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Abstract 

 The Tinker software, currently released as version 8, is a modular molecular mechanics 

and dynamics package written primarily in a standard, easily portable dialect of Fortran 95 with 

OpenMP extensions. It supports a wide variety of force fields, including the modern polarizable 

atomic multipole-based AMOEBA model. The package runs on Linux, macOS and Windows 

systems. In addition to canonical Tinker there are branches, Tinker-HP and Tinker-OpenMM, 

designed for use on MPI-parallel distributed memory supercomputers and on state-of-the-art 

graphical processing units (GPUs), respectively. The Tinker suite also includes a tightly 

integrated Java-based graphical user interface called Force Field Explorer (FFE), which provides 

molecular visualization capabilities as well as the ability to launch and control Tinker 

calculations.  
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1. Introduction 

 The Tinker molecular modeling package represents a complete set of software tools for 

performing a wide range of classical molecular simulations, with special emphasis on 

biomolecular calculations. This article provides an introduction to some of the features and 

unique capabilities of the current version of the package, Tinker 8. Recently, specialized 

branches of the Tinker code have become available for use on large-scale multiprocessor 

supercomputer systems under MPI (Tinker-HP),1 and for GPU-based calculations (Tinker-

OpenMM).2 Integration of these codes with the Tinker suite of programs will be briefly 

discussed, and additional information is available in the original publications describing both 

Tinker-HP and Tinker-OpenMM. All of the software is available via academic web sites3-5 and 

GitHub repositories.6, 7 

 Tinker originated as a new software package implementing the MM28 and MM39 force 

fields of Allinger for use in conformational analysis of organic natural products.10 An early 

prototype of the software was incorporated as the basis of molecular mechanics calculations in 

the ChemOffice software package.11 Additional applications used this early pre-Tinker platform 

for the development of efficient structure optimization algorithms for large molecules12 and for 

packing analysis of amino acid side chains in folded protein structures.13 Development under the 

Tinker name began in earnest at Washington University in the mid-1990’s and the first 

distributed version, Tinker 3.2, was publicly announced and made available in late 1996. A 

major purpose of the software was, and still is, to provide a modular framework for incorporating 

existing empirical potentials, as well as design and parameterization of new classical force field 

models. More recently, Tinker served as the computational engine for the early protein folding 

simulations done via the Folding@home platform,14 especially for calculations utilizing implicit 
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solvent models. The Tinker package and its corresponding file formats are interoperable with a 

variety of molecular modeling and visualization tools, including VMD,15 PyMol,16 Jmol,17 Force 

Field X,18 Open Babel,19 MDTraj,20 MDAnalysis,21 ParmEd,22 Molden,23 VEGA ZZ,24 

PACKMOL,25 ForceBalance,26 WebMO,27 and many others. Access to Tinker, including the 

AMOEBA polarizable multipole force field, is also available from the CHARMM modeling 

software via the MSCALE interface facility.28 

 The current Tinker 8 package contains roughly sixty command line programs written in 

an extended version of Fortran 95, utilizing dynamic memory allocation and OpenMP directives 

that enable multiprocessing across CPU cores/threads on a shared memory computer system. 

Figure 1 classifies the individual Tinker programs by basic functionality type. All floating-point 

computations are performed in full double precision arithmetic. The only hard limits on program 

size are the allowed number of total atoms and a small number of derived array allocations. The 

package is distributed with full source code and binary executables for Linux, macOS and 

Windows operating systems, and dimensioned for a maximum of one million atoms. Systems 

containing over 20 million atoms have been calculated after rebuilding, and the size is limited 

only by available memory. The package is designed to enable interactive use via a terminal 

window, or as background processes controlled via a high-level scripting mechanism. The design 

goal for the canonical Tinker software is to provide a transparent, modular code base that is 

easily and directly useable by a broad range of researchers, but efficient enough for application 

in many production settings. 

 In contrast, both Tinker-OpenMM and Tinker-HP are intended to be highly efficient 

computational engines on their target compute platforms, while maintaining compatibility with 

canonical Tinker through common coding style, algorithms, file types and general workflows. 
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The Tinker-OpenMM package consists of a branch of the Stanford OpenMM29, 30 library with 

substantial modifications to the AMOEBA plugin, as well as an interface module written in C++ 

that resides between canonical Tinker and the OpenMM API. It provides a dynamic_omm 

program that exchanges data between CPU and GPU memory through the library interface and 

performs molecular dynamics simulations on CUDA-compatible NVIDIA GPUs. Tinker-

OpenMM supports an increasing subset of Tinker’s energy functions, molecular dynamics 

integrators, free energy methods, and other features. The current version adds an internal virial 

implementation for use with barostat techniques, pairwise van der Waals parameters, and is 

capable of running absolute and relative alchemical calculations with dual topology methods.2 

Tinker-HP is a new Tinker-compatible MPI-based, massively parallel code for molecular 

dynamics with an efficient domain decomposition algorithm and analytical polarization solvers. 

As detailed elsewhere, Tinker-HP is highly scalable across large distributed computer systems 

containing thousands of nodes and molecular systems containing millions of atoms.1 

2. Features and Organization 

File Types and Coordinate Representations 

 The Tinker files describing a particular molecular system consist of a base name followed 

by a suffix of three or more characters, e.g., molecule.xyz. Several other file name suffixes are 

used for various types of output, program control, etc. The most common default Tinker file 

names are listed in Table 1. 

 Systems are represented in Tinker as collections of points in space, typically denoting 

individual atoms or coarse-grained collections of atoms. File representations can contain 

Cartesian coordinates (.xyz files), full internal coordinates (.int files), torsional angle coordinates 

or rigid body coordinates. Values are stored in Angstroms and degrees, and output to a precision 
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of 6, 8 or 10 decimal places. Periodic box boundaries are specified in terms of crystallographic 

lattice lengths (a, b and c) and lattice angles (alpha, beta and gamma). These periodic dimensions 

are stored as part of the keyword control (.key) file for a calculation or, optionally, as part of the 

coordinates file itself. Periodic systems, including truncated octahedra, are defined such that the 

centroid of the box is located at the (0,0,0) coordinate origin. 

Software Organization 

 The majority of the source code of the Tinker package is written in portable Fortran 95 

with OpenMP parallelization directives for CPU intensive calculations on shared-memory 

multiple core systems. The systemwide resources are managed in Fortran modules that make use 

of dynamic memory allocation and are designed to only represent the current state of the 

simulation system. The energy specific parameters, e.g. the cubic and quartic coefficients of the 

fourth-order anharmonic bond potential, are not hard-coded in the source files, thus preserving 

the flexibility of Tinker in force field development. 

 The central component of the Tinker package is a modular set of callable routines which 

(1) manage the package-owned resources, including default initialization, allocation of the 

dynamic memory, and release of the allocated space, etc., (2) perform molecular mechanical 

calculations and dynamics simulation on a single set of parameters and atomic coordinates, (3) 

read in settings from standard input, command line arguments, external files and write out the 

current state of the system to standard output or external files. These routines essentially work as 

the underlying application programming interface (API) to build the higher-level routines and 

programs in the Tinker package. For example, the gradient routine is not only called in multiple 

integrators but also by various minimization procedures. This design makes creating new 

routines and new programs easy. A good implementation example is the RESPA integrator. For 
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this integrator the energy and force terms are organized into “fast” and “slow” groups, evaluated 

on different time scales. Because these energy and force routines are organized as a callable 

library, RESPA is integrated at a high level by simply toggling these terms on and off. 

Keyword Control Mechanism 

 Every program in the Tinker package is capable of interactively reading arguments from 

standard input, thus making the program easy to use directly. These interactive inputs are limited 

to the basic necessities for any given calculation. However, the Tinker programs are not 

restricted to reading runtime arguments from the command line. Advanced users can set more 

detailed options via an external configuration (.key) file through a “keyword” mechanism. The 

keywords not only manipulate the straightforward behavior of the programs, (e.g. whether or not 

to save the velocities of atoms during a simulation), but also manage default settings (e.g. to 

change the grid dimension used by PME, as necessary), handle hardware resources (e.g. setting a 

number of threads for OpenMP, choosing an available GPU card, etc.), and even control library 

dependency (e.g. switching between underlying FFT algorithms). The current Tinker version 

implements about 350 keywords, many with multiple options to provide fine-grained control 

over the behavior of Tinker calculations. 

How to Write a Tinker Program 

 Tinker has an intentionally modular design. In addition to making the code easily 

understandable, this modularity makes it possible to quickly write new Tinker programs. For 

most applications, a new program can be initialized, a structure read in, and a molecular 

mechanics model set up in just three lines of code: 

 call initial 
 call getxyz 
 call mechanic 
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These steps, shown in more detail in figure 2 allow developers to use Tinker’s existing 

machinery to quickly set up new types of calculations. 

 The first step in writing any new Tinker program is initialization of variables and reading 

of a molecular structure. If the new program doesn’t require any new global variables, this can be 

done via the initial and getxyz routines. Initial declares and initializes global variable values that 

are needed for every Tinker program. Getxyz parses a Tinker Cartesian coordinates file (.xyz) for 

a molecular system, provided either via command line input or interactively at a user prompt. 

Once these two routines are called, Tinker is ready to perform operations on the structure. Multi-

structure “trajectories” can also be read directly as input from Tinker archive (.arc) files. 

 Once a structure is obtained, the work of setting up a Tinker molecular mechanics 

calculation is performed by the mechanic routine, which is a self-contained protocol for setting 

up the potential energy model for a given system. First it assigns connectivity to the structure and 

obtains a force field parameter file (.prm file). This can be supplied at an interactive prompt, or 

included in a keyword control file (i.e., a “keyfile”, typically .key) containing Tinker directives 

or “keywords”. Then mechanic does all the work of setting up the potential energy function. If 

no keyfile is supplied, the package simply instantiates the contents of the parameter file. If a 

keyfile is provided, it may optionally contain keywords related to each individual component of 

the potential energy function and specifying modified or additional parameter values that 

supersede those in the parameter file. The internal setup for each potential energy term is also 

highly standardized. For example, the multipole energy, force and Hessian routines, all of which 

have source files named empole*, have a corresponding initialization routine named kmpole that 

assigns force field parameters to atoms or groups within the molecular structure. There is a 

corresponding “k” routine for every potential energy component included in Tinker. Adding an 
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entirely new potential energy function is also straightforward. The developer simply adds the 

code for the function to the preexisting, empty extra energy and force routines, which have full 

access to the molecular data structures, and then edits kextra to read in any new parameters or 

keywords that might be needed for the new potential. Tinker is then set to utilize these routines 

automatically, and to optionally include them in a force field model. 

 Providing the tools to easily read in structures and construct models minimizes the work 

of setting up and debugging Tinker data structures and eases the development of new methods. 

This modularity, particularly of the potential energy functions, allows developers to quickly alter 

components of calculations without having to make changes across multiple files. It provides 

developers the opportunity to create in their own new potential energy terms, force field 

parameters and keyword control features without having to navigate a maze of source code. 

3. Computational Models 

Potential Energy Functions 

 Among the many goals of the Tinker software package, one of the most fundamental is to 

allow users the ability to explore a wide variety of models. Regardless of whether a user is using 

new Tinker program they have written or an existing one, every energy-based calculation 

requires definition of a force field model. To this end, Tinker includes support for a tremendous 

array of potentials. There are two advantages to the large number of potentials that are included 

and supported by the package. First, it gives end users the ability to use and compare a wide 

variety of models for their particular application system. To this end, various Tinker potential 

terms can be grouped together to replicate several widely used biomolecular force fields such as 

those from the CHARMM,31 Amber32 and OPLS-AA33 families. The second reason to support a 

large number of potentials is to expedite the development of new models. Because of the 
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modular nature of the code, researchers can easily incorporate any of the existing potentials in a 

model. In total there are approximately thirty different potential terms supported in the Tinker 

package, all with exact analytical energies and Cartesian derivatives, and many with second 

derivatives. Broadly, the potentials can be divided into intramolecular terms, intermolecular 

terms and implicit solvent models. 

 The intramolecular potential energy terms in Tinker can be further subdivided into 

primary terms and cross terms. The former describe the energetics of simple motions such as 

bond stretching, angle bending and torsional rotation, while the latter describe coupling between 

the primary energy terms. The simplest of the primary terms are the bonded potentials. Tinker 

includes harmonic, anharmonic and Morse bond potentials. The package also has several types 

of angle bending potentials – harmonic, anharmonic, linear, projected in-plane and Fourier-based 

angles. Additionally, there are four types of torsion terms included in Tinker. The first is a 

calculation for a simple torsion defined by four consecutively bonded atoms using a sum of 

Fourier terms. The second, referred to as a Bell’s “pi-torsion”, computes the torsion around a 

bond connecting two trigonal centers using the pi-orbital directions at each trigonal center.34 

Tinker also includes so-called “improper torsion” terms that define torsionals between non-

consecutively bonded atoms, as used to enforce planarity in the Amber models and many other 

force fields. Finally, harmonic “improper dihedral” terms can be used to maintain planarity, as in 

the CHARMM force fields. An additional primary potential term is the direct description of out-

of-plane bending. Tinker has thee methods for computing an out-of-plane bending potential. The 

first two potentials are computed via an out-of-plane angle, using either the Wilson-Decius-

Cross35 or Allinger36 definitions. A simpler, third method consists of a harmonic term describing 

the out-of-plane distance of a trigonal atom from the plane defined by its three attached atoms. 



	 11	

These primary terms describing the energetics of bonds, angles, torsions, and out-of-plane bends 

comprise the bulk of most intramolecular energy models a user might like to build or use. 

 In addition to primary intramolecular potentials, Tinker also supports a variety of 

intramolecular cross terms. These terms control how the primary energy models are coupled and 

change as a function of each other. The classic and most basic example of a cross term is the 

stretch-bend or bond-angle term, which describes how two adjacent ideal bond distances change 

as a function of the angle between the bonds. Included in Tinker, in addition to a stretch-bend 

potential, are cross terms for angle-angle, bond-torsion, angle-torsion and torsion-torsion terms 

as well as a Urey-Bradley37 term. Including these terms in a total potential allows users to build 

and use sophisticated intramolecular energy models when the application requires it, for example 

to reproduce vibrational frequencies. 

 The next broad class of potentials provided by Tinker are intermolecular terms. These can 

be subdivided into van der Waals (vdW) or repulsion-dispersion interactions, and generalized 

Coulombic or electrostatic interactions. In order to support a wide variety of models, Tinker 

includes five different functional forms for van der Waals interactions: a Lennard-Jones 6-12 

potential38, buffered 14-7 Halgren potential,39 Buckingham exponential-6 potential,40 a Gaussian 

vdW potential, and the MM3 vdW-hydrogen bond potential.41,	42 These functions allow a great 

deal of flexibility in using and designing models with different representations of short-range 

interactions between atoms.  

 The most complex set of potentials included in the Tinker package are the electrostatic 

interaction potentials. Tinker has the ability to compute simple point charge interactions, but it 

also implements interactions between higher-order multipole moments. Tinker can treat bond-

center dipole models, permanent atomic multipole models with interactions through quadrupoles, 
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and induced dipole models. The ability to efficiently compute permanent multipole and induced 

dipole models allows Tinker to run calculations with more advanced models, such as the 

AMOEBA force field.43-47 Indeed, much development effort in Tinker has been and continues to 

be focused on streamlining and modularizing code to implement next-generation force fields 

with more accurate electrostatic models.  

 The last major category of potentials in Tinker is continuum models. The most commonly 

used of these are various implicit solvation models. Tinker includes support for several 

Generalized Born (GB)42 variations including those of Still,43 Onufriev-Bashford-Case,48 ACE49 

and Grycuk,50 the Generalized Kirkwood (GK)51 method for use with polarizable multipoles, 

accessible surface area-based solvation,52 the Hydrophobic Potential of Mean Force (HPMF),53 a 

novel reaction field method,54 and Poisson-Boltzmann (PB)55-57 solvation models. The GB, GK, 

surface area and HPMF potentials are all implemented directly in the Tinker code while PB 

calculations are provided via an interface to the Adaptive Poisson-Boltzmann Solver (APBS) 

software package.58,	 59 All of the solvation models in Tinker are implemented to work with 

advanced electrostatic and induced dipole models. In addition to these solvation models, Tinker 

also includes surface area and volume calculations with derivatives, which can be used to build 

or use potentials incorporating these geometric molecular descriptors. 

 Additionally, Tinker includes two orbital-based models for description of select quantum 

effects within a classical framework.  Simple pi-orbital calculations of the Hückel, Pariser-Parr-

Pople, or variable electronegativity self-consistent field (VESCF)60 class can be used to scale 

bond and torsional parameters in conjugated or aromatic systems. Three ligand field models for 

describing the coordination geometry at transition metal sites within the Tinker package have 

also been described.61-63 
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 Although Tinker includes a large number of possible potentials, using them within an 

energy model is straightforward. The energy and gradient subroutines for each different potential 

are modular, which is to say they can each be called separately with just one line of computer 

code. For developers this means it is easy to mix-and-match different potentials in a model or 

devise new potential as desired. For users this makes it simple way to activate or deactivate 

individual parts of a model via a single keyword to toggle use of individual potential terms. This 

makes it easy to manipulate and analyze energy components for complicated structures. 

Force Field Models 

The wide variety of classical functional forms available in Tinker enables support of a 

number of existing force fields. From its beginnings Tinker has been intended for use with 

multiple models. In fact, one of the original goals of the package was to allow users to 

seamlessly compare energetic models for a given problem or application. To this end Tinker 

supports the following standard force fields: Amber,64-68 CHARMM,69-72 OPLS,73-78 MM2/3,8, 79-

83 MMFF,84 AMOEBA,44-46, 85-87 Dang,88-97 the so-called “Tiny” force field, and a number of 

specialized models for water. For many of these force fields, several modifications are provided 

as complete parameter sets contained within the Tinker distribution. 

The force fields available in Tinker span a wide range: from the Tiny force field with 

generic parameters based on element type and valence for use in optimizing crude structures to 

the AMOEBA09 small molecule force field containing detailed parameters over finely 

subdivided atom types and advanced functional forms such as multipolar electrostatics and 

induced dipole polarizability. The included force fields also span major classes of biomolecules, 

with parameters to model proteins, nucleic acids, lipids, and small organic molecules. Users 



	 14	

should consult the respective literature on each force field before deciding which model might be 

best suited to their application. 

4. Capabilities 

Structure Manipulation   

In order to generate coordinate files adapted to various software packages and purposes, 

Tinker provides convenient tools to convert coordinate files into different formats and to 

manipulate the coordinate file for different calculation purposes, such as building crystal 

structures, generating periodic boxes etc. 	

First, Tinker recognizes the Tinker .xyz file format for all calculations. However, other 

software packages are adapted to coordinate files of other formats. For instance, CHARMM, 

AMBER and VMD are adapted to PDB files, SYBYL are adapted to MOL2 files and many QM 

packages such as Gaussian is able to read in internal coordinate files. To allow interoperability, 

Tinker provides six commands to do the interconversion between different coordinate files. The 

command pdbxyz takes a Tinker xyz file as input and generates the corresponding PDB file as 

output. The command xyzmol2 converts a Tinker xyz file to a MOL2 file. The command xyzint 

converts an xyz file to an internal coordinate file in which the absolute Cartesian coordinates are 

expressed as relative positions (bond length, bond angle and torsional angle) among atoms. The 

commands pdbxyz, mol2xyz, and intxyz convert PDB files, MOL2 files and internal coordinate 

files back to xyz files. 	

Second, Tinker also provides file-editing tools for the purpose of simulation setup. Most 

of xyz editing tools are listed as options under the command xyzedit, such as inserting and 

deleting atoms, changing force field atom types, translating/rotating a system to specified 

Cartesian or rigid body coordinates or into the inertial frame, appending and merging multiple 
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files, or soaking a second xyz file, creating a periodic boundary box, placing a solute into a 

periodic solvent box, adding ions to a solvated system, etc. The command superpose is designed 

to superimpose a pair of structures to at optimal root mean square deviation (RMSD) using a 

non-iterative quaternion-based algorithm.98 Since biomolecules such as nucleic acids and 

proteins are target systems for many studies, Tinker provides nucleic and protein tools to 

generate nucleic acid and protein structures respectively according to the sequence information 

and backbone or side chain torsional angle values. Lastly, the utility crystal utility is designed for 

manipulation of crystal structures such including generation unit cells from asymmetric units and 

according to box size, shape and space group.  	

Local Search and Minimization 

 Tinker has a number of local minimization algorithms implemented to effectively and 

efficiently minimize a quantity of interest. Several algorithms are widely used in Tinker in 

conjunction with a force field to minimize the energy of a molecular structure. The code contains 

routines for Limited Memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)99-101 minimization, 

Optimally Conditioned Variable Metric (OCVM)102, 103 nonlinear optimization, and Truncated 

Newton Conjugate Gradient (TNCG)12, 104 Hessian-based optimization. The LBFGS algorithm is 

of the nonlinear conjugate gradient class, and as such does not require an analytical Hessian 

matrix. It uses the BFGS update to update the line search direction at each iteration. The limited 

memory implementation in Tinker allows this routine to be used for Cartesian minimization of 

large systems. The OCVM algorithm uses a quasi-Newton methodology without line search to 

update an approximation to the inverse Hessian at every step. It is particularly effective for 

optimization of rougher potential surfaces, such as those in torsional space. Lastly, the TNCG 

algorithm uses a preconditioned truncated conjugate gradient method coupled with direct sparse 
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Hessian evaluation or a finite-difference Hessian approximation to minimize an objective 

function. The TNCG method converges quadratically once in the vicinity of a local minimum 

and can optionally find transition states and general stationary points after disabling checks for 

negative curvature. LBFGS and TNCG use the same line search algorithm, a gradient-based trust 

region safeguarded parabolic extrapolation, cubic interpolation procedure. To minimize 

structures, the LBFGS, OCVM and TNCG methods are implemented in the Tinker minimize, 

optimize and newton programs, respectively. These minimize structures in Cartesian coordinate 

space. Tinker also contains the corresponding programs, minirot, optirot and newtrot for 

minimizations in torsional space as well as minrigid and optrigid for minimizations with rigid 

body groups of atoms. 

 While TNCG-based optimization methods are easily modified to allow convergence to 

transition states, the catchment basin is often small and requires a starting structure near to the 

final transition state. Tinker contains two other methods, saddle and path, that are specifically 

designed to locate conformational transition states and pathways. Saddle represents a 

combination of ideas from the Halgren-Lipscomb synchronous transit105, 106 and Bell-Crighton 

quadratic path107 methods. It takes two endpoint structures as input, and performs an iterative 

series of maximizations along the connecting path and minimizations orthogonal to the path until 

the saddle point is located. The path program starts from local minima and uses Lagrange 

multiplier-based constraints to minimize orthogonal to a series of equally spaced path points, 

generating a “trajectory” along the interconversion pathway.108 

 In addition, Tinker contains an adaptive derivative-free multi-dimensional Nelder-Mead 

simplex optimization algorithm and a modified Levenberg-Marquardt least squares algorithm 

combining features of the IMSL BCLSF routine and the LMDER code from Minpack.109 These 
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methods are used within Tinker for optimization of stochastic objective functions and in force 

field parameter refinement, respectively. 

Global Optimization 

Besides the various optimization methods to find local minima of potential energy 

functions, Tinker also has a number of optimization algorithms to find global minima of the 

target function. Roughly, these algorithms can be divided into two categories: first, methods that 

rely on pathway- or trajectory-dependent propagation to overcome the local barriers or to 

enumerate local minima; second, methods that modify the underlying potential surface while 

approximating a solution to the equilibrium density distribution. The first category of methods 

includes simulated annealing,110 generalized gradient descent,111, 112 “Jumping-between-Wells”113 

and the Monte Carlo minimization (MCM) method.114, 115 The second category of global 

optimization algorithms includes potential smoothing techniques	 116-119 and the related gaussian 

density annealing (GDA) scheme.120 

The anneal program is a traditional MD-based simulated annealing code with an optional 

pre-equilibration phase and several available cooling schedules. It starts from a high temperature 

at which local energy barriers are easily to overcome. Then the cooling schedule is applied to 

gradually lower the temperature and coalesce into a low energy local minimum. In the sniffer 

program, a second order differential equation is designed to enable generalized descent along a 

trajectory without becoming trapped in the catchment region of any particular minimum. 

Following a steepest descent propagator, the trajectory is constrained to a minimum that is 

greater than the predefined energy levels, which is presumed to be the global minimum.111, 112, 121 

The scan program uses Jumping-between-Wells to locate all the local minima for an input 

structure by self-consistently following low frequency normal mode search directions from all 
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known minima. The global minimum can be obtained by comparing all the local minima.113 The 

monte program implements an MCM protocol which uses Metropolis Monte Carlo exploration of 

a potential surface where the energy of each point on the surface is remapped to the value of the 

closest local minimum.114 Potential surface smoothing (PSS) views the original potential energy 

functional forms as the time zero initial conditions for solution of the diffusion equation. 

Conformational search is then performed on the smoother surface produced at some finite, non-

zero time. The method can be shown to be mathematically equivalent to performing molecular 

mechanics with “fuzzy” atoms, where the location of each atom is generalized to a Gaussian 

probability distribution around its most likely position. The pss, pssrot and pssrgd programs 

implement the PSS idea in terms of Cartesian, torsional and rigid-body representations, 

respectively. The gda program performs annealing while seeking an approximate solution for the 

equilibrium density distribution, and can be viewed as a dynamical version of the deterministic 

potential smoothing methods.  

Two examples of the global optimization methods are demonstrated in figure 4 for a gas 

phase deca-alanine model system in gas phase using the scan and monte programs. Both 

optimizations start from the same linear structure of Deca-Alanine and eventually reach the same 

global minimum, the structure of which is a typical a-helix as shown in figure 4A and 4B. The 

scan method captured 654 intermediate structures while scanning the full potential surface. The 

monte method generated eight intermediate local minima along its path to the helical structure. 

Two intermediate structures from each calculation are presented in figure 4A and 4B. Though 

they follow different paths in moving around the surface, both methods appear to produce find a 

similar partially optimized structure, shown as intermediate minimum II in figure 4.	

Dynamics Methods 
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 One of the important features for any modern molecular mechanics software package is 

the ability to perform molecular dynamics (MD). In the past four decades, many of the important 

contributions of classical empirical potential models have been realized through MD simulations. 

In Tinker this feature is implemented through the dynamic program: a feature-rich MD engine. In 

addition to being able to run simulations with any of the force fields included with Tinker, it 

allows the user a great deal of flexibility in the details of how a simulation is run.  

 Tinker has the ability to run simulations in any of four traditional statistical mechanical 

ensembles: Microcannonical (NVE), Cannonical (NVT), Isoenthalpic-Isobaric (NPH) and 

Isothermal-Isobaric (NPT). For each of these options, where necessary, Tinker can employ a 

wide variety of integrators, thermostats and barostats. The possible integrators include Velocity 

Verlet, Beeman,122,	123 stochastic,124,	125 Nosé-Hoover NPT,126 Bussi-Parrinello NPT,127 a two-

stage, multiple time step, reversible Reference System Propagator Algorithm (RESPA)128, 129 and 

a rigid-body integrator.130 Most of these integrators have been reviewed extensively in the 

literature. Two of particular interest, however are the RESPA integrator and the rigid body 

integrator. The RESPA integrator allows the user to take two separate time steps when 

propagating molecular dynamics. The first, fast time step is used for fast-changing degrees of 

freedom such as bond stretching and the second, slow time step is used for the slow-changing, 

but computationally expensive electrostatics or polarization calculations. The rigid body 

integrator is unique to Tinker and is based on the original work of Andrey Kutapov and Marina 

A. Vorobieva (VNIITF, Russian Federal Nuclear Facility, Chelyabinsk). Tinker also includes an 

implementation of the RATTLE algorithm131 in order to implement holonomic constraints 

within velocity Verlet and related integrators. In addition, Tinker contains a stochastic dynamics 
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integrator132 employing a series expansion to treat small frictional coefficients,133 and with the 

ability to scale the friction term based on accessible surface area.134 

 For the constant temperature and pressure ensembles, Tinker includes a variety of 

thermostats and barostats. The included thermostats are Bussi135, Berendsen136, Andersen137 and 

Nose-Hoover.126,	 138 The available barostats are Berendsen,136 Bussi-Parrinello127 and Monte 

Carlo.139 It should be noted that because Tinker includes an internal virial calculation for every 

available model potential, the Berendsen barostat may be used with both simple and advanced 

models. The defaults in Tinker are the Bussi thermostat and Berendsen barostat, but the available 

thermostats or barostats can be used in any of several combinations with the standard integrators 

(Verlet, Beeman and RESPA). An active area of development in Tinker is application of an 

isokinetic scheme that combines a massive thermostat with a multiple time step integrator to 

achieve ultra-long time steps for the slowly evolving, but computationally expensive, potential 

terms in a simulation. This method is deemed Stochastic-Iso-NH-RESPA or SIN(R) and it has 

been demonstrated to achieve outer time steps of up to 100 fs for the AMOEBA water model 

without loss of model accuracy.140,	141  

Properties and Analysis 

 One of most useful programs in the Tinker package is analyze. It can be used to evaluate 

a single structure or a multiple-frame file from a simulation. The program is designed to provide 

everything from general information to detailed atom-level information about the system. Its 

most basic function is to simply print out the total potential energy broken down into each 

individual component but can do much more. The analyze program can give information about 

the force field being used and the parameters for every atom in the system. It optionally outputs a 

potential energy breakdown by atom, or with details for every interatomic interaction. It can also 
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give the user some basic properties of the system, such as electric moments and principle axes. 

Analyze calculates the internal virial, numerical and virial-based derivatives of the energy with 

respect to volume. And lastly it can print the connectivity list and force field parameters used for 

every atom and interaction. As with many Tinker programs, analyze can take as input either a 

single structure as an .xyz file, or a multi-frame archive or MD trajectory as a Tinker .arc file. 

These features not only allow users to evaluate properties for single structures or trajectories, but 

also to quickly spot and isolate any errors or inconsistencies that might occur. 

 Tinker implements analytical Hessian computation for many potential functions, and 

numerical Hessian evaluation for all others. The Hessian is arranged in a sparse matrix with only 

elements with magnitude greater than a keyword specified cutoff stored. The vibrate program 

finds the mass-weighted Hessian, and after diagonalization via the diagq routine (Bernard R. 

Brooks, NHLBI, NIH), produces the normal modes and vibrational frequencies for the input 

structure. Small multi-frame structure files are also generated to enable visualization of the 

motion along each mode. 

 For large structures, such as biopolymers, where full matrix diagonalization is not 

practical, the vibbig program implements an iterative sliding block diagonalization method that 

finds the lowest frequencies and corresponding modes with O(N2) computational effort.142 

 In addition to analysis and manipulation of structures, Tinker has a suite of programs 

designed to assess properties for liquid systems. The diffuse program takes as input an MD 

trajectory as a .arc file and calculates the self-diffusion coefficient of a homogeneous liquid or 

subset of atoms from a heterogeneous system. The algorithm employed uses the standard 

Einstein relation applied to the molecular centers of mass of the liquid. There are also programs 
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to compute the bulk dielectric constant and radial distribution function (radial) starting from an 

input dynamic trajectory. 

 Correlate as a general program and formalism for computation of time correlation 

functions. It has built-in methods to find structural correlation and velocity autocorrelation 

functions. In addition, users can provide an external routine to compute any structure- or energy-

based property, and correlate will generate its correlation function. Additionally, the velocity 

autocorrelation function is used as input to the Tinker spectrum program, which computes the 

corresponding power spectrum. This suite of programs gives users a set of tools to assess 

properties from liquid simulations.  

Free Energy Calculations 

 One of the most common applications of molecular modeling is the calculation of 

binding free energies. To compute the binding free energy of a drug to a protein or solvation free 

energy of an ion in water, Tinker has methods available. Computation of binding free energies 

relies on the completion of a thermodynamic cycle, as pictured in figure 5. In order to calculate a 

free energy, Tinker employs an “alchemical” approach that “disappears” the ligand of interest in 

the presence and absence of its host. The free energy differences of these processes are 

calculated using free energy perturbation. 

The majority of the analysis of the free energy difference of the sampled conformations 

in Tinker package is handled by the bar program. Bar applies the standard Zwanzig's free energy 

perturbation (FEP) method143 and Bennett's acceptance ratio (BAR) method144 for the canonical 

ensemble. Additionally, the bar program has been extended to process isothermal-isobaric 

simulations145 and to estimate the differences in entropy and enthalpy of the samples.146  
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 An example of the utility of the dynamic and bar programs is calculation of binding free 

energies for the SAMPL4 host-guest challenge.147 We used dynamic to run sampling simulations 

of the host-guest binding systems over l-windows to decouple guest electrostatic and van der 

Waals interactions, and then performed bar free energy perturbation calculations on those 

trajectories. The results for one particular host-guest pair are shown in figure 3. In addition to 

prediction of the binding free energy, dynamic trajectory snapshots show the preferred binding 

pose for this ligand. 

Testing and Debugging 

 All of the analysis procedures listed above depend on the validity of the model that goes 

in to them. Tinker has many built-in utilities to test the correctness of code for new existing and 

new models. These allow developers to quickly test if a new energy function and its derivatives 

are consistent. The testgrad and testrot programs check to make sure the analytical potential 

energy derivatives match those calculated numerically. Testgrad operates in Cartesian space, 

while testrot computes and checks derivatives with respect to torsional angles. The testhess 

program takes this the next step by comparing the analytical Hessian against one computed 

numerically from either gradient or energy values. It can calculate the numerical hessian from 

either the potential energy or the gradient. Finally, the testpair utility tests methods for 

determining pairwise neighbor interactions in energy and gradient evaluation. This program 

compares results and computes timings for energy and gradient evaluations using a double loop, 

the method of lights or a pairwise neighbor list. 

 In addition, Tinker includes polarize, a program to compute the molecular polarizability 

of an individual molecule using either an additive or interactive induced dipole model. In 
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addition to being able to compare with experiment values, computing molecular polarizability 

gives users an idea of how strongly many-body effects may affect subsequent calculations. 

Parameterization Tools 

 The final set of important utilities in Tinker are a trio of programs designed to 

parameterize new molecules. The Tinker valence, poledit and potential programs can be used to 

generate parameters for intra- and intermolecular potential energy functions. The valence 

program takes a Tinker .xyz file and a Gaussian QM output file and generates a set of parameters 

for the basic intramolecular potential energy function as well as rough guesses at van der Waals 

parameters. It can also further refine those intramolecular energy function parameters by fitting 

to QM calculation results. The poledit program allows users to set and modify atomic multipole 

models. It can generate multipole parameters obtained from Gaussian Distributed Multipole 

Analysis (GDMA) output.148 It is also used to set local coordinate frames for atomic multipole, 

modify polarizability values, define polarization groups for the AMOEBA model, and average 

multipole parameters for symmetry-related sites. 

 Lastly, the potential program can be used for the evaluation and refinement of atomic 

multipole models. This utility computes the electrostatic potential on a grid of point surrounding 

a molecule. It can then either compare that potential to another multipole model or QM 

calculation or fit the multipole model to the QM result. These three parameterization programs 

are combined in a Python-based, publicly available software package called Poltype.149 This 

program is specifically designed to automate the process of generating parameters for the 

AMOEBA model and has been used extensively to facilitate rapid and reproducible 

parameterization of new molecules.  

5. Algorithms 
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 One of the challenges faced by all molecular modeling packages is efficient calculation 

on large application systems. Tinker incorporates a number of interesting and novel algorithms to 

help address computational bottlenecks, including algorithms of for periodic boundary 

calculations, neighbor list generation, particle mesh Ewald summation for electrostatics, and 

efficient induced dipole solvers for polarization. 

Periodic Systems and Neighbor Lists 

To enable modeling of “infinite” systems, four types of periodic box are supported in 

Tinker. These are orthogonal, monoclinic, triclinic and octahedral, where the octahedral periodic 

box refers to a truncated octahedron derived from the corresponding cube. When the cutoff of the 

periodic boundary condition is so large that the neighbors of an atom include at least two images 

of the same atom, a unique “replica” method is enabled automatically to replicate the periodic 

box to account for this situation. Tinker provides four internally built neighbor lists whose cutoff 

distances and list buffers can be configured separately through keywords for the van der Waals, 

the partial charges, the atomic multipoles and the polarization preconditioner, respectively, to 

speed neighbor searching as opposed to the naïve double loop method only if the replica method 

is not enabled. An efficient, OpenMP parallel neighbor list updating mechanism is used to 

minimize list rebuilding overhead. The Method of Lights150 can be used to efficiently construct 

the neighbor lists for the triclinic, monoclinic and orthogonal boxes. Finally, the periodicity code 

in Tinker is able to handle infinite bonded polymers by tracking valence terms across periodic 

cell boundaries. This enables correct treatment of the diamond lattice, rubber, graphite, plastics, 

and similar large repeating systems. 

Particle Mesh Ewald Summation 
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 To speed electrostatics and polarization calculations on large systems, Tinker has the 

ability to use smooth particle mesh Ewald summation (PME) for models including charges, 

multipoles or induced dipoles. Descended from an original PME code written by Thomas 

Darden, Tinker 8 gives the user control over the Ewald damping parameter and the allows use of 

either “tinfoil” or vacuum boundary conditions. The PME module also supports truncated 

octahedra as a periodic shape and allows performing PME calculations on a non-periodic 

systems. The current Tinker implementation follows closely the multipole PME version 

previously described by Sagui, et al.151 The code follows the structure of typical PME software: 

putting the electrostatic moments onto a spatial grid, performing a Fourier transform, performing 

the potential and electric field calculations in Fourier space, transforming back to real space, and 

finally computing the energy and force on every atom. One unique feature of the code is a 

domain decomposition scheme for putting moments on the grid. This method, developed by 

David Gohara (Biochemistry, Saint Louis University), parallelizes this step, which otherwise is 

the rate limiting computational step for large systems. Tinker optionally uses either a refactored 

3D version of the public domain FFTPACK Fourier transform code, or the Fast Fourier 

Transform package FFTW (Fastest Fourier Transform in the West)152 to perform the forward and 

backward Fourier transforms necessary for PME calculations. 

Polarization Algorithms 

 One of the defining features of Tinker is its ability to run simulations with force fields 

that include induced dipole polarization. The foundational idea of such models is that the 

induced dipole at a given site is proportional to the electric field at that site according to 

 !
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where µ, α and F represent the induced dipole, the polarizability, and the electric field 

respectively. In a mutually inducible model, the electric field arises not only from the permanent 

moments of the systems, but the induced dipoles as well. 

 

This gives rise to the total induction energy,  

 

where all that is needed is to solve for the induced dipoles of the system. Tinker has three 

methods of determining the induced dipoles of a system: Preconditioned Conjugant Gradient 

(PCG), Optimized Perturbation Theory (OPT) and Extended-Lagrangian/Self Consistent Field 

(iEL-SCF). 

  The most straightforward way to obtain the induced dipoles of a system is by requiring a 

zero residual, 

. 

which enforces that the change in energy should be zero for an infinitesimal change in the 

induced dipoles. Solving this system of equations is a flavor of the familiar self-consistent field 

(SCF) calculation. In Tinker this is done using a preconditioned conjugate gradient algorithm153 

and is typically able to converge the calculation within 5-6 iterations.  
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The OPT method154, 155 works in a manner similar to PCG, but instead of iteratively 

lowering the residual, it computes induced dipoles from perturbation theory. In this scheme the 

exact induced dipoles are expanded in a power series, 

 

where each order of the perturbation is determined by: 

.

 

In this expansion, each order of dipole determined by the one that precedes it. This gives rise to a 

final energy expression,  

 

where the M coefficients are parameters that can tuned. Tinker currently has the ability to 

include up to six terms in this expansion, but it has been shown that including only three is a 

reasonable approximation that gives a speed boost over traditional PCG.  

The final method included with Tinker is the iEL-SCF method.156 This method minimizes 

the number of iterations needed in solving the induced dipoles by introducing the Lagrangian, 
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where mi represents the mass of atom i, mµ,i a fictitious dipole mass and ω the frequency of the 

harmonic potential that keeps the induced dipoles close to the fully converged SCF solution. By 

applying Lagrangian equations of motion, one obtains the classical equation of motion plus the 

equation of motion for the auxiliary degrees of freedom, 

 . 

To maintain stability, a thermostat is applied to the auxiliary degrees of freedom. This gives the 

iEL-SCF method the ability to reduce the number of iterations needed to obtain induced dipoles 

for a system and thus speed up simulations. 

 In addition to these methods, there are future plans to include at two additional  

polarization options into Tinker 8. The first is an extension of the iEL-SCF method called iEL-

0SCF.157 This method uses the same auxiliary dipoles from the iEL-SCF scheme, but instead of 

using them as a starting point for SCF, they are used to drive dynamics directly. By avoiding 

SCF iterations, the iEL-0SCF method does not produce fully converged dipoles but does allow 

for much faster, stable MD simulations. The second method, already incorporated into the 

Tinker-HP code base is the Truncated Conjugate Gradient method (TCG).158 This approach 

computes a fixed number of iterations of the conjugate gradient algorithm and then corrects for 

the fact that the residual has not been minimized to zero. By using successive approximations 

from the conjugate gradient iterations this method avoids needing any parameters as are needed 

in the previous approximate methods listed. Moreover, by correcting for the lack of zero 

residual, the TCG method allows for faster computation of analytical induced dipoles than full 
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SCF methods like PCG. Both of these methods are slated for implementation in the next release 

of Tinker. 

Orthogonal Space Random Walk	

Besides the typical Free Energy Perturbation (FEP) method, the Orthogonal Space 

Random Walk (OSRW) free energy calculation method is also implemented in Tinker. Classical 

FEP methods (BAR, thermodynamic integration, etc.) arbitrarily select an order parameter to 

sample. The OSRW method is capable of exploring the order parameter as well as the so-called 

“hidden degrees of freedom” simultaneously.159, 160 Due to the complexity of many systems, 

efficiently sampling the hidden degrees of freedom dominates the accuracy of final free energy 

computation. Currently, OSRW free energy calculations in Tinker are supported for the NVT 

ensemble and RESPA integrator, and are restricted to the buffered 14-7 vdW potential where a 

softcore-modified buffered 14-7 potential is applied as a replacement for the original. Permanent 

electrostatic interactions are also modified by a softcore treatment, to prevent numerical 

instability during simulation.161 When using OSRW with AMOEBA, the polarization energy and 

forces are computed using an interpolation between fully charges/polarizable and 

decharged/nonpolarizable ligand atoms as described previously.162 Work is currently underway, 

in collaboration with Wei Yang (Chemistry, Florida State University) to implement the most 

recent versions of his orthogonal space tempering techniques into the family of Tinker 

programs.163	

The setup of a Tinker keyfile for use of OSRW is straightforward. For instance, to 

compute the hydration of free energy of small solute in water only four additional keywords are 

required. First, the keyword LIGAND specifies the atom numbers of the solute for the hydration 

free energy calculation. The additional Tinker keywords OSRW-ABSOLUTE, 
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DONOLIGANDCONDENSED, DOVAPORELEC specify an absolute solvation energy 

calculation, the presence of only a single ligand molecule, and use of a gas phase leg in the free 

energy calculation, respectively. 

Distance Geometry 

 In the context of molecular modeling, distance geometry (DG) is method for generating a 

structure or structures consistent with an input set of distance constraints.	 164	 165 A basic DG 

algorithm takes an object in a high-dimensional mathematical “distance space”, and reduces 

dimensionality by projecting it into a 3D molecular structure. An early important use of the 

method involved the generation of protein NMR structural models from short-range NMR NOE 

distance constraints.	166 However, a more interesting application of distance geometry is to under 

constrained problems. Given a limited set of upper and lower bound distances between atoms or 

groups in a molecular system, one would like for a distance geometry algorithm to generate a 

uniform sampling of all possible structures consistent with the input distance ranges. Tinker 8 

contains an efficient method that exhibits excellent sampling properties for under constrained 

input through extension of standard DG algorithms. First, the Tinker distgeom program uses 

random partial metrization to update the matrix of upper and lower distance bounds whenever an 

individual distance value is fixed during structure generation. Only a small predetermined 

portion of the distance selections are followed by metrization, reducing the computational burden 

of a nominally O(N4) method.167 Tinker uses a powerful, but relatively little-known, shortest path 

update algorithm to further reduce the metrization work load.168 Second, distgeom selects 

distances between the upper and lower bounds from a Gaussian-like distribution tuned to 

reproduce reasonable molecule structures, instead of using the traditional flat, uniform 

distribution.169 Additional terms are used to enforce local chirality and torsional constraints, and 
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simulated annealing on geometric constraints is used to refine output structures. The resulting 

Tinker program performs well in NMR applications,170 and provided good sampling in less 

constrained situations such as protein structure prediction.171 

6. Force Field Explorer 

 In addition to the suite of command line programs, Tinker also includes a graphical user 

interface (GUI) called Force Field Explorer or FFE. This program allows users to visualize 

molecular structures and provides access to many of Tinker’s analysis, search and dynamics 

methods from a simple, user-friendly interface. This functionality makes FFE useful both as a 

research tool and as an instructional aid. 

 Force Field Explorer 8 gives users a powerful, simple and many-featured way to visualize 

molecular structures. It allows users to model molecules of interest using standard 

representations (wireframe, ball and stick, etc.). Molecules can be loaded directly from existing 

Tinker files, or downloaded from the NIH PubChem database,172 the NCI CACTUS database and 

the RCSB Protein Data Bank (PDB).173 Biopolymers can also be interactively constructed from 

sequence in various idealized structures. The program also gives users the ability to play back 

any Tinker molecular dynamics trajectory with the click of a button. In addition to these standard 

features, FFE also includes tools for force field-specific visualization. It can render a structure 

using the van der Waals radii specific to the force field being used, or display the partial charges 

or velocities assigned to each atom of a system. For polarizable force fields, it can display the 

induced dipoles as a vector at each atom at every time point of a simulation. These features allow 

users to assess in time and space how force field parameters affect the results of their 

calculations. 



	 33	

 What makes Force Field Explorer a unique tool is that it combines visualization power 

with the functionality of Tinker. Through the graphical interface, users can run many of Tinker’s 

analysis, search and dynamics programs. Simple minimizations or MD simulations can be started 

with the click of a button. The GUI has the ability to directly modify the Tinker key file via a 

graphical editing facility. By enabling access to the key file, users can quickly and easily change 

the options for whatever calculation they’re running without touching the command line. As 

shown in the example of figure 6, FFE’s functionality is laid out in an easy-to-navigate format. 

This combined with the integration with the full integration of Tinker makes Force Field 

Explorer useful not only for research, but also educational purposes. 

 Communication between FFE and Tinker is mediated by the Java sockets mechanism. 

Special versions of Tinker executables built against the FFE interface, allow Tinker calculations 

to send output to FFE in real time, including coordinates, velocities, induced dipoles, lattice 

parameters and other variables. Conversely, FFE is able to connect to an already running Tinker 

job on a remote machine, in order to perform job control tasks, display an MD trajectory 

interactively, etc. 

7. Benchmarks  

Six periodic boundary systems of increasing size (from 648 to 174219 atoms) have been 

constructed as benchmark tests to examine the efficacy of Tinker 8 and Tinker-OpenMM on 

standard CPU and commodity NVIDIA GPU devices, respectively. The systems reported 

include: a small water box of 216 AMOEBA water molecules, a larger 500 molecule TIP3P 

water box, the crystallographic unit cell of the plant protein crambin, a cucurbituril clip host-

guest system from the SAMPL5 exercise,174 a solvated DHFR protein, and a solvated COX-2 

protein dimer. The system sizes differ by more than two orders of magnitude. Force fields tested 
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were Amber ff99SB68 and AMOEBA. All simulations were performed with a 2 fs MD time step, 

and throughput is reported in nanoseconds per day in Table 2. We note that hydrogen mass 

reweighting,175 which retards high-frequency motions, is a keyword option available in Tinker. 

Use of this option coupled with tight thermostating enables stable MD trajectories at 4 fs time 

steps, and yields roughly double the throughput reported in Table 2. As expected, the GPU 

implementation via Tinker-OpenMM significantly outperforms the reference CPU version of 

Tinker 8 for production MD calculations.	

8. Conclusions & Future Development 

 As has been stressed throughout this report, a defining characteristic of the Tinker 

molecular mechanics package is its modularity. This intentional design lends itself to 

straightforward future development and software improvement. There are many unsolved 

problems requiring advanced energy models and sampling methods yet to be attacked by 

molecular modeling, and corresponding plans are underway for the future development of 

Tinker. There are three major projects currently in progress within the Tinker community: 

acceleration of the existing software, implementation of advanced potentials and sampling 

algorithms, and integration across the broader Tinker family of codes. 

 There are a host of problems in molecular biology and elsewhere where advanced models 

are needed but are computationally too inefficient to be tractable. Simulations of large RNA 

structures or proteins with significant conformational fluctuations have long been thought to be 

areas where advanced methods may be required. A future goal of the Tinker package is to make 

such simulations possible by improving the efficiency of advanced polarizable models. 

Techniques for speeding the costliest aspect of polarizable force fields, solution of the 
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polarization model itself, are under development for implementation in future versions of Tinker, 

as are support for current polarizable models including SIBFA176 and GEM.177 

 In addition to efficient software for existing force fields, the Tinker project is developing 

code that will run the next generation of models. A new class of physics-based potentials is 

under development that relies less on empiricism than their predecessors. These models attempt 

to correct for errors that occur at short-range in point change and point multipole force fields 

because of overlapping charge distributions. Simple models to account for this effect on the 

electrostatic term of force fields, the so-called charge penetration error, have been recently 

published178-180 and corresponding models for polarization, exchange-repulsion and dispersion 

are under development. These potentials are currently being incorporated into Tinker. We 

recognize that as computational power continues to grow, and the problems that molecular 

mechanics models are asked to solve become more demanding, it will be important to ensure that 

these new models have a home in Tinker. 

 Importantly, the future development of Tinker is directed toward unifying the code bases 

of the Tinker family of modeling packages, Tinker, Tinker-HP181, 182 and Tinker-OpenMM. 

Because molecular mechanics simulations of large molecules remain computationally 

demanding, it is important that the full functionality of Tinker be available to users on a variety 

of hardware, from large scale CPU-based supercomputers to individual GPUs. The Tinker-HP 

and Tinker-OpenMM branches are responsible for enabling this high performance; Tinker-HP 

for massively parallel CPU calculations and Tinker-OpenMM as a CUDA-based GPU 

implementation. A goal of the Tinker project is to unify the code structure of each of these code 

packages. This has three major benefits. First, it will bring all of the codes up-to-date with the 

most efficient methods available. Second, future development of models or methods will be 
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more easily integrated across  all three platforms if their structures are unified. Third, it will 

allow Open Source development of Tinker that can be propagated to the Tinker-HP and Tinker-

OpenMM branches. By keeping Tinker-HP and Tinker-OpenMM in step with Tinker 

development, we can ensure users of access to Tinker functionality regardless of hardware 

platform.  

 The Tinker molecular modeling software package is an easy-to-use, easy-to-understand 

and easy-to-modify set of programs allowing researchers to model molecular systems of interest 

in a variety of ways. It supports a broad spectrum of classical molecular mechanics models as 

well as an array of algorithms to efficiently explore the corresponding potential energy surfaces. 

This is accomplished through a modular code structure that permits users to inspect and 

manipulate calculation details, and developers to add new functionality quickly. Because it is 

Open Source and freely available to academics, Tinker 8 provides a community code base in 

which to test old ideas and investigate new ones. It is our hope that this community-oriented 

model will continue to advance development of tools that make the Tinker toolbox useful. 
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Table 1.  Tinker 8 File Name Suffixes and Descriptions	

SUFFIX Description of File Contents 
.xyz Cartesian coordinates, atom types and connectivity 
.int Internal coordinates as a Z-matrix 
.mol MDL MOL structure compatible with Tinker 
.mol2 MOL2 structure compatible with Tinker 
.pdb PDB structure compatible with Tinker 
.arc Structure archive, e.g., MD trajectory 
.dyn MD restart information 
.hes Cartesian Hessian matrix 
.key Control file with Tinker keywords 

tinker.key Generic keyfile 
.err Current structure at error occurance 
.seq Biopolymer sequence 
.vel Atomic velocities 
.ind Atomic induced dipole moments 

.dma Distributed multipole values 
.bar Window energy values for BAR and FEP 
.prm Force field parameter file 
.doc Detailed parameter descriptions 
.end Requests orderly termination of Tinker program 

.vb1, .vb2, .blk Block iterative vibrational mode files 
.001, .002, etc. “Cycle” files containing sequential structure output 
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Table 2.  Tinker 8 CPU and Tinker-OpenMM GPU MD simulation timings in ns/day. a	

   CPU b GPU c 
SYSTEM POTENTIAL ATOMS  970 1070 1080Ti 

WaterSmall AMOEBA 648 4.78 61.6 98.4 125.9 
WaterBox TIP3P 1500 14.2 361.7 574.9 671.9 
Crambin AMOEBA 1920 1.12 43.0 64.2 72.0 
CBClip AMOEBA 6432 0.664 20.9 32.5 46.1 
DHFR AMOEBA 23558 0.164 8.62 13.1 20.0 
DHFR Amber ff99SB 23558 1.16 78.4 115.1 204.7 
COX-2 AMOEBA 174219 0.0176 1.05 1.67 2.27 
COX-2 Amber ff99SB 174219 0.150 10.7 15.3 24.6 

a All simulations run with 2 fs MD time steps; RESPA integrator and OPT polarization 
      model for AMOEBA, Verlet integrator with constraints used to enforce rigid water 
      and fixed bond lengths to hydrogen for TIP3P and Amber ff99SB potentials. 
b Apple Mac Pro with an Intel 6-Core Xeon E5650 Processor running at 2.66 GHz. 
c NVIDIA Maxwell and Pascal Series GTX GPU cards, run via Tinker-OpenMM. 
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Figure Captions 
 
Figure 1. Diagram showing the main component programs of the Tinker 8 package, organized 

into eight functional classes. 

Figure 2. A schematic procedure illustrating how to construct a new Tinker program. 

Figure 3. Binding free energy calculation for the model system cucurbit[7]uril and 3-amino-1-

adamantanol. (A) Structures of host and guest, (B) Predicted binding pose from dynamic, (C) 

Experimental and predicted binding free energy. 

Figure 4. Structural optimization of Deca-Alanine in the gas phase using (A) the scan program 

and (B) the monte program. 

Figure 5. A typical thermodynamic cycle for the calculation of absolute binding free energy of 

host and ligand in Tinker. The completely solvated ligand and a solvent box are associated 

through intermediate states with gradual changes in the order parameters of vdW and 

electrostatics. While the order parameter of electrostatics affects both intermolecular and 

intramolecular interactions, the decreasing order parameter of vdW only decouples the ligand 

from the environment and does not change the intramolecular vdW interaction. A restraint is 

added to prevent the possible bad contacts and to help sampling. 

Figure 6. Force Field Explorer (FFE) displaying the Dickerson dodecamer structure of B-form 

DNA. The expandable tree structure in the left panel provides access to coordinate and type 

information at the molecule, residue and atom levels. 
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Figure 2 

Get input structure
Get input from Cartesian coordinates via call getxyz
Or from simulation trajectory, and/or from standard input

       (See examples in diffuse.f)

Find the existing data structures in Tinker.
If new global variables are needed:

1. Create new modules that contain new variables 

2. Implement subroutines to initialize the new variables with the default values, 

      and to parse new keywords that set the values

3. Implement routine to destroy any new global variables when program exits 

4. Add the destroy routine so it is called from final.f 

Set parameters for the new program
1. call mechanic

Or call the routines used by mechanic.f if some of these             

        initializations are unnecessary

2. Call the routines to initialize new variables and/or parse new keywords 

Call a routine that does the
desired new calculation

Cleanup & Exit
call final 

Initialize the program
call initial
This subroutine initializes some Tinker variables with           

      default values.
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Figure 3 

  

A) B)

C)
Experimental Predicted

Binding Free Energy (kcal/mol) −11.6 ± 0.1 −12.41± 0.7
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