rev. A 69, 063605 (2004).

24. Dutton, Z., Budde, M., Slowe, C. & Hau, L. V. Observation of quantum shock
waves created with ultra- compressed slow light pulses in a bose-einstein
condensate. Science 293, 663 (2001).

25. Taylor, R. J., Baker, D. R. & Ikezi, H. Observation of collisionless electrostatic
shocks. Phys. Rev. Lett. 24, 206–209 (1970).

26. Joseph, J. A., Thomas, J. E., Kulkarni, M. & Abanov, A. G. Observation of
shock waves in a strongly interacting fermi gas. Phys. Rev. Lett. 106, 150401
(2011).

27. Ivanov, S. K., Kamchatnov, A. M. & Pavloff, N. Solution of the Riemann
problem for polarization waves in a two-component Bose-Einstein
condensate. Phys. Rev. E 96, 062202 (2017).

28. Ivanov, S. K. & Kamchatnov, A. M. Simple waves in a two-component Bose-
Einstein condensate. Phys. Rev. E 97, 042208 (2018).

29. Barsi, C., Wan, W., Jia, S. & Fleischer, J. W. Nonlinear Photonics and Novel
Optical Phenomena (Springer, 2012).

30. Stoughton, R. Measurments of small caliber ballistic shock waves in air. J.
Acoust. Soc. Am. 102, 781–786 (1997).

31. Hoefer, M. A., Ablowitz, M. J. & Engels, P. Piston dispersive shock wave
problem. Phys. Rev. Lett. 100, 084504 (2008).

32. Mossman, M. E., Hoefer, M. A., Julien, K., Kevrekidis, P. G. & Engels, P.
Dissipative shock waves generated by a quantum-mechanical piston. Nat.
Commun. 9, 4665 (2018).

33. El, G. A., Gammal, A. & Kamchatnov, A. M. Generation of oblique dark
solitons in supersonic flow of Bose-Einstein condensate past an obstacle. Nucl.
Phys. A 790, 771c–775c (2007).

34. El, G. A., Kamchatnov, A. M., Khodorovskii, V. V., Annibale, E. S. & Gammal,
A. Two-dimensional supersonic nonlinear Schrödinger flow past an extended
obstacle. Phys. Rev. E 80, 046317 (2009).

35. El, G. A. & Kamchatnov, A. Spatial dispersive shock waves generated in
supersonic flow of Bose–Einstein condensate past slender body. Phys. Lett. A
350, 192–196 (2006).

36. Rothenberg, J. E. Observation on the buildup of modulational instability from
wave-breaking. Opt. Lett. 16, 18–20 (1991).

37. Agrawal, G. P. Nonlinear Fiber Optics, Fourth Edition (Academic Press,
2006).

38. Wai, P. K. A., Menyuk, C. R. & Chen, H. H. Stability of solitons in randomly
varying birefringent fibers. Opt. Lett. 16, 1231–1233 (1991).

39. Marcuse, D., Menyuk, C. R. & Wai, P. K. A. Application of the Manakov-
PMD equation to studies of signal propagation in optical fibers with randomly
varying birefringence. J. Light. Technol. 15, 1735–1746 (1997).

40. Anderson, D., Desaix, M., Lisak, M. & Quiroga-Teixeiro, M. L. Wave-
breaking in nonlinear optical fibers. J. Opt. Soc. Am. B 9, 1358–1361
(1992).

41. Finot, C., Kibler, B., Provost, L. & Wabnitz, S. Beneficial impact of wave-
breaking on coherent continuum formation in normally dispersive nonlinear
fibers. J. Opt. Soc. Am. B 25, 1938–1948 (2008).

42. Zeytunyan, A. et al. Nonlinear-dispersive similariton of passive fiber. J. Eur.
Opt. Soc. Rap. Public. 4, 09009 (2009).

43. Castelló-Lurbe, D., Andrés, P. & Silvestre, E. Dispersion-to-spectrum mapping
in nonlinear fibers based on optical wave-breaking. Opt. Express 21,
28550–28558 (2013).

44. Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photon. 11, 341
(2017).

45. Iakushev, S. O., Shulika, O. V. & Sukhoivanov, I. A. Passive nonlinear
reshaping towards parabolic pulses in the steady-state regime in optical fibers.
Opt. Commun. 285, 4493–4499 (2012).

46. Islam, M. N., Mollenauer, L. F., Stolen, R. H., Simpson, J. R. & Shang,
H. T. Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627
(1987).

47. Treacy, E. B. Measurement and interpretation of dynamic spectrograms of
picosecond light pulses. J. Appl. Phys. 42, 3848–3858 (1971).

48. Linden, S., Giessen, H. & Kruhl, J. XFROG-A new method for amplitude and
phase characterization of weak ultrashort pulses. Phys. Stat. Sol. 206, 119–124
(1998).

49. Niedzwiecki, A. & Ribner, H. S. Subjective loudness of N‐wave sonic booms. J.
Acoust. Soc. Am. 64, 1617–1621 (1978).

50. Hammer, C., Chang, J. J., Engels, P. & Hoefer, M. A. Generation of dark-
bright soliton trains in superfluid-superfluid counterflow. Phys. Rev. Lett. 106,
065302 (2011).

51. Frisquet, B. et al. Polarization modulation instability in a Manakov fiber
system. Phys. Rev. A 92, 053854 (2015).

52. Congy, T., Kamchatnov, A. & Pavloff, N. Dispersive hydrodynamics of
nonlinear polarization waves in two-component Bose-Einstein condensates.
SciPost Phys. 1, 006 (2016).

Acknowledgements
All the experiments were performed on the PICASSO platform in ICB. We also thank
A. Picozzi, and D. Castelló-Lurbe for fruitful discussions, in particular for the cal-
culation of the wave breaking distance. J.F. acknowledges the financial support from
the European Research Council (Grant Agreement 306633, PETAL project), the
FEDER, the DRRT, the Conseil Régional de Bourgogne Franche-Comté (International
Mobility Program) which has allowed him to visit The University of Auckland to
contribute to this work. C.F. and G.M. acknowledge support from Institut Uni-
versitaire de France (IUF). We also thank EUR EIPHI graduate school (ANR-17-
EURE-0002) and the ISITE-BFC (ANR-15-IDEX-0003). M.E. acknowledges support
from the Rutherford Discovery Fellowships and Marsden Funds administered by the
Royal Society of New Zealand.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0241-6

8 COMMUNICATIONS PHYSICS |           (2019) 2:138 | https://doi.org/10.1038/s42005-019-0241-6 | www.nature.com/commsphys

www.nature.com/commsphys


Author contributions
J.F. and C.F. designed the experiment. J.F. and J.N. carried out the experiments. J.F., C.F.,
J.N., G.X., M.E., and G.M. participated in the analysis of the results. J.F., C.F., J.N., and
G.X. performed numerical simulations and theoretical description of the process. J.F.,
C.F., and M.E. wrote the paper. All the authors participated to improve the paper. J.F.
supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is avaliable for this paper at https://doi.org/10.1038/s42005-
019-0241-6.

Correspondence and requests for materials should be addressed to J.F.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0241-6 ARTICLE

COMMUNICATIONS PHYSICS |           (2019) 2:138 | https://doi.org/10.1038/s42005-019-0241-6 | www.nature.com/commsphys 9

https://doi.org/10.1038/s42005-019-0241-6
https://doi.org/10.1038/s42005-019-0241-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsphys
www.nature.com/commsphys

	Vectorial dispersive shock waves in optical fibers
	Results
	Modeling and principle of operation
	Dynamics of the vectorial dispersive shock wave
	Experimental setup
	Experimental observation of vectorial DSWs
	Influence of a velocity mismatch

	Discussion
	Methods
	Additional details on the experimental setup

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




