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Circulating microRNAs in follicular 
fluid, powerful tools to explore  
in vitro fertilization process
E. Scalici1,2,3, S. Traver1, T. Mullet1,2, N. Molinari4, A. Ferrières3, C. Brunet3, S. Belloc5 &  
S. Hamamah1,2,3

Circulating or “extracellular” microRNAs (miRNAs) detected in biological fluids, could be used as 
potential diagnostic and prognostic biomarkers of several disease, such as cancer, gynecological and 
pregnancy disorders. However, their contributions in female infertility and in vitro fertilization (IVF) 
remain unknown. This study investigated the expression profiles of five circulating miRNAs (let-7b, 
miR-29a, miR-30a, miR-140 and miR-320a) in human follicular fluid from 91 women with normal ovarian 
reserve and 30 with polycystic ovary syndrome (PCOS) and their ability to predict IVF outcomes. 
The combination of FF miR-30a, miR-140 and let-7b expression levels discriminated between PCOS 
and normal ovarian reserve with a specificity of 83.8% and a sensitivity of 70% (area under the ROC 
curve, AUC = 0.83 [0.73–0.92]; p < 0.0001). FF samples related to low number of mature oocytes 
(≤2) contained significant less miR-320a levels than those related to a number of mature oocytes >2 
(p = 0.04). Moreover, FF let-7b predicted the development of expanded blastocysts with 70% sensitivity 
and 64.3% specificity (AUC = 0.67 [0.54–0.79]; p = 0.02) and FF miR-29a potential to predict clinical 
pregnancy outcome reached 0.68 [0.55–0.79] with a sensitivity of 83.3% and a specificity of 53.5% 
(p = 0.01). Therefore, these miRNAs could provide new helpful biomarkers to facilitate personalized 
medical care during IVF.

MicroRNAs (miRNAs) are single stranded, small non-coding RNA molecules of 19–25 nucleotides in length that 
contribute to post-transcriptional regulation by binding specifically to messenger RNA targets, leading to their 
destabilization or translation repression1. In reproduction, they are involved in the regulation of several biological 
processes, such as follicular cell proliferation and apoptosis2,3, steroidogenesis4,5 and oocyte maturation3,6. Among 
the miRNAs expressed in ovarian follicles, some are also found in the bloodstream and other biological fluids, 
such as follicular fluid (FF)5,7,8. These circulating/extracellular miRNAs, can be easily quantified in biological 
fluids9 and might represent promising biomarkers in some medical fields such as oncology10,11, obstetrics12,13 and 
gynecology13,14, due to their possible applications in the diagnosis and prognosis of many diseases15.

Currently, the ovarian reserve status is routinely determined based on the serum concentration of 
anti-Müllerian hormone (AMH) and the antral follicle count (AFC); however, this approach is confronted with 
a lack of standardization among laboratories and practitioners, respectively16–18. Few studies have provided evi-
dence that miRNA expression is altered in serum or in FF samples from women with polycystic ovary syndrome 
(PCOS)5,19–23. Therefore, analysis of the differential expression of specific miRNAs in FF samples from women 
with PCOS could represent a promising approach to identify novel specific biomarkers for the assessment of ovar-
ian reserve status. Moreover, the ovarian response to controlled ovarian stimulation (COS) protocols is affected 
by the ovarian reserve status and influences in vitro fertilization (IVF) outcomes24. Although, it was reported that 
some miRNAs are implicated in the regulation of steroidogenesis in ovarian follicles4,5,25,26, the impact of gonad-
otropin treatments on miRNA expression in FF remains unknown.

FF also provides a micro-environment that influences the oocyte developmental competence and embryo 
development. Consequently, variations in its content have been considered as predictive factors of oocyte 
and embryo quality27–29. Moreover, it was demonstrated that miRNAs play a role in oocyte and embryo 
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development30,31. Although one recent study suggested the association between miR-320a expression in FF and 
embryo quality32, the use of the expression profile of circulating miRNAs in the oocyte micro-environment as a 
tool to predict blastocyst development and clinical pregnancy outcomes during IVF has never been investigated.

In this study, the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 and miR-
320a) were compared in FF samples from women with normal ovarian reserve and with PCOS, undergoing IVF/
Intra-cytoplasmic sperm injection (ICSI) procedure, with the aim of identifying new efficient biomarkers related 
to PCOS. We also assessed whether their differential expression was influenced by the COS protocol and ovarian 
response. Finally, we tested the performance of these FF miRNAs to predict blastocyst formation and clinical 
pregnancy outcome, in women with normal ovarian reserve. Our results indicate that some of these miRNAs are 
differentially expressed in FF samples from women affected by PCOS, suggesting that their specific profile could 
be used to discriminate these patients. Moreover, we demonstrate, for the first time, that the miRNA content in 
FF could be related to gonadotropin treatment and ovarian response. In addition, some circulating miRNAs could 
constitute non-invasive powerful tools for the prediction of blastulation and clinical pregnancy outcome towards 
the development of a personalized IVF strategy.

Results
MiRNA differential expression in FF samples from women with PCOS compared to women with 
normal ovarian reserve. Comparison of the expression profiles showed that miR-30a was significantly 
up-regulated (p =  0.006), while miR-140 and let-7b were significantly down-regulated (p =  0.01 for both) in FF 
pools from patients with PCOS (n =  30) compared to women with normal ovarian reserve (n =  91) (Fig. 1A–C). 
Moreover, after adjustment for body mass index (BMI), these three miRNAs were significantly and independently 
associated with PCOS in multivariate analysis (adjusted odds ratio, AOR: 5.0 [1.86; 13.68], p =  0.001; 0.52 [0.29; 
0.94], p =  0.03; 1.0 [0.99; 1.0], p =  0.02, respectively) (Table 1). Then, the sensitivity and specificity of the rela-
tionship between FF miR-30a, miR-140 and let-7b differential expression and PCOS were determined using 
the Receiver Operating Characteristic (ROC) curve analysis and by calculating the area under the ROC curve 
(AUC). The AUC values for the individual performance of FF miR-30a, FF miR-140 and FF let-7b expression 
profiles in PCOS discrimination were 0.67 (0.57–0.76), 0.67 (0.57–0.76) and 0.67 (0.57–0.76) (p =  0.02, p =  0.007, 
p =  0.003), respectively (Fig. 2A–C, Table 2). By combining the three miRNAs in multivariate analysis, the AUC 
value increased to 0.83 (0.73–0.92) (p <  0.0001) (Fig. 2D, Table 2). Moreover, the sensitivity and the specificity 
of FF miR-30a, FF miR-140 and FF let-7b were 57.7%, 57.7% and 53.9% and 85.1%, 81.1% and 75.7%, respec-
tively (Table 2). The combination of these three miRNAs increased the sensitivity of the prediction to 70% with 

Figure 1. Comparison of the relative miRNA expression in follicular fluid (FF) pools from women with 
normal ovarian reserve (n = 91) and with polycystic ovary syndrome (PCOS, n = 30). (A) FF miR-30a; (B) 
FF miR-140; (C) FF let-7b. P-values: Mann-Whitney test.
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a specificity of 83.8%. These results indicate that the combination of miR-30a, miR-140 and let-7b, which are 
differentially expressed in FF samples from patients with PCOS compared to women with normal ovarian reserve, 
gives the largest AUC value with high sensitivity and specificity, and suggest that these three miRNAs represent 
new potential PCOS biomarkers.

Differential expression of FF miRNAs according to the gonadotropin treatment and ovarian 
response. The variations of miRNA expression in FF samples were investigated relative to the gonadotropin 
treatment and ovarian response in women with normal ovarian reserve (n =  91).

The expression of the five miRNAs was comparable in FF pools from women who received agonist or antag-
onist protocols. Conversely, FF expression of miR-29a and miR-140 varied significantly according to the gon-
adotropin treatment. Specifically, miR-29a expression was significantly decreased and miR-140 expression 
significantly increased in FF pools from women treated with highly purified human menopausal gonadotropin 
(HP-hMG) compared with patients who were stimulated with recombinant follicle-stimulating hormone (r-FSH) 
(p =  0.03; p =  0.02, respectively) (Fig. 3A). Moreover, whatever the type of gonadotropin, miR-140 was signifi-
cantly up-regulated in FF pools from women who received higher total doses of gonadotropins (≥ 3000 IU/l) 
compared to those treated with lower doses (< 3000 IU/l) (p =  0.03) (Fig. 3B). Likewise, Spearman’s correlation 
analysis showed that FF miR-140 level was significantly and positively associated with the total dose of gonado-
tropins (r =  0.21; p =  0.02) (data not shown).

At oocyte retrieval day, FF pools from women with a low number of mature oocytes (MII) (≤ 2) contained 
significant lower FF miR-320 levels than those related to a number of mature oocytes higher than 2 (p =  0.04) 
(Fig. 3C). By using Spearman’s correlation analysis, miR-320a level in FF pools was significantly and positively 
correlated with the number of mature oocytes (r =  0.24; p =  0.02) (data not shown).

FF let-7b expression and blastocyst development. By considering only the group of women with nor-
mal ovarian reserve (n =  91), we found a significant and negative correlation between FF let-7b expression level 
and blastulation rate (r =  − 0.33, p =  0.003) Indeed, low FF let-7b expression was significantly associated with 
the probability to obtain a blastocyst [crude odds ratio, COR =  1.0 [0.99; 1.0], p =  0.04] (data not shown). The 
AUC value of FF let-7b potential to predict blastocyst development, was 0.66 (0.55–0.76) with 77.2% sensitivity 
and 59.1% specificity (p =  0.02; at cut-off value ≤  273.2) (Fig. 4A). Likewise, FF let-7b levels were also correlated 
significantly and negatively with the expanded blastocyst rate in women with normal ovarian reserve (r =  − 0.28, 
p =  0.009). The probability to obtain an expanded blastocyst was significantly associated with intra-follicular 
expression of let-7b [COR =  1.0 [0.99; 1.0], p =  0.02] (data not shown). In addition, the AUC value that defined 
the performance of FF let-7b in predicting the formation of expanded blastocysts was 0.67 (0.54–0.79), with 70% 
sensitivity and 64.3% specificity (p =  0.02; at cut-off value ≤  247.9) (Fig. 4B).

FF miR-29a predictive value for clinical pregnancy outcome. In the group with normal ovarian 
reserve (n =  91), FF miR-29a expression predicted significantly the clinical pregnancy outcome [COR =  2.08 
[1.0; 4.3], p =  0.049] (data not shown). Moreover, the ROC curve analysis indicated that the performance of FF 
miR-29a for clinical pregnancy prediction reached 0.68 (0.55–0.79) with a sensitivity of 83.3%, but a low speci-
ficity (53.5%) (p =  0.01; cut-off value >  0.32) (Fig. 5A). In addition, comparison of the discrimination power of 
FF miR-29a expression and of the top quality embryo percentage for clinical pregnancy prediction showed that 
the AUC value related to FF miR-29a expression was higher than that for the top quality embryo percentage 
(AUC =  0.59 [0.46–0.72]; p =  0.27) (Fig. 5B).

Discussion
This study investigated the expression profiles of five circulating miRNAs (let-7b, miR-29a, miR-30a, miR-140 
and miR-320a) in FF pools from patients undergoing IVF/ICSI procedure. These circulating microRNAs were 
differentially expressed according to the women’s ovarian reserve status, gonadotropin treatments and/or IVF 
outcomes (Fig. 6).

We demonstrate, for the first time, that the expression of let-7b and miR-140 is significantly decreased whereas 
miR-30a is up-regulated in FF samples from patients with PCOS. Moreover, the combination of these three miR-
NAs is significantly associated with PCOS, with high specificity and sensitivity. Therefore, they could consti-
tute new specific biomarkers to easily and efficiently identify women with PCOS. Previous studies reported that 
let-7b is expressed in granulosa and cumulus cells in mammalian and also human ovaries3,33–37. PCOS is char-
acterized by follicular development abnormalities, suggesting that the normal “dialogue” between oocyte and 
granulosa cells in early growing follicles might be altered38. Accordingly, the significant decrease of FF let-7b 
expression observed in patients with PCOS might reflect this abnormal folliculogenesis. Indeed, it has been 

Relative FF microRNAs 
expression related to 
PCOS Univariate analysis Multivariate analysis

FF microRNAs Crude OR [95% CI] p-value Adjusted OR* [95% CI] p-value

FF miR-30a 4.5 [1.94; 10.57] p <  0.001 5.0 [1.86; 13.68] 0.001

FF miR-140 0.6 [0.37; 0.96] 0.03 0.52 [0.29; 0.94] 0.03

FF let-7b 1.0 [0.99; 1.0] 0.01 1.0 [0.99; 1.0] 0.02

Table 1.  Multivariate logistic model showing the association of specific FF mRNAs with polycystic ovary 
syndrome. OR, Odds ratio, FF, follicular fluid, PCOS, polycystic ovary syndrome. *Adjustment for BMI.
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reported that let-7b could play a specific role in ovarian follicular development33,35,37. Specifically, let-7b regu-
lates the TGF-β  signaling pathway in goat ovary by targeting the activin receptor І and Smad2/3 genes35. TGF-β  
dysregulation contributes to reproductive abnormalities in PCOS, such as follicle development perturbation39. 
Consequently, let-7b down-regulation in ovarian follicles could lead to TGF-β  signaling pathway deregulation 
and ultimately contribute to PCOS development. Abnormal estrogen receptor (ER) expression could also con-
tribute to poor follicular development and ovulatory failure in PCOS40. MiR-140 plays a role as tumor suppressor 
and is down-regulated in breast cancer via ERα  signaling41. These findings suggest that the modifications of ERα  
expression observed in PCOS might influence negatively miR-140 expression in ovarian follicles. Finally, it has 
been demonstrated that miR-30a overexpression in cultured human granulosa cells promotes BCL2A1, IER3 and 
cyclin D2 expression by repressing FOXL-242. FOXL-2 encodes a forkhead transcription factor that is essential for 
ovarian development43. FOXL-2 conditional knockout in mouse results in sex-reversed follicles with characteris-
tics of cystic follicles, including elevated androgen production by theca cells and morphological transformation 
of granulosa cells, like in PCOS44,45. Moreover, androgen-induced hirsutism, described in patients with PCOS, is 

Figure 2. ROC curve analysis to calculate the discriminative power of the FF expression of (A) miR-30a;  
(B) miR-140; and (C) let-7b individually and (D) in combination to predict PCOS.

ROC analysis

Prediction for PCOS

FF miR-30a FF miR-140 FF let-7b

Combination of FF 
miR-30a, miR-140 

and let-7b

AuROC (95% CI) 0.67 (0.57–0.76) 0.67 (0.57–0.76) 0.67 (0.57–0.76) 0.83 (0.73–0.92)

p-value 0.02 0.007 0.003 < 0.0001

Sensitivity (%) 57.7 57.7 53.9 70.0

Specificity (%) 85.1 81.1 75.7 83.8

Positive predictive 
value (%) 57.7 51.7 41.9 60

Negative predictive 
value (%) 85.1 84.5 81.2 88.6

Cut-off value > 0.49 ≤ 0.92 ≤ 93.95 − 

Table 2.  Power of discrimination of FF miRNA expressions for polycystic ovary syndrome prediction. 
MiRNAs were analyzed individually and in combination by Receiver Operating Characteristic (ROC) analysis. 
AuROC, area under the ROC curve, PCOS, polycystic ovary syndrome.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:24976 | DOI: 10.1038/srep24976

also observed in women carrying FOXL-2 mutations46. Based on these observations, we hypothesize that miR-30 
overexpression in FF pools from women with PCOS might lead to FOXL-2 inhibition/down-regulation in ovarian 

Figure 3. (A) Comparison of FF miR-29a and miR-140 expression level relative to the type of treatment (highly 
purified human menopausal gonadotropin, HP-hMG, versus recombinant follicle-stimulating hormone, r-FSH) 
(*p =  0.03; **p =  0.02). (B) Differential FF miR-140 expression according to the total dose of gonadotropins 
(< 3000 versus ≥ 3000 IU/l) (*p =  0.03). (C) Comparison of FF miR-320a expression level relative to the 
number of retrieved mature oocytes (≤ 2 versus > 2 mature oocytes) (*p =  0.04). These analyses included only 
the group of women with normal ovarian reserve (n =  91). P-values: Mann-Whitney test.

Figure 4. (A) ROC analysis to evaluate FF let-7b expression predictive value for blastocyst formation. (B) ROC 
analysis to evaluate FF let-7b expression predictive value for expanded blastocyst development. These analyses 
included only the group of women with normal ovarian reserve (n =  91).
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follicles, thus promoting PCOS symptom development. Differently from two previous study5,47, FF miR-320a 
expression was not affected in our group of women with PCOS. However, miR-320a expression level was signifi-
cantly lower in FF pools from women with less than two mature oocytes (≤ 2) compared with women with more 
than two mature oocytes. In the mouse, miR-320a knockdown in oocytes decreased significantly the proportion 
of mature oocytes that developed into embryos32. Taken together, these data suggest that miR-320a is indicative 
of mature oocyte quantity and quality and that its intra-follicular expression could be modulated by the ovarian 
response quality of patients undergoing IVF.

MiR-29a was significantly down-regulated and miR-140 overexpressed in FF pools from women who were 
stimulated with HP-hMG compared with those treated with r-FSH. This is in agreement with a previous study 
showing that miR-29a is significantly down-regulated by FSH treatment in cultured rat granulosa cells, thus influ-
encing progesterone production48. Our data suggest that gonadotropin treatments could affect intra-follicular 
miRNA expression and ultimately IVF efficacy. We also found that total high dose of gonadotropins was associ-
ated with miR-140 up-regulation. This probably reflects a potential dose-effect relationship of gonadotropins on 
FF miR-140 expression profile.

The importance of miRNAs in early embryo development has been demonstrated in many mammalian spe-
cies49. Although Feng et al.32, did not observe significant differential expression of let-7b in FF samples according 
to embryo quality, we found that FF let-7b level was significantly related to the embryo developmental potential. 

Figure 5. (A) ROC analysis to evaluate FF miR-29a expression predictive value for clinical pregnancy outcome. 
(B) Comparison of the ROC curves showing the predictive value of FF miR-29a expression and top quality 
embryo proportion for clinical pregnancy outcome. These analyses included only the group of women with 
normal ovarian reserve (n =  91).

Figure 6. Schematic model showing that miRNA expression profiling in FF samples provides powerful 
tools to efficiently discriminate women with polycystic ovary syndrome (PCOS) and to predict IVF 
outcomes. The expression of some FF miRNAs varies according to the gonadotropin treatment. HP-hMG, 
highly purified human menopausal gonadotropin; r-FSH, recombinant follicle-stimulating hormone.
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Indeed, let-7b levels in FF predicted significantly blastocyst formation and expansion. It was previously shown 
that let-7 can regulate developmental timing in Caenorhabditis elegans50. Therefore, evaluation of FF let-7b 
expression could be useful to define the best strategy of embryo culture during IVF.

In addition, FF miR-29a levels predicted significantly the clinical pregnancy outcome with higher sensitivity 
(83.3%) compared to the top quality embryos proportion in our cohort. MiR-29a is highly expressed in rat uterus 
during embryo implantation and its expression is regulated by blastocyst activation and uterine decidualization51. 
Interestingly, miR-29a expression might influence pregnancy outcome by acting both on the follicular and endometrial 
side, supporting the hypothesis that favorable follicular and endometrial environments are necessary for conception.

In conclusion, miRNA expression profiling in human FF samples might provide biomarkers to efficiently discrim-
inate women with PCOS and to predict blastocyst development and clinical pregnancy outcomes. However, their 
specific role in the oocyte micro-environment, their regulation by gonadotropins and their involvement in female 
infertility should be further investigated. These new potential biomarkers could be used in the daily practice to improve 
personalized IVF strategies and to identify new therapeutic targets in female infertility management.

Methods
Patients. This prospective study included 121 women who underwent conventional IVF (n =  28) or ICSI 
(n =  93) at the ART-PGD Department of the University Hospital of Montpellier, France. Their mean age was 
33.7 ±  4.5 years (mean ±  SD; range: 19 to 43 years) and the BMI was 24.1 ±  4.5 kg/m2 (mean ±  SD; range: 17 and 
37.5 kg/m2) (Supplementary Table S1). The infertility length was 3.6 ±  1.6 years (mean ±  SD) and infertility was 
primary in 71 couples and secondary in the other 50. Male, female and mixed factors were detected in 32.2%, 
38.0% and 23.1% of cases, respectively, while infertility was unexplained in 6.7% of couples. This was the first 
IVF or ICSI attempt for 38.0% of them, while 62.0% had already undergone at least one cycle (mean number 
of cycles ±  SD: 2.1 ±  1.2). Among the 121 women, 91 had a normal ovarian reserve, based on the serum AMH 
level and AFC, evaluated at day 3 of the menstrual cycle. PCOS was diagnosed in the remaining 30 women, 
according to the Rotterdam criteria52 (i.e., oligo-and/or anovulation, hyperandrogenism signs and polycystic 
ovary morphology on ultrasound examination). Basal follicle-stimulating hormone (FSH), luteinizing hormone 
(LH) and 17β estradiol (E2) serum levels were also measured in each patient at day 3 of the menstrual cycle. The 
clinical characteristics of all women and in the two groups (normal ovarian reserve and PCOS) are detailed in 
Supplementary Table S1.

Patients were informed about FF sample collection/analysis and they gave their written informed consent on 
oocyte retrieval day. This study was approved by the Ethical Committee of the Institute for Regenerative Medicine 
and Biotherapy and the methods were carried out in accordance with the approved guidelines.

IVF procedure. A gonadotropin-releasing hormone (GnRH) agonist (Decapeptyl, IpsenPharma) was admin-
istered daily to 58 women and an antagonist protocol was used in 59. The remaining four patients received a 
mild treatment and were thus excluded from the analysis concerning the treatment effect on miRNA expression. 
These two protocols included COS with two types of gonadotropins: r-FSH (Puregon, MSD, Courbevoie, France 
or GonalF, Merck Serrono, Lyon, France), or HP-hMG (Menopur, Ferring, Gentilly, France). COS duration was 
10.2 ±  1.5 days and the total gonadotropin dose was 2086.6 ±  809.4 IU/l (mean ±  SD) (Supplemental Table S1). 
The ovarian response to stimulation was monitored by measuring the serum E2 concentration and by ultrasound 
assessment of follicular and endometrial growth. Ovulation was triggered with an injection of 250 μ g human 
chorionic gonadotropin (hCG) (Ovitrelle, Merck Serono, Lyon, France) when at least three follicles reached 
the diameter of 17 mm or more on ultrasound examination. At ovulation triggering day, the hormonal ovarian 
response was also evaluated by quantifying serum E2, LH and progesterone levels (Supplementary Table S1).

Oocytes were retrieved by transvaginal ultrasound-guided aspiration 36 h after hCG injection. For each 
patient, all follicles were aspirated without flushing, cumulus-oocyte complexes were isolated for conventional 
IVF or ICSI and all FF samples were collected.

Before intracytoplasmic sperm microinjection, the oocyte maturity rate (76%) was assessed after denuda-
tion. On average, 9.1 ±  4.5 oocytes (mean ±  SD) and 7.1 ±  3.9 mature oocytes (mean ±  SD) were collected per 
patient (Supplemental Table S2). Oocytes were cultured individually in 30 μ l micro-droplets of culture medium 
(Vitrolife) under oil at 37 °C in 5% O2, 6% CO2 and 89% N2, in humid atmosphere. The presence of two pronuclei 
and two polar bodies, 18–20 h after microinjection or insemination confirmed that the cultured oocytes were 
normally fertilized (overall fertilization rate =  64%). For each patient, 4.7 ±  3.5 embryos were obtained from the 
fertilized oocytes at day 2. Among these embryos, 1.7 ±  1.9 were cleaved early at 25 or 27 h after microinjection or 
insemination, respectively. On day 3, embryo quality was assessed based on morphological criteria (blastomere 
number, blastomere regularity and fragmentation rate). On average, 1.4 ±  1.8 embryos/patient (mean ±  SD) were 
considered as top quality because they contained 6–8 regular blastomeres and less than 20% fragments. One or 
two top quality embryos were transferred in utero at day 3, whereas the others were further cultured up to day 5. 
Blastocysts were classified according to the scoring system developed by Gardner53. At day 5, only expanded blas-
tocysts (classified as grade 4 or 5) with inner cell mass and trophectoderm scored as A or B were vitrified using 
a closed system, following the procedure recommended by Irvine Scientific. Four weeks after embryo transfer, 
clinical pregnancy was confirmed by the observation of at least one gestational sac and of embryonic heart activity 
on ultrasound examination. The IVF/ICSI outcomes of all women and in the two groups (normal ovarian reserve 
and PCOS) are reported in Supplementary Table S2.

FF sample preparation. At oocyte retrieval day, all FF samples of a patient were collected and pooled 
(n =  121 pools). A volume of 15 ml from each pool was centrifuged at 3000 g for 15 min. Then, supernatants were 
removed, filtered through 0.45 μ m filters to eliminate cell debris and stored at − 80 °C.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:24976 | DOI: 10.1038/srep24976

MiRNA extraction. The QIAamp®  Circulating Nucleic Acid kit (ref. 55114; Qiagen) was used for isolation 
and purification of circulating miRNAs from 3 ml of each FF pool according to the manufacturer’s protocol. 
Briefly, 3 ml of FF pool, 400 μ l of Qiagen Proteinase K and 4.2 ml of buffer ACL were mixed by pulse vortexing 
and incubated at 60 °C for 30 min. After incubation, 9 ml of buffer ACB was added to the lysate and mixed by 
pulse vortexing. The mixture was then transferred in a QIAamp Mini column by vacuum pressure to adsorb the 
miRNAs onto a small silica membrane. Next, each membrane was washed in three steps to remove residual con-
taminants. Highly pure circulating microRNAs were eluted within 40 μ l of buffer AVE.

FF miRNA expression analysis by RT-qPCR. Complementary DNA (cDNA) was generated using the 
TaqMan MicroRNA reverse transcription kit and miRNA-specific stem-loop primers for let-7b, miR-29a, miR-
30a, miR-140 and miR-320a (ref. 4427975, Life Technologies). The 15 μ l reaction mix contained 5 μ l of sample, 
0.15 μ l of 100 mM dNTP, 1.5 μ l of 10 ×  RT Buffer, 1 μ l of MultiScribe RT enzyme (50U/μ l), 0.19 μ l of RNase inhib-
itor (20U/μ l), 4.16 μ l of nuclease-free water and 3 μ l of Taqman RT primer. Reverse transcription was carried out 
at 16 °C for 30 min and then at 42 °C for 30 min, followed by an inactivated step at 85 °C for 5 min and an hold step 
at 4 °C. Quantitative PCR was performed in duplicate for each sample using LightCycler 480®  (Roche Applied 
Science, Germany); a negative control (water) was added for each sample. PCR reactions were carried out in a 
total volume of 10 μ l, consisting of 3 μ l of cDNA, 5 μ l of Taqman Universal PCR MasterMix (Applied Biosystems) 
and 2 μ l of primer (Life Technologies). The mixture was incubated in a 384-well plate, at 95 °C for 10 min, fol-
lowed by 50 cycles at 95 °C for 15 s and 60 °C for 1 min. MiR-16, commonly considered as internal control in 
serum54,55, was used to normalize the FF miRNA expression levels, due to its constant expression in FF samples 
(Supplementary Figure S1). The relative expression of the five miRNAs (let-7b, miR-29a, miR-30a, miR-140 and 
miR-320a) in each FF pool was calculated relative to that of miR-16 by using the equation 2−∆Ct, in which ∆ Ct was 
determined by the formula: Ct target miRNA− Ct miR-16.

These five miRNA were chosen among a large panel of miRNAs described in previous studies as expressed in 
FF5,32. The potential functions of these miRNAs, their localization in the ovarian follicle and their primary targets 
are summarized in Supplementary Table S3.

Statistical analysis. Continuous parametric data are presented as the mean ±  standard deviation (SD) and 
categorical variables with numbers and percentages. Based on the assessment of the normality of the distribu-
tion by Shapiro-Wilk test, we used Mann-Whitney tests and Spearman Rank correlations to compare and cor-
relate quantitative variables, respectively. Univariate analyses were performed for each FF miRNA expression 
and clinical characteristic (reported in Supplementary Table S1), to investigate their associations with PCOS. As 
FF miR-30a, miR-140 and let-7b expressions were related to PCOS with a p-value lower than 0.05 in univariate 
analyses, they were integrated in the multivariate analysis. Among the clinical variables, BMI was also correlated 
significantly with PCOS in the univariate analysis [COR =  1.13 (1.02–1.25), p =  0.02]. Therefore, the adjusted 
odds ratios for the three miRNAs were calculated by including BMI in the multivariate analysis. The ability of FF 
miRNA levels to discriminate women with PCOS and to predict blastocyst development and clinical pregnancy 
outcome was assessed by ROC curves and calculating the AUC with 95% confidence interval (CI). The sensitivity 
and specificity of the optimal cut-off were calculated. Statistical tests were performed using the R software (ver-
sion 2.15.2). Results were considered significant when p ≤  0.05.
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