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Abstract 
 

Therapeutic antibodies are increasingly used to treat various diseases, including neoplasms and 

chronic inflammatory diseases. Antibodies exhibit complex pharmacokinetic properties, notably 

due to the influence of antigen mass, i.e. the amount of antigenic targets to which the monoclonal 

antibody binds specifically. This review focuses on the influence of antigen mass on the 

pharmacokinetics of therapeutic antibodies quantified by pharmacokinetic modelling in humans. 

Out of 159 pharmacokinetic studies, 85 reported an influence of antigen mass. This influence led 

to nonlinear elimination decay in 50 publications which was described using target-mediated 

drug disposition (TMDD) or derived models, as quasi-steady-state, irreversible binding and 

Michaelis-Menten models. In 35 publications, the pharmacokinetics was apparently linear and the 

influence of antigen mass was described as covariate of pharmacokinetic parameters. If some 

reported covariates, such as circulating antigen concentration or tumor size, are likely to be 

correlated to antigen mass, others, such as disease activity or disease type, may contain little 

information on the amount of antigenic targets. In some cases, antigen targets exist in different 

forms, notably in the circulation and expressed at cell surface. The influence of antigen mass 

should be soundly described during the early clinical phases of drug development. To maximize 

therapeutic efficacy, sufficient antibody doses should be administered to ensure the saturation of 

antigen targets by therapeutic antibody in all patients. If necessary, antigen mass should be taken 

into account in routine clinical practice. 

 

 

 

Key points 
 

- Current knowledge on the pharmacokinetics of monoclonal antibodies (mAbs) states that higher 

antigen amount was associated with mAb concentrations and higher mAb clearance. 

- Beacause of antigen mass, mAb pharmacokinetics may display nonlinear elimination shape. 

The influence of antigen mass on mAb pharmacokinetics is described using target-mediated drug 

disposition (TMDD) model, or approximations of this model. Antigen mass influence may be 

quantified using covariates. 

- Current mAb clinical development and use in clinical practice may be improved by 

optimization of dose, which should ensure the saturation of antigen targets in all patients. 
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Abbreviations 
ADCC Antibody dependent cellular cytotoxicity 

AS Ankylosing spondylitis 

CD Crohn's disease 

CDX Cluster of differentiation X 

CEA carcino-embryonic antigen 

CLL Chronic lymphocytic leukemia 

CRP C-reactive protein 

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4 

ECOG Eastern cooperative oncology group 

ELISA Enzyme-linked immunosorbent assay 

Fab Antigen binding portion 

Fc Crystallizable portion 

FCGRA Gene encoding FcγRIIIA 

FcRn Neonates Fc portion receptor 

FcγR receptor of Fc portion of IgG 

GPIIb/IIIa Glycoprotein IIb/IIIa 

HBI Harwey-Bradshaw index 

HER, EGFR Human epidermal growth factor receptors 

HER2-ECD Extracellular domain of human epidermal growth factor receptor 2 

HPLC-MS/MS High pressure liquid chromatography coupled with tandem mass spectrometry 

IBD Inflammatory bowel disease 

IgG Immunoglobulin of isotype G 

IL-X Interleukin X 

IL-XR Receptor of interleukin X 

IM Intramuscular 

ITV Intravitreal 

IV Intravenous 

mAb Monoclonal antibody 

PASI Psoriasis area severity index 

PCSK9 Proprotein convertase subtilisin/kexin type 9  

PD-1 Programmed cell death 1 

QSS Quasi-steady-state 

RA Rheumatoid arthritis 

RANKL Receptor activator of nuclear factor kappa-B ligand 

SA Spondylarthropathies 

SC Subcutaneous 

T½-β Elimination half-life 

TDM Therapeutic drug monitoring 

TMDD Target-mediated drug disposition 

TNF-α Tumor necrosis factor alpha 

UC Ulcerative colitis 

VEGF Vascular endothelial growth factor 
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1 Introduction 
 

For the last three decades, monoclonal antibodies (mAbs) have deeply improved the treatment of 

several diseases, including neoplasms and chronic inflammatory diseases. Their indications have 

been progressively extended, notably towards organ transplantation, hematology and metabolic 

disorders. 

 

Therapeutic mAbs are human immunoglobulins of isotype G (IgG), which are large molecular 

weight (150 kDa) hydrophilic proteins, made of two identical associations of heavy and light 

chain which both include constant and variable domains. The IgG present two identical antigen-

binding (Fab) and one crystallizable (Fc) portion. At the extremity of the variable domain, the 

Fab portion has hypervariable region which binds to the specific target antigen with high affinity 

and specificity. The Fc portion is involved in (i) recruiting the effector systems complement 

component C1q, effector cells expressing FcγR at their surface, and (ii) protecting the IgG from 

intracellular catabolism and therefore conferring a long elimination half-life. 

 

The first mAbs were administered intraveneously (IV) but an increasing number are being 

administered subcutaneously (SC). The absorption following SC injection can usually be 

described using a slow first-order kinetic term, time of peak concentration (Tmax) being reached 

dafter several days.[1-5] The pharmacokinetics of mAbs is usually described using 2-compartment 

models with first-order transfer rates.[6] Central and steady-state volumes of distribution of mAbs 

are usually 3-5 L and 5-15 L[1, 2, 4], respectively, values which suggest that mAbs are confined to 

lymphatic and blood vessels, and exhibit low (but not inexistent) tissue penetration. The 

elimination of IgG involves two different pathways. 

- intracellular nonspecific catabolism. After cellular uptake, the Fc portion of IgGs binds to the 

neonatal Fc Receptor (FcRn) at acidic pH (<6.5) and thereby are protected from lysosomal 

degradation. IgG are addressed to the apical membrane and, when pH returns to neutral (7.4), 

they are released from FcRn into blood circulation. This recycling mechanism of IgG explains 

their long elimination half-life of approximately 3 weeks. This mechanism is saturable for IgG 

concentrations higher than physiologic levels. 

- target-mediated specific elimination. A given mAb binds to its antigenic target with high 

affinity and specificity, which leads to the formation of a mAb-target complex that is eliminated 

by the immune system. The elimination rate of this complex, which corresponds to target-

mediated elimination term of mAbs, is generally different from those of free mAb and antigenic 

targets.  

 

Patients present a large variability of response with most of mAbs partly because of their large 

interindividual pharmacokinetic variability. This pharmacokinetic variability has been described 

and quantified using pharmacokinetic modelling in more than 150 studies and has been reviewed 

several times for the last two decades.[1-5, 7-13]  

The pharmacokinetic variability of mAbs may be explained by several individual factors. The 

most frequent are: 

- An increase in volume of distribution and clearance with body size, as measured by body 

weight, height or fat-free mass); 

Higher volume of distribution and clearance in male than in female;  

- An increase in clearance when serum albumin decreases; 

- A dramatical increase in mAb clearance when anti-drug antibodies are present, leading to low 

mAb concentrations and hence loss of response. 
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The association of these factors with pharmacokinetic parameters is generally tested and 

quantified using population pharmacokinetic modelling, where factors of variability are tested as 

covariate effect on pharmacokinetic parameters.[14-16] A covariate which significantly increases 

volume of distribution and/or clearance leads to decreased mAb concentrations and vice-versa. 

 

In addition to these factors, early works reported a decrease in elimination half-life of mAbs with 

either their dose (e.g.for infliximab, an anti-TNF mAb[17, 18]), or the amount of target antigen (e.g. 

for rituximab, and anti-CD20 mAb)[19]. Later, several studies reported an influence of the amount 

of antigenic targets on mAb pharmacokinetics. In this review, we refer to the term “antigenic 

mass” as being the number of antigenic target sites that are available for mAb binding. Usually, 

high antigenic mass was shown to be associated with low antibody concentrations, which was 

mainly due to high antibody elimination. The description of antigen-mediated mAb 

pharmacokinetics was done using target-mediated drug disposition (TMDD) models. Several 

reviews or methodology papers considered antigenic burden as a major factor of mAb 

pharmacokinetic variability that should be soundly described.[20-26]. Even if this influence was 

reported in several papers [2-5, 9, 11, 27], it has never been soundly and specifically reviewed. 

 

The aim of the present review is therefore to give an overview of the influence of antigenic mass 

on the pharmacokinetics of therapeutic antibodies quantified by pharmacokinetic compartmental 

modelling in humans. 
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2 Methods and literature search strategy 
 

We focused on therapeutic antibody pharmacokinetic results obtained in humans using 

pharmacokinetic compartmental modelling. Indeed, compartmental modelling allows the 

description of absorption, distribution and elimination and has provided pharmacokinetic 

parameter estimates that are comparable between studies. In addition, the population approach is 

increasingly used, notably for mAbs .[5] It allows the quantification of interindividual distribution 

of pharmacokinetic parameters by taking into account data from all individuals simultaneously. 

This quantification allows estimation of (i) the “mean” (referred as “typical”), (ii) the 

interindividual variability (referred to the “interindividual variance”) and inter-occasion 

variability (sometimes called the “intraindividual” variability), and (iii) the influence of 

individual sources of variability (referred as “covariates”) for each pharmacokinetic parameter.[14, 

15] Being based on strict quality requirements, this approach allows consistent “between-studies” 

comparisons. 

 

The following query was used to search Pubmed for studies dealing with therapeutic antibody 

(not necessary monoclonal) pharmacokinetics using pharmacokinetic modelling (not necessary 

with population approach). This query has been part of our daily bibliographic follow-up: 

 
( 

   pharmacokinetics[Title/Abstract]  

OR pharmacokinetic[Title/Abstract]  

OR "volume of distribution"[Title/Abstract]  

OR volume[Title/Abstract]  

OR clairance[Title/Abstract]  

OR clearance[Title/Abstract]  

OR "distribution volume"[Title/Abstract] 

) AND ( 

   monoclonal antibody[Title/Abstract]  

OR therapeutic antibody[Title/Abstract]  

OR antigen burden[Title/Abstract]  

OR antigen mass[Title/Abstract]  

OR antigenic burden[Title/Abstract]  

OR antigenic mass[Title/Abstract]  

OR tumour burden[Title/Abstract]  

OR tumour mass[Title/Abstract]  

OR tumor burden[Title/Abstract]  

OR tumor mass[Title/Abstract] 

) 

 

Nevertheless, this review, is not meant to be exhaustive. Publications were selected by relevance 

and additional articles were obtained either from their reference lists or based on our literature 

continuous review. On 2018-03-02, this query led to 5788 references on PubMed. Among them, 

158 were pharmacokinetic modelling studies of therapeutic antibodies, published between 1996 

and 2018. Of note, one study made by our group including a population pharmacokinetic study of 

basiliximab could not be obtained using our query. Therefore, this query may have missed other 

mAb pharmacokinetic modelling studies. 

 

Among the 159 mAb pharmacokinetic modelling publications identified in the literature, 85 

reported an influence of antigen mass on mAb pharmacokinetics (table 1, supplemental table). 
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These studies described the pharmacokinetics of 92 therapeutic antibodies, including 84 

chimeric/humanized/human mAbs. The pharmacokinetics of 67 mAbs was described in only one 

publication, whereas for other mAbs, it was reported in more than one publication. For instance, 

the pharmacokinetics of adalimumab, bevacizumab, rituximab and infliximab was described in 8, 

8, 9 and 14 publications, respectively. Structural pharmacokinetic models included one, two and 

three compartments in 31, 124 and 1 publications, respectively. Covariates (including antigenic 

mass) were assessed in 118 out of 159 publications. 
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3 Joint modelling of antibody and antigen target kinetics 
 

3.1 Elimination of mAbs mediated by antigen targets 

 

In pharmacokinetic models, the elimination of mAbs is usually described by both linear (non-

specific) and nonlinear (specific) elimination components. The presence of target-mediated 

elimination has to be suspected if (i) dose-normalized concentration curves are not superposable, 

(ii) alterations of pharmacokinetic parameters with dose, especially an increase in clearance with 

decreasing doses and (iii) nonlinear elimination shape of terminal decrease of the logarithm of 

concentrations with time. 

The joint kinetics of mAbs and their targets is described using target-mediated drug disposition 

(TMDD) models. The target-mediated elimination of mAbs depends on several phenomena, 

including the turnover of targets, the  reversible binding of mAbs to their targets, and the mAb-

target complex elimination. For several mAbs, TMDD modelling showed that the increase of 

antigen mass was associated with an increase of target-mediated elimination and therefore a 

decrease of their elimination half-life. The increase in target-mediated elimination is due to a 

much faster  mAb-target complex clearance than free mAb clearance.[28]  

 

3.2 The TMDD system 

 

TMDD system was introduced in 1994 by Levy[29], investigated for an anti-D IgG in 1996 by 

Chapman et al.[30] and written in its current form in 2001 by Mager et al.[31] (figure 1A). The 

TMDD system is: 

 

𝑑𝐶1 𝑑𝑡 = 𝐼𝑛(𝑡)⁄ − 𝑘10. 𝐶1 − 𝑘12. 𝐶1 + 𝑘21.
𝐴2

𝑉
− 𝑘𝑜𝑛. 𝑅. 𝐶 + 𝑘𝑜𝑓𝑓 . 𝑅𝐶   C1(0) = 0 

 

𝑑𝐴2 𝑑𝑡 =⁄ 𝑘12. 𝐶1. 𝑉 − 𝑘21. 𝐴2       C2(0) = 0  

 

𝑑𝑅 𝑑𝑡 =⁄ 𝑘𝑠𝑦𝑛 − 𝑘𝑑𝑒𝑔. 𝑅 − 𝑘𝑜𝑛. 𝑅. 𝐶 + 𝑘𝑜𝑓𝑓 . 𝑅𝐶     R(0) = ksyn/kdeg 

 

𝑑𝑅𝐶 𝑑𝑡 =⁄ 𝑘𝑜𝑛. 𝑅. 𝐶 − 𝑘𝑜𝑓𝑓. 𝑅𝐶 − 𝑘𝑖𝑛𝑡. 𝑅𝐶      RC(0) = 0 

 

where C1 and A2 are  mAb concentrations in central and mAb amounts in peripheral 

compartments, respectively, V is central volume of distribution, R and RC are concentrations free 

antigen target and mAb-target complexes, respectively, In(t) is antibody input function, k10, k12 

and k21 are first-order elimination and transfer rate constants, respectively, ksyn and kdeg are 

endogenous zero-order production and first-order destruction rate constants, respectively, kon and 

koff are second-order and first order association and dissociation rate constants of mAb, its target 

and the complex, respectively, and kint is first-order complex destruction rate constant. All 

parameters of the TMDD system are rarely identifiable simultaneously, and approximations of 

this model are often made.[20, 21, 24, 25] A comprehensive review of the different TMDD 

approximations has been recently released.[32] 
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The concentration decay described by a TMDD model usually displays four phases[26] (figure 2), 

which are, (i) rapid second-order decay due to the association of antibody to target, (ii) slow first-

order decay related to unbound mAb elimination and saturated target, (iii) a mixed-order re-

increase of elimination rate due to unsaturated targets and (iv) terminal decay driven by koff and 

kint. It is important to note that elimination half-life (T½-β) is observed in phase (ii), but not in 

phase (iv), which slope depends not only on the β elimination phase, but also on kon and kint rate 

constants.  

The absence of nonlinear shape of elimination may be due to (Figure 2D): 

- antibody in stoichiometric excess compared to antigen mass, only phases (i) and (ii) are 

observable; 

- antibody in stoichiometric default compared to antigen mass; only phases (i) and (iv) are 

observable. 

 

To be a priori identifiable, the TMDD system necessitates measurements of C1, R and RC. Of 

note, RC amounts can be obtained indirectly, from free (R) and total (RT) target amount 

measurements. In addition, the association of mAb to its target is in general much faster than the 

elimination of free and bound mAb and targets, kon and koff rate constants are identifiable a 

posteriori if sampling frequency is high, especially during the first 24 hours after mAb injection. 

To our knowledge, sufficiently rich measurements of the three compartments was done only for 

anti-CD4 (non-approved) mAbs, i.e. TRX1[33] and MTRX1011A[34], which led to the only two 

studies where all TMDD parameters (including kon, koff, ksyn, kdeg and kint) could be estimated. 

 

3.3 Approximations of TMDD model 

 

3.3.1 Quasi-steady-state (QSS) approximation 

 

If measurements of the three species are available, but sampling density is poor during the first 24 

hours after infusion, the association and dissociation of mAb and target, and the dissociation and 

elimination of mAb-target complexes are at equilibrium, therefore only combination of kon, koff 

and kint can be identified. This combination is the quasi-steady-state rate constant, i.e. KSS = (koff 

+ kint)/kon (figure 1B). The QSS approximation was used to describe target-mediated kinetics of 

omalizumab[35-37] (anti-IgE mAb)  and of evolocumab[38] (anti-PCSK9). 

3.3.2 Approximations of TMDD models 

 

Full or QSS TMDD model parameters cannot be identified a priori if measurements are available 

in less than C1, R and RC species. In studies where free (C) or total (CT) mAb concentrations and 

R or RT were available, three approximations were made: 

- data transformation or model parameterization that avoid the estimation of ksyn, as made for 

etrolizumab[39] (anti-integrins), domagrozumab[40] (anti-mysotatin) and denosumab[41] (anti-

RANKL); 

- total target amount assumed to be constant. This necessitates, to set kdeg = kint, as made for  

canakinumab[42-45] (anti-IL-1β), bevacizumab[46] (anti-VEGF) and volociximab[47] (anti-integrins); 

- binding of mAb to its target assumed irreversible (figure 1C), i.e. koff = 0, as made for 

efalizumab[48, 49] (an anti-CD11a mAb which was removed from the market in 2009) and 

ofatumumab[50] (anti-CD20). 
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In most mAb pharmacokinetic studies, no target amounts (neither R nor RT) are available. Three 

other approximations of TMDD models were made: 

- a combination of constant target amount and irreversible binding assumptions, as for 

elotuzumab[51] (anti-CD319), rituximab[52] (anti-CD20) and alirocumab[53] (anti-PCSK9); 

- a combination of rapid binding and constant target amount assumptions (Wagner’s 

approximation[25], as made for abciximab[54] (anti-GPIIb/IIIa); 

- Michaelis-Menten approximation (see section 3.3.3). 

 

3.3.3 Michaelis-Menten model 

 

 The Michaelis-Menten model is an approximation of TMDD based on the assumption that RT 

and RC amounts are constant.[55] Under these strong conditions, the central pharmacokinetic 

compartment of “full” Michaelis-Menten target-mediated elimination model is defined by the 

following differential equation: 

 

𝑑𝐶1 𝑑𝑡 = 𝐼𝑛(𝑡)⁄ − 𝑘10. 𝐶1 − 𝑘12. 𝐶1 + 𝑘21.
𝐴2

𝑉
−

𝑉𝑀.𝐶

𝐾𝑀+𝐶
   C1(0) = 0 

 

where VM is the maximum mAb elimination rate constant and KM is Michaelis constant (i.e. mAb 

concentration corresponding to an elimination rate equal VM/2). The parameter VM is defined as 

VM = RT . kint, whereas KM corresponds to KSS. Since Michaelis-Menten elimination does not 

depend on RT, no antigen target data are necessary, but the association between antigen mass and 

mAb elimination cannot be quantified (figure 1D). This approximation is frequently made to 

describe the pharmacokinetics of mAbs in case of nonlinear shape of terminal elimination and 

has been used for 23 therapeutic antibodies in 28 studies (table 1). In the 18 studies where “full” 

Michaelis-Menten model is used[56-72], VM and KM values are highly variable between studies, VM 

and KM ranges being 0.008–26.4 mg/day and 0.02–33.9 mg/L, respectively.  

 

However, the Michaelis-Menten term has been used in simplified forms. In five studies on 

clenoliximab[73] (anti CD4), alemtuzumab[74] (anti CD52), cetuximab[27] (anti-EGFR) 

otelixizumab[75] (anti-CD3) and anti-PCSK9 mAbs (alirocumab and evolocumab)[76], no linear 

(endogenous) elimination term was integrated in the model. The absence of first-order 

elimination term lead to apparent VM and KM values that may be superior than “actual” values. In 

studies where KM was not identifiable, either KM value was fixed to low values,as done for 

brodalumab[77] (anti-IL-17R) and dupilumab[78] (IL-4Rα), with values of 0.02 and 0.01 mg/L, 

respectively, or the Michaelis-Menten term was replaced by a zero-order elimination rate 

constant, as done for cetuximab[79, 80] and basiliximab[81] (anti-CD25). However, Michaelis-

Menten models allow a quantification of the relationship between antigen mass and 

pharmacokinetic parameters only if antigen mass is added as a covariate on Michaelis-Menten 

term parameters. 

 

3.3.4 Dose and time varying pharmacokinetic parameters 

 

In some studies, the non-linear dose-concentration relationship, especially observed for low doses 

was described as an influence of dose on volume of distribution[82-85] or as a time-varying 
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volume.[86] The increase in volume for low doses and/or low mAb concentrations was consistent 

with a capture of mAbs by antigen targets. Besides, some studies described an antibody clearance 

decreasing with time. This description is in accordance with a target-mediated clearance and with 

antigen mass being maximal at the beginning of treatment and decreasing with time.[87-90] 

However, these models do not allow either a mechanistic description or quantification of the 

effect of antigen mass.  

 

3.3.5 Antigen mass as a covariate on target-mediated elimination 
parameters 

 

The absence of target measurements prevent actual target amount parameters (such as R0, ksyn, 

kout, RT or kint) from being estimated. For instance, in Michaelis-Menten models, VM depends on 

both RT and kint, which are not separable. In time-varying models, no information about antigen 

amount can be obtained from the exponential decrease of clearance.[87-90] As a consequence, these 

models cannot be used in mAb pharmacokinetics simulations for different target amount values. 

To overcome this drawback, antigen mass measurements can be added as covariates on 

pharmacokinetic parameters (figure 1E): for instance, target-mediated clearance of rituximab was 

found to increase with circulating CD20 target.[52] 

Indirect antigen burden measurements, such as tumor size, were used as covariates,. For 

pembrolizumab (anti-PD-1), increased tumour size was associated with maximum time-varying 

clearance value of pembrolizumab (anti-PD1), whereas better clinical response was associated 

with decreased time to reach minimum clearance.[89] Tumor size was associated with altered 

clearance decrease rate of obinutuzumab (anti-CD20).[91] 
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4 Target-mediated elimination and apparent linear 
pharmacokinetics 

 

Theoretically, the influence of antigen mass on pharmacokinetics and TMDD models apply to all 

antibodies. Indeed, some mAbs, such as cetuximab[27, 79, 80], efalizumab[48, 49, 71, 92]  and 

omalizumab[35-37] displayed nonlinearity in all publications. Trastuzumab showed either 

presence[69, 93] or absence[94, 95] of  nonlinear elimination. Rituximab showed nonlinear 

pharmacokinetics for chronic lymphocytic leukemia (CLL)[52, 90] but not for other B-cell 

malignancies[96-98] or RA.[99, 100] For some of them, as anti-TNF mAbs, nonlinearity was never 

observed in 26 publications, with infliximab[101-114], adalimumab[115-122], certolizumab pegol[123, 

124] and golimumab.[125-128] This may be due to an excess of anti-TNF mAbs compared to TNF-α 

concentrations.[4] Out of the 85 pharmacokinetic publications that reported an influence of 

antigen mass, 35 used linear pharmacokinetic models  (table 1); an increased mAb clearance with 

higher antigen mass levels may be due to a higher antigen turnover (i.e. higher ksyn and/or lower 

kdeg values).  

 

It can reasonably be hypothesized that chimeric, humanized and human antibodies, which present 

human Fc portion, should present an elimination half life (½-β) similar to endogenous IgGs in 

humans (21 days [129]). However, for some mAbs, dramatic differences in values of 

pharmacokinetic parameters were reported between publications. However, it should be kept in 

mind that T½-β is only apparent and may depend on antigen mass and its interactions with mAbs 

(RT, kon and kint): decreased RT, but increased kon and kint are all associated with increased 

terminal half-life. Terminal half-life will be noted T½R to keep in mind the participation of 

antigen mass on apparent elimination half-life.   

 

4.1 Antigen mass as a covariate of pharmacokinetic parameters 

 

In studies where no apparent nonlinear decay was observed, target-mediated elimination 

parameters could not be identified. The influence of target on mAb elimination was described by 

inclusion of a covariate associated with elimination rate constant, clearance and/or volume of 

distribution (figure 3). Covariates may reflect target turnover, as described using RT, ksyn or kdeg. 

Among the 85 publications which reported an influence of antigen mass, 29 reported an influence 

of a covariate related to antigen mass on pharmacokinetic parameters (table 1). Among these, 

pre-therapeutic measurements of circulating antigenic targets were found to be associated with 

pharmacokinetic parameters in 5 publications: 

- VEGF-A concentration for bevacizumab[130]; 

- extracellular domain of HER2 for trastuzumab[95] and trastuzumab emtansine[131]; 

- complement component 5 (C5) for eculizumab[132]; 

- CD19+ (B-cell) counts for rituximab.[99] 

 

Concentrations of circulating antigenic targets, when available, show consistently an influence of 

antigen burden on mAb pharmacokinetics. However, circulating targets may not be fully 

sensitive, i.e. may be an underestimation of total antigen mass, especially if part of antigenic 

target amount is not circulating. 
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4.2 Indirect antigen mass measurement using covariates 

 

Beside direct target antigen level measurements, some covariates provide an indirect 

quantification of antigen mass, as tumor size for anti-cancer mAbs, disease activity and 

pharmacodynamic biomarker levels (see section 5.2). 

 

4.2.1 Influence of tumor size 

 

Tumor size is a relevant measurement of antigen mass if it is related to the amount of antigenic 

targets, but it may be less specific, because it is influenced by components other than antigen 

mass (Figure 1E). Since techniques of tumor size measurements and their target-antigen density 

are very different between type of cancer, it is difficult to deliver a global message on the 

influence of tumor size on mAb pharmacokinetics, even if 7 publications reported and increase in 

mAb clearance with pre-therapeutic tumour size (table 1): 

- breast cancer size for trastuzumab[94] and trastuzumab emtansine[131, 133]; 

- bladder urothelial carcinoma size for atezolizumab[134]; 

- size of various solid tumors for olaratumumab[135] and pembrolizumab[136]; 

- and the number of extrahepatic metastases for bevacizumab[130]. 

 

4.2.2 Influence of disease activity 

 

Similarly to tumor size, disease activity may be a relevant marker of antigen mass, but it may be 

less specific than tumor size and, in addition, its measurement is more subjective. The influence 

of disease activity on mAb pharmacokinetics is inconstant. Five publications reported an increase 

in mAb clearance with disease activity scores (figure 3, table 1): 

- Eastern Cooperative Oncology Group (ECOG) is an integer numeral score between 0 

(asymptomatic) and 5 (death) in cancer patients that was associated with clearance of 

pembrolizumab[136] and tremelimumab[137]; 

- Psoriasis Area Severity Index (PASI) is a decimal number between 0 (asymatomatic) and 72 

(maximal) tha was associated with clearance of efalizumab[92] and guselkumab[138] (anti-IL-23); 

- Harwey-Bradshaw index (HBI) in Crohn’s disease patients is an integer number between 0 

(asymptomatic) and 26 (maximal) that was associated with clearance of infliximab.[103] 

 

4.2.3 Influence of biomarkers 

 

Measurement of concentrations of a biomarker related to antigen mass are often preferred to 

disease activity scores because it has a higher objectivity, but, similarly to tumor size and disease 

activity scores, it may be less specific of antigen mass and inconstantly found to be related to 

mAb pharmacokinetics. Eight publications reported an increase in mAb clearance with pre-

therapeutic levels of a biomarker (Figure 3, table 1): 

- Lymphocyte counts for efalizumab[92], even if the link between CD11a expression and total 

lymphocyte count may be considered as very indirect; 

- Carcino-embryonic antigen (CEA) concentration for bevacizumab[130] is indirectly related to 

tumour burden but not with VEGF concentrations (see section 5.2); 
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- Concentration of C-reactive protein (CRP) for anti-TNF biopharmaceuticals. In early studies, 

pre-therapeutic CRP levels were found to be inversely related with steady-state concentrations of 

infliximab concentrations.[139, 140] The pharmacokinetics of anti-TNF mAbs (infliximab, 

adalimumab, certolizumab pegol, golimumab) was described in 28 publications, using one or 2-

compartment models with first-order transfer and elimination rate constants (table 2). Nonlinear 

elimination was reported in none of these publications. The association of CRP with anti-TNF 

mAb pharmacokinetic parameters was assessed in 16 publications, mainly using a power 

transformation, i.e. θTV = θpop . [CRP / med(CRP)]β, where θTV and θpop are typical and population 

estimates of pharmacokinetic parameters, CRP are serum levels of CRP (usually given in mg/L), 

med(CRP) is median value of CRP and β is an allometric parameter quantifying the effect of 

CRP on θ. Significant association between CRP levels and mAb clearance was found in 7 

publications out of 16: for adalimumab (in 1 study in hydradenitis suppurativa), infliximab (in 2 

publications in rheumatoid arthritis and Crohn’s disease), golimumab (in 2 publications in 

spondylarthropathies) and certolizumab pegol (in 2 publications that used the same inflammatory 

bowel disease population). Except for one study of certolizumab pegol where CRP was assessed 

as categorical, estimated values of β ranged from 0.05 to 0.17. 

The influence of CRP levels on mAb clearance may be explained by target-mediated drug 

disposition. Because an increase in TNF-α leads to an increase in CRP concentrations, CRP may 

indeed be considered as an indirect marker of antigenic target concentrations.[141-143]  Increased 

clearance in presence of high CRP levels may be explained by increased levels of targets, and 

therefore increased target-mediated elimination. 

 

 

4.2.4 Influence of disease  

 

In some studies, pharmacokinetic models were developed using pooled data from several trials 

and thus are susceptible to include several diseases or subtypes of diseases. In 7 publications, the 

type or subtype of disease was associated with differences in pharmacokinetic parameters.[67, 70, 

107, 136, 144-146] One of possible reasons of such differences are differences in amount and 

turnover (RT, ksyn, kdeg, see section 4.2), and localization (and therefore the accessibility by mAb) 

of antigenic targets. The 4 studies of anticancer mAbs that reported different mAb clearances 

among types of tumour did not investigate pathophysiological reasons of such differences. 

Besides, in inflammatory bowel diseases (IBD), 2 publications reported volumes of distribution 

and clearances of infliximab[107] and of vedolizumab[70] slightly superior for ulcerative colitis 

than for Crohn’s disease, but again, there is no evidence of differences in antigen mass due to 

diseases. However, the intrinsic catabolism rate of a given mAb might be modified between 

diseases. Notably, FcRn expression was suggested to be increased with inflammation, which 

would lead to an decrease in mAb intrinsic clearance.[4] 

 

Elimination half-life (T½R) estimates of bevacizumab was 21 days in teleangiectasia[147], 17-20 

days in various solid tumours[148, 149], 15-17 days in child sarcoma[144, 150], and 19 days in 

colorectal cancer (CRC) and, surprisingly, 44 days in multi-metastatic CRC.[130] For trastuzumab, 

T½R was 28 days in metastatic breast cancer (BC), but highly controversial in early BC, 12 

days[94] or 40 days.[69] The pharmacokinetics of rituximab is highly variable between diseases: 

T½R is approximately 20 days in follicular non-Hodgkin lymphoma[97] and in RA[49, 99] and 40-

100 days in diffuse large B cell lymphoma (DLBCL).[96, 98, 151].  
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However, a strong limitation of inter-study comparison of pharmacokinetic parameter values is 

made by differences in techniques of mAb concentration measurements. Indeed, different 

techniques may lead to differences in concentration values and in estimates of pharmacokinetic 

parameters.[152] In this context, infliximab concentrations were measured in a cohort of patients 

with various diseases using a single ELISA technique in the same lab.[112]  This study confirmed 

that infliximab T½R was 14-15 days, except in RA (10 days) and showed that infliximab 

clearance in rheumatoid arthritis (RA) was almost twice that estimated in spondylarthropathies 

(SA). This may be explained by TMDD, because TNF-α burden is higher in RA than in AS[153], 

with high TNF-α burden in blood[154] and synovial fluids[155] of RA patients. In IBD, a high 

infliximab clearance was found similarly to RA again an observation which may be explained by 

TMDD. The hypothesis of TMDD here is consistent with the reported increase in infliximab 

clearance with CRP levels in RA[111] and IBD.[110]  

 

4.2.5 Influence of concomitant treatment  

 

Drug interactions with mAbs were reviewed elsewhere[156] and this part deals with drug 

interactions related to antigen mass (figure 3). The concentrations of anti-TNF 

biopharmaceuticals (infliximab, adalimumab) were shown to increase when methotrexate, an 

inhibitor of dihydrofolate reductase, is co-administered notably in RA patients[157]. 

Pharmacokinetic modelling studies of infliximab showed that immunomodulator (such as 

methotrexate) co-treatment is associated with lower infliximab clearance[105, 111], independently 

from CRP levels.[111] Our hypothesis was that methotrexate anti-inflammatory activity may 

contribute to a substantial decrease in TNF-α levels, thereby leading to a decreased target-

mediated clearance of infliximab. This mechanism appears to be independent to the 

immunosuppressant activity of methotrexate, involved in the prevention of anti-drug antibody 

development.[158] The proof of this mechanism will be obtained by the description of target-

mediated drug disposition of anti-TNF biodrugs. This will necessitate measurements of both 

levels of total TNF-α and TNF-α unbound to mAb. To date, no sound evidence is available to 

show that drugs other than methotrexate decrease TNF-α levels.  

 

The modulation of target amount by cotreatment was more thoroughly investigated for anti-

PCSK9 mAbs, for which clearance was shown to be higher in patients co-treated with statins.[38, 

53, 76, 156] An evolocumab study using a TMDD model showed that PCSK9 levels were higher in 

patients treated with statins.[38] This increase in PCSK9 levels may lead to higher target-mediated 

clearance of anti-PCSK9 mAbs. 

 

However, the influence of comedication on mAb pharmacokinetics may be due to other 

(unknown) factors.  Differences in cetuximab clearance that were reported between protocols of 

chemotherapies,[80] and the increase in clearance of guselkumab in presence of anti-inflammatory 

drugs are still unexplained.[138] 

 

4.2.6 Influence of FCGR3A genotype  

 

The gene FCGR3A encodes the low affinity receptor of the Fc portion of  IgG, FcγRIIIA, which 

is expressed at the surface of effector cells, as natural killer (NK) cells. This receptor presents a 

single nucleotide polymorphism, the FCGR3A-158 V/F polymorphism, which generates two 
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allotypes of FcγRIIIA, with either a valine (V) or a phenylalanine (F) at position 158. In vitro, 

human IgG present a higher affinity for allele V than for allele F. In vivo, a better clinical 

response of follicular non-Hodgkin patients treated with rituximab was observed in homozygous 

V/V than in F carriers.[159, 160] This better clinical response of V/V patients was reported for other 

cytotoxic antibodies, cetuximab in colorectal cancer[161] and trastuzumab in breast cancer.[162] 

This genotype was shown to influence the concentration-effect relationship of anti-thymocyte 

globulins (ATG) in renal transplant patients: V/V patients had a higher sensitivity to treatment 

than F carriers.[86, 163] All these cytotoxic antibodies have in common action, at least in part, by 

antibody dependent cellular cytotoxicity (ADCC): he Fc portion of mAb binds to FcγRIIIA, 

which leads to the lysis of target cell by the effector cell. In IBD patients, infliximab was shown 

to induce ADCC of inflammatory cells[164, 165] and V/V patients were shown to have a better 

biological response than F carriers.[166, 167] In IBD patients treated by infliximab who were in 

remission and in whom infliximab treatment was stopped, V/V genotype was associated with an 

increased infliximab clearance and, for those with a CRP > 5 mg/L, with a shorter time to relapse 

Taken together, these results are in accordance with a better efficacy, but a higher “consumption” 

of infliximab in V/V patients, leading to underexposure to infliximab. The link between 

FCGR3A-158 V/F polymorphism, antigen mass and mAb consumption was finally established in 

CLL patients treated with rituximab: target-mediated elimination of rituximab increased with 

increased CD20+ cell count and was in V/V patients, rituximab endogenous clearance remaining 

unchanged (Figures 1F and 3). These findings suggest that increased affinity of V allele for Fc 

portion leads to increased mAb-cell complex formation and elimination by ADCC, and therefore 

increased mAb target-mediated drug disposition of mAbs acting at least partly by ADCC, such as 

rituximab, infliximab and others. 
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5 Beyond target-mediated clearance 
 

5.1 Retention of mAb by antigenic targets 

 

In addition to mAb clearance, a few studies have described an association between antigen mass 

and volume of distribution. The influence of antigen mass on mAb disposition  may be explained 

by its irreversible (target-mediated “elimination”) or reversible (target-mediated “retention”) 

interactions of mAbs. Increased target-mediated elimination or retention lead to decreased and 

increased T½R, respectively, and both lead to decreased mAb concentrations. Increased 

extracellular domain of HER2 (HER2-ECD) was associated with increasing trastuzumab central 

volume of distribution[95], with a modest influence on T½R, which ranged from 26 to 39 days for 

HER2-ECD concentrations ranging from 1.7 to 2431 ng/mL. 

 

Retention of rituximab was marked in DLBCL patients. Increased tumor volume was associated 

with increasing rituximab central and peripheral volumes of distribution, resulting in T½R values 

ranging from 13 to 84 days, for tumor volumes ranging from 17 to 4339 cm3.[98] The retention of 

rituximab may explain, at least in part, the differences in values of pharmacokinetic parameters 

between follicular lymphoma and RA on one hand, and DLBCL in the other hand. Of note, the 

type of disease was associated with volume variations of: 

- ganitumab[146], volume of distribution being higher in pancreatic cancer patients than others; 

- infliximab[107], volume of distribution being increased by 25% in IBD compared than in other 

diseases (spondylarthropathies, RA). Apparent increase in volume of distribution in IBD is 

associated with an increase in T½R. This may therefore be due to lower RT, higher kout and/or kint 

values in IBD compared to RA or spondylarthropathies (figure 2D). This might be explained by 

pathophysiological particularities of IBD, for which part of antigen mass may lead to altered 

infliximab affinity and/or complex elimination. However, this hypothesis was never 

mechanistically investigated. 
 

5.2 Antigenic targets present in several tissues 

 

The TMDD model described in section 4 assumes a zero-order input and a homogeneous one-

compartment distribution of antigenic targets. These assumptions are often made for practical 

considerations, but may not hold in some cases. Indeed, for instance, antigenic targets may be 

both circulating and cellular. Increased clearance of trastuzumab and trastuzumab emtansin was 

associated with pre-therapeutic tumour burden [94, 131, 133] and HER2-ECD [95, 131], which may 

represent cellular and circulating HER2, respectively. Increased bevacizumab clearance was 

associated with pre-therapeutic VEGF and ACE serum concentrations, and the number of 

extrahepatic metastases.[130] The circulating VEGF is only a part of total VEGF available for 

bevacizumab binding. Being higher inside the tumor and in the microenvironment[168], total 

VEGF burden should increase with tumour size and number of metastases. Thus, circulating and 

non-circulating (cellular) antigen mass both provide information on total target antigen amount 

(figure 3). The pharmacokinetics of antibodies which bind to both membrane and soluble 

antigens may be described using TMDD models for drugs that bind to more than one target[169], 

but which, to our knowledge, was done only in animals. Indeed, in cynomolgus monkeys, the 

pharmacokinetics of MNRP1685A an anti-neuropilin-1 (NRP1) mAb, was described using a 
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simplified TMDD model with drug binding to both membrane and circulating antigen targets and 

was shown to be less influenced by circulating than membrane antigen mass.[170]  
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6 Conclusions 
 

Among factors of variability of the pharmacokinetics of therapeutic antibodies, antigen mass has 

been one of the most frequently reported, in more than half of pharmacokinetic modelling 

studies. Antigen mass influence may result in different pharmacokinetic profiles for different 

antibodies in different diseases, and was described using a number of modelling strategies. 

Because, theoretically, all chimeric, humanized and human monoclonal antibodies are similar to 

endogenous IgG, important differences are observed between antibodies and diseases, which are 

due, at least in part, to target antigen mass. Structural pharmacokinetic model describing 

antibodies is bicompartimental[6, 171], and target-mediated drug disposition (TMDD) models are 

used to describe antibody and target joint kinetics. 

 

Since the presence of mAb nonlinear elimination is associated with non-saturation of antigen 

mass, and therefore with an increased risk of inefficacy or relapse (see section 3), dosing 

regimens should be defined to avoid nonlinear elimination as much as possible. Thus, the 

influence of antigen mass has to be soundly explored starting from early clinical phases. Notably, 

dose-ranging studies in humans should provide a sound inspection of pharmacokinetic profiles. 

An influence of antigen mass is likely to be significant in case of (i) nonlinear elimination shapes, 

(ii) increase in mAb clearance for decreasing doses (by unit of body size) and (iii) absence of 

superposition of dose-normalized concentration-curves and AUC. In addition, a sound 

description of TMDD pharmacokinetics is necessary to evaluate the weight of antigen mass on 

total pharmacokinetic variability. This description is based on: 

- Antibody concentration measurements which should reflect the concentration of antibody 

unbound to target. This is usually done by ELISA and/or HPLC-MS/MS techniques[172]; 

- Measurements of antigenic target unbound to mAb and, if possible, measurement of complexes 

or total target amounts. 

- Dense sampling strategies for both antibody and target amounts to ensure accurate estimates of 

TMDD model parameters, especially during the early phase, which is necessary to identify 

association (kon) and dissociation (koff) rates of mAb and targets, in addition to parameters of 

exchanges between central and peripheral compartiments.[173] 

 

The influence of antigen mass should be accounted for the determination of first-in-human 

dose[174, 175], notably because it cannot be derived from drug-free kinetics or from animal data. 

For instance, the pharmacokinetics of rituximab in xenografted mice is very different from that in 

humans with either non-Hodgkin lymphoma [96-98, 151] or LLC.[52, 90]. Since the turnover of target 

burden is very different between diseases, and between patients and animal models, procedures 

determining the first-in-man dose may benefit from prediction strategies of target-mediated drug 

disposition for mAbs. These predictions are achieved with the determination of TMDD 

parameters.[22]  

 

For some mAbs, TMDD models were used to estimate the dose needed to saturate mAb target-

mediated elimination in most of patients, as for evolocumab[38] or obinutuzumab.[91] This 

approach may however lead to over-exposure of patients with low target antigen levels. TMDD 

models may be used to estimate the dose and/or schedule necessary to saturate target antigenin 

each patient individually. For instance, eculizumab concentration leading to a good clinical 

response[132] (with a total saturation and inactivation of C5 component of complement) and 

concentration associated with departure from linearity[60] are the same (100 mg/L). A good 
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strategy would be to calculate eculizumab dose and/or dosing interval so that each patient has 

trough concentrations always > 100 mg/L. 

 

An even better strategy would be to adjust the dose to the amount of antigens. At present, this is 

done only with omalizumab, which dosing schedule depends not only on body weight, but also 

on baseline IgE concentration. The benefit of dosing adjustment to antigen mass should depend 

on its participation in total pharmacokinetic variability. For instance, adjusting the dose of 

rituximab to CD20 count in LLC patients may not lead to a clinical benefit, because antigen mass 

explains less than 5% of pharmacokinetic variability[52], whereas it should lead to an 

improvement of treatment of DLBCL for which tumour burden explains more than 40% of 

rituximab pharmacokinetic variability.[98] 

 

The observation of linear pharmacokinetics is often interpreted as a saturation of the target 

antigen by mAb. However, apparent linear pharmacokinetics does not necessarily imply an actual 

saturation of antigenic target by mAb, notably in the “extreme” case where antibody is in 

stoichiometric default compared to antigen (with only phases (i) and (iv) of the four TMDD 

phases[26] figure 2). Indeed, apparent linear pharmacokinetics is often accompanied by and 

influence of antigen mass, as reported for anti-TNF antibodies[110, 111, 116, 123], trastuzumab[94, 95] 

and trastuzumab emtansine[131, 133] , and bevacizumab.[130] In addition, the apparence of linear 

pharmacokinetics does not mean that antigenic targets are totally saturated and that dose is 

optimal. This is especially obvious for DLBCL patients treated by rituximab: patients with high 

tumour volume were clearly shown to be underexposed to rituximab and therefore would benefit 

from an increased dose, despite linear pharmacokinetics.[98] In clinical practice, antibody 

concentrations associated with in vivo target saturation are not known, but they should be less 

relevant than concentrations predictive of good clinical response, which are approximately 3-7 

mg/L for infliximab and adalimumab in chronic inflammatory diseases[176] and 15 mg/L for 

bevacizumab in mCRC.[130] 

 

As other individual factors of variability, antigen mass is susceptible to influence not only inter-, 

but also intra-individual variability of mAb pharmacokinetics. In this context, disease relapse or 

flare may be accompanied by an increase of antigen mass, and therefore decreased 

concentrations. Ideally, an optimal scheme should be found for each treated patient, verified 

regularly and amended if necessary.  Optimal treatment schemes were proposed, based on 

pharmacokinetic modelling, notably in the context of therapeutic drug monitoring of anti-TNF 

mAbs.[176] Model-based therapeutic drug monitoring (TDM) of mAbs include individual factors 

of variability and mAb concentration measurements. No TDM model or procedure includes 

antigen mass measurements yet. Future improvements of model-based dosing optimization 

techniques will be likely obtained by implementation of the influence of antigen mass on the 

pharmacokinetics of therapeutic antibodies. 
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8 Legends of the figures 
 

Figure 1. Target-mediated drug disposition (TMDD) models used to describe the influence of 

antigen mass on antibody pharmacokinetics. A, base TMDD model, which necessitates, to be 

identifiable, dense sampling strategy of free antibody concentrations in the central compartment 

(C), target antigen (R) and antibody-antigen complex (RC) compartments; B, TMDD model 

under the quasi-steady-state approximation (see section 3.3.1); C, hypothesis of irreversible 

binding; D, Michaelis-Menten approximation; E, influence of antigen mass as a covariate on 

pharmacokinetic parameters; F, TMDD of cytotoxic antibody and target antigen expressed at the 

membrane of inflammatory cells. Because of the higher affinity of the V allotype of FcγRIIIA for 

the Fc portion of IgGs, the antibody-induced antibody-dependent cell cytotoxicity (ADCC) 

elimination rate (kADCC) may be higher in V/V patients than in F carriers, resulting to an 

increased target mediated antibody elimination. Abbreviations – C, concentration of free antibody 

in the central compartment; R, free target antigen amount; RC, antibody-antigen complex 

amount; In(t), antibody infusion function; k10, k12, k21 elimination and transfer first-order rate 

constants; ksyn and kdeg, zero-order input and first-order output of target antigen rate constants, 

respectively; kon and koff, antibody and target second-order association and first-order dissociation 

rate constants, respectively; kint, internalization (i.e. complex elimination) rate constant; KSS, 

quasi-steady-state dissociation rate constant, VM and KM, maximum rate and Michaelis constants, 

respectively; COV, covariate; NK: natural killer cells; kADCC: infliximab-induced antibody-

dependent cell cytotoxicity (ADCC) elimination rate constant. 

 

Figure 2. Concentration-time target-mediated drug disposition (TMDD) pharmacokinetic 

profiles. Parameters that were used for simulations were central volume of distribution (V), first-

order elimination (k10) and transfer rate constants (k12 and k21), endogenous zero-order production 

(ksyn) and first-order destruction (kdeg) rate constants, second-order and first order association rate 

constant of mAb to its target (kon), dissociation rate constant the complex (koff), respectively, and 

first-order complex destruction rate constant (kint). Base parameter values were taken from 

TMDD kinetics of TRX1 an anti-CD4 monoclonal antibody.[33] A, TMDD profiles according to 

increasing (solid to dotted lines) target antigen amount (R) from 1 to 20 (arbitrary units); B, 

TMDD profiles according to increasing dose (D, solid to dotted lines) of therapeutic antibody 

from 100 to 1000 mg; C, visualization of the four phases of TMDD kinetics, (i) rapid 2-order 

decay due to the association of antibody to target, (ii) slow 1-order decay related to unbound 

mAb elimination and saturated target, (iii) a mixed-order re-increase of elimination rate due to 

unsaturated targets and (iv) terminal decay driven by koff and kint. Up and bottom curves 

correspond to extreme cases were antibody in stoichiometric excess compared to antigen mass, 

only phases (i) and (ii) are observable (up) and antibody in stoichiometric default compared to 

antigen mass; only phases (i) and (iv) are observable (bottom); D, TMDD profiles according to 

increasing internalization rate constant (kint, solid to dotted lines) from 0.0393 to 3.93 day-1. 

 

Figure 3. Dose-concentration-response relationship for monoclonal antibodies (mAbs). Arrows 

and truncated lines represent stimulation and inhibition relationships between boxes, respectively. 

Increased mAb concentrations decrease antigen amounts and increased antigen amounts increase 

disease activity. Because antigen mass accelerates mAb elimination, high antigen amounts lead to 

low mAb concentrations. Biomarker levels should be correlated to antigenic mass and disease 

activity. However, disease activity and biomarker levels may be associated with factors other 

than antigen mass. Antigen may be expressed in several tissues, e.g. circulating and cellular 

antigen mass. Because of the higher affinity of the V allotype of FcγRIIIA for the Fc portion of 
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IgGs, the antibody-induced antibody-dependent cell cytotoxicity elimination rate may be higher 

in V/V patients than in F carriers, resulting to an increased target mediated antibody elimination. 

 

 

 

 


