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WEAK VERSUS STRONG CONVERGENCE OF A REGULARIZED NEWTON

DYNAMIC FOR MAXIMAL MONOTONE OPERATORS

HEDY ATTOUCH AND JEAN-BERNARD BAILLON

Abstract. In a Hilbert space H, given A : H⇒ H a general maximal monotone operator whose solution
set is assumed to be non-empty, and λ(·) a time-dependent positive regularization parameter, we analyze,
when t → +∞, the weak versus strong convergence properties of the trajectories of the Regularized
Newton dynamic

(RN)

{
v(t) ∈ A(x(t)),

λ(t)ẋ(t) + v̇(t) + v(t) = 0.

The term λ(t)ẋ(t) acts as a Levenberg-Marquard regularization of the continuous Newton dynamic as-
sociated with A, which makes (RN) a well-posed system. The coefficient λ(t) is allowed to tend to zero
as t → +∞, which makes (RN) asymptotically close to the Newton continuous dynamic. As a striking
property, when λ(t) does not converge too rapidly to zero as t→ +∞ (with λ(t) = e−t as the critical size),
Attouch and Svaiter showed that each trajectory generated by (RN) converges weakly to a zero of A.
By adapting Baillon’s counterexample, we show a situation where A is the gradient of a smooth convex
function, and there is a trajectory of the corresponding system (RN) that does not converge strongly. On
the positive side, under certain particular assumptions about the operator A, or on the regularization
parameter λ(·), we show the strong convergence when t→ +∞ of the (RN) trajectories .

Key-words. maximal monotone operators, Newton-like continuous dynamic, Levenberg-Marquardt reg-
ularization, Baillon’s counterexample, weak versus strong asymptotic convergence.
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1. Introduction

Throughout the paper, H is a real Hilbert space, and A : H ⇒ H stands for a general maximal
monotone operator whose solution set S = {x ∈ H : 0 ∈ Ax} is supposed to be nonempty. We will
analyze the weak versus strong asymptotic convergence properties of a Newton-like continuous dynamics
attached to solving the monotone inclusion

(1) find x ∈ H such that 0 ∈ Ax.
These questions, which have been intensively studied for semigroups of contractions generated by maximal
monotone operators, see [8, 10, 13, 16, 29] and references therein, are seemingly new for the dynamics
associated with Newton’s method. Our analysis deals with the Regularized Newton dynamic (called (RN)
for short) introduced by Attouch and Svaiter in [6]

(RN)

{
v(t) ∈ A(x(t)),

λ(t)ẋ(t) + v̇(t) + v(t) = 0.

Recall that, when A is a smooth operator, the classical Newton method writes A′(x)(x+ − x) +Ax = 0,
where A′ is the derivative of A. Its continuous version gives A′(x(t))ẋ(t) +Ax(t) = 0. Equivalently

(N)

{
v(t) = A(x(t)),

v̇(t) + v(t) = 0.

Newton’s method, however, requires a lot of regularity both in its discrete and continuous version. The
introduction of the additional term λ(t)ẋ(t) in (RN) acts as a Levenberg-Marquard regularization (see
[22, 24]) of the ill-posed continuous Newton dynamic (N) associated to A. The parameter λ(t) is taken
positive and locally absolutely continuous (indeed it can be taken locally of bounded variation). Of
particular interest is the case λ(t) → 0 as t → +∞, which provides a (nonautonomous) dynamical
system whose asymptotic behavior is similar to that of the Newton method. As particular cases of
operator A, by taking A = ∂Φ, Φ : H → R ∪ {+∞} convex lsc. proper, (resp. A = (∂xL,−∂yL), with

L : H × H → R closed convex-concave), one obtains Newton-like dynamics for convex minimization,
(resp. convex-convave saddle value problems).

System (RN) enjoys remarkable properties:
a) Firstly, by using the Minty representation of maximal monotone operators, it can be reformulated

as a classical differential equation. This representation makes use of JAµ = (I + µA)−1 the resolvent of

index µ > 0 of A, and Aµ = 1
µ

(
I − JAµ

)
the Yosida approximation of index µ > 0 of A, see [12, 13, 34]

for basic facts concerning these notions. For any t ∈ [0,+∞[ we set µ(t) = 1
λ(t) , and introduce the new

unknown function z : [0,+∞[→ H which is defined by

(2) z(t) = x(t) + µ(t)v(t).

One can rewrite (RN) with the help of (x, z). One first obtains

(3)

{
x(t) = JAµ(t)(z(t)),

v(t) = Aµ(t)(z(t)).

In our context, this is the Minty representation of maximal monotone operators, see [25]. The second
equation of (RN) can be reformulated as a classical differential equation with respect to z(·), which gives

(4)

{
x(t) = JAµ(t)(z(t)),

ż(t) + (µ(t)− µ̇(t))Aµ(t)(z(t)) = 0.

As a nice feature of system (4), the operators JAµ : H → H and Aµ : H → H are Lipschitz continuous,
which makes this system relevant to the Cauchy-Lipschitz theorem. Indeed, in [6, Theorem 2.4], it is
proved that for any Cauchy data v0 ∈ A(x0) there exists a unique strong global solution (x(·), v(·)) :
[0,+∞[→ H×H of (RN) which satisfies x(0) = x0, v(0) = v0.
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b) Secondly, the trajectories of system (RN) asymptotically converge under fairly general assumptions.
Following [6, Theorem 3.7], suppose that λ(·) is bounded from above on [0,+∞[, and satisfies

(5) lim inf
t→+∞

λ̇(t)

λ(t)
> −1.

Then, for any strong global solution of (RN), as t tends to +∞
i) v(t)→ 0 strongly in H,
ii) x(t) converges weakly in H to a zero of A.

The condition λ̇(t)
λ(t) > −1 is equivalent to µ(t) − µ̇(t) > 0, and hence preserves the monotonicity of the

operator governing the differential equation in (4). Condition (5) expresses that λ(t) does not converge
too rapidly to zero as t → +∞ (with, roughly speaking, as a critical size, λ(t) = e−t). Note that the
trajectories of system (RN) converge weakly, which makes a sharp contrast with the semigroup associated
to a general maximal monotone operator, whose trajectories are solutions of the differential inclusion

(6) ẋ(t) +A(x(t)) 3 0.

Let us recall some classical facts concerning (6) which will enlight our study. For a general maximal
monotone operator A, weak ergodic convergence of trajectories of (6) was established in [10]. Weak
convergence was established in [16] for the case of demi-positive operators. This class includes the
subdifferentials of closed proper convex functions A = ∂Φ , as well as operators of the form A = I − T
with T a contraction. As the counterexample in [8] shows, even in the case of subdifferential operators,
the strong convergence property may not be satisfied.

Let us now return to the (RN) dynamic and come to the central question of this paper: We know
that, for a general maximal monotone operator and regularizing parameter λ(·), each trajectory of (RN)
converges weakly to a zero of A. In many physical or numerical situations, obtaining strong convergence
is a desirable feature of the dynamic or the algorithm, see [11] for a general discussion on this topic. Thus
it is natural to ask: in what situations strong convergence of the trajectories of (RN) holds true? This
turns out to be a challenging question: In the particular case λ(t) = λ0e

−t, one can perform a direct
integration of (RN). In that case, the asymptotic convergence of x(t) can be reduced to the convergence
analysis of the Tikhonov approximation, as the regularization parameter goes to zero. By a classical
result, see [15, 17, 30], in this situation, one obtains strong convergence to some minimal norm element.

Thus one may conjecture that strong convergence of trajectories of (RN) holds true in general. As a
central result of our analysis we give a negative answer to this claim: by an adaptation to our situation
of Baillon’s counterexample [8], we provide a maximal monotone operator A which is the gradient of a
convex C1 function, and a trajectory of (RN), with λ constant, which converges weakly and not strongly.
One may also wonder whether the case λ(t) = λ0e

−t, for which strong convergence holds for any maximal
monotone operator, is exceptional. We shall partially answer to this question and examine some other
related ones, among which: Can one provide a counterexample to the strong convergence with a parameter
λ(·) which asymptotically tends to zero? (and even more precisely, in the closed-loop case?).

Let us finally mention the rich connections between (RN), integrodifferential equations (see [19, 18, 33]),
and second order dynamics with inertial features (see [3, 4, 23]), for which similar questions can be raised.

The study of the continuous dynamics (RN) opens the way to algorithmic developments concerning
Newton’s methods for solving monotone inclusions. See [1], [5] for results in this direction. As a distinc-
tive feature of the algorithms obtained from the time discretization of (RN), they involve a large step
(proximal) condition, as proposed in [5, 26, 27]. It is reasonable to conjecture that the results obtained
in this paper have a natural counterpart in the algorithmic framework. This is an interesting question
for a future study.
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2. The regularized Newton dynamic

We successively recall basic facts concerning the (RN) dynamic: the global existence and unique-
ness theorem, the asymptotic convergence theorem, and some corresponding results for the closed loop-
regularization approach. Then, we examine some particular situations which enlight our study.

2.1. The open-loop regularized Newton dynamic. We consider the Regularized Newton Cauchy
problem ((RNC) for short)

(RNC)


v(t) ∈ A(x(t)),

λ(t)ẋ(t) + v̇(t) + v(t) = 0,

x(0) = x0, v(0) = v0 ∈ A(x0).

Definition 2.1. We say that a pair (x(·), v(·)) is a strong global solution of (RNC) if the following
properties i), ii), iii) and iv) are satisfied:

i) x(·), v(·) : [0,+∞[→ H are absolutely continuous on each bounded interval [0, b], 0 < b < +∞;

ii) v(t) ∈ A(x(t)) for all t ∈ [0,+∞[;

iii) λ(t)ẋ(t) + v̇(t) + v(t) = 0 for almost all t ∈ [0,+∞[;

iv) x(0) = x0, v(0) = v0.

We make the following standing Regularity assumption on function λ(·):

(RΛ) λ : [0,+∞[→]0,+∞[ is absolutely continuous on each interval [0, b], 0 < b < +∞.

Set µ(t) = 1
λ(t) . Thus µ(·) is absolutely continuous on each interval [0, b], 0 < b < +∞.

Theorem 2.2. [6, Theorem 2.4] The following properties hold:
i) For any Cauchy data x(0) = x0, v(0) = v0 ∈ A(x0), there exists a unique strong global solution

(x(·), v(·)) : [0,+∞[→ H×H of (RNC);
ii) The solution pair (x(·), v(·)) of (RNC) can be represented as: for any t ∈ [0,+∞[,

(7)

{
x(t) = JAµ(t)(z(t))

v(t) = Aµ(t)(z(t)),

where z(.) : [0,+∞[→ H is the unique strong solution of the Cauchy problem

(8)

{
ż(t) + (µ(t)− µ̇(t))Aµ(t)(z(t)) = 0,

z(0) = x0 + µ(0)v0.

Remark 2.3. In some cases, it is worth reinforcing, resp. to weaken, the regularity assumption (RΛ):

a) Suppose λ(·) Lipschitz continuous, then so are z(.), x(.) and v(.).
b) Suppose λ(·) of bounded variation on bounded sets, then Theorem 2.2 is still valid [7, Theorem 3.2].

The following result plays a central role in the asymptotical analysis.

Theorem 2.4. [6, Theorem 3.7] Suppose that λ(·) is bounded from above on [0,+∞[, and

(9) lim inf
t→+∞

λ̇(t)

λ(t)
> −1.

Then v(t)→ 0 strongly, and x(t) converges weakly to a zero of A, as t goes to +∞.
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2.2. The closed-loop regularized Newton dynamic. Given a C1 function α : ]0,+∞[ → ]0,+∞[,
we now consider the closed-loop regularized Newton dynamic

(10)


v(t) ∈ A(x(t)),

α
(
‖v(t)‖2

)
ẋ(t) + v̇(t) + v(t) = 0,

x(0) = x0, v(0) = v0, v0 ∈ A(x0), v0 6= 0.

Theorem 2.5. ([7, Theorem 4.1, Theorem 5.1]) There exists a unique global strong solution (x(·), v(·)) :
[0,+∞[→ H×H to (10). Moreover
a) v satisfies

(11) lim
t→+∞

‖v(t)‖ = 0.

b) Let us suppose moreover that α is bounded above in a neighbourhood of 0 and

(12) lim sup
r→0+

rα̇(r)

α(r)
<

1

2
.

Then, x(t) converges weakly to a zero of A, as t→ +∞.

Corollary 2.6. ([7, Corollary 5.1]) Take α(r) = rθ. Then the conclusions of Theorem 2.5 hold for θ < 1
2 .

Equivalently, for 0 < γ < 1, there is asymptotic stabilization of the system

(13)


v(t) ∈ A(x(t))

‖v(t)‖γ ẋ(t) + v̇(t) + v(t) = 0;

x(0) = x0, v(0) = v0 ∈ A(x0), v0 6= 0.

2.3. The linear antisymmetric case. We follow [6, Section 6.3]. The anti-clockwise rotation in the
plane about the origin through the angle π

2 provides a well-known situation where the semigroup generated
by a maximal monotone operator fails to converge (it only converges in the ergodic sense). Thus, take

H = R× R, A = rot(0,
π

2
), A(x1, x2) = (−x2, x1).

The operator A is maximal monotone, linear, A∗ = −A (antisymmetric), and 〈Ax, x〉 = 0 ∀x ∈ H.
Moreover the origin is the unique equilibrium (zero of A). Recall that, in the linear case, convex subdif-
ferential operators (for which convergence holds) correspond to symmetric operators. Let us describe the
(RN) dynamic in this particular situation.
Setting X(t) = x1(t) + ix2(t), (RN) is equivalent to

(14) (λ(t) + i)Ẋ(t) + iX(t) = 0.

Let us successively examine the different cases:
a) λ > 0 is constant. Then, direct integration of (14) gives

X(t) = X0 exp

(
− 1 + iλ

1 + λ2
t

)
.

We observe that x(t) → 0 as t → +∞. This makes contrast with the ergodic convergence of the semi-
group generated by A, which exhibits periodic circular orbits.

b) λ(·) is a positive function. Integration of (14) gives ‖X(t)‖ = ‖X(0)‖ exp
(
−
∫ t
0

1
1+λ(s)2

ds
)

. Hence∫ +∞

0

1

1 + λ(t)2
dt = +∞ ⇒ x(t)→ 0 as t→ +∞.

The number of rotations around the origin depends on
∫ +∞
0

λ(t)

1+λ(t)2
dt.
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2.4. The case λ(t) = λ0e
−t, λ0 > 0. For this choice of λ(·), for any t ≥ 0

0 > λ̇(t) = −λ(t).

It follows that the trajectory x(·) is bounded (see [6, Lemma 3.5]), and v(t) converges to 0 as t → +∞.
It is possible to have a closed formula for x(t), v(t), and to estimate how fast is the convergence of v(t)
to 0. Define z(·) by

z(t) = x(t) +
1

λ(t)
v(t) = x(t) +

et

λ0
v(t).

Setting µ(t) = 1
λ(t) = et

λ0
, we have µ̇(t) = µ(t), which, by (8), implies ż(t) = 0 for t ≥ 0. Hence, for t ≥ 0,

x(t) +
et

λ0
v(t) = z(0) = x0 +

1

λ0
v0

which, in view of the inclusion v(t) ∈ A(x(t)) is equivalent to

(15) x(t) = JAet/λ0
(z(0)), v(t) = Aet/λ0

(z(0)).

The next proposition is a direct consequence of the above equation.

Proposition 2.7. ([6, Proposition 5.1]) Let λ(t) = λ0e
−t. Assume that A−1(0) is non-empty, and let x∗0

be the orthogonal projection of x0 + λ−10 v0 onto A−1(0). Then, the following properties are satisfied:

i) ∀t ≥ 0, ‖x(t)− (x0 + λ−10 v0)‖ ≤ ‖x∗0 − (x0 + λ−10 v0)‖;

ii) ∀t ≥ 0, ‖v(t)‖ ≤ λ0e−t‖x∗0 − (x0 + λ−10 v0)‖;

iii) limt→+∞ x(t) = x∗0.

Proof. To simplify the proof, set z0 = x0 + λ−10 v0.
i) To prove the first inequality, take x∗ ∈ A−1(0). By monotonicity of A, and z(t) = x(t) + 1

λ(t)v(t) = z0,

we have

0 ≤ 1

λ
〈x∗ − x(t), 0− v(t)〉 = 〈x∗ − x(t), x(t)− z0〉.

Thus,

‖x∗ − z0‖2 = ‖x∗ − x(t)‖2 + 2〈x∗ − x(t), x(t)− z0〉+ ‖x(t)− z0‖2

≥ ‖x(t)− z0‖2.

This being true for any x∗ ∈ A−1(0), passing to the infimum with respect to x∗ establishes the formula.
ii) By (15) and item i)

‖v(t)‖ = ‖Aet/λ0
(z0)‖

= λ0e
−t‖x(t)− z0‖

≤ λ0e−t‖x∗0 − (x0 + λ−10 v0)‖.

iii) We have x(t) = JAet/λ0
(z0), which, equivalently, can be written as

λ0e
−t (x(t)− z0) +A(x(t)) 3 0.

Equivalently, by setting y(t) := x(t)− z0, and By = A(y + z0) (note that B is still maximal monotone)

λ0e
−ty(t) +B(y(t)) 3 0.

Noticing that λ0e
−t → 0 as t → +∞, by using the classical asymptotic properties of the Tikhonov

approximation, see for example see [15, 17, 30], we obtain

lim
t→+∞

y(t) = projB−1(0)0.
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Since B−1(0) = −z0 +A−1(0), we finally obtain

lim
t→+∞

x(t) = z0 + proj−z0+A−1(0)0

= projA−1(0)z0 = x∗0.

�

Note that ‖v(t)‖ ≤ c e−t, which, as an asymptotical behavior, is almost as good as the “pure” Newton’s
continuous dynamic.

3. A situation where there is no strong convergence

Our approach is based on the adaptation to the (RN) dynamic of the counterexample of Baillon. In a
different context, a similar strategy was developed in [20] to provide a sequence generated by the proximal
algorithm that is weakly and not strongly convergent.

Let us recall Baillon’s result:

Theorem 3.1. ([8, Proposition 1]) There exists a closed convex proper function Φ : H = l2(N) →
R+ ∪ {+∞}, with ∂Φ−1(0) 6= ∅, such that the semigroup S(t) generated by the maximal monotone
operator A = ∂Φ satisfies the following property: there exists some a ∈ domΦ such that S(t)a does not
converge strongly to an element of ∂Φ−1(0).

Bruck’s theorem [16] states that, for all x ∈ domΦ, S(t)x weakly converges of to an element of ∂Φ−1(0).
Thus Baillon’s counterexample is a constructive example of a closed convex proper Φ : H → R ∪ {+∞},
and of a trajectory of the semigroup generated by ∂Φ which converges weakly and not strongly. Baillon’s
thesis [9] contains an extended version of [8], with a counterexample involving a convex function Φ of
class C1. For our purpose, we need a slightly more precise statement, with Φ ∈ C1,1 being taken equal to
the Moreau envelope of some closed convex function. We recall the definition of the Moreau envelope (see
[12] for further details): Given a closed convex proper function Ψ : H → R∪ {+∞}, its Moreau envelope
of index λ > 0 is the function Ψλ : H → R which is defined by, for all x ∈ H

Ψλ(x) = inf
ξ∈H
{Ψ(ξ) +

1

2λ
‖x− ξ‖2}.

We use the following result from [9], whose proof is reproduced here, for the convenience of the reader.
It compares the asymptotic behavior of the trajectories generated respectively by ∂Φ and by its Yosida
approximation (∂Φ)λ.

Lemma 3.2. In a Hilbert space H, let us give a closed convex proper function Φ : H → R+ ∪{+∞}, ∂Φ
its subdifferential operator, and for any λ > 0, (∂Φ)λ = ∇Φλ its Yosida approximation. Let us denote
by S(t) and Sλ(t) the semigroups generated respectively by ∂Φ and (∂Φ)λ. Then, for any x ∈ domΦ

lim
λ→0

lim
t→+∞

‖Sλ(t)x− S(t)x‖ = 0.

Proof. Set u(t) = S(t)x and uλ(t) = Sλ(t)x. Without ambiguity, we write briefly Jλ for the resolvent
of index λ > 0 of the subdifferential of Φ. From −u̇(t) ∈ ∂Φ(u(t)), and −u̇λ(t) = ∇Φλ(uλ(t)) ∈
∂Φ(Jλ(uλ(t))), by monotonicity of the operator ∂Φ, we obtain

〈−u̇λ(t) + u̇(t), Jλ(uλ(t))− u(t)〉 ≥ 0.

Since

−u̇λ(t) = ∇Φλ(uλ(t)) =
1

λ
(uλ(t)− Jλ(uλ(t)))

we equivalently have

〈−u̇λ(t) + u̇(t), λu̇λ(t) + uλ(t)− u(t)〉 ≥ 0.



8 H. ATTOUCH, J.-B. BAILLON

Hence

1

2

d

dt
‖uλ(t)− u(t)‖2 ≤ λ 〈u̇λ(t), u̇(t)〉 − λ‖u̇λ(t)‖2 ≤ λ

4
‖u̇(t)‖2.(16)

On the other hand, by the generalized derivation chain rule (see [13, Theorem 3.2])

(17)
d

dt
Φ(u(t)) = −‖u̇(t)‖2.

By combining (16) and (17) we obtain

(18)
d

dt

(
1

2
‖uλ(t)− u(t)‖2 +

λ

4
Φ(u(t))

)
≤ 0.

As a consequence,

(19) t 7→
(
‖uλ(t)− u(t)‖2 +

λ

2
Φ(u(t))

)
is a nonincreasing function, which implies that, for all s ≥ 0

(20) lim
t→+∞

(
‖uλ(t)− u(t)‖2 +

λ

2
Φ(u(t))

)
≤ ‖uλ(s)− u(s)‖2 +

λ

2
Φ(u(s)).

On the other hand, by (17), t 7→ Φ(u(t)) is a nonincreasing function, and Φ has been assumed to be
nonnegative. Hence Φ(u(t)) converges to a finite value, as well as ‖uλ(t) − u(t)‖, which allows us to
rewrite (20) as follows:

(21) lim
t→+∞

‖uλ(t)− u(t)‖2 +
λ

2
lim

t→+∞
Φ(u(t)) ≤ ‖uλ(s)− u(s)‖2 +

λ

2
Φ(u(s)).

Since Φ(u(t)) is nonnegative we deduce that for all s ≥ 0

(22) lim
t→+∞

‖uλ(t)− u(t)‖2 ≤ ‖uλ(s)− u(s)‖2 +
λ

2
Φ(u(s)),

and hence

(23) lim
t→+∞

‖uλ(t)− u(t)‖ ≤ ‖uλ(s)− u(s)‖+

(
λ

2
Φ(u(s))

) 1
2

.

Since uλ(s) converges to u(s) as λ goes to zero (see [13, Theorem 3.2]), and Φ(u(s)) is finitely valued for
s > 0, we obtain

(24) lim sup
λ→0

lim
t→+∞

‖uλ(t)− u(t)‖ ≤ 0

which gives our claim

(25) lim
λ→0

lim
t→+∞

‖uλ(t)− u(t)‖ = 0.

�

We can now state the following reinforced version of Baillon’s counterexample:

Proposition 3.3. There exists a closed convex proper function Φ : H = l2(N) → R+ ∪ {+∞}, with
S = ∂Φ−1(0) 6= ∅, such that the semigroup Sλ(t) generated by the Yosida approximation Aλ = ∇Φλ of
the maximal monotone operator A = ∂Φ satisfies the following property: there exists some a ∈ dom∂Φ,
and λ0 > 0, such that for any 0 < λ < λ0, Sλ(t)a does not converge strongly to an element of ∂Φ−1(0).
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Proof. Let Φ : H → R+ ∪ {+∞}, and a ∈ domΦ provided by Baillon’s counterexample. Thus S(t)a does
not converge strongly. Set

S(t)a ⇀ ξ weakly as t→ +∞.
Let us show the existence of some λ0 > 0 such that, for any 0 < λ < λ0, Sλ(t)a does not converge
strongly. Let us argue by contradiction. Thus there exists a sequence (λn) with λn → 0 such that Sλn(t)a
converge strongly. Set

(26) Sλn(t)a→ ξn strongly as t→ +∞.

By the lower semicontinuity property of the norm for the weak topology

‖ξn − ξ‖ ≤ lim
t→+∞

‖Sλn(t)a− S(t)a‖.

By Lemma 3.2

lim
λ→0

lim
t→+∞

‖Sλ(t)a− S(t)a‖ = 0.

By combining the two last equations we obtain

(27) lim
n→+∞

‖ξn − ξ‖ = 0.

By the triangle inequality

‖S(t)a− ξ‖ ≤ ‖S(t)a− Sλn(t)a‖+ ‖Sλn(t)a− ξn‖+ ‖ξn − ξ‖.

Let t→∞ in the above inequality. By using the strong convergence property (26), we obtain

lim sup
t→+∞

‖S(t)a− ξ‖ ≤ lim
t→+∞

‖S(t)a− Sλn(t)a‖+ ‖ξn − ξ‖.

This being true for any n ∈ N, by letting n→ +∞, and by using (27)

lim sup
t→+∞

‖S(t)a− ξ‖ ≤ lim
n→+∞

lim
t→+∞

‖S(t)a− Sλn(t)a‖.

Using again Lemma 3.2, we deduce that

lim
t→+∞

‖S(t)a− ξ‖ = 0

a clear contradiction with the weak but not strong asymptotic convergence of S(t)a.
Passing from a ∈ domΦ to a ∈ dom∂Φ is immediate. One just need to take an arbitraty t0 > 0, and

as a new initial point S(t0)a, which, by the regularizing effect, belongs to dom∂Φ. �

We can now provide an example where the regularized Newton dynamic has a trajectory which con-
verges weakly but not strongly.

Theorem 3.4. There exists a closed convex proper function Φ : H = l2(N) → R+ ∪ {+∞}, with
∂Φ−1(0) 6= ∅, and λ0 > 0, such that for any λ > λ0, there exists (x0, v0) ∈ ∂Φ such that the solution
trajectory (x(·), v(·)) of

(28)

 v(t) ∈ ∂Φ(x(t))
λx(t) + v̇(t) + v(t) = 0;
x(0) = x0, v(0) = v0 ∈ ∂Φ(x0)

verifies: x(t) converges weakly but not strongly to an element of ∂Φ−1(0).

Proof. Let us specialize Theorem 2.2 to the particular case λ(·) constant. Setting µ = 1
λ the solution pair

(x(·), v(·)) of (RNC) can be represented as: for any t ∈ [0,+∞),

(29)

{
x(t) = JAµ (z(t))

v(t) = Aµ(z(t)),
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where JAµ and Aµ denote respectively the resolvent ant the Yosida approximation of the maximal mono-
tone operator A (we will specify it later), and z(.) : [0,+∞[→ H is the unique strong solution of the
Cauchy problem

(30)

{
ż(t) + µAµ(z(t)) = 0,

z(0) = x0 + µv0.

The change of time scale

w(t) := z(
t

µ
)

in (30) gives

(31)

{
ẇ(t) +Aµ(w(t)) = 0,

w(0) = x0 + µv0.

Take A = ∂Φ, a ∈ dom∂Φ, and µ0 > 0 provided by Proposition 3.3. Thus Φ : H = l2(N)→ R+ ∪ {+∞}
is a closed convex proper function with S = ∂Φ−1(0) 6= ∅ such that, for any 0 < µ < µ0, Sµ(t)a does not

converge strongly to an element of ∂Φ−1(0). Fix 0 < µ < µ0. By Minty’s theorem R(I+µA) = H, which
gives the existence of (x0µ, v0µ) ∈ A such that x0µ + µv0µ = a. Let us notice that

w(t) = Sµ(t)a.

Hence w(t) does not converge strongly as t→ +∞. Clearly the same property holds for z(t) = w(µt).
On the other hand, the solution z(·) of the classical differential equation (30) satisfies

(32) ż(t)→ 0 strongly as t→ +∞.
This is a classical property of the semigroup generated by the gradient of a C1 convex, minorized function.
Indeed, this is a direct consequence of the energy estimate

∫∞
0 ‖ż(t)‖

2dt < +∞ (which itself is a conse-
quence of (17)), and of the nonincreasing property of t 7→ ‖ż(t)‖ (valid for any semigroup of contractions).
Noticing that (30) can be equivalently written as

(33) ż(t) + z(t)− Jµ(z(t)) = 0

we deduce from (32) and (33) that

(34) z(t)− Jµ(z(t))→ 0 strongly as t→ +∞.
Since z(t) does not converge strongly as t→ +∞, we deduce that

(35) x(t) = Jµ(z(t)) converges weakly and not strongly as t→ +∞.
This argument is valid for any µ = 1

λ < µ0, and hence for any λ > λ0 =: 1
µ0

, which completes the

proof. �

Remark 3.5. a) The argument of Theorem 3.4 can be easily adapted so as to provide a counterexample
with a C1 convex function.

b) The counterexample to the strong convergence of (RN) has been obtained with λ(·) constant. For
numerical purpose it would be of great interest to analyze the weak versus strong convergence properties
in the case where λ(t) → 0 as t → +∞. Similarly, the closed-loop case should be analyzed from this
perspective.

4. On the strong convergence property

4.1. λ(t) = λ0e
−t as a particular case. In section 2.4, in the case λ(t) = λ0e

−t, we showed that for
any maximal monotone operator A, strong convergence is satisfied by any trajectory generated by (RN).
Thus it is a natural question to ask whether this result holds true only for this particular choice of λ(·),
or if there is some latitude in the choice of λ(·). We will give some answers to this question.
In this section we assume that λ(·) is a positive function which satisfies a) and b):

a) λ(t)→ 0 as t→ +∞, and hence µ(t) = 1
λ(t) → +∞ as t→ +∞.
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b) λ(t) + λ̇(t) ≥ 0 for all t ≥ 0, and hence µ(t)− µ̇(t) ≥ 0 for all t ≥ 0.

Let us recall that the solution of (RN) verifies

(36) x(t) = JAµ(t)(z(t))

where JAµ is Yosida approximation of index µ > 0 of the maximal monotone operator A, and z(.) :
[0,+∞[→ H is the unique strong solution of the Cauchy problem

(37)

{
ż(t) + (µ(t)− µ̇(t))Aµ(t)(z(t)) = 0,

z(0) = x0 + µ(0)v0.

Note first that it suffices to prove that z(t) converges strongly, as shown in the following lemma.

Lemma 4.1. Suppose that z(t)→ z∞ strongly as t→ +∞. Then x(t)→ x∗ strongly as t→ +∞, where
x∗ is the orthogonal projection of z∞ onto A−1(0).

Proof. By (36), and the contraction property of the resolvent operator Jµ(t) we have

(38) ‖x(t)− Jµ(t)z∞‖ = ‖Jµ(t)z(t)− Jµ(t)z∞‖ ≤ ‖z(t)− z∞‖.
By the same argument as in section 2.4 (see also [12, Theorem 23.47]), we have

(39) lim
t→+∞

Jµ(t)z∞ = projA−1(0)z∞ = x∗.

The conclusion follows from (38), (39), and the assumption z(t)→ z∞ strongly as t→ +∞. �

Theorem 4.2. Set ψ(t) = µ̇(t)
µ(t) . Let us assume that the two following conditions hold 1, where M is a

nonnegative real number:

1− M

t
≤ ψ(t) ≤ 1(40)

lim sup
s,t→+∞

(
ψ(t)− ψ(s) +

∫ t

s
(dψ)−(τ)

)
(t− s) ≤ 0.(41)

Then, for any maximal monotone operator A and any trajectory generated by (RN), x(t) converges
strongly to an element of A−1(0).

Proof. Let us fix some ξ ∈ A−1(0). We thus have (µ(t) − µ̇(t))Aµ(t)ξ = 0. On the other hand by
(37) −ż(t) = (µ(t) − µ̇(t))Aµ(t)(z(t)). Using the monotonicity property of Aµ(t) and the nonegativity of
µ(t)− µ̇(t) we obtain

(42) 〈−ż(t), z(t)− ξ〉 ≥ 0,

which expresses that

(43) ‖z(t)− ξ‖ ↓ (nonincreasing function).

Let us further analyze the differential equation which is satisfied by z(·). We have

(44) ż(t) +
µ(t)− µ̇(t)

µ(t)
(z(t)− ξ) =

µ(t)− µ̇(t)

µ(t)

(
Jµ(t)z(t)− ξ

)
.

Taking the square norm of the two members of this equality yields

(45) ‖ż(t)‖2+2
µ(t)− µ̇(t)

µ(t)
〈ż(t), z(t)− ξ〉+

(
µ(t)− µ̇(t)

µ(t)

)2

‖z(t)−ξ‖2 =

(
µ(t)− µ̇(t)

µ(t)

)2

‖Jµ(t)z(t)−ξ‖2.

On the other hand, since Jµ(t) is a contraction and Jµ(t)ξ = ξ, we have

(46) ‖Jµ(t)z(t)− ξ‖2 = ‖Jµ(t)z(t)− Jµ(t)ξ‖2 ≤ ‖z(t)− ξ‖2.

1when ψ is continuously differentiable, (dψ)− is the negative part of the measure with density the derivative of ψ
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Combining (45) and (46) we obtain

(47) ‖ż(t)‖2 + 2
µ(t)− µ̇(t)

µ(t)
〈ż(t), z(t)− ξ〉+

(
µ(t)− µ̇(t)

µ(t)

)2

‖z(t)− ξ‖2 ≤
(
µ(t)− µ̇(t)

µ(t)

)2

‖z(t)− ξ‖2,

which, after simplification, gives

(48) ‖ż(t)‖2 + (1− ψ(t))
d

dt

(
‖z(t)− ξ‖2

)
≤ 0.

For any 0 < s ≤ t < +∞, by integration between s and t of the above inequality, and using Cauchy-
Schwarz inequality, we deduce that

‖z(t)− z(s)‖2 ≤ (t− s)
∫ t

s
‖ż(τ)‖2dτ(49)

≤ t− s)
∫ t

s
(ψ(τ)− 1)

d

dτ

(
‖z(τ)− ξ‖2

)
dτ.(50)

After integration by part of this last expression we obtain

‖z(t)− z(s)‖2 ≤ (t− s)
(

(ψ(t)− 1) ‖z(t)− ξ‖2 − (ψ(s)− 1) ‖z(s)− ξ‖2 −
∫ t

s

dψ

dτ
(τ)‖z(τ)− ξ‖2dτ

)(51)

≤ (t− s)
(

(ψ(t)− 1) ‖z(t)− ξ‖2 − (ψ(s)− 1) ‖z(s)− ξ‖2 +

∫ t

s
(
dψ

dτ
)−(τ)‖z(τ)− ξ‖2dτ

)
.(52)

Since τ 7→ ‖z(τ)− ξ‖ is nonincreasing, we deduce that

(53) ‖z(t)− z(s)‖2 ≤ (t− s)
(

(ψ(t)− 1) ‖z(t)− ξ‖2 − (ψ(s)− 1) ‖z(s)− ξ‖2 + ‖z(s)− ξ‖2
∫ t

s
(dψ)−

)
.

Equivalently

‖z(t)− z(s)‖2 ≤ (t− s) (1− ψ(t))
(
‖z(s)− ξ‖2 − ‖z(t)− ξ‖2

)
+ ‖z(s)− ξ‖2(t− s)

(
ψ(t)− ψ(s) +

∫ t

s
(dψ)−

)
≤ t(1− ψ(t))

(
‖z(s)− ξ‖2 − ‖z(t)− ξ‖2

)
+ ‖z(s)− ξ‖2(t− s)

(
ψ(t)− ψ(s) +

∫ t

s
(dψ)−

)
.

Using assumption (40) on ψ, we obtain

(54) ‖z(t)− z(s)‖2 ≤M
(
‖z(s)− ξ‖2 − ‖z(t)− ξ‖2

)
+ ‖z(s)− ξ‖2(t− s)

(
ψ(t)− ψ(s) +

∫ t

s
(dψ)−

)
.

By using the convergence property of t 7→ ‖z(t)− ξ‖, and assumption (41), we deduce that z(t) satisfies
the Cauchy property (as t→ +∞), which implies the strong convergence of z(t). �

Remark 4.3. The assumption (40), 1− M
t ≤ ψ(t) = µ̇(t)

µ(t) ≤ 1, implies that limt→+∞ ψ(t) = 1, we means

that asymptotically µ(t) behaves like µ0e
t, for some µ0 > 0.

The second assumption (41) lim sups,t→+∞

(
ψ(t)− ψ(s) +

∫ t
s (dψ)−(τ)

)
(t− s) ≤ 0 is even more strin-

gent. Assuming ψ(·) to be increasing, it is equivalent to

lim
s,t→+∞, s<t

(ψ(t)− ψ(s)) (t− s) = 0,

which itself is equivalent to

∀ε > 0 ∃sε : (ψ(t)− ψ(sε)) (t− sε) ≤ ε ∀t ≥ sε.
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Hence, the function t 7→ (ψ(t)− ψ(sε)) (t − sε) remains bounded as t → +∞. Since limt→+∞ ψ(t) = 1,
this forces ψ(sε) = 1. Hence, ψ(t) = 1 for t large enough, which implies µ(t) = µ0e

t, for some µ0 > 0.

4.2. Strongly monotone operators. Let us recall that a maximal monotone operator A is said to be
strongly monotone, if there exists some α > 0 such that for any (x, v) ∈ A, (y, w) ∈ A

〈w − v, y − x〉 ≥ α‖y − x‖2.

Proposition 4.4. (see also [6, Theorem 3.14]) Supppose that A is a maximal monotone operator which
is strongly monotone, and that λ(·) is a nonincreasing function which satisfies: for almost all t > 0

λ(t) + λ̇(t) ≥ 0.

Then for any trajectory (x(·), v(·)) of the (RN) dynamic,
a) x(t) converges strongly to the unique zero of A,
b) v(t) converges strongly to 0.

Proof. By [6, Collorary 3.6], v(t) → 0 as t → +∞ (this is a consequence of the energy estimate v ∈
L2(0,+∞;H), and of the decreasing property of ‖v(t))‖. Let x̄ be the unique zero of A. From 0 ∈ A(x̄),
v(t) ∈ A(x(t)) and the strong monotonicity of A, we have

〈v(t), x(t)− x̄〉 ≥ α‖x(t)− x̄‖2.
By Cauchy-Schwarz inequality, we deduce that

‖x(t)− x̄‖ ≤ 1

α
‖v(t)‖.

Since v(t)→ 0, we obtain ‖x(t)− x̄‖ → 0 as t→ +∞. �

4.3. Subdifferential of a convex even function.

Proposition 4.5. Supppose that A = ∂Φ is the subdifferential of a closed convex even function Φ : H →
R ∪ {+∞}. Suppose that λ(·) is constant. Then for any trajectory (x(·), v(·)) of the (RN) dynamic,

a) x(t) converges strongly to a zero of A,
b) v(t) converges strongly to 0.

Proof. Following Lemma 4.1 it suffices to prove that z(t) converges strongly where z(.) : [0,+∞[→ H is
a solution of the differential equation

(55) ż(t) + µAµ(z(t)) = 0.

As a key property note that, if Φ : H → R ∪ {+∞} is an even function, then so is Φµ. Following [16,
Theorem 5] we have that that z(t) converges strongly, which proves our claim.

�

4.4. Linear monotone operator. In the linear case, we can perform explicit calculations, so as to
obtain an accurate view of the asymptotic behavior of the trajectories of (RN). Take H = l2(N), and
denote by x = (xk) a generic element of H. Let us give (ak) a sequence of positive numbers which is
bounded from above, i.e., there exists some M > 0 such that for all k ∈ N
(56) 0 < ak ≤M.

Let us define the operator A : H → H by

(57) Ax = (akxk).

Clearly, A is a linear continuous monotone operator on H, and hence is a maximal monotone operator.
Let us consider the (RN) equation with λ(·) a positive locally absolutely continuous function which is
just assumed to be bounded from above, i.e.,

(58) 0 < λ(t) ≤ Λ
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for some Λ > 0. Set x(t) = (xk(t)) and x(0) = (x0k). For each k ∈ N, we have

(59) (λ(t) + ak)ẋk(t) + akxk(t) = 0.

By integration of (59) we obtain

(60) xk(t) = x0ke
−

∫ t
0

ak
ak+λ(τ)

dτ
.

By (58), for each k ∈ N, and all τ ≥ 0

(61)
ak

ak + λ(τ)
≥ ak
ak + Λ

which implies

(62) |xk(t)| ≤ |x0k|e
−t ak

ak+Λ .

Since ak > 0, we obtain xk(t)→ 0 as t→ +∞, which gives the weak convergence x(t) ⇀ 0.
Let us now consider the strong convergence property. We have

(63) ‖x(t)‖2 =
∑
k

|x0k|2e
−2

∫ t
0

ak
ak+λ(τ)

dτ
.

In order to obtain that ‖x(t)‖ → 0, let us apply the Lebesgue dominated convergence theorem: On the
one hand, by (61), for each k ∈ N

lim
t→+∞

∫ t

0

ak
ak + λ(τ)

dτ =

∫ +∞

0

ak
ak + λ(τ)

dτ = +∞(64)

≥
∫ +∞

0

ak
ak + Λ

dτ = +∞.(65)

Hence for each k ∈ N

(66) lim
t→+∞

|x0k|2e
−2

∫ t
0

ak
ak+λ(τ)

dτ
= 0.

On the other hand

(67) |x0k|2e
−2

∫ t
0

ak
ak+λ(τ)

dτ ≤ |x0k|2.
Since

∑
k |x0k|2 < +∞, by the dominated convergence theorem we obtain that x(t) converges strongly to

0, which is the unique zero of A.

4.5. A Tikhonov-like result. Let us make the following assumptions on λ(·):
i) λ(t) = e−t(1 + ε(t)).
ii) ε̇(t) ≥ 0.
ii) ε(t) ↑ 0 as t→ +∞.

Note that under these assumptions

(68) λ(t) + λ̇(t) = e−tε̇(t) ≥ 0.

As a model example of function λ(·) verifying i) ii) iii) one can consider

(69) λ(t) = e−t(1− e−2t)
with ε(t) = −e−2t.

Given A a general maximal monotone operator, let us consider a trajectory of the (RNC) dynamic
which is associated to A and λ(·)

(70) (RNC)


v(t) ∈ A(x(t)),

λ(t)ẋ(t) + v̇(t) + v(t) = 0,

x(0) = x0, v(0) = v0 ∈ A(x0).
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After multiplication by et of the differential equation in (70) we obtain

(71) λ(t)etẋ(t) + et(v̇(t) + v(t)) = 0,

that is

(72) λ(t)etẋ(t) +
d

dt
(etv)(t) = 0.

By integration between 0 and t

(73)

∫ t

0
λ(τ)eτ ẋ(τ)dτ + etv(t) = v0.

Let us integrate by part the integral term in (73)

(74) λ(t)etx(t)−
∫ t

0
eτ (λ(τ) + λ̇(τ))x(τ)dτ + etv(t) = v0 + λ(0)x0.

Then use the particular form of λ(·) and the corresponding relation (68) to obtain

(75) (1 + ε(t))x(t)−
∫ t

0
ε̇(τ)x(τ)dτ + etv(t) = v0 + λ(0)x0.

Set z0 = v0 + λ(0)x0 and ν(t) = et

1+ε(t) . After division of (75) by 1 + ε(t) we obtain

(76) x(t) + ν(t)v(t) =
1

1 + ε(t)
z0 +

1

1 + ε(t)

∫ t

0
ε̇(τ)x(τ)dτ,

i.e.,

(77) x(t) = JAν(t)

(
1

1 + ε(t)
z0 +

1

1 + ε(t)

∫ t

0
ε̇(τ)x(τ)dτ

)
.

Thus we have

(78) x(t) = JAν(t)η(t)

with

(79) η(t) :=
1

1 + ε(t)
z0 +

1

1 + ε(t)

∫ t

0
ε̇(τ)x(τ)dτ.

Let us examine the asymptotic behavior of η(t). By (68) we have λ(t)+λ̇(t) ≥ 0. By using [6, Lemma 3.5]
this implies that the trajectory x(·) is bounded. Set M = supt ‖x(t)‖.
Since ε̇(t) ≥ 0 and ε(t) ↑ 0 as t→ +∞∫ t

0
‖ε̇(τ)x(τ)‖dτ =

∫ t

0
ε̇(τ)‖x(τ)‖dτ(80)

≤M
∫ t

0
ε̇(τ)dτ

≤M |ε(0)|.

Hence this integral is convergent (for the norm topology) and

(81)

∫ t

0
ε̇(τ)x(τ)dτ →

∫ ∞
0

ε̇(τ)x(τ)dτ.

Since 1
1+ε(t) → 1 we obtain

(82) lim
t→∞

η(t) = η := z0 +

∫ ∞
0

ε̇(τ)x(τ)dτ.
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Since JAν(t) is a contraction, by (77)

(83) ‖x(t)− JAν(t)η‖ ≤ ‖η(t)− η‖

which tends to zero. The strong convergence of x(t) is a consequence of the strong convergence of JAν(t)η,

and of the fact that ν(t) tend to infinity (indeed like et). This is a consequence of the classical asymptotic
properties of the Tikhonov approximation, see for example see [15, 17, 30].

Note that the strong limit x∞ of x(t) satisfies:

(84) x∞ = projA−10

(
z0 +

∫ ∞
0

ε̇(τ)x(τ)dτ

)
.

When ε = 0 one recovers the classical formula.
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