
HAL Id: hal-01820747
https://hal.science/hal-01820747

Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tinker 8: Software Tools for Molecular Design
Joshua A Rackers, Zhi Wang, Chao Lu, Marie L Laury, Louis Lagardere,

Michael Schnieders, Jean-Philip Piquemal, Pengyu Ren, Jay Ponder

To cite this version:
Joshua A Rackers, Zhi Wang, Chao Lu, Marie L Laury, Louis Lagardere, et al.. Tinker 8: Software
Tools for Molecular Design. Journal of Chemical Theory and Computation, 2018, 14 (10), pp.5273-
5289. �10.1021/acs.jctc.8b00529�. �hal-01820747�

https://hal.science/hal-01820747
https://hal.archives-ouvertes.fr

Tinker 8: Software Tools for Molecular Design

Joshua A. Rackers,1 Zhi Wang,2 Chao Lu,2 Marie L. Laury,2 Louis Lagardère,3

Michael J. Schnieders,4 Jean-Philip Piquemal,3 Pengyu Ren 5 and Jay W. Ponder 1,2*

1 Program in Computational & Molecular Biophysics, Washington University

School of Medicine, Saint Louis, Missouri 63110, United States
2 Department of Chemistry, Washington University in Saint Louis,

Saint Louis, Missouri 63130, United States
3 Laboratoire de Chimie Théorique, Sorbonne Universités, UPMC Paris 06,

UMR 7616, case courrier 137, 4 place Jussieu, F-75005, Paris, France
4 Department of Biomedical Engineering, The University of Iowa,

Iowa City, IA 52242, United States	
5 Department of Biomedical Engineering, The University of Texas at Austin,

Austin, Texas 78712, United States

*Corresponding author: ponder@dasher.wustl.edu

	 2	

Abstract

 The Tinker software, currently released as version 8, is a modular molecular mechanics

and dynamics package written primarily in a standard, easily portable dialect of Fortran 95 with

OpenMP extensions. It supports a wide variety of force fields, including the modern polarizable

atomic multipole-based AMOEBA model. The package runs on Linux, macOS and Windows

systems. In addition to canonical Tinker there are branches, Tinker-HP and Tinker-OpenMM,

designed for use on MPI-parallel distributed memory supercomputers and on state-of-the-art

graphical processing units (GPUs), respectively. The Tinker suite also includes a tightly

integrated Java-based graphical user interface called Force Field Explorer (FFE), which provides

molecular visualization capabilities as well as the ability to launch and control Tinker

calculations.

	 3	

1. Introduction

 The Tinker molecular modeling package represents a complete set of software tools for

performing a wide range of classical molecular simulations, with special emphasis on

biomolecular calculations. This article provides an introduction to some of the features and

unique capabilities of the current version of the package, Tinker 8. Recently, specialized

branches of the Tinker code have become available for use on large-scale multiprocessor

supercomputer systems under MPI (Tinker-HP),1 and for GPU-based calculations (Tinker-

OpenMM).2 Integration of these codes with the Tinker suite of programs will be briefly

discussed, and additional information is available in the original publications describing both

Tinker-HP and Tinker-OpenMM. All of the software is available via academic web sites3-5 and

GitHub repositories.6, 7

 Tinker originated as a new software package implementing the MM28 and MM39 force

fields of Allinger for use in conformational analysis of organic natural products.10 An early

prototype of the software was incorporated as the basis of molecular mechanics calculations in

the ChemOffice software package.11 Additional applications used this early pre-Tinker platform

for the development of efficient structure optimization algorithms for large molecules12 and for

packing analysis of amino acid side chains in folded protein structures.13 Development under the

Tinker name began in earnest at Washington University in the mid-1990’s and the first

distributed version, Tinker 3.2, was publicly announced and made available in late 1996. A

major purpose of the software was, and still is, to provide a modular framework for incorporating

existing empirical potentials, as well as design and parameterization of new classical force field

models. More recently, Tinker served as the computational engine for the early protein folding

simulations done via the Folding@home platform,14 especially for calculations utilizing implicit

	 4	

solvent models. The Tinker package and its corresponding file formats are interoperable with a

variety of molecular modeling and visualization tools, including VMD,15 PyMol,16 Jmol,17 Force

Field X,18 Open Babel,19 MDTraj,20 MDAnalysis,21 ParmEd,22 Molden,23 VEGA ZZ,24

PACKMOL,25 ForceBalance,26 WebMO,27 and many others. Access to Tinker, including the

AMOEBA polarizable multipole force field, is also available from the CHARMM modeling

software via the MSCALE interface facility.28

 The current Tinker 8 package contains roughly sixty command line programs written in

an extended version of Fortran 95, utilizing dynamic memory allocation and OpenMP directives

that enable multiprocessing across CPU cores/threads on a shared memory computer system.

Figure 1 classifies the individual Tinker programs by basic functionality type. All floating-point

computations are performed in full double precision arithmetic. The only hard limits on program

size are the allowed number of total atoms and a small number of derived array allocations. The

package is distributed with full source code and binary executables for Linux, macOS and

Windows operating systems, and dimensioned for a maximum of one million atoms. Systems

containing over 20 million atoms have been calculated after rebuilding, and the size is limited

only by available memory. The package is designed to enable interactive use via a terminal

window, or as background processes controlled via a high-level scripting mechanism. The design

goal for the canonical Tinker software is to provide a transparent, modular code base that is

easily and directly useable by a broad range of researchers, but efficient enough for application

in many production settings.

 In contrast, both Tinker-OpenMM and Tinker-HP are intended to be highly efficient

computational engines on their target compute platforms, while maintaining compatibility with

canonical Tinker through common coding style, algorithms, file types and general workflows.

	 5	

The Tinker-OpenMM package consists of a branch of the Stanford OpenMM29, 30 library with

substantial modifications to the AMOEBA plugin, as well as an interface module written in C++

that resides between canonical Tinker and the OpenMM API. It provides a dynamic_omm

program that exchanges data between CPU and GPU memory through the library interface and

performs molecular dynamics simulations on CUDA-compatible NVIDIA GPUs. Tinker-

OpenMM supports an increasing subset of Tinker’s energy functions, molecular dynamics

integrators, free energy methods, and other features. The current version adds an internal virial

implementation for use with barostat techniques, pairwise van der Waals parameters, and is

capable of running absolute and relative alchemical calculations with dual topology methods.2

Tinker-HP is a new Tinker-compatible MPI-based, massively parallel code for molecular

dynamics with an efficient domain decomposition algorithm and analytical polarization solvers.

As detailed elsewhere, Tinker-HP is highly scalable across large distributed computer systems

containing thousands of nodes and molecular systems containing millions of atoms.1

2. Features and Organization

File Types and Coordinate Representations

 The Tinker files describing a particular molecular system consist of a base name followed

by a suffix of three or more characters, e.g., molecule.xyz. Several other file name suffixes are

used for various types of output, program control, etc. The most common default Tinker file

names are listed in Table 1.

 Systems are represented in Tinker as collections of points in space, typically denoting

individual atoms or coarse-grained collections of atoms. File representations can contain

Cartesian coordinates (.xyz files), full internal coordinates (.int files), torsional angle coordinates

or rigid body coordinates. Values are stored in Angstroms and degrees, and output to a precision

	 6	

of 6, 8 or 10 decimal places. Periodic box boundaries are specified in terms of crystallographic

lattice lengths (a, b and c) and lattice angles (alpha, beta and gamma). These periodic dimensions

are stored as part of the keyword control (.key) file for a calculation or, optionally, as part of the

coordinates file itself. Periodic systems, including truncated octahedra, are defined such that the

centroid of the box is located at the (0,0,0) coordinate origin.

Software Organization

 The majority of the source code of the Tinker package is written in portable Fortran 95

with OpenMP parallelization directives for CPU intensive calculations on shared-memory

multiple core systems. The systemwide resources are managed in Fortran modules that make use

of dynamic memory allocation and are designed to only represent the current state of the

simulation system. The energy specific parameters, e.g. the cubic and quartic coefficients of the

fourth-order anharmonic bond potential, are not hard-coded in the source files, thus preserving

the flexibility of Tinker in force field development.

 The central component of the Tinker package is a modular set of callable routines which

(1) manage the package-owned resources, including default initialization, allocation of the

dynamic memory, and release of the allocated space, etc., (2) perform molecular mechanical

calculations and dynamics simulation on a single set of parameters and atomic coordinates, (3)

read in settings from standard input, command line arguments, external files and write out the

current state of the system to standard output or external files. These routines essentially work as

the underlying application programming interface (API) to build the higher-level routines and

programs in the Tinker package. For example, the gradient routine is not only called in multiple

integrators but also by various minimization procedures. This design makes creating new

routines and new programs easy. A good implementation example is the RESPA integrator. For

	 7	

this integrator the energy and force terms are organized into “fast” and “slow” groups, evaluated

on different time scales. Because these energy and force routines are organized as a callable

library, RESPA is integrated at a high level by simply toggling these terms on and off.

Keyword Control Mechanism

 Every program in the Tinker package is capable of interactively reading arguments from

standard input, thus making the program easy to use directly. These interactive inputs are limited

to the basic necessities for any given calculation. However, the Tinker programs are not

restricted to reading runtime arguments from the command line. Advanced users can set more

detailed options via an external configuration (.key) file through a “keyword” mechanism. The

keywords not only manipulate the straightforward behavior of the programs, (e.g. whether or not

to save the velocities of atoms during a simulation), but also manage default settings (e.g. to

change the grid dimension used by PME, as necessary), handle hardware resources (e.g. setting a

number of threads for OpenMP, choosing an available GPU card, etc.), and even control library

dependency (e.g. switching between underlying FFT algorithms). The current Tinker version

implements about 350 keywords, many with multiple options to provide fine-grained control

over the behavior of Tinker calculations.

How to Write a Tinker Program

 Tinker has an intentionally modular design. In addition to making the code easily

understandable, this modularity makes it possible to quickly write new Tinker programs. For

most applications, a new program can be initialized, a structure read in, and a molecular

mechanics model set up in just three lines of code:

 call initial
 call getxyz
 call mechanic

	 8	

These steps, shown in more detail in figure 2 allow developers to use Tinker’s existing

machinery to quickly set up new types of calculations.

 The first step in writing any new Tinker program is initialization of variables and reading

of a molecular structure. If the new program doesn’t require any new global variables, this can be

done via the initial and getxyz routines. Initial declares and initializes global variable values that

are needed for every Tinker program. Getxyz parses a Tinker Cartesian coordinates file (.xyz) for

a molecular system, provided either via command line input or interactively at a user prompt.

Once these two routines are called, Tinker is ready to perform operations on the structure. Multi-

structure “trajectories” can also be read directly as input from Tinker archive (.arc) files.

 Once a structure is obtained, the work of setting up a Tinker molecular mechanics

calculation is performed by the mechanic routine, which is a self-contained protocol for setting

up the potential energy model for a given system. First it assigns connectivity to the structure and

obtains a force field parameter file (.prm file). This can be supplied at an interactive prompt, or

included in a keyword control file (i.e., a “keyfile”, typically .key) containing Tinker directives

or “keywords”. Then mechanic does all the work of setting up the potential energy function. If

no keyfile is supplied, the package simply instantiates the contents of the parameter file. If a

keyfile is provided, it may optionally contain keywords related to each individual component of

the potential energy function and specifying modified or additional parameter values that

supersede those in the parameter file. The internal setup for each potential energy term is also

highly standardized. For example, the multipole energy, force and Hessian routines, all of which

have source files named empole*, have a corresponding initialization routine named kmpole that

assigns force field parameters to atoms or groups within the molecular structure. There is a

corresponding “k” routine for every potential energy component included in Tinker. Adding an

	 9	

entirely new potential energy function is also straightforward. The developer simply adds the

code for the function to the preexisting, empty extra energy and force routines, which have full

access to the molecular data structures, and then edits kextra to read in any new parameters or

keywords that might be needed for the new potential. Tinker is then set to utilize these routines

automatically, and to optionally include them in a force field model.

 Providing the tools to easily read in structures and construct models minimizes the work

of setting up and debugging Tinker data structures and eases the development of new methods.

This modularity, particularly of the potential energy functions, allows developers to quickly alter

components of calculations without having to make changes across multiple files. It provides

developers the opportunity to create in their own new potential energy terms, force field

parameters and keyword control features without having to navigate a maze of source code.

3. Computational Models

Potential Energy Functions

 Among the many goals of the Tinker software package, one of the most fundamental is to

allow users the ability to explore a wide variety of models. Regardless of whether a user is using

new Tinker program they have written or an existing one, every energy-based calculation

requires definition of a force field model. To this end, Tinker includes support for a tremendous

array of potentials. There are two advantages to the large number of potentials that are included

and supported by the package. First, it gives end users the ability to use and compare a wide

variety of models for their particular application system. To this end, various Tinker potential

terms can be grouped together to replicate several widely used biomolecular force fields such as

those from the CHARMM,31 Amber32 and OPLS-AA33 families. The second reason to support a

large number of potentials is to expedite the development of new models. Because of the

	 10	

modular nature of the code, researchers can easily incorporate any of the existing potentials in a

model. In total there are approximately thirty different potential terms supported in the Tinker

package, all with exact analytical energies and Cartesian derivatives, and many with second

derivatives. Broadly, the potentials can be divided into intramolecular terms, intermolecular

terms and implicit solvent models.

 The intramolecular potential energy terms in Tinker can be further subdivided into

primary terms and cross terms. The former describe the energetics of simple motions such as

bond stretching, angle bending and torsional rotation, while the latter describe coupling between

the primary energy terms. The simplest of the primary terms are the bonded potentials. Tinker

includes harmonic, anharmonic and Morse bond potentials. The package also has several types

of angle bending potentials – harmonic, anharmonic, linear, projected in-plane and Fourier-based

angles. Additionally, there are four types of torsion terms included in Tinker. The first is a

calculation for a simple torsion defined by four consecutively bonded atoms using a sum of

Fourier terms. The second, referred to as a Bell’s “pi-torsion”, computes the torsion around a

bond connecting two trigonal centers using the pi-orbital directions at each trigonal center.34

Tinker also includes so-called “improper torsion” terms that define torsionals between non-

consecutively bonded atoms, as used to enforce planarity in the Amber models and many other

force fields. Finally, harmonic “improper dihedral” terms can be used to maintain planarity, as in

the CHARMM force fields. An additional primary potential term is the direct description of out-

of-plane bending. Tinker has thee methods for computing an out-of-plane bending potential. The

first two potentials are computed via an out-of-plane angle, using either the Wilson-Decius-

Cross35 or Allinger36 definitions. A simpler, third method consists of a harmonic term describing

the out-of-plane distance of a trigonal atom from the plane defined by its three attached atoms.

	 11	

These primary terms describing the energetics of bonds, angles, torsions, and out-of-plane bends

comprise the bulk of most intramolecular energy models a user might like to build or use.

 In addition to primary intramolecular potentials, Tinker also supports a variety of

intramolecular cross terms. These terms control how the primary energy models are coupled and

change as a function of each other. The classic and most basic example of a cross term is the

stretch-bend or bond-angle term, which describes how two adjacent ideal bond distances change

as a function of the angle between the bonds. Included in Tinker, in addition to a stretch-bend

potential, are cross terms for angle-angle, bond-torsion, angle-torsion and torsion-torsion terms

as well as a Urey-Bradley37 term. Including these terms in a total potential allows users to build

and use sophisticated intramolecular energy models when the application requires it, for example

to reproduce vibrational frequencies.

 The next broad class of potentials provided by Tinker are intermolecular terms. These can

be subdivided into van der Waals (vdW) or repulsion-dispersion interactions, and generalized

Coulombic or electrostatic interactions. In order to support a wide variety of models, Tinker

includes five different functional forms for van der Waals interactions: a Lennard-Jones 6-12

potential38, buffered 14-7 Halgren potential,39 Buckingham exponential-6 potential,40 a Gaussian

vdW potential, and the MM3 vdW-hydrogen bond potential.41,	42 These functions allow a great

deal of flexibility in using and designing models with different representations of short-range

interactions between atoms.

 The most complex set of potentials included in the Tinker package are the electrostatic

interaction potentials. Tinker has the ability to compute simple point charge interactions, but it

also implements interactions between higher-order multipole moments. Tinker can treat bond-

center dipole models, permanent atomic multipole models with interactions through quadrupoles,

	 12	

and induced dipole models. The ability to efficiently compute permanent multipole and induced

dipole models allows Tinker to run calculations with more advanced models, such as the

AMOEBA force field.43-47 Indeed, much development effort in Tinker has been and continues to

be focused on streamlining and modularizing code to implement next-generation force fields

with more accurate electrostatic models.

 The last major category of potentials in Tinker is continuum models. The most commonly

used of these are various implicit solvation models. Tinker includes support for several

Generalized Born (GB)42 variations including those of Still,43 Onufriev-Bashford-Case,48 ACE49

and Grycuk,50 the Generalized Kirkwood (GK)51 method for use with polarizable multipoles,

accessible surface area-based solvation,52 the Hydrophobic Potential of Mean Force (HPMF),53 a

novel reaction field method,54 and Poisson-Boltzmann (PB)55-57 solvation models. The GB, GK,

surface area and HPMF potentials are all implemented directly in the Tinker code while PB

calculations are provided via an interface to the Adaptive Poisson-Boltzmann Solver (APBS)

software package.58,	 59 All of the solvation models in Tinker are implemented to work with

advanced electrostatic and induced dipole models. In addition to these solvation models, Tinker

also includes surface area and volume calculations with derivatives, which can be used to build

or use potentials incorporating these geometric molecular descriptors.

 Additionally, Tinker includes two orbital-based models for description of select quantum

effects within a classical framework. Simple pi-orbital calculations of the Hückel, Pariser-Parr-

Pople, or variable electronegativity self-consistent field (VESCF)60 class can be used to scale

bond and torsional parameters in conjugated or aromatic systems. Three ligand field models for

describing the coordination geometry at transition metal sites within the Tinker package have

also been described.61-63

	 13	

 Although Tinker includes a large number of possible potentials, using them within an

energy model is straightforward. The energy and gradient subroutines for each different potential

are modular, which is to say they can each be called separately with just one line of computer

code. For developers this means it is easy to mix-and-match different potentials in a model or

devise new potential as desired. For users this makes it simple way to activate or deactivate

individual parts of a model via a single keyword to toggle use of individual potential terms. This

makes it easy to manipulate and analyze energy components for complicated structures.

Force Field Models

The wide variety of classical functional forms available in Tinker enables support of a

number of existing force fields. From its beginnings Tinker has been intended for use with

multiple models. In fact, one of the original goals of the package was to allow users to

seamlessly compare energetic models for a given problem or application. To this end Tinker

supports the following standard force fields: Amber,64-68 CHARMM,69-72 OPLS,73-78 MM2/3,8, 79-

83 MMFF,84 AMOEBA,44-46, 85-87 Dang,88-97 the so-called “Tiny” force field, and a number of

specialized models for water. For many of these force fields, several modifications are provided

as complete parameter sets contained within the Tinker distribution.

The force fields available in Tinker span a wide range: from the Tiny force field with

generic parameters based on element type and valence for use in optimizing crude structures to

the AMOEBA09 small molecule force field containing detailed parameters over finely

subdivided atom types and advanced functional forms such as multipolar electrostatics and

induced dipole polarizability. The included force fields also span major classes of biomolecules,

with parameters to model proteins, nucleic acids, lipids, and small organic molecules. Users

	 14	

should consult the respective literature on each force field before deciding which model might be

best suited to their application.

4. Capabilities

Structure Manipulation

In order to generate coordinate files adapted to various software packages and purposes,

Tinker provides convenient tools to convert coordinate files into different formats and to

manipulate the coordinate file for different calculation purposes, such as building crystal

structures, generating periodic boxes etc. 	

First, Tinker recognizes the Tinker .xyz file format for all calculations. However, other

software packages are adapted to coordinate files of other formats. For instance, CHARMM,

AMBER and VMD are adapted to PDB files, SYBYL are adapted to MOL2 files and many QM

packages such as Gaussian is able to read in internal coordinate files. To allow interoperability,

Tinker provides six commands to do the interconversion between different coordinate files. The

command pdbxyz takes a Tinker xyz file as input and generates the corresponding PDB file as

output. The command xyzmol2 converts a Tinker xyz file to a MOL2 file. The command xyzint

converts an xyz file to an internal coordinate file in which the absolute Cartesian coordinates are

expressed as relative positions (bond length, bond angle and torsional angle) among atoms. The

commands pdbxyz, mol2xyz, and intxyz convert PDB files, MOL2 files and internal coordinate

files back to xyz files. 	

Second, Tinker also provides file-editing tools for the purpose of simulation setup. Most

of xyz editing tools are listed as options under the command xyzedit, such as inserting and

deleting atoms, changing force field atom types, translating/rotating a system to specified

Cartesian or rigid body coordinates or into the inertial frame, appending and merging multiple

	 15	

files, or soaking a second xyz file, creating a periodic boundary box, placing a solute into a

periodic solvent box, adding ions to a solvated system, etc. The command superpose is designed

to superimpose a pair of structures to at optimal root mean square deviation (RMSD) using a

non-iterative quaternion-based algorithm.98 Since biomolecules such as nucleic acids and

proteins are target systems for many studies, Tinker provides nucleic and protein tools to

generate nucleic acid and protein structures respectively according to the sequence information

and backbone or side chain torsional angle values. Lastly, the utility crystal utility is designed for

manipulation of crystal structures such including generation unit cells from asymmetric units and

according to box size, shape and space group. 	

Local Search and Minimization

 Tinker has a number of local minimization algorithms implemented to effectively and

efficiently minimize a quantity of interest. Several algorithms are widely used in Tinker in

conjunction with a force field to minimize the energy of a molecular structure. The code contains

routines for Limited Memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)99-101 minimization,

Optimally Conditioned Variable Metric (OCVM)102, 103 nonlinear optimization, and Truncated

Newton Conjugate Gradient (TNCG)12, 104 Hessian-based optimization. The LBFGS algorithm is

of the nonlinear conjugate gradient class, and as such does not require an analytical Hessian

matrix. It uses the BFGS update to update the line search direction at each iteration. The limited

memory implementation in Tinker allows this routine to be used for Cartesian minimization of

large systems. The OCVM algorithm uses a quasi-Newton methodology without line search to

update an approximation to the inverse Hessian at every step. It is particularly effective for

optimization of rougher potential surfaces, such as those in torsional space. Lastly, the TNCG

algorithm uses a preconditioned truncated conjugate gradient method coupled with direct sparse

	 16	

Hessian evaluation or a finite-difference Hessian approximation to minimize an objective

function. The TNCG method converges quadratically once in the vicinity of a local minimum

and can optionally find transition states and general stationary points after disabling checks for

negative curvature. LBFGS and TNCG use the same line search algorithm, a gradient-based trust

region safeguarded parabolic extrapolation, cubic interpolation procedure. To minimize

structures, the LBFGS, OCVM and TNCG methods are implemented in the Tinker minimize,

optimize and newton programs, respectively. These minimize structures in Cartesian coordinate

space. Tinker also contains the corresponding programs, minirot, optirot and newtrot for

minimizations in torsional space as well as minrigid and optrigid for minimizations with rigid

body groups of atoms.

 While TNCG-based optimization methods are easily modified to allow convergence to

transition states, the catchment basin is often small and requires a starting structure near to the

final transition state. Tinker contains two other methods, saddle and path, that are specifically

designed to locate conformational transition states and pathways. Saddle represents a

combination of ideas from the Halgren-Lipscomb synchronous transit105, 106 and Bell-Crighton

quadratic path107 methods. It takes two endpoint structures as input, and performs an iterative

series of maximizations along the connecting path and minimizations orthogonal to the path until

the saddle point is located. The path program starts from local minima and uses Lagrange

multiplier-based constraints to minimize orthogonal to a series of equally spaced path points,

generating a “trajectory” along the interconversion pathway.108

 In addition, Tinker contains an adaptive derivative-free multi-dimensional Nelder-Mead

simplex optimization algorithm and a modified Levenberg-Marquardt least squares algorithm

combining features of the IMSL BCLSF routine and the LMDER code from Minpack.109 These

	 17	

methods are used within Tinker for optimization of stochastic objective functions and in force

field parameter refinement, respectively.

Global Optimization

Besides the various optimization methods to find local minima of potential energy

functions, Tinker also has a number of optimization algorithms to find global minima of the

target function. Roughly, these algorithms can be divided into two categories: first, methods that

rely on pathway- or trajectory-dependent propagation to overcome the local barriers or to

enumerate local minima; second, methods that modify the underlying potential surface while

approximating a solution to the equilibrium density distribution. The first category of methods

includes simulated annealing,110 generalized gradient descent,111, 112 “Jumping-between-Wells”113

and the Monte Carlo minimization (MCM) method.114, 115 The second category of global

optimization algorithms includes potential smoothing techniques	 116-119 and the related gaussian

density annealing (GDA) scheme.120

The anneal program is a traditional MD-based simulated annealing code with an optional

pre-equilibration phase and several available cooling schedules. It starts from a high temperature

at which local energy barriers are easily to overcome. Then the cooling schedule is applied to

gradually lower the temperature and coalesce into a low energy local minimum. In the sniffer

program, a second order differential equation is designed to enable generalized descent along a

trajectory without becoming trapped in the catchment region of any particular minimum.

Following a steepest descent propagator, the trajectory is constrained to a minimum that is

greater than the predefined energy levels, which is presumed to be the global minimum.111, 112, 121

The scan program uses Jumping-between-Wells to locate all the local minima for an input

structure by self-consistently following low frequency normal mode search directions from all

	 18	

known minima. The global minimum can be obtained by comparing all the local minima.113 The

monte program implements an MCM protocol which uses Metropolis Monte Carlo exploration of

a potential surface where the energy of each point on the surface is remapped to the value of the

closest local minimum.114 Potential surface smoothing (PSS) views the original potential energy

functional forms as the time zero initial conditions for solution of the diffusion equation.

Conformational search is then performed on the smoother surface produced at some finite, non-

zero time. The method can be shown to be mathematically equivalent to performing molecular

mechanics with “fuzzy” atoms, where the location of each atom is generalized to a Gaussian

probability distribution around its most likely position. The pss, pssrot and pssrgd programs

implement the PSS idea in terms of Cartesian, torsional and rigid-body representations,

respectively. The gda program performs annealing while seeking an approximate solution for the

equilibrium density distribution, and can be viewed as a dynamical version of the deterministic

potential smoothing methods.

Two examples of the global optimization methods are demonstrated in figure 4 for a gas

phase deca-alanine model system in gas phase using the scan and monte programs. Both

optimizations start from the same linear structure of Deca-Alanine and eventually reach the same

global minimum, the structure of which is a typical a-helix as shown in figure 4A and 4B. The

scan method captured 654 intermediate structures while scanning the full potential surface. The

monte method generated eight intermediate local minima along its path to the helical structure.

Two intermediate structures from each calculation are presented in figure 4A and 4B. Though

they follow different paths in moving around the surface, both methods appear to produce find a

similar partially optimized structure, shown as intermediate minimum II in figure 4.	

Dynamics Methods

	 19	

 One of the important features for any modern molecular mechanics software package is

the ability to perform molecular dynamics (MD). In the past four decades, many of the important

contributions of classical empirical potential models have been realized through MD simulations.

In Tinker this feature is implemented through the dynamic program: a feature-rich MD engine. In

addition to being able to run simulations with any of the force fields included with Tinker, it

allows the user a great deal of flexibility in the details of how a simulation is run.

 Tinker has the ability to run simulations in any of four traditional statistical mechanical

ensembles: Microcannonical (NVE), Cannonical (NVT), Isoenthalpic-Isobaric (NPH) and

Isothermal-Isobaric (NPT). For each of these options, where necessary, Tinker can employ a

wide variety of integrators, thermostats and barostats. The possible integrators include Velocity

Verlet, Beeman,122,	123 stochastic,124,	125 Nosé-Hoover NPT,126 Bussi-Parrinello NPT,127 a two-

stage, multiple time step, reversible Reference System Propagator Algorithm (RESPA)128, 129 and

a rigid-body integrator.130 Most of these integrators have been reviewed extensively in the

literature. Two of particular interest, however are the RESPA integrator and the rigid body

integrator. The RESPA integrator allows the user to take two separate time steps when

propagating molecular dynamics. The first, fast time step is used for fast-changing degrees of

freedom such as bond stretching and the second, slow time step is used for the slow-changing,

but computationally expensive electrostatics or polarization calculations. The rigid body

integrator is unique to Tinker and is based on the original work of Andrey Kutapov and Marina

A. Vorobieva (VNIITF, Russian Federal Nuclear Facility, Chelyabinsk). Tinker also includes an

implementation of the RATTLE algorithm131 in order to implement holonomic constraints

within velocity Verlet and related integrators. In addition, Tinker contains a stochastic dynamics

	 20	

integrator132 employing a series expansion to treat small frictional coefficients,133 and with the

ability to scale the friction term based on accessible surface area.134

 For the constant temperature and pressure ensembles, Tinker includes a variety of

thermostats and barostats. The included thermostats are Bussi135, Berendsen136, Andersen137 and

Nose-Hoover.126,	 138 The available barostats are Berendsen,136 Bussi-Parrinello127 and Monte

Carlo.139 It should be noted that because Tinker includes an internal virial calculation for every

available model potential, the Berendsen barostat may be used with both simple and advanced

models. The defaults in Tinker are the Bussi thermostat and Berendsen barostat, but the available

thermostats or barostats can be used in any of several combinations with the standard integrators

(Verlet, Beeman and RESPA). An active area of development in Tinker is application of an

isokinetic scheme that combines a massive thermostat with a multiple time step integrator to

achieve ultra-long time steps for the slowly evolving, but computationally expensive, potential

terms in a simulation. This method is deemed Stochastic-Iso-NH-RESPA or SIN(R) and it has

been demonstrated to achieve outer time steps of up to 100 fs for the AMOEBA water model

without loss of model accuracy.140,	141

Properties and Analysis

 One of most useful programs in the Tinker package is analyze. It can be used to evaluate

a single structure or a multiple-frame file from a simulation. The program is designed to provide

everything from general information to detailed atom-level information about the system. Its

most basic function is to simply print out the total potential energy broken down into each

individual component but can do much more. The analyze program can give information about

the force field being used and the parameters for every atom in the system. It optionally outputs a

potential energy breakdown by atom, or with details for every interatomic interaction. It can also

	 21	

give the user some basic properties of the system, such as electric moments and principle axes.

Analyze calculates the internal virial, numerical and virial-based derivatives of the energy with

respect to volume. And lastly it can print the connectivity list and force field parameters used for

every atom and interaction. As with many Tinker programs, analyze can take as input either a

single structure as an .xyz file, or a multi-frame archive or MD trajectory as a Tinker .arc file.

These features not only allow users to evaluate properties for single structures or trajectories, but

also to quickly spot and isolate any errors or inconsistencies that might occur.

 Tinker implements analytical Hessian computation for many potential functions, and

numerical Hessian evaluation for all others. The Hessian is arranged in a sparse matrix with only

elements with magnitude greater than a keyword specified cutoff stored. The vibrate program

finds the mass-weighted Hessian, and after diagonalization via the diagq routine (Bernard R.

Brooks, NHLBI, NIH), produces the normal modes and vibrational frequencies for the input

structure. Small multi-frame structure files are also generated to enable visualization of the

motion along each mode.

 For large structures, such as biopolymers, where full matrix diagonalization is not

practical, the vibbig program implements an iterative sliding block diagonalization method that

finds the lowest frequencies and corresponding modes with O(N2) computational effort.142

 In addition to analysis and manipulation of structures, Tinker has a suite of programs

designed to assess properties for liquid systems. The diffuse program takes as input an MD

trajectory as a .arc file and calculates the self-diffusion coefficient of a homogeneous liquid or

subset of atoms from a heterogeneous system. The algorithm employed uses the standard

Einstein relation applied to the molecular centers of mass of the liquid. There are also programs

	 22	

to compute the bulk dielectric constant and radial distribution function (radial) starting from an

input dynamic trajectory.

 Correlate as a general program and formalism for computation of time correlation

functions. It has built-in methods to find structural correlation and velocity autocorrelation

functions. In addition, users can provide an external routine to compute any structure- or energy-

based property, and correlate will generate its correlation function. Additionally, the velocity

autocorrelation function is used as input to the Tinker spectrum program, which computes the

corresponding power spectrum. This suite of programs gives users a set of tools to assess

properties from liquid simulations.

Free Energy Calculations

 One of the most common applications of molecular modeling is the calculation of

binding free energies. To compute the binding free energy of a drug to a protein or solvation free

energy of an ion in water, Tinker has methods available. Computation of binding free energies

relies on the completion of a thermodynamic cycle, as pictured in figure 5. In order to calculate a

free energy, Tinker employs an “alchemical” approach that “disappears” the ligand of interest in

the presence and absence of its host. The free energy differences of these processes are

calculated using free energy perturbation.

The majority of the analysis of the free energy difference of the sampled conformations

in Tinker package is handled by the bar program. Bar applies the standard Zwanzig's free energy

perturbation (FEP) method143 and Bennett's acceptance ratio (BAR) method144 for the canonical

ensemble. Additionally, the bar program has been extended to process isothermal-isobaric

simulations145 and to estimate the differences in entropy and enthalpy of the samples.146

	 23	

 An example of the utility of the dynamic and bar programs is calculation of binding free

energies for the SAMPL4 host-guest challenge.147 We used dynamic to run sampling simulations

of the host-guest binding systems over l-windows to decouple guest electrostatic and van der

Waals interactions, and then performed bar free energy perturbation calculations on those

trajectories. The results for one particular host-guest pair are shown in figure 3. In addition to

prediction of the binding free energy, dynamic trajectory snapshots show the preferred binding

pose for this ligand.

Testing and Debugging

 All of the analysis procedures listed above depend on the validity of the model that goes

in to them. Tinker has many built-in utilities to test the correctness of code for new existing and

new models. These allow developers to quickly test if a new energy function and its derivatives

are consistent. The testgrad and testrot programs check to make sure the analytical potential

energy derivatives match those calculated numerically. Testgrad operates in Cartesian space,

while testrot computes and checks derivatives with respect to torsional angles. The testhess

program takes this the next step by comparing the analytical Hessian against one computed

numerically from either gradient or energy values. It can calculate the numerical hessian from

either the potential energy or the gradient. Finally, the testpair utility tests methods for

determining pairwise neighbor interactions in energy and gradient evaluation. This program

compares results and computes timings for energy and gradient evaluations using a double loop,

the method of lights or a pairwise neighbor list.

 In addition, Tinker includes polarize, a program to compute the molecular polarizability

of an individual molecule using either an additive or interactive induced dipole model. In

	 24	

addition to being able to compare with experiment values, computing molecular polarizability

gives users an idea of how strongly many-body effects may affect subsequent calculations.

Parameterization Tools

 The final set of important utilities in Tinker are a trio of programs designed to

parameterize new molecules. The Tinker valence, poledit and potential programs can be used to

generate parameters for intra- and intermolecular potential energy functions. The valence

program takes a Tinker .xyz file and a Gaussian QM output file and generates a set of parameters

for the basic intramolecular potential energy function as well as rough guesses at van der Waals

parameters. It can also further refine those intramolecular energy function parameters by fitting

to QM calculation results. The poledit program allows users to set and modify atomic multipole

models. It can generate multipole parameters obtained from Gaussian Distributed Multipole

Analysis (GDMA) output.148 It is also used to set local coordinate frames for atomic multipole,

modify polarizability values, define polarization groups for the AMOEBA model, and average

multipole parameters for symmetry-related sites.

 Lastly, the potential program can be used for the evaluation and refinement of atomic

multipole models. This utility computes the electrostatic potential on a grid of point surrounding

a molecule. It can then either compare that potential to another multipole model or QM

calculation or fit the multipole model to the QM result. These three parameterization programs

are combined in a Python-based, publicly available software package called Poltype.149 This

program is specifically designed to automate the process of generating parameters for the

AMOEBA model and has been used extensively to facilitate rapid and reproducible

parameterization of new molecules.

5. Algorithms

	 25	

 One of the challenges faced by all molecular modeling packages is efficient calculation

on large application systems. Tinker incorporates a number of interesting and novel algorithms to

help address computational bottlenecks, including algorithms of for periodic boundary

calculations, neighbor list generation, particle mesh Ewald summation for electrostatics, and

efficient induced dipole solvers for polarization.

Periodic Systems and Neighbor Lists

To enable modeling of “infinite” systems, four types of periodic box are supported in

Tinker. These are orthogonal, monoclinic, triclinic and octahedral, where the octahedral periodic

box refers to a truncated octahedron derived from the corresponding cube. When the cutoff of the

periodic boundary condition is so large that the neighbors of an atom include at least two images

of the same atom, a unique “replica” method is enabled automatically to replicate the periodic

box to account for this situation. Tinker provides four internally built neighbor lists whose cutoff

distances and list buffers can be configured separately through keywords for the van der Waals,

the partial charges, the atomic multipoles and the polarization preconditioner, respectively, to

speed neighbor searching as opposed to the naïve double loop method only if the replica method

is not enabled. An efficient, OpenMP parallel neighbor list updating mechanism is used to

minimize list rebuilding overhead. The Method of Lights150 can be used to efficiently construct

the neighbor lists for the triclinic, monoclinic and orthogonal boxes. Finally, the periodicity code

in Tinker is able to handle infinite bonded polymers by tracking valence terms across periodic

cell boundaries. This enables correct treatment of the diamond lattice, rubber, graphite, plastics,

and similar large repeating systems.

Particle Mesh Ewald Summation

	 26	

 To speed electrostatics and polarization calculations on large systems, Tinker has the

ability to use smooth particle mesh Ewald summation (PME) for models including charges,

multipoles or induced dipoles. Descended from an original PME code written by Thomas

Darden, Tinker 8 gives the user control over the Ewald damping parameter and the allows use of

either “tinfoil” or vacuum boundary conditions. The PME module also supports truncated

octahedra as a periodic shape and allows performing PME calculations on a non-periodic

systems. The current Tinker implementation follows closely the multipole PME version

previously described by Sagui, et al.151 The code follows the structure of typical PME software:

putting the electrostatic moments onto a spatial grid, performing a Fourier transform, performing

the potential and electric field calculations in Fourier space, transforming back to real space, and

finally computing the energy and force on every atom. One unique feature of the code is a

domain decomposition scheme for putting moments on the grid. This method, developed by

David Gohara (Biochemistry, Saint Louis University), parallelizes this step, which otherwise is

the rate limiting computational step for large systems. Tinker optionally uses either a refactored

3D version of the public domain FFTPACK Fourier transform code, or the Fast Fourier

Transform package FFTW (Fastest Fourier Transform in the West)152 to perform the forward and

backward Fourier transforms necessary for PME calculations.

Polarization Algorithms

 One of the defining features of Tinker is its ability to run simulations with force fields

that include induced dipole polarization. The foundational idea of such models is that the

induced dipole at a given site is proportional to the electric field at that site according to

 !
µi =αi

!
Fi

	 27	

where µ, α and F represent the induced dipole, the polarizability, and the electric field

respectively. In a mutually inducible model, the electric field arises not only from the permanent

moments of the systems, but the induced dipoles as well.

This gives rise to the total induction energy,

where all that is needed is to solve for the induced dipoles of the system. Tinker has three

methods of determining the induced dipoles of a system: Preconditioned Conjugant Gradient

(PCG), Optimized Perturbation Theory (OPT) and Extended-Lagrangian/Self Consistent Field

(iEL-SCF).

 The most straightforward way to obtain the induced dipoles of a system is by requiring a

zero residual,

.

which enforces that the change in energy should be zero for an infinitesimal change in the

induced dipoles. Solving this system of equations is a flavor of the familiar self-consistent field

(SCF) calculation. In Tinker this is done using a preconditioned conjugate gradient algorithm153

and is typically able to converge the calculation within 5-6 iterations.

!
Fi =
!
Fi

perm +
!
Fi
ind

Uind =
1
2
!
µi •
!
Fi
ind −

i
∑ !

µi •
!
Fi

perm

i
∑

R = dU
d !µ
⎛

⎝
⎜

⎞

⎠
⎟= 0

	 28	

The OPT method154, 155 works in a manner similar to PCG, but instead of iteratively

lowering the residual, it computes induced dipoles from perturbation theory. In this scheme the

exact induced dipoles are expanded in a power series,

where each order of the perturbation is determined by:

.

In this expansion, each order of dipole determined by the one that precedes it. This gives rise to a

final energy expression,

where the M coefficients are parameters that can tuned. Tinker currently has the ability to

include up to six terms in this expansion, but it has been shown that including only three is a

reasonable approximation that gives a speed boost over traditional PCG.

The final method included with Tinker is the iEL-SCF method.156 This method minimizes

the number of iterations needed in solving the induced dipoles by introducing the Lagrangian,

!
µtot =

!
µ0 +λ

!
µ1 +λ

2 !µ2 +…+λ n !µn

!
µ0 =α

!
F perm

λ
!
µ0 = λα

!
Find (µ0)

λ 2
!
µ1 = λ

2α
!
Find (µ1)

!

λ n !µn = λ
nα
!
Find (µn−1)

U =
!
µi
OPT •

!
Fi

perm

i
∑

!
µOPT =M0

!
µ0 +M1

!
µ1 +M2

!
µ2 +…+Mn

!
µn

L = 1
2

mi
!"ri
2 +

i
∑ 1

2
mµ,i
!"µi
2 −UAMOEBA (

!r N , !µSCF
N)

i
∑ −

1
2
ω 2 mµ,i

!
µSCF,i −

!
µi()2

i
∑

	 29	

where mi represents the mass of atom i, mµ,i a fictitious dipole mass and ω the frequency of the

harmonic potential that keeps the induced dipoles close to the fully converged SCF solution. By

applying Lagrangian equations of motion, one obtains the classical equation of motion plus the

equation of motion for the auxiliary degrees of freedom,

 .

To maintain stability, a thermostat is applied to the auxiliary degrees of freedom. This gives the

iEL-SCF method the ability to reduce the number of iterations needed to obtain induced dipoles

for a system and thus speed up simulations.

 In addition to these methods, there are future plans to include at two additional

polarization options into Tinker 8. The first is an extension of the iEL-SCF method called iEL-

0SCF.157 This method uses the same auxiliary dipoles from the iEL-SCF scheme, but instead of

using them as a starting point for SCF, they are used to drive dynamics directly. By avoiding

SCF iterations, the iEL-0SCF method does not produce fully converged dipoles but does allow

for much faster, stable MD simulations. The second method, already incorporated into the

Tinker-HP code base is the Truncated Conjugate Gradient method (TCG).158 This approach

computes a fixed number of iterations of the conjugate gradient algorithm and then corrects for

the fact that the residual has not been minimized to zero. By using successive approximations

from the conjugate gradient iterations this method avoids needing any parameters as are needed

in the previous approximate methods listed. Moreover, by correcting for the lack of zero

residual, the TCG method allows for faster computation of analytical induced dipoles than full

mi
!""ri = −

∂UAMOEBA (
!r N , !µSCF

N)
∂
!ri

!
µi =ω

2 !µSCF,i −
!
µi()

	 30	

SCF methods like PCG. Both of these methods are slated for implementation in the next release

of Tinker.

Orthogonal Space Random Walk	

Besides the typical Free Energy Perturbation (FEP) method, the Orthogonal Space

Random Walk (OSRW) free energy calculation method is also implemented in Tinker. Classical

FEP methods (BAR, thermodynamic integration, etc.) arbitrarily select an order parameter to

sample. The OSRW method is capable of exploring the order parameter as well as the so-called

“hidden degrees of freedom” simultaneously.159, 160 Due to the complexity of many systems,

efficiently sampling the hidden degrees of freedom dominates the accuracy of final free energy

computation. Currently, OSRW free energy calculations in Tinker are supported for the NVT

ensemble and RESPA integrator, and are restricted to the buffered 14-7 vdW potential where a

softcore-modified buffered 14-7 potential is applied as a replacement for the original. Permanent

electrostatic interactions are also modified by a softcore treatment, to prevent numerical

instability during simulation.161 When using OSRW with AMOEBA, the polarization energy and

forces are computed using an interpolation between fully charges/polarizable and

decharged/nonpolarizable ligand atoms as described previously.162 Work is currently underway,

in collaboration with Wei Yang (Chemistry, Florida State University) to implement the most

recent versions of his orthogonal space tempering techniques into the family of Tinker

programs.163	

The setup of a Tinker keyfile for use of OSRW is straightforward. For instance, to

compute the hydration of free energy of small solute in water only four additional keywords are

required. First, the keyword LIGAND specifies the atom numbers of the solute for the hydration

free energy calculation. The additional Tinker keywords OSRW-ABSOLUTE,

	 31	

DONOLIGANDCONDENSED, DOVAPORELEC specify an absolute solvation energy

calculation, the presence of only a single ligand molecule, and use of a gas phase leg in the free

energy calculation, respectively.

Distance Geometry

 In the context of molecular modeling, distance geometry (DG) is method for generating a

structure or structures consistent with an input set of distance constraints.	 164	 165 A basic DG

algorithm takes an object in a high-dimensional mathematical “distance space”, and reduces

dimensionality by projecting it into a 3D molecular structure. An early important use of the

method involved the generation of protein NMR structural models from short-range NMR NOE

distance constraints.	166 However, a more interesting application of distance geometry is to under

constrained problems. Given a limited set of upper and lower bound distances between atoms or

groups in a molecular system, one would like for a distance geometry algorithm to generate a

uniform sampling of all possible structures consistent with the input distance ranges. Tinker 8

contains an efficient method that exhibits excellent sampling properties for under constrained

input through extension of standard DG algorithms. First, the Tinker distgeom program uses

random partial metrization to update the matrix of upper and lower distance bounds whenever an

individual distance value is fixed during structure generation. Only a small predetermined

portion of the distance selections are followed by metrization, reducing the computational burden

of a nominally O(N4) method.167 Tinker uses a powerful, but relatively little-known, shortest path

update algorithm to further reduce the metrization work load.168 Second, distgeom selects

distances between the upper and lower bounds from a Gaussian-like distribution tuned to

reproduce reasonable molecule structures, instead of using the traditional flat, uniform

distribution.169 Additional terms are used to enforce local chirality and torsional constraints, and

	 32	

simulated annealing on geometric constraints is used to refine output structures. The resulting

Tinker program performs well in NMR applications,170 and provided good sampling in less

constrained situations such as protein structure prediction.171

6. Force Field Explorer

 In addition to the suite of command line programs, Tinker also includes a graphical user

interface (GUI) called Force Field Explorer or FFE. This program allows users to visualize

molecular structures and provides access to many of Tinker’s analysis, search and dynamics

methods from a simple, user-friendly interface. This functionality makes FFE useful both as a

research tool and as an instructional aid.

 Force Field Explorer 8 gives users a powerful, simple and many-featured way to visualize

molecular structures. It allows users to model molecules of interest using standard

representations (wireframe, ball and stick, etc.). Molecules can be loaded directly from existing

Tinker files, or downloaded from the NIH PubChem database,172 the NCI CACTUS database and

the RCSB Protein Data Bank (PDB).173 Biopolymers can also be interactively constructed from

sequence in various idealized structures. The program also gives users the ability to play back

any Tinker molecular dynamics trajectory with the click of a button. In addition to these standard

features, FFE also includes tools for force field-specific visualization. It can render a structure

using the van der Waals radii specific to the force field being used, or display the partial charges

or velocities assigned to each atom of a system. For polarizable force fields, it can display the

induced dipoles as a vector at each atom at every time point of a simulation. These features allow

users to assess in time and space how force field parameters affect the results of their

calculations.

	 33	

 What makes Force Field Explorer a unique tool is that it combines visualization power

with the functionality of Tinker. Through the graphical interface, users can run many of Tinker’s

analysis, search and dynamics programs. Simple minimizations or MD simulations can be started

with the click of a button. The GUI has the ability to directly modify the Tinker key file via a

graphical editing facility. By enabling access to the key file, users can quickly and easily change

the options for whatever calculation they’re running without touching the command line. As

shown in the example of figure 6, FFE’s functionality is laid out in an easy-to-navigate format.

This combined with the integration with the full integration of Tinker makes Force Field

Explorer useful not only for research, but also educational purposes.

 Communication between FFE and Tinker is mediated by the Java sockets mechanism.

Special versions of Tinker executables built against the FFE interface, allow Tinker calculations

to send output to FFE in real time, including coordinates, velocities, induced dipoles, lattice

parameters and other variables. Conversely, FFE is able to connect to an already running Tinker

job on a remote machine, in order to perform job control tasks, display an MD trajectory

interactively, etc.

7. Benchmarks

Six periodic boundary systems of increasing size (from 648 to 174219 atoms) have been

constructed as benchmark tests to examine the efficacy of Tinker 8 and Tinker-OpenMM on

standard CPU and commodity NVIDIA GPU devices, respectively. The systems reported

include: a small water box of 216 AMOEBA water molecules, a larger 500 molecule TIP3P

water box, the crystallographic unit cell of the plant protein crambin, a cucurbituril clip host-

guest system from the SAMPL5 exercise,174 a solvated DHFR protein, and a solvated COX-2

protein dimer. The system sizes differ by more than two orders of magnitude. Force fields tested

	 34	

were Amber ff99SB68 and AMOEBA. All simulations were performed with a 2 fs MD time step,

and throughput is reported in nanoseconds per day in Table 2. We note that hydrogen mass

reweighting,175 which retards high-frequency motions, is a keyword option available in Tinker.

Use of this option coupled with tight thermostating enables stable MD trajectories at 4 fs time

steps, and yields roughly double the throughput reported in Table 2. As expected, the GPU

implementation via Tinker-OpenMM significantly outperforms the reference CPU version of

Tinker 8 for production MD calculations.	

8. Conclusions & Future Development

 As has been stressed throughout this report, a defining characteristic of the Tinker

molecular mechanics package is its modularity. This intentional design lends itself to

straightforward future development and software improvement. There are many unsolved

problems requiring advanced energy models and sampling methods yet to be attacked by

molecular modeling, and corresponding plans are underway for the future development of

Tinker. There are three major projects currently in progress within the Tinker community:

acceleration of the existing software, implementation of advanced potentials and sampling

algorithms, and integration across the broader Tinker family of codes.

 There are a host of problems in molecular biology and elsewhere where advanced models

are needed but are computationally too inefficient to be tractable. Simulations of large RNA

structures or proteins with significant conformational fluctuations have long been thought to be

areas where advanced methods may be required. A future goal of the Tinker package is to make

such simulations possible by improving the efficiency of advanced polarizable models.

Techniques for speeding the costliest aspect of polarizable force fields, solution of the

	 35	

polarization model itself, are under development for implementation in future versions of Tinker,

as are support for current polarizable models including SIBFA176 and GEM.177

 In addition to efficient software for existing force fields, the Tinker project is developing

code that will run the next generation of models. A new class of physics-based potentials is

under development that relies less on empiricism than their predecessors. These models attempt

to correct for errors that occur at short-range in point change and point multipole force fields

because of overlapping charge distributions. Simple models to account for this effect on the

electrostatic term of force fields, the so-called charge penetration error, have been recently

published178-180 and corresponding models for polarization, exchange-repulsion and dispersion

are under development. These potentials are currently being incorporated into Tinker. We

recognize that as computational power continues to grow, and the problems that molecular

mechanics models are asked to solve become more demanding, it will be important to ensure that

these new models have a home in Tinker.

 Importantly, the future development of Tinker is directed toward unifying the code bases

of the Tinker family of modeling packages, Tinker, Tinker-HP181, 182 and Tinker-OpenMM.

Because molecular mechanics simulations of large molecules remain computationally

demanding, it is important that the full functionality of Tinker be available to users on a variety

of hardware, from large scale CPU-based supercomputers to individual GPUs. The Tinker-HP

and Tinker-OpenMM branches are responsible for enabling this high performance; Tinker-HP

for massively parallel CPU calculations and Tinker-OpenMM as a CUDA-based GPU

implementation. A goal of the Tinker project is to unify the code structure of each of these code

packages. This has three major benefits. First, it will bring all of the codes up-to-date with the

most efficient methods available. Second, future development of models or methods will be

	 36	

more easily integrated across all three platforms if their structures are unified. Third, it will

allow Open Source development of Tinker that can be propagated to the Tinker-HP and Tinker-

OpenMM branches. By keeping Tinker-HP and Tinker-OpenMM in step with Tinker

development, we can ensure users of access to Tinker functionality regardless of hardware

platform.

 The Tinker molecular modeling software package is an easy-to-use, easy-to-understand

and easy-to-modify set of programs allowing researchers to model molecular systems of interest

in a variety of ways. It supports a broad spectrum of classical molecular mechanics models as

well as an array of algorithms to efficiently explore the corresponding potential energy surfaces.

This is accomplished through a modular code structure that permits users to inspect and

manipulate calculation details, and developers to add new functionality quickly. Because it is

Open Source and freely available to academics, Tinker 8 provides a community code base in

which to test old ideas and investigate new ones. It is our hope that this community-oriented

model will continue to advance development of tools that make the Tinker toolbox useful.

Acknowledgements

JWP and PR wish to thank the National Institutes of Health NIGMS for support of recent force

field and software development via awards R01 GM106137 and R01 GM114237. Tinker, as with

most large software packages under development for many years, has a very large number of

contributors– far too many to list here– who have provided code and suggestions. JWP, in

particular, is grateful for help from a wide community of colleagues, developers and users

stretching over more than three decades.

	 37	

References

1.	 Lagardère	L,	Jolly	L-H,	Lipparini	F,	Aviat	F,	Stamm	B,	Jing	ZF,	Harger	M,	Torabifard	H,	
Cisneros	 GA,	 Schnieders	 MJ,	 Gresh	 N,	 Maday	 Y,	 Ren	 PY,	 Ponder	 JW,	 Piquemal	 J-P.	
Tinker-HP:	 A	 Massively	 Parallel	 Molecular	 Dynamics	 Package	 for	 Multiscale	
Simulations	of	Large	Complex	Systems	with	Advanced	Point	Dipole	Polarizable	Force	
Fields.	Chem.	Sci.,	8,	956-72	(2018).	

2.	 Harger	 M,	 Li	 D,	 Wang	 Z,	 Dalby	 K,	 Larardere	 L,	 Piquemal	 J-P,	 Ponder	 JW,	 Ren	 PY.	
Tinker-OpenMM:	Absolute	and	Relative	Alchemical	Free	Energies	Using	AMOEBA	on	
GPUs.	J.	Comput.	Chem.,	38,	2047-55	(2017).	

3.	 Ponder	 JW.	 Tinker	 Molecular	 Modeling.	 	 Washington	 University	 in	 St.	 Louis;	 2018	
Available	from:	https://dasher.wustl.edu/tinker/.	

4.	 Piquemal	 J-P.	Piquemal	Research	&	Software.	 	 Sorbonne	Universites;	2018	Available	
from:	http://piquemalresearch.com/research-and-softwares/.	

5.	 Ren	 P.	 Tinker	 GPU	 Main	 Page.	 	 University	 of	 Texas,	 Austin;	 2018	 Available	 from:	
http://biomol.bme.utexas.edu/tinkergpu/.	

6.	 Ponder	 JW.	 Tinker:	 Software	 Tools	 for	 Molecular	 Design.	 	 GitHub;	 2018	 Available	
from:	https://github.com/jayponder/tinker/.	

7.	 Ren	 P.	 Tinker-OpenMM	 Toolkit	 for	 Molecular	 Simulation	 Using	 	 High	 Performance	
GPU	Code.		GitHub;	2018	Available	from:	https://github.com/pren/tinker-openmm/.	

8.	 Allinger	NL.	Conformational	Analysis.	130.	MM2.	A	Hydrocarbon	Force	Field	Utilizing	
V1	and	V2	Torsional	Terms.	J.	Am.	Chem.	Soc.,	99,	8127-34	(1977).	

9.	 Allinger	 NL,	 Yuh	 YH,	 Lii	 JH.	 Molecular	 Mechanics.	 The	 MM3	 Force	 Field	 for	
Hydrocarbons.	1.	J.	Am.	Chem.	Soc.,	111,	8551-66	(1989).	

10.	 Corey	EJ,	Ponder	JW.	Stereochemistry	of	the	Hygrolidins.	Tetrahedron	Lett.,	25,	4325-
8	(1984).	

11.	 ChemOffice.	CambridgeSoft.com;	2018.	
12.	 Ponder	JW,	Richards	FM.	An	Efficient	Newton‐like	Method	for	Molecular	Mechanics	

Energy	Minimization	of	Large	Molecules.	J.	Comput.	Chem.,	8,	1016-24	(1987).	
13.	 Ponder	 JW,	Richards	FM.	Tertiary	Templates	 for	Proteins:	Use	of	Packing	Criteria	 in	

the	Enumeration	of	Allowed	Sequences	 for	Different	Structural	Classes.	 J.	Mol.	Biol.,	
193,	775-91	(1987).	

14.	 Pande	VS,	 Baker	 I,	 Chapman	 J,	 Elmer	 SP,	 Khaliq	 S,	 Larson	 SM,	Rhee	 YM,	 Shirts	MR,	
Snow	 CD,	 Sorin	 EJ,	 Zagrovic	 B.	 Atomistic	 Protein	 Folding	 Simulations	 on	 the	
Submillisecond	 Time	 Scale	 Using	 Worldwide	 Distributed	 Computing.	 Biopolymers,	
68,	91-109	(2003).	

15.	 Humphrey	W,	Dalke	A,	Schulten	K.	VMD	-	Visual	Molecular	Dynamics.	J.	Mol.	Graphics,	
14,	33-8	(1996).	

16.	 DeLano	WL.	PyMOL:	An	Open-Source	Molecular	Graphics	Tool.	CCP4	Newsletter	on	
Protein	Crystallography,	40,	82-92	(2002).	

17.	 Hanson	 RM.	 Jmol	 -	 A	 Paradigm	 Shift	 in	 Crystallographic	 Visualization.	 J.	 Appl.	
Crystallogr.,	43,	1250-60	(2010).	

18.	 LuCore	 SD,	 Litman	 JM,	 Powers	 KT,	 Gao	 S,	 Lynn	 AM,	 Tollefson	 WTA,	 Fenn	 TD,	
Washington	MT,	Schnieders	MJ.	Dead-End	Elimination	with	a	Polarizable	Force	Field	
Repacks	PCNA	Structures.	Biophys.	J,	109,	816-26	(2015).	

	 38	

19.	 O'Boyle	 NM,	 Banck	 M,	 James	 CA,	 Morley	 C,	 Vendermeersch	 T,	 Hutchison	 GR.	 Open	
Babel:	An	Open	Chemical	Toolbox.	J.	Cheminformatics,	3,	33	(2011).	

20.	 McGibbon	 RT,	 Beauchamp	 KA,	 Harrigan	 MP,	 Klein	 C,	 Swails	 J,	 Hernandez	 CX,	
Schwantes	CR,	Wang	L-P,	Lane	TJ,	Pande	VS.	MDTraj:	A	Modern	Open	Library	for	the	
Analysis	of	Molecular	Dynamics	Trajectories.	Biophys.	J,	109,	1528-32	(2015).	

21.	 Michaud-Agrawal	M,	Denning	EJ,	Woolf	TB,	Beckstein	O.	MDAnalysis:	A	Toolkit	for	the	
Analysis	of	Molecular	Dynamics	Simulations.	J.	Comput.	Chem.,	32,	2319-27	(2011).	

22.	 Swails	 J,	 Hernandez	 C,	 Mobley	 D,	 Nguyen	 H,	 Wang	 L-P,	 Janowski	 P.	 ParmEd:	
Parameter/Topology	 Editor	 and	 Molecular	 Simulator.	 2018	 Available	 from:	
https://github.com/ParmEd/ParmEd.	

23.	 Schaftenaar	G,	 Vlieg	 E,	 Vriend	G.	Molden	 2.0:	 Quantum	Chemistry	Meets	 Proteins.	 J	
Comput.	Aid.	Mol.	Des.,	31,	789-800	(2017).	

24.	 Pedretti	 A,	 Villa	 L,	 Vistoli	 G.	 VEGA	 -	 An	 Open	 Platform	 to	 Develop	 Chemo-Bio-
Informatics	 Applications,	 Using	 Plug-In	 Architecture	 and	 Script	 Programming.	 J	
Comput.	Aid.	Mol.	Des.,	18,	167-73	(2004).	

25.	 Martinez	 L,	 Andrade	 R,	 Birgin	 EG,	 Martinez	 JM.	 Packmol:	 A	 Package	 for	 Building	
Initiial	 Configurations	 for	 Molecular	 Dynamics	 Simulations.	 J.	 Comput.	 Chem.,	 30,	
2157-64	(2009).	

26.	 Wang	L-P,	Martinez	TJ,	Pande	VS.	Building	Force	Fields:	An	Automatic,	Systematic,	and	
Reproducible	Approach.	J.	Phys.	Chem.	Lett.,	5,	1885-91	(2014).	

27.	 Schmidt	 JR,	 Polik	WF.	WebMO	 Enterprise,	 Version	 13.0.	 Holland,	 MI:	WebMO	 LLC;	
2013.	

28.	 Woodcock	 HL,	 Miller	 BT,	 Hodoscek	 M,	 Okru	 A,	 Larkin	 JD,	 Ponder	 JW,	 Brooks	 BR.	
MSCALE:	A	General	Utility	for	Multiscale	Modeling.	J.	Chem.	Theory	Comput.,	7,	1208-
19	(2011).	

29.	 Eastman	P,	Friedrichs	MS,	Chodera	 JD,	Radmer	RJ,	Bruns	CM,	Ku	JP,	Beauchamp	KA,	
Lane	 TJ,	 Wang	 L-P,	 Shukla	 D.	 OpenMM	 4:	 A	 Reusable,	 Extensible,	 Hardware	
Independent	 Library	 for	 High	 Performance	 Molecular	 Simulation.	 J.	 Chem.	 Theory	
Comput.,	9,	461-9	(2012).	

30.	 Eastman	 P,	 Swails	 J,	 Chodera	 JD,	McGibbon	 RT,	 Zhao	 Y,	 Beauchamp	 KA,	Wang	 L-P,	
Simmonett	AC,	Harrigan	MP,	Stern	CD,	Wiewiora	RP,	Brooks	BR,	Pande	VS.	OpenMM	
7:	Rapid	Development	of	High	Performance	Algorithms	for	Molecular	Dynamics.	PLoS	
Comput.	Biol.,	13,	e1005659	(2017).	

31.	 Huang	J,	Rauscher	S,	Nawrocki	G,	Ran	T,	Feig	M,	de	Groot	BL,	Grubmüller	H,	MacKerell	
Jr	AD.	CHARMM36m:	An	Improved	Force	Field	for	Folded	and	Intrinsically	Disordered	
Proteins.	Nat.	Methods,	14,	71-3	(2016).	

32.	 Maier	 JA,	Martinez	C,	Kasavajhala	K,	Wickstrom	L,	Hauser	KE,	Simmerling	C.	 ff14SB:	
Improving	the	Accuracy	of	Protein	Side	Chain	and	Backbone	Parameters	from	ff99SB.	
J.	Chem.	Theory	Comput.,	11,	3696-713	(2015).	

33.	 Robertson	MJ,	Tirado-Rives	J,	Jorgensen	WL.	Improved	Peptide	and	Protein	Torsional	
energetics	 with	 the	 OPLS-AA	 Force	 Field.	 J.	 Chem.	 Theory	 Comput.,	 11,	 3499-509	
(2015).	

34.	 Palmo	 K,	 Mannfors	 B,	 Mirkin	 NG,	 Krimm	 S.	 Potential	 Energy	 Functions:	 From	
Consistent	 Force	 Fields	 to	 Spectroscopically	 Determined	 Polarizable	 Force	 Fields.	
Biopolymers,	68,	383-94	(2003).	

	 39	

35.	 Wilson	Jr	EB,	Decius	 JG,	Cross	PG,	Lagemann	RT.	Molecular	Vibrations.	Am.	J.	Phys.,	
23,	550-	(1955).	

36.	 Liljefors	T,	Tai	 JC,	Li	S,	Allinger	NL.	On	the	Out‐of‐Plane	Deformation	of	Aromatic	
Rings,	 and	 Its	Representation	by	Molecular	Mechanics.	 J.	Comput.	Chem.,	8,	 1051-6	
(1987).	

37.	 Urey	 HC,	 Bradley	 Jr	 CA.	 The	 Vibrations	 of	 Pentatonic	 Tetrahedral	Molecules.	 Phys.	
Rev.,	38,	1969-78	(1931).	

38.	 Lennard-Jones	JE.	Cohesion.	P.	Phys.	Soc.,	43,	461-82	(1931).	
39.	 Halgren	 TA.	 Representation	 of	 van	 der	 Waals	 (vdW)	 Interactions	 in	 Molecular	

Mechanics	Force	Fields:	Potential	Form,	Combination	Rules,	and	vdW	Parameters.	 J.	
Am.	Chem.	Soc.,	114,	7827-43	(1992).	

40.	 Buckingham	RA.	The	Classical	Equation	of	State	of	Gaseous	Helium,	Neon	and	Argon.	
P.	Roy.	Soc.	Lond.	A	Mat.,	168,	264-83	(1938).	

41.	 Lii	 JH,	Allinger	NL.	Directional	Hydrogen	Bonding	 in	 the	MM3	Force	Field.	 I.	 J.	Phys.	
Org.	Chem.,	7,	591-609	(1994).	

42.	 Lii	 JH,	 Allinger	 NL.	 Directional	 Hydrogen	 Bonding	 in	 the	 MM3	 Force	 Field:	 II.	 J.	
Comput.	Chem.,	19,	1001-16	(1998).	

43.	 Ponder	 JW,	Wu	C,	Ren	P,	Pande	VS,	Chodera	 JD,	Schnieders	MJ,	Haque	I,	Mobley	DL,	
Lambrecht	DS,	DiStasio	Jr	RA.	Current	Status	of	the	AMOEBA	Polarizable	Force	Field.	J.	
Phys.	Chem.	B,	114,	2549-64	(2010).	

44.	 Ren	P,	Ponder	JW.	Polarizable	Atomic	Multipole	Water	Model	for	Molecular	Mechanics	
Simulation.	J.	Phys.	Chem.	B,	107,	5933-47	(2003).	

45.	 Ren	P,	Wu	C,	Ponder	JW.	Polarizable	Atomic	Multipole-based	Molecular	Mechanics	for	
Organic	Molecules.	J.	Chem.	Theory	Comput.,	7,	3143-61	(2011).	

46.	 Shi	Y,	Xia	Z,	Zhang	J,	Best	R,	Wu	C,	Ponder	 JW,	Ren	P.	Polarizable	Atomic	Multipole-
based	AMOEBA	Force	Field	for	Proteins.	J.	Chem.	Theory	Comput.,	9,	4046-63	(2013).	

47.	 Zhang	 C,	 Lu	 C,	 Jing	 Z,	Wu	 C,	 Piquemal	 J-P,	 Ponder	 JW,	 Ren	 P.	 AMOEBA	 Polarizable	
Atomic	Multipole	Force	Field	 for	Nucleic	Acids.	 J.	Chem.	Theory	Comput.,	14,	2084-
108	(2018).	

48.	 Onufriev	 A,	 Case	 DA,	 Bashford	 D.	 Effective	 Born	 Radii	 in	 the	 Generalized	 Born	
Approximation:	 The	 Importance	 of	 Being	 Perfect.	 J.	 Comput.	 Chem.,	 23,	 1297-304	
(2002).	

49.	 Schaefer	 M,	 Bartels	 C,	 Leclerc	 F,	 Karplus	 M.	 Effective	 Atom	 Volumes	 for	 Implicit	
Solvent	 Models:	 Comparison	 between	 Voronoi	 Volumes	 and	 Minimum	 Fluctuations	
Volumes.	J.	Comput.	Chem.,	22,	1857-79	(2001).	

50.	 Grycuk	 T.	 Deficiency	 of	 the	 Coulomb-Field	 Approximation	 in	 the	 Generalized	 Born	
Model:	An	Improved	Formula	for	Born	Radii	Evaluation.	J.	Chem.	Phys.,	119,	4817-26	
(2003).	

51.	 Schnieders	 MJ,	 Ponder	 JW.	 Polarizable	 Atomic	 Multipole	 Solutes	 in	 a	 Generalized	
Kirkwood	Continuum.	J.	Chem.	Theory	Comput.,	3,	2083-97	(2007).	

52.	 Wesson	L,	Eisenberg	D.	Atomic	Solvation	Parameters	Applied	to	Molecular	Dynamics	
of	Proteins	in	Solution.	Protein	Sci.,	1,	227-35	(1992).	

53.	 Lin	MS,	Fawzi	NL,	Head-Gordon	T.	Hydrophobic	Potential	of	Mean	Force	as	a	Solvation	
Function	for	Protein	Structure	Prediction.	Structure,	15,	727-40	(2007).	

	 40	

54.	 Kong	 Y,	 Ponder	 JW.	 Calculation	 of	 the	 Reaction	 Field	 due	 to	 Off-Center	 Point	
Multipoles.	J.	Chem.	Phys.,	107,	481-92	(1997).	

55.	 Warwicker	 J,	Watson	HC.	Calculation	of	 the	Electric	Potential	 in	 the	Active	Site	Cleft	
due	to	α-Helix	Dipoles.	J.	Mol.	Biol.,	157,	671-9	(1982).	

56.	 Klapper	 I,	 Hagstrom	 R,	 Fine	 R,	 Sharp	 K,	 Honig	 B.	 Focusing	 of	 Electric	 Fields	 in	 the	
Active	 Site	 of	 Cu‐Zn	 Superoxide	Dismutase:	Effects	 of	 Ionic	 Strength	 and	Amino‐
Acid	Modification.	Proteins,	1,	47-59	(1986).	

57.	 Sharp	 KA,	 Honig	 B.	 Electrostatic	 Interactions	 in	 Macromolecules:	 Theory	 and	
Applications.	Annu.	Rev.	Biophys.	Bio.,	19,	301-32	(1990).	

58.	 Baker	NA,	 Sept	D,	 Joseph	S,	Holst	MJ,	McCammon	 JA.	Electrostatics	of	Nanosystems:	
Application	to	Microtubules	and	the	Ribosome.	P.	Natl.	Acad.	Sci.	USA.,	98,	10037-41	
(2001).	

59.	 Schnieders	MJ,	Baker	NA,	Ren	P,	Ponder	JW.	Polarizable	Atomic	Multipole	Solutes	in	a	
Poisson-Boltzmann	Continuum.	J.	Chem.	Phys.,	126,	124114	(2007).	

60.	 Allinger	 NL,	 Li	 F,	 Yan	 L,	 Tai	 JC.	 Molecular	 Mechanics	 (MM3)	 Calculations	 on	
Conjugated	Hydrocarbons.	J.	Comput.	Chem.,	11,	868-95	(1990).	

61.	 Xiang	JY,	Ponder	JW.	A	Valence	Bond	Model	for	Aqueous	Cu(II)	and	Zn(II)	Ions	in	the	
AMOEBA	Polarizable	Force	Field.	J.	Comput.	Chem.,	34,	739-49	(2013).	

62.	 Xiang	 JY,	 Ponder	 JW.	 An	 Angular	 Overlap	 Model	 for	 Cu(II)	 Ion	 in	 the	 AMOEBA	
Polarizable	Force	Field.	J.	Chem.	Theory	Comput.,	10,	298-311	(2014).	

63.	 Carlsson	 AE,	 Zapata	 S.	 The	 Functional	 Form	 of	 Angular	 Forces	 around	 Transition	
Metal	Ions	in	Biomolecules.	Biophys.	J,	81,	1-10	(2001).	

64.	 Cornell	WD,	Cieplak	P,	Bayly	CI,	Gould	IR,	Merz	KM,	Ferguson	DM,	Spellmeyer	DC,	Fox	
T,	 Caldwell	 JW,	Kollman	PA.	 A	 Second	Generation	 Force	 Field	 for	 the	 Simulation	 of	
Proteins,	 Nucleic	 Acids,	 and	 Organic	 Molecules.	 J.	 Am.	 Chem.	 Soc.,	 117,	 5179-97	
(1995).	

65.	 Kollman	 P,	 Dixon	 R,	 Cornell	 W,	 Fox	 T,	 Chipot	 C,	 Pohorille	 A.	 The	
Development/Application	of	a	 ‘Minimalist’	Organic/Biochemical	Molecular	Mechanic	
Force	 Field	 Using	 a	 Combination	 of	 ab	 Initio	 Calculations	 and	 Experimental	 Data.		
Computer	Simulation	of	Biomolecular	Systems,	Vol.	3:	 Springer,	Dordrecht;	1997.	p.	
83-96.	

66.	 Cheatham	III	TE,	Cieplak	P,	Kollman	PA.	A	Modified	Version	of	the	Cornell	et	al.	Force	
Field	with	Improved	Sugar	Pucker	Phases	and	Helical	Repeat.	J.	Biomol.	Struct.	Dyn.,	
16,	845-62	(1999).	

67.	 Wang	 J,	 Cieplak	 P,	 Kollman	PA.	 How	Well	Does	 a	Restrained	Electrostatic	 Potential	
(RESP)	 Model	 Perform	 in	 Calculating	 Conformational	 Energies	 of	 Organic	 and	
Biological	Molecules?	J.	Comput.	Chem.,	21,	1049-74	(2000).	

68.	 Hornak	 V,	 Abel	 R,	 Okur	 A,	 Strockbine	 B,	 Roitberg	 A,	 Simmerling	 C.	 Comparison	 of	
Multiple	 Amber	 Force	 Fields	 and	 Development	 of	 Improved	 Protein	 Backbone	
Parameters.	Proteins,	65,	712-25	(2006).	

69.	 Neria	 E,	 Fischer	 S,	 Karplus	 M.	 Simulation	 of	 Activation	 Free	 Energies	 in	 Molecular	
Systems.	J.	Chem.	Phys.,	105,	1902-21	(1996).	

70.	 MacKerell	 Jr	 AD,	 Bashford	 D,	 Bellott	MLDR,	 Dunbrack	 Jr	 RL,	 Evanseck	 JD,	 Field	MJ,	
Fischer	S,	Gao	J,	Guo	H,	Ha	S.	All-Atom	Empirical	Potential	for	Molecular	Modeling	and	
Dynamics	Studies	of	Proteins.	J.	Phys.	Chem.	B,	102,	3586-616	(1998).	

	 41	

71.	 Foloppe	 N,	 MacKerell	 Jr	 AD.	 All‐Atom	 Empirical	 Force	 Field	 for	 Nucleic	 Acids:	 I.	
Parameter	 Optimization	 Based	 on	 Small	 Molecule	 and	 Condensed	 Phase	
Macromolecular	Target	Data.	J.	Comput.	Chem.,	21,	86-104	(2000).	

72.	 MacKerell	 Jr	 AD,	 Feig	 M,	 Brooks	 III	 CL.	 Extending	 the	 Treatment	 of	 Backbone	
Energetics	in	Protein	Force	Fields:	Limitations	of	Gas‐Phase	Quantum	Mechanics	in	
Reproducing	 Protein	 Conformational	 Distributions	 in	 Molecular	 Dynamics	
Simulations.	J.	Comput.	Chem.,	25,	1400-15	(2004).	

73.	 Jorgensen	WL,	Maxwell	DS,	Tirado-Rives	J.	Development	and	Testing	of	the	OPLS	All-
Atom	Force	Field	on	Conformational	Energetics	and	Properties	of	Organic	Liquids.	J.	
Am.	Chem.	Soc.,	118,	11225-36	(1996).	

74.	 Kaminski	 GA,	 Friesner	 RA,	 Tirado-Rives	 J,	 Jorgensen	 WL.	 Evaluation	 and	
Reparametrization	 of	 the	 OPLS-AA	 Force	 Field	 for	 Proteins	 via	 Comparison	 with	
Accurate	Quantum	Chemical	Calculations	on	Peptides.	J.	Phys.	Chem.	B,	105,	6474-87	
(2001).	

75.	 Weiner	SJ,	Kollman	PA,	Case	DA,	Singh	UC,	Ghio	C,	Alagona	G,	Profeta	S,	Weiner	P.	A	
New	Force	Field	for	Molecular	Mechanical	Simulation	of	Nucleic	Acids	and	Proteins.	J.	
Am.	Chem.	Soc.,	106,	765-84	(1984).	

76.	 Jorgensen	WL,	 Severance	 DL.	 Aromatic-Aromatic	 Interactions:	 Free	 Energy	 Profiles	
for	the	Benzene	Dimer	in	Water,	Chloroform,	and	Liquid	Benzene.	J.	Am.	Chem.	Soc.,	
112,	4768-74	(1990).	

77.	 Maxwell	DS,	Tirado‐Rives	J,	Jorgensen	WL.	A	Comprehensive	Study	of	the	Rotational	
Energy	 Profiles	 of	 Organic	 Systems	 by	 ab	 Initio	 MO	 Theory,	 Forming	 a	 Basis	 for	
Peptide	Torsional	Parameters.	J.	Comput.	Chem.,	16,	984-1010	(1995).	

78.	 Jorgensen	WL,	Tirado-Rives	J.	The	OPLS	(Optimized	Potentials	for	Liquid	Simulations)	
Potential	Functions	for	Proteins,	Energy	Minimizations	for	Crystals	of	Cyclic	Peptides	
and	Crambin.	J.	Am.	Chem.	Soc.,	110,	1657-66	(1988).	

79.	 Sprague	JT,	Tai	 JC,	Yuh	YH,	Allinger	NL.	The	MMP2	Calculational	Method.	 J.	Comput.	
Chem.,	8,	581-603	(1987).	

80.	 Allinger	NL,	Kok	RA,	Imam	MR.	Hydrogen	Bonding	in	MM2.	J.	Comput.	Chem.,	9,	591-5	
(1988).	

81.	 Lii	 JH,	Allinger	NL.	Molecular	Mechanics.	The	MM3	Force	Field	 for	Hydrocarbons.	3.	
The	 van	 der	 Waals'	 Potentials	 and	 Crystal	 Data	 for	 Aliphatic	 and	 Aromatic	
Hydrocarbons.	J.	Am.	Chem.	Soc.,	111,	8576-82	(1989).	

82.	 Allinger	 NL,	 Li	 F,	 Yan	 L.	Molecular	Mechanics.	 The	MM3	Force	 Field	 for	 Alkenes.	 J.	
Comput.	Chem.,	11,	848-67	(1990).	

83.	 Lii	 JH,	 Allinger	 NL.	 The	 MM3	 Force	 Field	 for	 Amides,	 Polypeptides	 and	 Proteins.	 J.	
Comput.	Chem.,	12,	186-99	(1991).	

84.	 Halgren	TA,	Nachbar	RB.	Merck	Molecular	 Force	 Field.	 IV.	 Conformational	 Energies	
and	Geometries	for	MMFF94.	J.	Comput.	Chem.,	17,	587-615	(1996).	

85.	 Ren	P,	Ponder	JW.	Consistent	Treatment	of	Inter‐and	Intramolecular	Polarization	in	
Molecular	Mechanics	Calculations.	J.	Comput.	Chem.,	23,	1497-506	(2002).	

86.	 Wu	JC,	Piquemal	J-P,	Chaudret	R,	Reinhardt	P,	Ren	P.	Polarizable	Molecular	Dynamics	
Simulation	 of	 Zn	 (II)	 in	 Water	 Using	 the	 AMOEBA	 Force	 Field.	 J.	 Chem.	 Theory	
Comput.,	6,	2059-70	(2010).	

	 42	

87.	 Grossfield	A,	Ren	P,	Ponder	JW.	Ion	Solvation	Thermodynamics	from	Simulation	with	
a	Polarizable	Force	Field.	J.	Am.	Chem.	Soc.,	125,	15671-82	(2003).	

88.	 Dang	 LX.	 Development	 of	 Nonadditive	 Intermolecular	 Potentials	 Using	 Molecular	
Dynamics:	Solvation	of	Li+	and	F−	Ions	in	Polarizable	Water.	J.	Chem.	Phys.,	96,	6970-
7	(1992).	

89.	 Smith	DE,	Dang	LX.	Interionic	Potentials	of	Mean	Force	for	SrCl2	in	Polarizable	Water:	
A	Computer	Simulation	Study.	Chem.	Phys.	Lett.,	230,	209-14	(1994).	

90.	 Dang	LX,	Chang	T-M.	Molecular	Dynamics	Study	of	Water	Clusters,	Liquid,	and	Liquid–
Vapor	 Interface	 of	Water	with	Many-Body	 Potentials.	 J.	 Chem.	 Phys.,	 106,	 8149-59	
(1997).	

91.	 Chang	T-M,	Dang	LX.	Detailed	Study	of	Potassium	Solvation	Using	Molecular	Dynamics	
Techniques.	J.	Phys.	Chem.	B,	103,	4714-20	(1999).	

92.	 Dang	 LX.	 Intermolecular	 Interactions	 of	 Liquid	 Dichloromethane	 and	 Equilibrium	
Properties	 of	 Liquid–Vapor	 and	 Liquid–Liquid	 Interfaces:	 A	 Molecular	 Dynamics	
Study.	J.	Chem.	Phys.,	110,	10113-22	(1999).	

93.	 Chang	T-M,	Dang	LX.	On	Rotational	Dynamics	of	an	NH4+	Ion	in	Water.	J.	Chem.	Phys.,	
118,	8813-20	(2003).	

94.	 Dang	LX,	Schenter	GK,	Glezakou	V-A,	Fulton	JL.	Molecular	Simulation	Analysis	and	X-
Ray	Absorption	Measurement	of	Ca2+,	K+	and	Cl-Ions	 in	Solution.	 J.	Phys.	Chem.	B,	
110,	23644-54	(2006).	

95.	 Wick	CD,	Dang	LX.	Molecular	Dynamics	Study	of	Ion	Transfer	and	Distribution	at	the	
Interface	of	Water	and	1,	2-Dichlorethane.	J.	Phys.	Chem.	C,	112,	647-9	(2008).	

96.	 Sun	 X,	 Chang	 T-M,	 Cao	 Y,	 Niwayama	 S,	 Hase	 WL,	 Dang	 LX.	 Solvation	 of	 Dimethyl	
Succinate	 in	a	Sodium	Hydroxide	Aqueous	Solution.	A	Computational	Study.	 J.	Phys.	
Chem.	B,	113,	6473-7	(2009).	

97.	 Dang	LX,	Truong	TB,	Ginovska-Pangovska	B.	Note:	Interionic	Potentials	of	Mean	Force	
for	Ca2+-Cl−	in	Polarizable	Water.	J.	Chem.	Phys.,	136,	126101	(2012).	

98.	 Kearsley	 SK.	 On	 the	 Orthogonal	 Transformation	 Used	 for	 Structural	 Comparisons.	
Acta	Crystallogr.	A,	45,	208-10	(1989).	

99.	 Liu	DC,	Nocedal	J.	On	the	Limited	Memory	BFGS	Method	for	Large	Scale	Optimization.	
Math.	Program.,	45,	503-28	(1989).	

100.	 Nocedal	J.	Updating	Quasi-Newton	Matrices	with	Limited	Storage.	Math.	Comput.,	35,	
773-82	(1980).	

101.	Wright	S,	Nocedal	J.	Numerical	Optimization,	2nd	Ed.	New	York,	NY:	Springer	Science;	
1999.	

102.	 Shanno	DF,	Phua	K-H.	Numerical	Comparison	of	Several	Variable-Metric	Algorithms.	J.	
Optimiz.	Theory	App.,	25,	507-18	(1978).	

103.	 Davidon	WC.	Optimally	Conditioned	Optimization	Algorithms	without	Line	Searches.	
Math.	Program.,	9,	1-30	(1975).	

104.	 Dembo	RS,	Steihaug	T.	Truncated-Newton	Algorithms	for	Large-Scale	Unconstrained	
Optimization.	Math.	Program.,	26,	190-212	(1983).	

105.	 Halgren	 TA,	 Lipscomb	 WN.	 The	 Synchronous-Transit	 Method	 for	 Determining	
Reaction	 Pathways	 and	 Locating	Molecular	Transition	States.	Chem.	Phys.	 Lett.,	49,	
225-32	(1977).	

	 43	

106.	 Behn	A,	Zimmerman	PM,	Head-Gordon	M.	Incorporating	Linear	Synchronous	Transit	
Interpolation	 into	 the	Growing	String	Method:	Algorithm	and	Applications.	 J.	Chem.	
Theory	Comput.,	7,	4019-25	(2011).	

107.	 Bell	S,	Crighton	JS.	Locating	Transition	States.	J.	Chem.	Phys.,	80,	2464-75	(1984).	
108.	 Czerminski	R,	Elber	R.	Reaction	Path	Study	of	Conformational	Transitions	in	Flexible	

Systems:	Applications	to	Peptides.	J.	Chem.	Phys.,	92,	5580-601	(1990).	
109.	 Moré	 JJ,	 Garbow	 BS,	 Hillstrom	 KE.	 User	 Guide	 for	 MINPACK-1,	 Argonne	 National	

Laboratory	Report	ANL-80-74.	Argonne,	IL;	1980Contract.	
110.	 Kirkpatrick	 S,	 Gelatt	 CD,	 Vecchi	MP.	 Optimization	 by	 Simulated	 Annealing.	 Science,	

220,	671-80	(1983).	
111.	 Griewank	AO.	Generalized	Descent	 for	Global	Optimization.	 J.	Optimiz.	Theory	App.,	

34,	11-39	(1981).	
112.	 Butler	RAR,	Slaminka	EE.	An	Evaluation	of	the	Sniffer	Global	Optimization	Algorithm	

Using	Standard	Test	Functions.	J.	Comput.	Phys.,	99,	28-32	(1992).	
113.	 Kolossváry	 I,	Guida	WC.	Low‐Mode	Conformational	 Search	Elucidated:	Application	

to	C39H80	and	Flexible	Docking	of	9‐Deazaguanine	Inhibitors	into	PNP.	J.	Comput.	
Chem.,	20,	1671-84	(1999).	

114.	 Li	 Z,	 Scheraga	 HA.	 Monte	 Carlo-Minimization	 Approach	 to	 the	 Multiple-Minima	
Problem	in	Protein	Folding.	P.	Natl.	Acad.	Sci.	USA.,	84,	6611-5	(1987).	

115.	Wales	 DJ,	 Doye	 JPK.	 Global	 Optimization	 by	 Basin-Hopping	 and	 the	 Lowest	 Energy	
Structures	of	Lennard-Jones	Clusters	Containing	up	to	110	Atoms.	Journal	of	Physical	
Chemistry	A,	101,	5111-6	(1997).	

116.	 Kostrowicki	 J,	Scheraga	HA.	Application	of	 the	Diffusion	Equation	Method	for	Global	
Optimization	to	Oligopeptides.	J.	Phys.	Chem.,	96,	7442-9	(1992).	

117.	 Nakamura	S,	Hirose	H,	Ikeguchi	M,	Doi	J.	Conformational	Energy	Minimization	Using	a	
Two-Stage	Method.	J.	Phys.	Chem.,	99,	8374-8	(1995).	

118.	 Pappu	 RV,	 Hart	 RK,	 Ponder	 JW.	 Analysis	 and	 Application	 of	 Potential	 Energy	
Smoothing	for	Global	Optimization.	J.	Phys.	Chem.	B,	102,	9725-42	(1998).	

119.	 Pappu	 RV,	 Marshall	 GR,	 Ponder	 JW.	 A	 Potential	 Smoothing	 Algorithm	 Accurately	
Predicts	Transmembrane	Helix	Packing.	Nat.	Struct.	Biol.,	6,	50-5	(1999).	

120.	 Ma	J,	Straub	JE.	Simulated	Annealing	Using	the	Classical	Density	Distribution.	J.	Chem.	
Phys.,	101,	533-41	(1994).	

121.	 Rogers	J,	J.	W.,	Donnelly	RA.	Potential	Transformation	Methods	for	Large-Scale	Global	
Optimization.	SIAM	J.	Optimiz.,	5,	871-91	(1995).	

122.	 Beeman	 D.	 Some	Multistep	Methods	 for	 Use	 in	Molecular	 Dynamics	 Calculations.	 J.	
Comput.	Phys.,	20,	130-9	(1976).	

123.	 Brooks	 BR.	 Algorithms	 for	 Molecular	 Dynamics	 at	 Constant	 Temperature	 and	
Pressure.	DCRT	Report,	NIH,	(1988).	

124.	 Lelièvre	T,	Rousset	M,	Stoltz	G.	Langevin	Dynamics	with	Constraints	and	Computation	
of	Free	Energy	Differences.	Math.	Comput.,	81,	2071-125	(2012).	

125.	 Lelièvre	 T,	 Stoltz	 G,	 Rousset	 M.	 Free	 Energy	 Computations:	 A	 Mathematical	
Perspective.	London,	UK:	Imperial	College	Press;	2010.	

126.	 Martyna	GJ,	 Tuckerman	ME,	Tobias	DJ,	Klein	ML.	 Explicit	 Reversible	 Integrators	 for	
Extended	Systems	Dynamics.	Mol.	Phys.,	87,	1117-57	(1996).	

	 44	

127.	 Bussi	G,	Zykova-Timan	T,	Parrinello	M.	Isothermal-Isobaric	Molecular	Dynamics	Using	
Stochastic	Velocity	Rescaling.	J.	Chem.	Phys.,	130,	074101	(2009).	

128.	 Qian	X,	Schlick	T.	Efficient	Multiple-Time-Step	Integrators	with	Distance-based	Force	
Splitting	 for	 Particle-Mesh-Ewald	 Molecular	 Dynamics	 Simulations.	 J.	 Chem.	 Phys.,	
116,	5971-83	(2002).	

129.	 Humphreys	 DD,	 Friesner	 RA,	 Berne	 BJ.	 A	 Multiple-Time-Step	 Molecular	 Dynamics	
Algorithm	for	Macromolecules.	J.	Phys.	Chem.,	98,	6885-92	(1994).	

130.	 Smith	W.	Hail	Euler	and	Farewell:	Rotational	Motion	 in	the	Laboratory	Frame.	CCP5	
Newsletter,	Feb.,	(2005).	

131.	 Andersen	 HC.	 Rattle:	 A	 “Velocity”	 Version	 of	 the	 Shake	 Algorithm	 for	 Molecular	
Dynamics	Calculations.	J.	Comput.	Phys.,	52,	24-34	(1983).	

132.	 Allen	 MP.	 Brownian	 Dynamics	 Simulation	 of	 a	 Chemical	 Reaction	 in	 Solution.	Mol.	
Phys.,	40,	1073-87	(1980).	

133.	 Guarnieri	 F,	 Still	 WC.	 A	 Rapidly	 Convergent	 Simulation	 Method:	 Mixed	 Monte	
Carlo/Stochastic	Dynamics.	J.	Comput.	Chem.,	15,	1302-10	(1994).	

134.	 Yun-Yi	S,	 Lu	W,	van	Gunsteren	WF.	On	 the	Approximation	of	 Solvent	Effects	on	 the	
Conformation	 and	 Dynaics	 of	 Cyclosporin	 A	 by	 Stochastic	 Dynamics	 Simulation	
Techniques.	Mol.	Simulat.,	1,	369-83	(1988).	

135.	 Bussi	 G,	Donadio	D,	 Parrinello	M.	 Canonical	 Sampling	 through	Velocity	Rescaling.	 J.	
Chem.	Phys.,	126,	014101	(2007).	

136.	 Berendsen	HJC,	van	Postma	JPM,	van	Gunsteren	WF,	DiNola	ARHJ,	Haak	JR.	Molecular	
Dynamics	with	Coupling	to	an	External	Bath.	J.	Chem.	Phys.,	81,	3684-90	(1984).	

137.	 Andersen	 HC.	 Molecular	 Dynamics	 Simulations	 at	 Constant	 Pressure	 and/or	
Temperature.	J.	Chem.	Phys.,	72,	2384-93	(1980).	

138.	 Evans	 DJ,	 Holian	 BL.	 The	 Nose–Hoover	 Thermostat.	 J.	 Chem.	 Phys.,	 83,	 4069-74	
(1985).	

139.	 Frenkel	 D,	 Smit	 B.	 Understanding	 Molecular	 Simulation:	 From	 Algorithms	 to	
Applications,	2nd	Ed.	New	York,	NY:	Academic	Press;	2001.	

140.	 Leimkuhler	B,	Margul	DT,	Tuckerman	ME.	Stochastic,	Resonance-Free	Multiple	Time-
Step	Algorithm	for	Molecular	Dynamics	with	Very	Large	Time	Steps.	Mol.	Phys.,	111,	
3579-94	(2013).	

141.	 Minary	 P,	Martyna	GJ,	 Tuckerman	ME.	 Algorithms	 and	Novel	 Applications	 based	 on	
the	Isokinetic	Ensemble.	I.	Biophysical	and	Path	Integral	Molecular	Dynamics.	J.	Chem.	
Phys.,	118,	2510-26	(2003).	

142.	 Kaledin	 AL,	 Kaledin	 M,	 Bowman	 JM.	 All-Atom	 Calculation	 of	 the	 Normal	 Modes	 of	
Bacteriorhodopsin	 Using	 a	 Sliding	 Block	 Iterative	 Diagonalization	Method.	 J.	 Chem.	
Theory	Comput.,	2,	166-74	(2006).	

143.	 Zwanzig	 RW.	 High‐Temperature	 Equation	 of	 State	 by	 a	 Perturbation	 Method.	 I.	
Nonpolar	Gases.	J.	Chem.	Phys.,	22,	1420-6	(1954).	

144.	 Bennett	CH.	Efficient	Estimation	of	Free	Energy	Differences	from	Monte	Carlo	Data.	J.	
Comput.	Phys.,	22,	245-68	(1976).	

145.	 Daly	 KB,	 Benziger	 JB,	 Debenedetti	 PG,	 Panagiotopoulos	 AZ.	 Massively	 Parallel	
Chemical	 Potential	 Calculation	 on	 Graphics	 Processing	 Units.	 Comput.	 Phys.	
Commun.,	183,	2054-62	(2012).	

	 45	

146.	Wyczalkowski	 MA,	 Vitalis	 A,	 Pappu	 RV.	 New	 Estimators	 for	 Calculating	 Solvation	
Entropy	and	Enthalpy	and	Comparative	Assessments	of	their	Accuracy	and	Precision.	
J.	Phys.	Chem.	B,	114,	8166-80	(2010).	

147.	 Bell	DR,	Qi	R,	Jing	Z,	Xiang	JY,	Meijas	C,	Schnieders	MJ,	Ponder	JW,	Ren	P.	Calculating	
Binding	 Free	 Energies	 fo	 Host-Guest	 Systems	Using	 the	 AMOEBA	 Polarizable	 Force	
Field.	Phys.	Chem.	Chem.	Phys.,	18,	30261-9	(2016).	

148.	 Stone	 AJ.	 Distributed	 Multipole	 Analysis:	 Stability	 for	 Large	 Basis	 Sets.	 J.	 Chem.	
Theory	Comput.,	1,	1128-32	(2005).	

149.	Wu	 JC,	 Chattree	 G,	 Ren	 P.	 Automation	 of	 AMOEBA	 Polarizable	 Force	 Field	
Parameterization	for	Small	Molecules.	Theor.	Chem.	Acc.,	131,	1138	(2012).	

150.	 Sullivan	 F,	Mountain	 RD,	 O'Connellf	 J.	 Molecular	 Dynamics	 on	 Vector	 Computers.	 J.	
Comput.	Phys.,	61,	138-53	(1985).	

151.	 Sagui	 C,	 Pedersen	 LG,	 Darden	 TA.	 Towards	 an	 Accurate	 Representation	 of	
electrostatics	 in	 Classical	 Force	 Fields:	 Efficient	 Implementation	 of	 Multipolar	
Interactions	in	Biomolecular	Simulations.	J.	Chem.	Phys.,	120,	(2004).	

152.	 Frigo	M,	 Johnson	SG.	The	Design	and	Implementation	of	FFTW3.	P.	 IEEE,	93,	216-31	
(2005).	

153.	Wang	W,	Skeel	RD.	Fast	Evaluation	of	Polarizable	Forces.	J.	Chem.	Phys.,	123,	164107	
(2005).	

154.	 Simmonett	AC,	Pickard	IV	FC,	Shao	Y,	Cheatham	III	TE,	Brooks	BR.	Efficient	Treatment	
of	Induced	Dipoles.	J.	Chem.	Phys.,	143,	074115	(2015).	

155.	 Simmonett	 AC,	 Pickard	 IV	 FC,	 Ponder	 JW,	 Brooks	 BR.	 An	 Empirical	 Extrapolation	
Scheme	 for	 Efficient	 Treatment	 of	 Induced	 Dipoles.	 J.	 Chem.	 Phys.,	 145,	 164101	
(2016).	

156.	 Albaugh	 A,	 Demerdash	O,	 Head-Gordon	 T.	 An	Efficient	 and	 Stable	 Hybrid	 Extended	
Lagrangian/Self-Consistent	 Field	 Scheme	 for	 Solving	 Classical	 Mutual	 Induction.	 J.	
Chem.	Phys.,	143,	174104	(2015).	

157.	 Albaugh	A,	Niklasson	AMN,	Head-Gordon	T.	Accurate	Classical	Polarization	Solution	
with	No	Self-Consistent	Field	Iterations.	J.	Phys.	Chem.	Lett.,	8,	1714-23	(2017).	

158.	 Aviat	F,	Lagardère	L,	Piquemal	 J-P.	The	Truncated	Conjugate	Gradient	(TCG),	a	Non-
Iterative/Fixed-Cost	Strategy	for	Computing	Polarization	in	Molecular	Dynamics:	Fast	
Evaluation	of	Analytical	Forces.	J.	Chem.	Phys.,	147,	161724	(2017).	

159.	 Zheng	 L,	 Chen	 M,	 Yang	W.	 Random	Walk	 in	 Orthogonal	 Space	 to	 Achieve	 Efficient	
Free-Energy	Simulation	of	Complex	Systems.	P.	Natl.	Acad.	Sci.	USA.,	105,	20227-32	
(2008).	

160.	 Zheng	L,	Chen	M,	Yang	W.	Simultaneous	Escaping	of	Explicit	and	Hidden	Free	Energy	
Barriers:	Application	of	 the	Orthogonal	Space	Random	Walk	Strategy	 in	Generalized	
Ensemble	Based	Conformational	Sampling.	J.	Chem.	Phys.,	130,	06B618	(2009).	

161.	 Abella	JR,	Cheng	SY,	Wang	Q,	Yang	W,	Ren	P.	Hydration	Free	Energy	from	Orthogonal	
Space	Random	Walk	and	Polarizable	Force	Field.	J.	Chem.	Theory	Comput.,	10,	2792-
801	(2014).	

162.	 Schnieders	MJ,	Baltrusaitis	J,	Shi	Y,	Chattree	G,	Zheng	L,	Yang	W,	Ren	P.	The	Structure,	
Thermodynamics,	 and	 Solubility	 of	 Organic	 Crystals	 from	 Simulation	 with	 a	
Polarizable	Force	Field.	Journal	of	Chemical	Theory	aand	Computation,	8,	1721-36	
(2012).	

	 46	

163.	 Zheng	L,	Yang	W.	Practically	Efficient	and	Robust	Free	Energy	Calculations:	Double-
Integration	Orthogonal	Space	Tempering.	J.	Chem.	Theory	Comput.,	8,	810-23	(2012).	

164.	 Crippen	 GM,	 Havel	 TF.	 Distance	 Geometry	 and	 Molecular	 Conformation.	 Somerset,	
England:	Research	Studies	Press,	Ltd.;	1988.	

165.	 Mucherino	A,	Lavor	C,	Liberti	L,	Maculan	N.	Distance	Geometry:	Theory,	Methods	and	
Applications.	New	York:	Springer;	2013.	

166.	Wuthrich	K.	NMR	of	Proteins	and	Nucleic	Acids.	New	York:	Wiley-Interscience;	1986.	
167.	 Kuszewski	J,	Nilges	M,	Brunger	AT.	Sampling	and	Efficiency	of	Metric	Matrix	Distance	

Geometry:	A	Novel	Partial	Metrization	Algorithm.	J.	Biomol.	NMR,	2,	33-56	(1992).	
168.	 Dionne	 R.	 Étude	 et	 Extension	 d'un	 Algorithme	 de	 Murchland.	 INFOR,	 16,	 132-46	

(1978).	
169.	 Oshiro	CM,	Thomason	J,	Kuntz	ID.	Effects	of	Limited	Input	Distance	Constraints	Upon	

the	Distance	Geometry	Algorithm.	Biopolymers,	31,	1049-64	(1991).	
170.	 Hodsdon	ME,	Ponder	 JW,	Cistola	DP.	The	NMR	Solution	Structure	of	 Intestinal	Fatty	

Acid-Binding	 Protein	 Complexed	 with	 Palmitate:	 Application	 of	 a	 Novel	 Distance	
Geometry	Algorithm.	J.	Mol.	Biol.,	264,	585-602	(1996).	

171.	 Huang	ES,	 Samudrala	R,	 Ponder	 JW.	Distance	Geometry	Generates	Native-like	 Folds	
for	Small	Helical	Proteins	Using	Consensus	Distances	of	Predicted	Protein	Structures.	
Protein	Sci.,	7,	1998-2003	(1998).	

172.	 Kim	S,	Thiessen	PA,	Bolton	EE,	Chen	J,	Fu	G,	Gindulyte	A,	Han	L,	He	J,	He	S,	Shoemaker	
BA,	Wang	J,	Yu	B,	Zhang	J,	Bryant	SH.	PubChem	Substance	and	Compound	Databases.	
Nucleic	Acids	Res.,	44,	D1202-13	(2016).	

173.	 Berman	 HM,	 Westbrook	 J,	 Feng	 Z,	 Gilliland	 G,	 Bhat	 TN,	 Weissig	 H,	 Shindyalov	 IN,	
Bourne	PE.	The	Protein	Data	Bank.	Nucleic	Acids	Res.,	28,	235-42	(2000).	

174.	 Yin	 J,	 Henriksen	 NM,	 Slochower	 DR,	 Shirts	 MR,	 Chiu	 MW,	 Mobley	 DL,	 Gilson	 MK.	
Overview	of	the	SAMPL5	Host-Guest	Challenge:	Are	We	Doing	Better?	J	Comput.	Aid.	
Mol.	Des.,	31,	1-19	(2017).	

175.	 Feenstra	 KA,	 Hess	 B,	 Berendsen	 HJC.	 Improving	 Efficiency	 of	 Large	 Time-Scale	
Molecular	 Dynamics	 Simulations	 of	 Hydrogen-Rich	 Systems.	 J.	 Comput.	 Chem.,	 20,	
786-96	(1999).	

176.	 Gresh	 N.	 Development,	 Validation,	 and	 Applications	 of	 Anisotropic	 Polarizable	
Molecular	Mechanics	 to	Study	Ligand	and	Drug-Receptor	 Interactions.	Curr.	Pharm.	
Design,	12,	2121-58	(2006).	

177.	 Cisneros	 GA,	 Piquemal	 J-P,	 Darden	 TA.	 Generalization	 of	 the	 Gaussian	 Electrostatic	
Model:	 Extension	 to	 Arbitrary	 Angular	 Momentum,	 Distributed	 Multipoles,	 and	
Speedup	with	Reciprocal	Space	Methods.	J.	Chem.	Phys.,	125,	184101	(2006).	

178.	 Rackers	 JA,	 Wang	 Q,	 Liu	 C,	 Piquemal	 J-P,	 Ren	 P,	 Ponder	 JW.	 An	 Optimized	 Charge	
Penetration	Model	 for	Use	with	the	AMOEBA	Force	Field.	Phys.	Chem.	Chem.	Phys.,	
19,	276-91	(2017).	

179.	 Narth	C,	Lagardère	L,	Polack	E,	Gresh	N,	Wang	Q,	Bell	DR,	Rackers	JA,	Ponder	JW,	Ren	
PY,	 Piquemal	 J-P.	 Scalable	 Improvement	 of	 SPME	 Multipolar	 Electrostatics	 in	
Anisotropic	 Polarizable	 Molecular	 Mechanics	 Using	 a	 General	 Short ‐ Range	
Penetration	Correction	Up	to	Quadrupoles.	J.	Comput.	Chem.,	37,	494-506	(2016).	

	 47	

180.	Wang	Q,	Rackers	JA,	He	C,	Qi	R,	Narth	C,	Lagardere	L,	Gresh	N,	Ponder	JW,	Piquemal	J-
P,	 Ren	 P.	 General	 Model	 for	 Treating	 Short-Range	 Electrostatic	 Penetration	 in	 a	
Molecular	Mechanics	Force	Dield.	J.	Chem.	Theory	Comput.,	11,	2609-18	(2015).	

181.	 Lipparini	F,	Lagardère	L,	Stamm	B,	Cancès	E,	Schnieders	M,	Ren	P,	Maday	Y,	Piquemal	
J-P.	 Scalable	 Evaluation	 of	 Polarization	 Energy	 and	Associated	 Forces	 in	 Polarizable	
Molecular	 Dynamics:	 I.	 Toward	 Massively	 Parallel	 Direct	 Space	 Computations.	 J.	
Chem.	Theory	Comput.,	10,	1638-51	(2014).	

182.	 Lagardère	L,	Lipparini	F,	Polack	E,	Stamm	B,	Cancès	E,	Schnieders	M,	Ren	P,	Maday	Y,	
Piquemal	 J-P.	 Scalable	 Evaluation	 of	 Polarization	 Energy	 and	 Associated	 Forces	 in	
Polarizable	 Molecular	 Dynamics:	 II.	 Toward	Massively	 Parallel	 Computations	 Using	
Smooth	Particle	Mesh	Ewald.	J.	Chem.	Theory	Comput.,	11,	2589-99	(2015).	

	 48	

Table 1. Tinker 8 File Name Suffixes and Descriptions	

SUFFIX Description of File Contents
.xyz Cartesian coordinates, atom types and connectivity
.int Internal coordinates as a Z-matrix
.mol MDL MOL structure compatible with Tinker
.mol2 MOL2 structure compatible with Tinker
.pdb PDB structure compatible with Tinker
.arc Structure archive, e.g., MD trajectory
.dyn MD restart information
.hes Cartesian Hessian matrix
.key Control file with Tinker keywords

tinker.key Generic keyfile
.err Current structure at error occurance
.seq Biopolymer sequence
.vel Atomic velocities
.ind Atomic induced dipole moments

.dma Distributed multipole values
.bar Window energy values for BAR and FEP
.prm Force field parameter file
.doc Detailed parameter descriptions
.end Requests orderly termination of Tinker program

.vb1, .vb2, .blk Block iterative vibrational mode files
.001, .002, etc. “Cycle” files containing sequential structure output

	 49	

Table 2. Tinker 8 CPU and Tinker-OpenMM GPU MD simulation timings in ns/day. a	

 CPU b GPU c
SYSTEM POTENTIAL ATOMS 970 1070 1080Ti

WaterSmall AMOEBA 648 4.78 61.6 98.4 125.9
WaterBox TIP3P 1500 14.2 361.7 574.9 671.9
Crambin AMOEBA 1920 1.12 43.0 64.2 72.0
CBClip AMOEBA 6432 0.664 20.9 32.5 46.1
DHFR AMOEBA 23558 0.164 8.62 13.1 20.0
DHFR Amber ff99SB 23558 1.16 78.4 115.1 204.7
COX-2 AMOEBA 174219 0.0176 1.05 1.67 2.27
COX-2 Amber ff99SB 174219 0.150 10.7 15.3 24.6

a All simulations run with 2 fs MD time steps; RESPA integrator and OPT polarization
 model for AMOEBA, Verlet integrator with constraints used to enforce rigid water
 and fixed bond lengths to hydrogen for TIP3P and Amber ff99SB potentials.
b Apple Mac Pro with an Intel 6-Core Xeon E5650 Processor running at 2.66 GHz.
c NVIDIA Maxwell and Pascal Series GTX GPU cards, run via Tinker-OpenMM.

	 50	

Figure Captions

Figure 1. Diagram showing the main component programs of the Tinker 8 package, organized

into eight functional classes.

Figure 2. A schematic procedure illustrating how to construct a new Tinker program.

Figure 3. Binding free energy calculation for the model system cucurbit[7]uril and 3-amino-1-

adamantanol. (A) Structures of host and guest, (B) Predicted binding pose from dynamic, (C)

Experimental and predicted binding free energy.

Figure 4. Structural optimization of Deca-Alanine in the gas phase using (A) the scan program

and (B) the monte program.

Figure 5. A typical thermodynamic cycle for the calculation of absolute binding free energy of

host and ligand in Tinker. The completely solvated ligand and a solvent box are associated

through intermediate states with gradual changes in the order parameters of vdW and

electrostatics. While the order parameter of electrostatics affects both intermolecular and

intramolecular interactions, the decreasing order parameter of vdW only decouples the ligand

from the environment and does not change the intramolecular vdW interaction. A restraint is

added to prevent the possible bad contacts and to help sampling.

Figure 6. Force Field Explorer (FFE) displaying the Dickerson dodecamer structure of B-form

DNA. The expandable tree structure in the left panel provides access to coordinate and type

information at the molecule, residue and atom levels.

	 51	

Figure 1

Parameterization
poledit

valence
potential

xtalfit
prmedit

torsfit

Testing
testgrad
testhess
testpair
testpol
timer

document

Properties
analyze
polarize
diffuse
radial
correlate
mdavg
spacefill
superpose
vibrate
spectrum
distgeom
vibbig

Tinker
Programs

Free Energy
alchemy
bar
freefix

Global Optimization
scan

monte
sniffer

pss
gda

Local Search
minimize
optimize
newton
xtalmin
saddle

path

Dynamics
dynamic
anneal

Structure
Manipulation

xyzedit
archive
protein
nucleic
crystal

mol2xyz
pdbxyz

	 52	

Figure 2

Get input structure
Get input from Cartesian coordinates via call getxyz
Or from simulation trajectory, and/or from standard input

 (See examples in diffuse.f)

Find the existing data structures in Tinker.
If new global variables are needed:

1. Create new modules that contain new variables

2. Implement subroutines to initialize the new variables with the default values,

 and to parse new keywords that set the values

3. Implement routine to destroy any new global variables when program exits

4. Add the destroy routine so it is called from final.f

Set parameters for the new program
1. call mechanic

Or call the routines used by mechanic.f if some of these

 initializations are unnecessary

2. Call the routines to initialize new variables and/or parse new keywords

Call a routine that does the
desired new calculation

Cleanup & Exit
call final

Initialize the program
call initial
This subroutine initializes some Tinker variables with

 default values.

	 53	

Figure 3

A) B)

C)
Experimental Predicted

Binding Free Energy (kcal/mol) −11.6 ± 0.1 −12.41± 0.7

	 54	

	

 (A) (B)

	

Figure 4

	 55	

Figure 5

Host Ligand RestraintSolvent

+RES.

+VDW

+ELE.

-RES.-ELE.

-VDW

ΔGbind

	 56	

Figure 6

