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Abstract—Lack of data can be an issue when beginning a new
study on historical handwritten documents. To deal with this, we
propose a deep-learning based recognizer which separates the
optical and the language models in order to train them separately
using different resources. In this work, we present the optical
encoder part of a multilingual transductive transfer learning
applied to historical handwriting recognition. The optical encoder
transforms the input word image into a non-latent space that
depends only on the letter-n-grams: it enables it to be independent
of the language. This transformation avoids embedding a lan-
guage model and operating the transfer learning across languages
using the same alphabet. The language decoder creates from a
vector of letter-n-grams a word as a sequence of characters.
Experiments show that separating optical and language model
can be a solution for multilingual transfer learning.

Index Terms—Handwriting recognition, knowledge transfer,
Optical model, Language model

I. INTRODUCTION

The amount of digitized handwritten historical documents
has increased to preserve them and to make heritage accessible
to all. However, digitization is not sufficient to make the
documents usable: information needs to be extracted in order
to index them. Researchers and historians in the humanities
and in the social sciences need to be able to query them. There-
fore, new projects involve the use of several domains such as
language processing, document recognition, and information
retrieval for historical studies. In recent years, the number of
competitions regarding historical documents has increased [1],
[2]. Such systems have to deal with the complexity of the task
as well as the document medium, its level of deterioration, or
even its written language. All of these can have a strong impact
on the system efficiency.

State of the art handwriting systems are built with a
Multidimensional Long Short-Term Memory (MDLSTM) net-
work [3] or even with a Convolutional Recurrent Neural
Network (CRNN) stacked with a Bidirectional Long Short-
Term Memory (BLSTM) [4]. The neural network training
includes a Connectionist Temporal Classification (CTC) cost
function proposed by [5]. Lately, the trend in handwriting
recognition (HWR) is the use of deep neural networks and,
more recently, the integration of attention models in the

networks [6]. To decode words as sequences of characters,
several strategies can be used: a dictionary, a language model,
or a Weighted Finite State Transducer (WFST) including
several dictionaries. Nevertheless, results are constrained by
the size of the vocabulary used. When too many words are
out-of-vocabulary, the results are degraded. To improve the
results, methods can be employed to increase the size of the
vocabulary by using Wikipedia or other available resources.
Whether improving the results or training the networks, the
HWR systems require a lot of labeled data.

In our case of a study, we deal with a new historical resource
without any ground-truth. Within this context, transductive
transfer learning [7] is an interesting approach when no
ground-truth is provided. Indeed, it uses different sources of
data to train a system for a specific task by applying various
target data. It enables us to use available existing resources
to annotate unknown data. It is eagerly used to supply the
lack of data for greedy systems such as word spotting in
historical documents [8] or translation models with multi-
modal systems [9].

The standard of machine translation is an encoder-decoder
system based on a recurrent neural network [10]. The first
component encodes the source language into a fixed vector
and the last one decodes the sequence into the target language.
Similarly, [11] proposed a neural image caption generator
that consists of two sub-networks: a pre-trained Convolutional
Neural Network (CNN) encoding an image into a fixed size
vector and a LSTM model generating the corresponding de-
scription. We were inspired by this framework to split up our
handwriting recognition system into an encoder and a decoder.
First, an image encoder takes a word image as input and,
thanks to a fully convolutional network (FCN), converts it into
a vector of letter-n-grams as in [12]. Here, the transfer learning
is performed during the training step that uses available labeled
image data. Then, the decoder is built with a recurrent layer to
generate a sequence of characters from the vector of letter-n-
grams. Here, a second transfer learning is independently made
on the vocabulary. Contrary to the machine translation and
description generator works, the sub-networks can be trained
independently from each other.



This paper is organized as follows. Section II describes our
transfer model within the encoder and decoder components.
Section III presents the architecture of the neural network.
Section IV presents the databases used for both components
and the evaluation methods. Finally, Section V reports the
results obtained with the optical and the language model
independently, following by the results on the whole system.

II. ENCODER-DECODER FOR TRANSFER LEARNING

Based on the work on image description generation, we
define a system that is divided into two complementary com-
ponents: an optical model and a language model, as shown in
Figure 1. The first one encodes a word image into a vector and
the second one decodes the vector into a character sequence as
a word. The interface vector that links these two parts is a bag
of characters or letter-n-grams. A letter-ngram is a sequence of
n characters as uni-gram, bi-gram or tri-gram for n = 1, 2, 3.
We estimated the set of letter-n-grams on all resources used
for both the training data and the transfer target data. The
originality in using a letter-n-grams vector as a pivot is that we
encode the input into a non-latent space which is transferable
as long as the training data and transfer target data share the
same alphabet. In this paper, we focus on the optical model
to encode words into vectors of letter-n-grams. Nevertheless,
we will also present the results obtained on the whole system
integrating the optical and language models.

A. Letter-n-grams

As suggested by [12], we use letter-n-grams as a pivot in
our system. Initially, the authors selected the 50,000 most pop-
ular letter-n-grams to represent words. Therefore, we selected
around 12,500 letter-n-grams with a maximum length of 3 on
all the used datasets adding [ and ] to represent the beginning
and end of a word. A joker class was added to replace
the non-selected letter-n-grams (as out-of-vocabulary ngrams).
According to Figure 1, the word Pages is thus decomposed as
{P, a, g, e, s, [P, Pa, ag, ge, es, s], [Pa, Pag, age, ges, es]}.
The vector is built by normalizing the frequency of the letter-
n-grams.Using frequency enables us to hold information about
the word size and to compensate the lost temporality.

B. Optical Model Encoder

We chose to define and to train our own fully convolutional
neural network devoted to the grayscale handwriting images.
A set of masks is applied to extract local set of features. This
is related to use an artificial and pre-defined attention model.
We define 3 types of masks: 1) the first mask is the position of
the word into the larger image; 2) the second set is composed
of two masks for the beginning and end of word into image;
3) the last set is composed of three masks for the beginning,
middle and end of word into image. The use of these masks
should facilitate the identification of the character order and
thus ngrams composing the word. Furthermore it will help to
recognized the ngrams using ’[’ and ’]’. The optical encoder
ends by two fully-connected layers before the last layer that
computes the letter-n-grams vector.

C. Language Model Decoder

Based on machine translation [13] and description genera-
tion [11], we turned to neural encoder-decoder architectures in
NLP as it enables us to map one sequence (image) to another
one (word) without constraining them to have the same length
or word order. We define a character-based model as shown on
the right part of Figure 1. These components were designed to
be the most minimalist: they do not use an embedding layer
representing the full words since it might interfere with the
transfer learning that has to deal with different languages.

For the sequence generation task, we used a recurrent layer
to add a temporal information followed by a softmax layer
that gives one character at the time until the end-of-word
symbol ] is given. We choose not to include a bidirectional
network contrary to encoder-decoder models that are used in
machine translation. Since our character-based decoder uses
a vector without any order indication of characters, all the
information and context are included in the letter-n-grams
vector. Therefore, a bidirectional recurrent layer is useless.

III. NEURAL NETWORKS MODELING

A. Optical Model

The first part of our model is based on a fully-convolutional
neural network that extracts and builds features from the
word images. We choose not to use an existing pre-trained
system. Most of the available networks have been pre-trained
on natural images, so not grayscaled handwritten word images.
The architecture of the trained FCN is detailed in Table I. The
input image size is normalized to 100 pixels of height, so
the features extraction varies according to the length called
t. The features extraction network is composed of 7 layers of
convolution with a kernel size of 3x3 with same-padding. They
linked with different max-pooling leading to a representation
depending only on the length of the image and the number of
filters used to extract the features. Each output convolutional
layer used the rectify linear unit (ReLU) [14] that enables to
speed up the training step. For each image, we define several
masks as shown in the bottom of Figure 1 based on the length
of the word image to represent the position of each part. The
product results between the six masks and the feature map
produces six fix size feature vectors, followed by 2 dense
layers with various sizes from 1,024 to 2,048 hidden units and
a ReLU activation function. The outputs have to represent the
frequency of each letter-n-grams of the word, so their values
rarely reach 0.25% (for one character words, the number of
letter-ngram is 4), so the difference between the present letters
and non-presents is low. In order to have really a difference
between the letter-n-grams included into the word and the
others, we add an offset of 0.5 during the training, called Off.
Thus, we experiment 2 different layers to construct the vector
of letter-n-grams. The first one called SIG uses a last fully
connected layer with a sigmoid activation function defined as

Sigmoid(x) =
1

1 + e−x



Fig. 1. Overview of our optical encoder and language decoder. On the left, the component corresponds to the image encoder from which the features are
extracted thanks to a fully convolutional network, multiply by a set of m masks 1,3,6 and following by two connected layers with a minimum of 1,024 units
each and a vector of letter-n-grams is built. On the right, the component corresponds to the sequence generation decoder that provides the word, character by
character, corresponding to the input vector.

to have a probability for each letter-ngram independently of
the others and mainly used with the offset, The second one
called THR uses one fully connected layer with an hyperbolic
tangent activation function defined as

tanh(x) = 2.Sigmoid(2x)− 1

that enables to provide values tending towards -1 for the
missing letter-n-grams (instead of 0 with SIG); following by
a layer that just applies a ReLU activation function without
learning parameters and providing output values between 0
and 1. We trained the model by minimizing different objective
functions: the mean squared error, binary cross-entropy and
KullbackLeibler. Each time we use the Adam function that
controls the learning rate which is initialized at 0.0001 for
the stochastic optimization. To prevent computational errors
in limits, we fix the (0,1) output values at (1e−6, 1-1e−6).

B. Language Model

The structure of the character-based decoder part is defined
with one fully connected with 1,024 units to extract features,
one Gated Recurrent Unit layer (GRU) [10] with 500 hidden
units, and one fully connected layer with 79 units and a soft-
max activation function. The input of the network has various
size from 200 units (unigrams and only bigrams including [ ]
symbols), 1,883 units (unigrams and all bigrams) and 12 170
units (all 1,2,3-grams). Especially for the GIC dataset, we have
computed and kept letter-n-grams with an occurrence greater
than 5 (in order to remove the letter-n-grams estimated from

TABLE I
ARCHITECTURE OF OUR FULLY CONVOLUTIONAL NEURAL NETWORK

Layer type Filter size
Output
layer
shape

Activat.
function

Input image /// 100xt ///
Convolution 3× 3× 8 8× 100× t ReLU
Convolution 3× 3× 16 16× 100× t ReLU
Convolution 3× 3× 32

32× 50× t
2

ReLU+ MaxPooling (2× 2)
Convolution 3× 3× 64

64× 25× t
4

ReLU+ MaxPooling (2× 2)
Convolution 3× 3× 128

128× 5× t
20

ReLU+ MaxPooling (5× 5)
Convolution 3× 3× 256 256× 5× t

20
ReLU

Convolution 3× 3× 512
512× t

20
ReLU+ MaxPooling (5× 1)

Note: ReLU corresponds to the Rectified Linear Unit function.

the noisy of the documents). Finally, we only kept letter-n-
grams appearing in at least 2 different datasets and a joker
was created to replace the non-selected letter-n-grams. In the
scope of sequence generation, we padded the length of the
sequence with blank labels up to 50 characters. Therefore, the
network is free to define any sequence without any constraints.
The training parameters for the network are the same as the
optical encoder.

IV. TRAINING AND EVALUATION

A. Existing Datasets

We carried out experiments with three available datasets
of images mixing different languages and time periods to



compare the effect on each others and two linguistic resources:
• RIMES (RM) is a French database developed to evaluate

automatic systems that recognizes and indexes handwrit-
ten letters [15];

• George Washington (GW) is an English database created
from the George Washington Papers at the Library of
Congress [16];

• Los Esposalles (ESP) is a Spanish database compiled
from a marriage license book collection from the 15th

and 17th centuries [16];
• Google Book (GB) composed of 23 available French

and Italian digitized historical books dealing with Italian
Comedy plays, their transcriptions are used as language
model corpus;

• French Wikipedia data (Wiki), as used and distributed
by [17], provides all words whose frequency is greater
than 5 in Wikipedia. From this dataset, we randomly
selected 30 000 words in order get a corpus of comparable
size with the size of GB corpus but with different words.

All information is summarized in Table II.

TABLE II
VOCABULARY SIZE AND WORD IMAGE DISTRIBUTIONS OF EACH DATASET.

Distrib. GB RM GW Wiki ESP

Im
ag

es Train - 51,739 2,402 - 45,102
Validation - 7,464 1,199 - 5,637
Test - 7,776 1,292 - 5,637

Vo
ca

b. Train 26,573 4,477 660 24,456 2,565
Validation 2,953 1,578 521 3,843 629
Test 0 1,627 431 1.928 629

Authors in [18] built a very large vocabulary gathered
from a Google N-grams project and an edition of a manually
transcribed book from the 16th century. We had a similar
approach to this work as we built a dataset from digitized
books of the same century of our data, with a vocabulary
containing mainly named entities (GB).

B. Definition Use Case

We are working on title line images about Italian Comedy
from 18th century, mainly composed of named entities [19].
We define ESP dataset as the use case to experiment our
approach because this is more similar to our historical data
with enough images. Let IESP , a set of ESP images of
words considered as a new resource with no ground truth that
we want to annotate. The main vocabulary of this historical
database is composed of named entities as our data from Italian
Comedy. The language used is Spanish with latin alphabet.

Let VESP the training and validation vocabulary of ESP be
another resource from the same domain than images of ESP
and used for the training step of the language model.

We train the optical encoder from GW and RIMES com-
posed of the latin characters but in French and English, and
coming from various time periods. While, the language model
is trained independently with VESP , GB, Wiki, and also the
vocabulary sets of GW and RIMES. Despite the differences of
language and domain, GB is an interesting resource sharing the

time period as well as the special feature of being composed
of named entities (but in French and Italian).

C. Evaluation Metrics

We want to evaluate the performances of our optical model
to build a vector of ngrams. We computed the Recall, Preci-
sion, Accuracy and F1-score as defined in eq. 1. We measured
if all the ngrams composing the word are present (activation
greater than the offset), without checking that the frequency of
the letter-n-grams is correct. We define the number of ngrams
correctly identified in the word vector as the true positives
(TP), whereas the number of ngrams outside the word and not
detected are the true negatives (TN). The number of ngrams
originally included in the vector of word and not added by
the model are the false negative (FN). Finally, the number of
ngrams originally not included in the decomposition of word
but added by the model, are the false positive (FP).

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
,

Accuracy =
TP + TN

TP + TN + FP + FN
,

F1-Score = 2× Recall × Precision

Recall + Precision
.

(1)

To evaluate the performance of the language model, we used
the recognition rate at the character level (CRR) and at the
word level (WRR). It is defined as:

CRR = max(
N − (Ins+ Subs+Dels)

N
, 0)

with N , Ins, Subs, Dels respectively the number of charac-
ters of the reference words, the number of character insertions,
substitutions and deletions. We set a 0 low bound for the CRR
computation to avoid any border effect. The Word Recognition
Rate (= Word Accuracy) is defined as the number of correctly
recognized words divided by the total number of words to
recognize. CRR and WRR are computed using or not the
Levenshtein edit distance to correct the output sequence with
regards to a multilingual dictionary. The dictionary was built
from the training and the validation parts of the vocabulary
of all the datasets, except Wikipedia. The dictionary contains
39,051 words.

V. RESULTS & ANALYSIS

A. Optical Model Experiments

Table III presents the results of our experiments for the
optical model. The first part of the results enables to define
the setup of the system giving the best Recall, Precision and
F1-score using ESP to train and test the system. The second
part of the results are obtained using the transfer learning from
GW and RM to ESP dataset. Among all experiments we did,
we selected here the most relevant. We evaluate and select the
setup on validation data in this part.

Firstly, we focus on the impact of the setup on the results
thanks to the Bi experiments. The experiments B0 and B3



show that target some areas into the features thank to 6 masks
is more efficient than to only take globally the full image.
The length of the letter-n-grams but also the quantity of the
letter-n-grams has a surprising effect on the measures. The
recall difference between B1 and B3 is proportional to the
number of available output. So, the B1 experiment with the
less output using unigrams has a best recall, precision and
F1-score than B3. B1 predicts 3 times more unigrams than
the ground-truth and B3 predicts 3 times more unigrams too
and 7 times more letter-n-grams than the ground-truth. To
analyze the effects using the normalized frequency plus the
offset values (SIG(Off)) of the output targets we can compare
B4 and B6 experiments. The encoding of each output with a
binary answer (SIG(1)) is more efficient than the SIG(Off).
B6 loses 8.5% of precision and with a similar recall, but the
idea of the quantity of letter-n-grams is also lost. To compute
the cost, the binary cross-entropy used in B6 provides a better
recall of 36.66%, but a dramatically better precision of about
54.17% than using the Kullback-Liebler function (B5).

With regards to these results, the best setup operates the
binary cross-entropy as cost function, using the normalized
frequency with the offset of the targets and the features filtered
with 6 masks based on the input image. With a recall above
60%, we show that it is possible to build a letter-n-grams
vector to represent a word image is possible.

The focus on Ei transfer learning experiments shows that the
size of the FC9 layer has no noteworthy effect on the results.
Moreover, the THR configuration promotes the precision mea-
sure but omits the recall. Overall, all Ei experiments carried
out on RIMES and GW reach only the half of the measures
estimated on ESP. The best recall measure is obtained with
all n-grams and 2,048 units on FC9 (E6), and as on the
Bi experiments, following the F1-score, the best results are
obtained with the unigrams (E0) and 1,2-grams (E1).

B. Language Model Experiments

Table IV shows the results for the language model compo-
nent. It clearly appears that the system success to recognize
the correct word when the quantity of the letter-n-grams
is increased. The difference of the WRR between unigrams
(Experiment D1) and bigrams (D2) is more significant with
45.56% than bigrams (D2) and trigrams (D3) with 10.95%.
So, if the size of letter-n-grams is the main difficulty for the
encoder component, the using of all bigrams can be a good
alternative because it represents only 15% of the 1,2,3 letter-
n-grams size. The vocabulary of ESP is built primarily with
named entities as it is extracted from 18th century Spanish
wedding registers. This explains the low lexical coverage
for the transductive transfer learning. Nevertheless, CRR is
greater than 90% except with RM (D4) and WRR outperforms
the lexical coverage. Thus, with more information thanks
to the presence of all letter-n-grams, words are more easily
generated. We proposed more experiments applied to RIMES
and the vocabulary of registers of Italian Comedy in [20].

C. End-to-end Model Experiments

The previous experiments show that the best recall is
obtained with unigrams target for the encoder whereas the
CRR and WRR are obtained with 1,2,3 letter-n-grams. So,
for the last experiments, we combine all best setups for
each component. The test is applied to the ESP vocabulary
where the frequency of each word is equiprobable. Table
V presents the last experiments. The differences between
Table III and Table V for the encoder measures come from
balancing the vocabulary. We select different experiments with
the unigrams as the pivot (E0-D1) because it obtained the best
F1-score on the encoder; the 1,2 letter-n-grams with or without
transfer (E1-D2, B2-D2) because this is the best compromise
between the two components; and the 1,2,3 letter-n-grams
combining different encoder architectures (E2-D3, E3-D3, E6-
D3) because it obtained the best result on the decoder.

At first sight, we find that the results obtained on the encoder
part are similar to these obtained during the training step.
To help the system, we realize a training step through the
encoder and decoder component from previous weights in
order to apply an end to end back-propagation. The fine-tuning
applied improves the performance of the encoder when all
images are used but degrades the decoder when we realized it
with RIMES and GW, so the ESP vocabulary is forgotten.
The fine-tuning experiments with E3-D3 increases the F1-
score by 8.66%, whereas, with E1-D2, the results remain the
same. Detailed analysis shows that the noisy output of the
encoder prevents the decoder to work well. For example, the
encoder predicts several symbols of the beginning and end of
the word or no end symbol. Moreover, except for common
words such as “de”, the encoder predicts 7 times more letter-
n-grams, which makes it more difficult to recognize words. To
improve the performances and restrain the impact of the noisy
on the decoder, it would be possible to limit the selection of
n more active letter-n-grams and force others at 0.

VI. CONCLUSION

In this paper, we presented a transfer learning approach
dealing with the lack of ground truth, for historical handwrit-
ing recognition. We chose an approach that learns indepen-
dently optical and language models, connected by a vector that
did not use an indication of the order of characters in words
rather than usual sequence-to-sequence approaches to facilitate
the transfer learning. We selected some available resources
with the same domain, from the same time period and with
the same alphabet to achieve the transfer learning.

The optical model with a bag of letter-n-grams as target
provides a good recall greater than 70% for the case where
the source and target datasets were the same. Regarding the
learning with other resources, it seems that the amount of data
used for the training step is still too low. But, experiments
have shown that the architecture of a system decomposed with
two independent models could be a solution. Regarding on
our results through the two components, optical and language
models, in addition to increasing the amount of data for the
encoder, it could be interesting to add an attention mechanism



TABLE III
OPTICAL MODEL RESULTS. IN THE TOP PART, EVALUATION OF THE BEST SETUP ON ESP TRAIN DATASET. IN THE BOTTOM PART, RESULTS OBTAIN ON

TRANSFER LEARNING WITH GW AND RIMES TRAIN DATASETS, AND ESP VAL DATASET. (%)

Expe. Id FC9 Config Funct. cost Nb masks Letter n-grams Rec. Pre. F1-Score Acc.
B0 1024 SIG (off) Bin. 1 1,2,3 47.28 29.03 35.84 99.89
B1 1024 SIG (off) Bin. 6 1 66.48 89.61 76.33 98.33
B2 1024 SIG (off) Bin. 6 1,2 61.85 79.03 69.40 99.68
B3 1024 SIG (off) Bin. 6 1,2,3 58.16 72.40 64.50 99.91
B4 2048 SIG (1) Bin. 6 1,2,3 93.16 74.39 82.72 99.96
B5 2048 SIG (off) Kull 6 1,2,3 55.68 11.72 19.10 99.90
B6 2048 SIG (off) Bin 6 1,2,3 92.34 65.89 76.91 99.96
E0 1024 SIG (off) Bin. 6 1 29.09 35.48 31.97 95.48
E1 1024 SIG (off) Bin. 6 1.2 22.51 34.14 27.13 99.16
E2 1024 SIG (off) Bin. 6 1,2,3 32.43 18.77 23.78 99.88
E3 1024 SIG (off) MSE 6 1,2,3 34.80 10.73 16.27 99.88
E6 2048 SIG (off) Bin. 6 1,2,3 45.16 10.58 17.15 99.90
E8 2048 THR (off) Bin. 6 1,2,3 4.77 59.32 8.83 98.76

TABLE IV
LANGUAGE MODEL RESULTS. CRR AND WRR WITH THE

CASE-SENSITIVITY AND THE DICTIONARY ON ESP TEST DATASET. (%)

Train Expe.
Id

Letter
n-grams

Lexical
Coverage CRR WRR WRR

dict.

GB+ESP D1 1
85.94

85.46 44.43 37.87
GB+ESP D2 1,2 92.00 62.31 59.49
GB+ESP D3 1,2,3 98.25 91.61 62.92
GB+ESP
+GW+RM D4 1,2,3 86.10 98.14 90.48 61.94

GB D5 1,2,3 15.96 88.18 54.35 45.48
RM D6 1,2,3 7.27 67.82 14.03 8.87
GB+RM D7 1,2,3 17.37 87.4 41.77 51.61
GB+RM+GW D8 1,2,3 17.69 88.77 57.1 44.35
Wiki D9 1,2,3 0.0 78.89 27.26 24.52

TABLE V
RESULTS OF TRANSFER LEARNING ON ESP TEST DATASET WITH THE TWO

COMPONENTS PLACED END TO END: SAVED WEIGHTS FROM PREVIOUS
EXPERIMENTS ARE USED TO INITIALIZE THE COMPLETE SYSTEM. (%)

Exp. Encoder Decoder

Enc. Dec. Rec. Pre. F1-Sc Acc. CRR dict.

E0 D1 29.78 32.15 30.83 94.73 27.01
E1 D2 29.47 29.75 29.54 99.14 28.07
E2 D3 32.64 11.03 16.43 99.84 24.39
E3 D3 40.22 3.42 6.27 99.86 25.70
E6 D3 33.87 9.71 15.02 99.85 17.23
E3 D7 32.73 11.02 16.44 99.85 20.24
B2 D2 45.88 43.61 44.72 99.35 28.02

on the decoder inputs, or to customize the decoder to sort the
useful letter-n-grams. An other solution can be to modify the
encoder architecture but keeping the concept of the projection
in the common non-latent space. There is still some works to
succeed in the recognition of new digitized documents from
multilingual and multi-period resources.
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