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We give a su¢ cient condition for the CLT to hold in the space of trace class (nuclear) operators. This condition turns out to be adapted to the asymptotic study of emprirical covariance operators of Hilbert valued random variables.

1 n n X k=1 < X k ; x > X k
Several statistical applications arise from n : functional principal component analysis, canonical covariance analysis, decomposition of gaussian curves, etc. In the case of an i.i.d. sample Dauxois, Pousse and Romain (1982) provided a complete asymptotic study of n and of its spectral elements. Silverman and [START_REF] Rice | Estimating the mean and covariance structure nonparametrically when the data are curves[END_REF] proposed estimation procedures for the mean and the covariance operator of random curves. [START_REF] Bosq | Linear processes in function spaces[END_REF] in a book devoted to the generalization of ARMA models to the in…nite-dimensional setting gave several asymptotic results for n when the X k 's are dependent variables. [START_REF] Cardot | Functional linear model[END_REF] had to study such covariance operators in the framework of a functional linear regression model. [START_REF] Mas | Weak convergence for the covariance operators of a Hilbertian linear process[END_REF] proved the asymptotic gaussianity of the vector of covariance and cross-covariance of a generalized linear process with values in a Hilbert space.

If u and v are two vectors in H; by u v we denote the rank one operator de…ned for all x in H by (u v) (x) =< u; x > v:

Let us suppose that the sample X 1 ; :::; X n is strictly stationary and denote = E (X 1 X 1 ) : In the sequel we will study weak convergence for the random operator n : It is a well-known fact that spaces of operators on Hilbert spaces may be endowed with several topologies or norms that are not equivalent if H is in…nite dimensional. It should be stressed that functional statisticians tend to match the regularity of underlying processes. Consequently the case H = L 2 [a; b] is not that common and Hilbert spaces of smoother functions such as Sobolev spaces are usually preferred.

In all the previous articles cited above, the space of operators is endowed with the Hilbert-Schmidt topology (de…ned below) for at least two reasons. First, computations are obviously simpler in this setting since n may be viewed as another Hilbert-valued random variable. Second, the central limit theorem is obtained under mild condition in this framework. This choice was made for convenience but cannot be justi…ed otherwise. It turns out that, unfortunately, the natural space is in fact the space of trace class operators. We refer to the next section for de…nition and main properties of these operator spaces. The word "natural" could be explained here by the following well-known fact (see for example Vakhania, Tarieladze, Chobanyan (1987)) : A random variable in a Hilbert space has strong moment of second order if and only if its covariance operator is a trace class operator. With mathematical symbols, this means :

E jX 1 j 2 < +1 i
is trace class:

When only "weak" moments (Pettis integral) are …nite the Hilbert-Schmidt assumption is no longer true since the covariance operator is just bounded then. In order to illustrate the situation let us switch operators to sequences. This would mean that, up to the present day, l 1 sequences were dealt only with l 2 tools. Consequently, the question of the central limit theorem in the space of trace class operators must be adressed.

As announced above, we will restrict ourselves to a su¢ cient condition for two reasons. It is probable that the necessary condition will not be obtained by usual probabilistic tools but requires very deep results related to functional analysis. Second, the condition, as enounced below, may be easily exploited in the special cases when the random operators are covariance (or cross-covariance operators).

The next paragraph outlines very basic but useful facts in operator theory.

Trace class operators

When looking for examples to illustrate general theorems on separable Banach spaces one commonly refers to spaces of functions (the L p (S; S; ) with usual notations) amongst which the l p 's or c 0 . Banach spaces of linear operators are rarely mentioned. They are however of much importance both in probability theory (especially in weak convergence theory, gaussian analysis, etc.) and in statistics where such random operators appear in quantum physics or when studying the covariance structure of random functions.

Here we will consider operators on an in…nite dimensional separable Hilbert space H and not on a Banach space. The Hilbert space setting is quite general and allows to give conditions that are easily understood. Even if L the space of bounded linear operators is not separable, it is possible to consider an important subspace : the space of compact operators, C, endowed with the ususal operator norm. For the de…nition and the main algebraic and analytic properties of C we refer to [START_REF] Dunford | Linear Operators Vol I[END_REF].

We may now de…ne the class C p C. Let T be a compact operator and k (T T ) be the k th positive eigenvalue of T T , (T denotes the adjoint operator of T ). Set k = p k ; the k th singular value of operator T; then …x p 2 N and de…ne :

C p = ( T 2 C : X k p k < +1
)

The "natural" norm on this space is de…ned for all T and for p 1 by kT k p = [ P k p k ] 1=p :Then, C p ; k k p is a separable Banach space and C p C q whenever p < q. Several other properties of C p are listed in [START_REF] Dunford | Linear Operators Vol I[END_REF].

Note also that spaces of operators are non commutative algebras, whereas algebras of functions are usually commutative and that C 2 is the space of Hilbert-Schmidt operators, which is itself a separable Hilbert space.

In the following we will focus on C 1 the space of nuclear (or trace class) operators on H endowed with nuclear norm k k 1 ; which is the thinest of all the k k p norm. In the case of a symmetric and positive operator, this norm is nothing but the sum of the eigenvalues. We will need the three following results. For further purpose we recall that the dual space of

C 1 is C 1 = L. The duality bracket between T 2 C 1 and U 2 L is hhT; U ii = trT U .
Nicole Tomszak-Jaegerman (1974) proved that C 1 is a Banach space of cotype 2. This result is crucial as far as the central limit theorem is under concern. It is a well known fact that in such a Banach space, a random variable satis…es the CLT if and only if it is pregaussian. In other words, if its covariance operator is a gaussian covariance operator. We refer to Araujo and Giné (1980) for more information about the theory of types in Banach spaces. Unfortunately this approach that may lead us to a necessary and su¢ cient condition goes beyond the scope of this article. Note anyway that conversely to the other famous cotype 2 space l 1 ; the CLT does not easily stems from the pre-gaussianity condition because C 1 is not a commutative space.

We have to change our technique and to go back to the basements of weak convergence on Banach spaces : the Prokhorov theorem. In the sequel we will consequently prove that the sequence of measures is tight, i.e ‡atly concentrated and bounded (see de Acosta (1970))

3 Main results

The i.i.d. case

In all the following T 1 ; T 2 ; :::; T n is a sequence of i.i.d. centered nuclear operators from H to H: We set S n = 1 p n P n p=1 T i : We need the following assumption : H : There exists a basis of H; say (e p ) p for which

X p q E jT 1 (e p )j 2 < +1 (1) 
Proposition 1 When H holds, the sequence S n is ‡atly concentrated and bounded in probability.

Proof. In order to prove the …rst point it su¢ ces to prove that, for all " > 0;

lim m!+1 sup n P (kS n m S n m k 1 > ") = 0
where m denotes the projection on the vector space spanned by (e 1 ; :::; e m ), e i 2 H: Now we refer to Lemma 32 p.1116 of Dunford Schwartz, which provides :

kT k 1 X p jT 1 (e p )j : (2) 
The previous inequality together with Markov and Jensen's inequalities imply :

P (kS n m S n m k 1 > ") 1 " X p m q E j(I m ) T 1 (e p )j 2 + X p m+1 q E jT 1 (e p )j 2 !
The second term clearly decays and Lebesgue's dominated convergence implies that the …rst term also converges to zero since for fxed p each real sequence E j(I m ) T 1 (e p )j 2 tends to zero as m tends to in…nity.

The proof of the boundedness in probability is really similar. For all strictly positive M;

P (kS n k 1 > M ) 1 M X p q E jT 1 (e p )j 2
and the term on the right tends to zero when M goes to in…nity.

Theorem 2 When H holds, the sequence S n satis…es the central limit theorem in C 1 :

Proof. The Prokhorov Theorem implies that the sequence S n is weakly relatively compact by Proposition 1. It su¢ ces now to prove that all the limits of the …nite dimensional distributions are gaussian. Lets us take T in the dual space L = C 1 . The central limit theorem on the line implies that hT; S n i = trT S n converges weakly for all T to a gaussian centered random variable with variance E (trT X 1 ) 2 = E hT; X 1 i 2 : Finally S n satis…es the central limit theorem in C 1 : The covariance operator of the gaussian limiting distribution is the covariance operator of X 1 :

Remark 3

The assumption H implies the …niteness of E kT 1 k 1 and of E kT 1 k 2 2 . Note that H is also really close to the condition that insures that a random element with values in the sequence space l 1 is pregaussian.

The m-dependent case

The result of this paragraph may be viewed as a by-product of the preceding. It seems that anyway, the development of functional techniques in statistics, especially in the analysis of time dependent processes, makes it necessary to go beyond the simple i.i.d. setting. The technique of proof is quite similar to what is done in the …nite dimensional or even the scalar case.

Let T and S denote two nuclear operators then T e S stands for the linear operator from L to C 1 de…ned by T e S (U ) = T; U S Theorem 4 Let X t be a strictly stationary m-dependent sequence of centered random trace class operators: For all p = 1; :::; m set (p) = E X 1 e X p and (p) = E X p e X 1 :

Suppose that X 1 satis…es H, then

1 p n (X 1 + ::: + X n ) w ! n!+1 G m
where G m is a centered Gaussian element in C 1 with covariance operator

m = (0) + m X j=1 ( (j) + (j))
Proof :

The scheme of the proof is quite classical. In spite of the unusual framework we will go quickly through it. In order to alleviate the computations we will also prove Theorem 4 in the case m = 1 (consequently G m becomes G 1 ). Generalization is straightforward.

The latent idea consists in using Theorem 4.2 p.25 in [START_REF] Billingsley | Convergence of probability measures[END_REF] about weak convergence for arrays of random variables in metric spaces. Take an integer k > 2 and let Y nk = n 1=2 (X 1 + ::: + X k 1 ) + (X k+1 + ::: + X 2k 1 ) + ::: + X (r 1)k+1 + ::: + X rk 1 with r = [n=k] :

Note that n 1=2 Y nk is a sum of r i.i.d. random variables each with mean zero and the covariance operator of (X 1 + ::: + X k 1 ) that is indeed :

(k 1) (0) + (k 2) ( (1) + ( 1))

The …rst elementary steps consists in proving that, for …xed k, H is full…lled for the sum X 1 + ::: + X k 1 : But, stationarity of the sequence X n yields E j(X 1 + ::: + X k 1 ) (e p )j 2 (k 1) E jX 1 (e p )j 2 :

Since X 1 satis…es H, the central limit theorem in the space of nuclear operators gives :

(n=r

) 1=2 Y nk w ! G k;1
where G k;1 is a centered Gaussian element in C 1 with the same covariance operator as above. This may be rewritten Y nk w ! k 1=2 G k;1 as n goes to in…nity. Now we have to study the weak convergence, as k tends to in…nity, of the gaussian random operator k 1=2 G k;1 : Since we are just interested in its distribution, this random variable may be written the following way :

k 1=2 G k;1 = k 2 k (G 1 + N k ) :
where N k is a centered gaussian element, independent from G 1 and with covariance op-

erator 1 k (0) : The conclusion follows k 1=2 G k;1 w ! G 1 :
We are now in position to apply Theorem 4.2 p.25 in [START_REF] Billingsley | Convergence of probability measures[END_REF] 

P p nX n Y nk 1 > " P 2 4 n 1=2 r X j=1 X jk 1 > "=2 3 
5 + P n 1=2 kX 1 + ::: + X n rk k 1 > "=2 r r n +1 X p=1 q E jX 1 (e p )j 2 + +1 X p=1 r k n E jX 1 (e p )j 2 + 2 k 1 n E jX 1 (e p )j 2
We used the stationarity of the process and the fact that n rk k: Since r=n 1=k; the …rst term (that does not depend on n any more) will tend to zero as k tends to in…nity and the second term as n does.

Application to empirical covariance operators

Obviously Theorem 2 may be applied to obtain a central limit theorem in trace class norm for the empirical covariance operators of i.i.d. Hilbertian random elements. The covariance operator of a random variable with strong (i.e. Bochner) second order moment is a nuclear operator. The C 1 -norm is consequently the thinest and the more natural of all standard topologies to study these special operators.

Covariance operators

Let X 1 ; :::; X n be i.i.d. centered random variables with values in H: The sequence under concern is now

S n = 1 p n n X k=1 (X k X k )
where = E (X 1 X 1 ) :

Proposition 5 Let p = E hX 1 ; e p i 2 be the sequence of the eigenvalues of ; associated to the eigenvector e p : Suppose that X p p p < +1 and E hX 1 ; e p i 4 = O 2 p ;

(3) then S n converges weakly to a centered gaussian trace class random operator G with the same covariance operator as X 1 X 1 :

Proof. First note that the condition E hX 1 ; e p i 4 = O 2 p implies that E jX 1 j 4 H < +1: We just have to prove that H holds, namely X p q E j(X 1 X 1 ) (e p )j 2 < +1 (4)

  Y nk 1 > " = 0 the conclusion of Theorem 4 will follow. Computations are similar to those leading to the tightness in the i.i.d. case.

						and if we prove
	that	lim k!+1	n lim sup	P	p	nX n

Let us take for (e p ) an eigenbasis for : We have :

) (e p )j 2 E hX 1 ; e p i 2 jX 1 j 2 q E hX 1 ; e p i 4 E jX 1 j 4 = O ( p )

hence the desired result.

Remark 6 If the random variable X 1 is gaussian the second assumption in (3) holds. Indeed we have hX 1 ; e p i = p p p where p are i.i.d gaussian centered and E hX 1 ; e p i 4 = 3 2 p . Also note that assumption H is easily checked since it su¢ ces to compute the projections of the process on a given basis of H (spline, sinusoidal, etc.) Remark 7 Theorem 4 could be applied to the covariance operator of the autoregressive process in [START_REF] Bosq | Linear processes in function spaces[END_REF] :

where the X t 's and the " t 's are H-valued and is linear from H to H: The same technique reveals fruitful in [START_REF] Mas | Weak convergence for the covariance operators of a Hilbertian linear process[END_REF]. Limiting distributions of the covariance operators (for the Hilbert-Schmidt norm) were obtained for the more general linear model :

where the a k 's are linear operators.

Cross-covariance operators

Suppose now X 1 ; :::; X n ; Y 1 ; :::Y n are all independant centered random variables with values in H: Now we set e

The random trace class operator e S n is the cross-covariance operator of the couple (X; Y ) and appears in problems connected to functional statistics (see [START_REF] Cardot | Functional linear model[END_REF], [START_REF] Bosq | Linear processes in function spaces[END_REF]). The following is an easy consequence of Theorem 2.

Proposition 8 Once more let p be the sequence of the eigenvalues of = E (X 1 X 1 ) ; associated to the eigenvector e p : Assume that : X p p p < +1 and E jY 1 j 2 < +1 then e S n converges weakly to a centered gaussian trace class random operator e N with the same covariance operator as X 1 Y 1 .