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A su¢ cient condition for the CLT in the space of
nuclear operators - Application to covariance of

random functions.

André MAS�

Université Montpellier 2

Abstract

We give a su¢ cient condition for the CLT to hold in the space of trace class
(nuclear) operators. This condition turns out to be adapted to the asymptotic
study of emprirical covariance operators of Hilbert valued random variables.

Key words: Nuclear operators; Central limit theorem; Covariance operators; Random
functions

1 About the CLT for covariance operators

This article aims at providing a su¢ cient condition for the central limit theorem to hold
in a special vector space of operators. The reasons for this approach are motivated by
their applications in a modern but quite promising area of statistics : the inference on
random curves (or random functions). Indeed, let X1; :::; Xn be a sample of centered
random curves. We will assume that Xi are random variables with values in a Hilbert
space of functions H endowed with inner product <;> and norm j�j. A basic tool for
studying this sample is the empirical covariance operator �n de�ned for al x in H by :

�n (x) =
1

n

nX
k=1

< Xk; x > Xk

Several statistical applications arise from �n : functional principal component analysis,
canonical covariance analysis, decomposition of gaussian curves, etc. In the case of an i.i.d.
sample Dauxois, Pousse and Romain (1982) provided a complete asymptotic study of �n
and of its spectral elements. Silverman and Rice (1991) proposed estimation procedures
for the mean and the covariance operator of random curves. Bosq (2000) in a book
devoted to the generalization of ARMA models to the in�nite-dimensional setting gave
several asymptotic results for �n when the Xk�s are dependent variables. Cardot, Ferraty,
Sarda (1999) had to study such covariance operators in the framework of a functional
linear regression model. Mas (2002) proved the asymptotic gaussianity of the vector of
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covariance and cross-covariance of a generalized linear process with values in a Hilbert
space.
If u and v are two vectors in H; by u
 v we denote the rank one operator de�ned for

all x in H by (u
 v) (x) =< u; x > v:
Let us suppose that the sample X1; :::; Xn is strictly stationary and denote � =

E (X1 
X1) : In the sequel we will study weak convergence for the random operator
�n��: It is a well-known fact that spaces of operators on Hilbert spaces may be endowed
with several topologies or norms that are not equivalent if H is in�nite dimensional. It
should be stressed that functional statisticians tend to match the regularity of underlying
processes. Consequently the case H = L2[a; b] is not that common and Hilbert spaces of
smoother functions such as Sobolev spaces are usually preferred.
In all the previous articles cited above, the space of operators is endowed with the

Hilbert-Schmidt topology (de�ned below) for at least two reasons. First, computations
are obviously simpler in this setting since �n may be viewed as another Hilbert-valued
random variable. Second, the central limit theorem is obtained under mild condition in
this framework. This choice was made for convenience but cannot be justi�ed otherwise. It
turns out that, unfortunately, the natural space is in fact the space of trace class operators.
We refer to the next section for de�nition and main properties of these operator spaces.
The word �natural� could be explained here by the following well-known fact (see for
example Vakhania, Tarieladze, Chobanyan (1987)) : A random variable in a Hilbert
space has strong moment of second order if and only if its covariance operator
is a trace class operator. With mathematical symbols, this means :

E jX1j2 < +1 i� � is trace class:

When only �weak�moments (Pettis integral) are �nite the Hilbert-Schmidt assumption
is no longer true since the covariance operator is just bounded then. In order to illustrate
the situation let us switch operators to sequences. This would mean that, up to the present
day, l1 sequences were dealt only with l2 tools. Consequently, the question of the central
limit theorem in the space of trace class operators must be adressed.
As announced above, we will restrict ourselves to a su¢ cient condition for two reasons.

It is probable that the necessary condition will not be obtained by usual probabilistic tools
but requires very deep results related to functional analysis. Second, the condition, as
enounced below, may be easily exploited in the special cases when the random operators
are covariance (or cross-covariance operators).
The next paragraph outlines very basic but useful facts in operator theory.

2 Trace class operators

When looking for examples to illustrate general theorems on separable Banach spaces one
commonly refers to spaces of functions (the Lp (S;S; �) with usual notations) amongst
which the lp�s or c0. Banach spaces of linear operators are rarely mentioned. They are
however of much importance both in probability theory (especially in weak convergence
theory, gaussian analysis, etc.) and in statistics where such random operators appear in
quantum physics or when studying the covariance structure of random functions.
Here we will consider operators on an in�nite dimensional separable Hilbert space H

and not on a Banach space. The Hilbert space setting is quite general and allows to give
conditions that are easily understood. Even if L the space of bounded linear operators
is not separable, it is possible to consider an important subspace : the space of compact
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operators, C, endowed with the ususal operator norm. For the de�nition and the main
algebraic and analytic properties of C we refer to Dunford-Schwartz (1988).
We may now de�ne the class Cp � C. Let T be a compact operator and �k (T �T ) be

the kth positive eigenvalue of T �T , (T � denotes the adjoint operator of T ). Set �k =
p
�k;

the kth singular value of operator T; then �x p 2 N and de�ne :

Cp =
(
T 2 C :

X
k

�pk < +1
)

The �natural� norm on this space is de�ned for all T and for p � 1 by kTkp =
[
P

k �
p
k]
1=p :Then,

�
Cp; k�kp

�
is a separable Banach space and Cp � Cq whenever p < q.

Several other properties of Cp are listed in Dunford-Schwartz (1988).
Note also that spaces of operators are non commutative algebras, whereas algebras of

functions are usually commutative and that C2 is the space of Hilbert-Schmidt operators,
which is itself a separable Hilbert space.
In the following we will focus on C1 the space of nuclear (or trace class) operators on

H endowed with nuclear norm k�k1 ; which is the thinest of all the k�kp norm. In the case
of a symmetric and positive operator, this norm is nothing but the sum of the eigenvalues.
We will need the three following results. For further purpose we recall that the dual space
of C1 is C�1 = L. The duality bracket between T 2 C1 and U 2 L is hhT; Uii = trT �U .
Nicole Tomszak-Jaegerman (1974) proved that C1 is a Banach space of cotype 2. This

result is crucial as far as the central limit theorem is under concern. It is a well known
fact that in such a Banach space, a random variable satis�es the CLT if and only if it is
pregaussian. In other words, if its covariance operator is a gaussian covariance operator.
We refer to Araujo and Giné (1980) for more information about the theory of types in
Banach spaces. Unfortunately this approach that may lead us to a necessary and su¢ cient
condition goes beyond the scope of this article. Note anyway that conversely to the other
famous cotype 2 space l1; the CLT does not easily stems from the pre-gaussianity condition
because C1 is not a commutative space.
We have to change our technique and to go back to the basements of weak convergence

on Banach spaces : the Prokhorov theorem. In the sequel we will consequently prove that
the sequence of measures is tight, i.e �atly concentrated and bounded (see de Acosta
(1970))

3 Main results

3.1 The i.i.d. case

In all the following T1; T2; :::; Tn is a sequence of i.i.d. centered nuclear operators from H

to H: We set Sn =
1p
n

Pn
p=1 Ti: We need the following assumption :

H : There exists a basis of H; say (ep)p for whichX
p

q
E jT1 (ep)j2 < +1 (1)

Proposition 1 When H holds, the sequence Sn is �atly concentrated and bounded in
probability.
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Proof. In order to prove the �rst point it su¢ ces to prove that, for all " > 0;

lim
m!+1

sup
n
P (kSn � �mSn�mk1 > ") = 0

where �m denotes the projection on the vector space spanned by (e1; :::; em), ei 2 H: Now
we refer to Lemma 32 p.1116 of Dunford Schwartz, which provides :

kTk1 �
X
p

jT1 (ep)j : (2)

The previous inequality together with Markov and Jensen�s inequalities imply :

P (kSn � �mSn�mk1 > ") �
1

"

 X
p�m

q
E j(I � �m)T1 (ep)j2 +

X
p�m+1

q
E jT1 (ep)j2

!

The second term clearly decays and Lebesgue�s dominated convergence implies that the
�rst term also converges to zero since for fxed p each real sequence E j(I � �m)T1 (ep)j2
tends to zero as m tends to in�nity.
The proof of the boundedness in probability is really similar. For all strictly positive

M;

P (kSnk1 > M) �
1

M

X
p

q
E jT1 (ep)j2

and the term on the right tends to zero when M goes to in�nity.

Theorem 2 When H holds, the sequence Sn satis�es the central limit theorem in C1:

Proof. The Prokhorov Theorem implies that the sequence Sn is weakly relatively
compact by Proposition 1. It su¢ ces now to prove that all the limits of the �nite dimen-
sional distributions are gaussian. Lets us take T in the dual space L = C�1 . The central
limit theorem on the line implies that hT; Sni = trT �Sn converges weakly for all T to a
gaussian centered random variable with variance E (trT �X1)

2 = E hT;X1i2 : Finally Sn
satis�es the central limit theorem in C1: The covariance operator of the gaussian limiting
distribution is the covariance operator of X1:

Remark 3 The assumption H implies the �niteness of E kT1k1 and of E kT1k
2
2. Note that

H is also really close to the condition that insures that a random element with values in
the sequence space l1 is pregaussian.

3.2 The m-dependent case

The result of this paragraph may be viewed as a by-product of the preceding. It seems that
anyway, the development of functional techniques in statistics, especially in the analysis
of time dependent processes, makes it necessary to go beyond the simple i.i.d. setting.
The technique of proof is quite similar to what is done in the �nite dimensional or even
the scalar case.
Let T and S denote two nuclear operators then T e
S stands for the linear operator

from L to C1 de�ned by
T e
S (U) =� T; U � S
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Theorem 4 Let Xt be a strictly stationary m-dependent sequence of centered random
trace class operators: For all p = 1; :::;m set

� (p) = E
�
X1e
Xp

�
and �� (p) = E

�
Xpe
X1

�
:

Suppose that X1 satis�es H, then

1p
n
(X1 + :::+Xn)

w!
n!+1

Gm

where Gm is a centered Gaussian element in C1 with covariance operator

�m = � (0) +
mX
j=1

(� (j) + �� (j))

Proof :
The scheme of the proof is quite classical. In spite of the unusual framework we will

go quickly through it. In order to alleviate the computations we will also prove Theorem
4 in the case m = 1 (consequently Gm becomes G1). Generalization is straightforward.
The latent idea consists in using Theorem 4.2 p.25 in Billingsley (1968) about weak

convergence for arrays of random variables in metric spaces. Take an integer k > 2 and
let

Ynk = n
�1=2 (X1 + :::+Xk�1) + (Xk+1 + :::+X2k�1)

+ :::+
�
X(r�1)k+1 + :::+Xrk�1

�
with r = [n=k] :
Note that n1=2Ynk is a sum of r i.i.d. random variables each with mean zero and the

covariance operator of (X1 + :::+Xk�1) that is indeed :

(k � 1)� (0) + (k � 2) (� (1) + �� (1))

The �rst elementary steps consists in proving that, for �xed k, H is full�lled for the sum
X1 + :::+Xk�1: But, stationarity of the sequence Xn yields

E j(X1 + :::+Xk�1) (ep)j2 � (k � 1)E jX1(ep)j2 :

Since X1 satis�es H, the central limit theorem in the space of nuclear operators gives
:

(n=r)1=2 Ynk
w! Gk;1

where Gk;1 is a centered Gaussian element in C1 with the same covariance operator as
above. This may be rewritten Ynk

w! k�1=2Gk;1 as n goes to in�nity. Now we have
to study the weak convergence, as k tends to in�nity, of the gaussian random operator
k�1=2Gk;1: Since we are just interested in its distribution, this random variable may be
written the following way :

k�1=2Gk;1 =
k � 2
k

(G1 +Nk) :

where Nk is a centered gaussian element, independent from G1 and with covariance op-

erator
1

k
� (0) : The conclusion follows k�1=2Gk;1

w! G1:
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We are now in position to apply Theorem 4.2 p.25 in Billingsley (1968) and if we prove
that

lim
k!+1

lim sup
n

P
�

pnXn � Ynk




1
> "
�
= 0

the conclusion of Theorem 4 will follow. Computations are similar to those leading to the
tightness in the i.i.d. case.

P
�

pnXn � Ynk




1
> "
�

� P

24n�1=2 





rX
j=1

Xjk







1

> "=2

35+ P �n�1=2 kX1 + :::+Xn�rkk1 > "=2
�

�
r
r

n

+1X
p=1

q
E jX1(ep)j2 +

+1X
p=1

r
k

n
E jX1 (ep)j2 + 2

k � 1
n

E jX1 (ep)j2

We used the stationarity of the process and the fact that n�rk � k: Since r=n � 1=k;
the �rst term (that does not depend on n any more) will tend to zero as k tends to in�nity
and the second term as n does.

4 Application to empirical covariance operators

Obviously Theorem 2 may be applied to obtain a central limit theorem in trace class
norm for the empirical covariance operators of i.i.d. Hilbertian random elements. The
covariance operator of a random variable with strong (i.e. Bochner) second order moment
is a nuclear operator. The C1-norm is consequently the thinest and the more natural of
all standard topologies to study these special operators.

4.1 Covariance operators

Let X1; :::; Xn be i.i.d. centered random variables with values in H: The sequence under
concern is now

Sn =
1p
n

nX
k=1

(Xk 
Xk � �)

where � = E (X1 
X1) :

Proposition 5 Let �p = E hX1; epi2 be the sequence of the eigenvalues of �; associated
to the eigenvector ep: Suppose thatX

p

p
�p < +1 and E hX1; epi4 = O

�
�2p
�
; (3)

then Sn converges weakly to a centered gaussian trace class random operator G with the
same covariance operator as X1 
X1 � �:

Proof. First note that the conditionE hX1; epi4 = O
�
�2p
�
implies that E jX1j4H < +1:

We just have to prove that H holds, namelyX
p

q
E j(X1 
X1 � �) (ep)j2 < +1 (4)
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Let us take for (ep) an eigenbasis for �: We have :

E j(X1 
X1 � �) (ep)j2 � E hX1; epi2 jX1j2

�
q
E hX1; epi4 E jX1j4 = O (�p)

hence the desired result.

Remark 6 If the random variable X1 is gaussian the second assumption in (3) holds. In-
deed we have hX1; epi =

p
�p�p where �p are i.i.d gaussian centered and E hX1; epi4 = 3�2p.

Also note that assumption H is easily checked since it su¢ ces to compute the projections
of the process on a given basis of H (spline, sinusoidal, etc.)

Remark 7 Theorem 4 could be applied to the covariance operator of the autoregressive
process in Bosq (2000) :

Xt = � (Xt�1) + "t

where the Xt�s and the "t�s are H-valued and � is linear from H to H: The same technique
reveals fruitful in Mas (2002). Limiting distributions of the covariance operators (for the
Hilbert-Schmidt norm) were obtained for the more general linear model :

Xt =
X
k

ak("t�k)

where the ak�s are linear operators.

4.2 Cross-covariance operators

Suppose now X1; :::; Xn; Y1; :::Yn are all independant centered random variables with val-
ues in H: Now we set eSn = 1p

n

nX
k=1

Xk 
 Yk

The random trace class operator eSn is the cross-covariance operator of the couple (X; Y )
and appears in problems connected to functional statistics (see Cardot, Ferraty, Sarda
(1999), Bosq (2000)). The following is an easy consequence of Theorem 2.

Proposition 8 Once more let �p be the sequence of the eigenvalues of � = E (X1 
X1) ;
associated to the eigenvector ep: Assume that :X

p

p
�p < +1 and E jY1j2 < +1

then eSn converges weakly to a centered gaussian trace class random operator eN with the
same covariance operator as X1 
 Y1.
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