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Key Points:7

• We study the co-occurrence of extreme daily rainfall in Senegal and Central Sahel.8

• A change is found in the 80s in both regions but with contrasting results.9

• In Senegal, anisotropic co-occurrence is found before the 80s and isotropic co-10

occurence afterwards.11

• In Central Sahel, anisotropy is found over the whole period, with greater extension12

after the 80s.13

• This provides qualitative indicators on change in size and propagation of the strongest14

storms.15
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Abstract16

We propose in this paper a statistical framework to study the evolution of the co-occurrence17

of extreme daily rainfall in West Africa since 1950. We consider two regions subject to18

contrasted rainfall regimes: Senegal and the Central Sahel. We study the likelihood of19

the 3% largest daily rainfall (considering all days) in each region to occur simultaneously20

and, in a 20-year moving window approach, how this likelihood has evolved with time.21

Our method uses an anisotropic max-stable process allowing us to properly represent the22

co-occurrence of daily extremes and including the possibility of a preferred direction of23

co-occurrence. In Senegal, a change is found in the 80s, with preferred co-occurrence24

along the E-50-N direction (i.e. along azimuth 50◦) before the 80s, and weaker isotropic25

co-occurrence afterwards. In Central Sahel, a change is also found in the 80s but surpris-26

ingly with contrasting results. Anisotropy along the E-W direction is found over the whole27

period, with greater extension after the 80s. The paper discusses how the co-occurrence28

of extremes can provide a qualitative indicator on change in size and propagation of the29

strongest storms. This calls for further research to identify the atmospheric processes re-30

sponsible for such contrasted changes in storm properties.31

1 Introduction32

The Sahelian region is one of the world’s region with the strongest signal of cli-33

mate change over the last sixty years [Hulme et al., 2001; Dai et al., 2004; Gallego et al.,34

2015]. This African band makes the transition between the dry Saharan Desert towards35

the North and the wet Sudanian region towards the South. It experiences a monsoon pe-36

riod from June to September with very variable and intermittent rainfalls in the form of37

storms, called meso-scale convective systems [Mathon et al., 2002]. The occurrence and38

intensity of these storms condition the hydrology in the region [Lebel et al., 2003; Vis-39

chel and Lebel, 2007]. They can lead to situations of either droughts or floods, with large40

consequences for such a vulnerable population to climate hazard [Tarhule, 2005; Di Bal-41

dassarre et al., 2010].42

Several studies have shown that the recent climate in the Sahelian region can be di-43

vided into three periods [e.g. Lebel and Ali, 2009; Nicholson, 2013]. The first one, from44

1950 to 1969, corresponds to a relatively humid period, which was followed by a long and45

intense drought period between the 1970s and 1980s. Since the 1990s the mean annual46

rainfall levels have slightly increased with respect to the dry period. This has often led to47
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consider the last two decades as a recovery period [e.g. Nicholson, 2005; Sanogo et al.,48

2015]. However annual rainfall remains on average much lower it was during the humid49

period and it features a strong interannual variability. Moreover the recovery is not con-50

sistant over the region with some significant contrasts between the Central Sahel (Niger,51

Burkina, Eastern Mali), which has progressively become wetter, and the Western Sahel52

(Western Mali, Senegal), which has remained much in deficit [Lebel and Ali, 2009]. In the53

Central Sahel, the strong decadal variability has been associated with significant changes54

in the amount of rainfall at mesoscale. The rainfall deficit of the dry period is mainly at-55

tributable to a significant decrease in the frequency of storms with no significant decrease56

in intensity [Le Barbé et al., 2002; Bell and Lamb, 2006]. On the contrary, over the last57

two decades, the occurrence of storms did not increase significantly compared to the dry58

period, but the contribution of the most intense storms to the rainfall regime reached un-59

precedented levels [Panthou et al., 2014]. The fact that Sahelian rainfall has turned into60

a more extreme regime is in phase with the intensification of the water cycle expected at61

the global scale. The rise in intense storms in the Sahel was recently related to the global62

warming and is thus likely to be a consistent feature of the Sahelian rainfall regime over63

the long term [Taylor et al., 2017].64

The present study brings new insight into the evolution of extreme precipitation in65

the Sahel through the statistical analysis of the co-occurrence of extreme daily rainfall, i.e.66

of daily rainfall exceeding some large level. The co-occurrence is studied for the period67

1950-2014 over two contrasted regions in the Western (Senegal) and the Central Sahel.68

The results lead us to speculate on possible changes in intense storm properties in light of69

the decadal variability and regional disparities.70

A suitable theoretical framework for assessing the frequency of rainfall exceeding71

some large level and their evolution is provided by univariate extreme value statistics72

[Coles, 2001]. Panthou et al. [2013] uses this framework to show temporal nonstationar-73

ity in the local occurrence of extremes in the Sahelian region, i.e. in their marginal dis-74

tributions. However this gives only indication about the evolution of extreme rainfall at a75

given site. The spatial (i.e. surfacic) scale is, by definition, missing. To cope with the spa-76

tial variability of heavy rainfall, areal data are required, which is often lacking. Thus one77

usually resorts to the spatial interpolation of point data supplied by raingages [De Michele78

et al., 2002; Ceresetti et al., 2012; Panthou et al., 2014], whose quality for representing the79

most extreme events may be questioned [Delrieu et al., 2014].80
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Another way of looking upon the spatial variability of heavy rainfall is to study81

the probability of different locations to co-experience some extreme event. A suitable82

framework for this is provided by the theory of max-stable processes for spatial extremes83

[de Haan and Ferreira, 2006]. Max-stable processes have been used recently for studying84

the co-occurrence in threshold exceedances of wave height [Raillard et al., 2014], rainfall85

[Thibaud et al., 2013; Huser and Davison, 2014] or river discharges [Asadi et al., 2015].86

However these studies assume temporal stationarity in the probability of co-occurrent ex-87

tremes. Nonstationarity in the co-occurence of extreme temperature has been studied in88

Reich et al. [2014] but considering temporal co-occurrence, not spatial one. In a spatial89

context, it has been studied in Westra and Sisson [2011]; Shang et al. [2011]; Zhang et al.90

[2014] for extreme precipitation by using nonstationary marginal distributions in max-91

stable processes or in Nicolet et al. [2016]; Shaby and Reich [2012] by studying the evo-92

lution of the max-stable spatial dependence of extreme snowfall and extreme temperature,93

respectively. However these studies consider concomitance in annual maxima, whose ex-94

planatory power is rather limited because it only informs on whether large maxima tend95

to co-occur the same year, without accounting for their timing within the year. Studying96

trend in the co-occurrence of threshold exceedances aims precisely at overcoming this97

drawback.98

The data are presented in Section 2 while Section 3 describes how is modeled and99

inferred the probability of concomitant exceedances, which is based on an anisotropic100

max-stable model. Section 4 assesses the probability of concomitant large exceedances in101

the two regions and their evolution since the 50s in a 20-year moving window approach.102

Section 5 discusses the results through a possible link between changes in the probability103

of concomitant exceedances and changes in the properties of extreme storms.104

2 Data105

Two climatologically contrasted Sahelian regions are used in this study: Senegal106

and the Central Sahel. The instrumented area in Senegal covers a surface of about 600 ×107

600 km2, as displayed in Figure 2. The network comprises 38 stations with daily mea-108

surements since 1950. The instrumented area in the Central Sahel is divided into two net-109

works. The first one covers about 1200× 600 km2 and straddles Niger, Burkina Faso, Togo110

and Benin (Figure 2). 44 stations are dispatched over this area, with daily measurements111

since 1950. The second network is the AMMA-CATCH rainfall network in Niger [Lebel112
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et al., 2009]. It covers about 110 × 120 km2 in the region of Niamey. It comprises 30 sta-113

tions with 5’ measurements since 1990, which we aggregate at daily scale.114

We restrict the analysis to the four monsoon months of June-July-August-September115

(JJAS) and to the period 1950-2014, which is the period presenting the most complete116

data. The mean percentage of missing data over this period is 4% in Senegal, with a max-117

imum of 15%, and 3% in the Central Sahel, with a maximum of 12%. Considering all118

pairs of stations, the mean percentage of days with at least one concurrent missing value119

is 7% in Senegal and 6% in the Central Sahel. However more and more lack is found120

since the 90s. The Senegalese network comprises 38 stations with less than 15% of miss-121

ing data in the 20-year window 1950-1969, but this decreases to 23 stations in 1995-2014.122

Similarly, the Central Sahelian network comprises 44 stations with less than 15% of miss-123

ing data in 1950-1969 but 34 such stations in 1995-2014. In the moving window study124

of Section 4.2, we will only consider, for a given window, the stations comprising less125

than 15% of missing data over this window, meaning that actually less stations will be126

used in the most recent period to document co-occurrence. A separate analysis restricted127

to the stations having less than 15% of missing data on every 20-year window (23 sta-128

tions in Senegal and 30 stations in the Central Sahel) shows that the results of the present129

study are not dependent on the evolution of the network though years (not shown). For130

the small-scall network of AMMA-CATCH, the 1990-2014 period is considered. Within131

this period, each station has less than 10% of missing data. Due to the shorter measure-132

ment period, these data will not be considered in the non-stationarity study of Section133

4.2, but the higher spatial density of the network will provide valuable information of co-134

occurrence for small interdistances in Section 4.1.135

Daily rainfall in JJAS can be considered as identically distributed. Moreover the136

little extension (less than 10km large) and short duration (maximum a few hours) of the137

strong convective cells induce a very strong spatio-temporal variability of rainfall [see138

Figure 4 of Vischel and Lebel, 2007, for example]. This implies in particular that daily139

amounts can be considered as almost independent from one day to another, as validated140

in Ali et al. [2006] and Gerbaux et al. [2009] for reproducing the interannual and intra-141

seasonal variability of Sahelian rainfields. Serial independence of extremes -which are the142

main object of this study- can be quantitatively assessed by computing the mean number143

of consecutive values that exceed high thresholds. Independent exceedances correspond to144

a mean value of 1 and the closer to 1, the less dependent the exceedances. Using the es-145

–5–



Confidential manuscript submitted to JGR-Atmospheres

timation method of Ferro and Segers [2003], we find that the average mean cluster size is146

1.2 in Senegal, 1.14 in Central Sahel and 1.05 for AMMA-CATCH network, which con-147

firms that assuming independence of threshold exceedances is reasonable for the three net-148

works.149

As shown in Figure 2, a drawback of the studied networks might be that that none150

of them samples uniformly the space and the azimuths. The Sahelian stations are not uni-151

formly distributed over the region, with a bigger density of stations close to the Atlantic152

coast. Stations of the Central Sahelian network are fairly uniformly dispatched but the re-153

gion features a rectangular shape, with a N-S extension more limited than the E-W one.154

However a separate analysis performed on a subset of stations distributed quite uniformly155

on squared domains in both regions showed that actually the results of this study are quite156

robust to the shape and spatial distribution of the networks (not shown).157

3 Method158

3.1 Probability of interest159

Let Xjt be the random variable of daily rainfall at station j and day t, for t = 1, . . . ,T .160

Daily rainfalls Xj1, . . . , XjT are assumed to be independent and identically distributed, i.e.161

to be a random sample of a variable Xj representing daily rainfall a given day at station j,162

with distribution function Fj .163

Let R be a given region. We are interested in the probability of concomitant ex-164

ceedance across R, i.e. in165

pr(Xj > xj for all j ∈ R) (1)

for xjs large. Eq. (1) is the probability that a large level is exceeded simultaneously ev-166

erywhere across R, due to a very convective activity making storms to affect all of R the167

same day. By large we mean here larger than the α-quantile of the marginals distributions,168

i.e. for xj > u j = F−1
j (α) with α large (e.g. α = 0.97 in Section 4). Note that knowing (1)169

for all xj large is equivalent to knowing170

pr(hj(Xj) > xj for all j ∈ R) (2)

for all xj large, with hj any positive bijective function. It is convenient to consider hj so171

that all hj(Xj) have the same margins. In particular, with hj(.) = −1/log{Fj(.)}, the trans-172
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formed variables173

Yj = hj(Xj) (3)

are unit-Fréchet distributed, i.e. pr(Yj ≤ y) = e−1/y . This framework turns out to be conve-174

nient to work with for spatial extremes, so in the rest of this paper we will be interested in175

the probability of simultaneous exceedance for the transformed variables Yj , i.e.176

pr(Yj > yj for all j ∈ R) (4)

for all yjs large. The probability (1) is then simply obtained as (4) taken in yj = −1/log Fj(xj).177

By transforming the Xjs into Yjs and studying (4) instead of (1), we assume that the178

marginal distributions Fjs are known. Actually, since we are interested in (1) when all xj179

are larger than some large quantile u j , only the tail of the marginal distribution is needed.180

The theory of univariate extremes (Coles [2001]) tells us that if u j is large enough, we181

can assume that peaks-over-threshold follow a GPD (Generalized Pareto Distribution), i.e.182

that for x > u j183

Fj(x) = pr(Xj ≤ x) = 1 − (1 − α)
(
1 + ξj

x − u j

σj

)−1/ξj
, (5)

where σj > 0 is the scale parameter and ξj is the shape parameter. Thus a first step of184

our analysis is to estimate, for each station j, the GPD parameters σj and ξj based on the185

data exceeding the chosen threshold u j , then use these estimates to transform the data xj186

exceeding the threshold into yj = −1/log Fj(xj). The data below the threshold are set to187

v = −1/logα and tagged as "censored". They will be used to estimate the model (4) in a188

censored likelihood approach; see Section 3.2.4.189

3.2 Modeling of co-occurrence190

3.2.1 Asymptotic dependence and asymptotic independence191

Here we describe how is modeled the probability of co-exceeding some large thresh-192

olds (1). This implies modeling the dependence between variables at large levels. Depen-193

dence models for extremes can be split into two families [Davison et al., 2013]: asymp-194

totic dependence models and asymptotic independence models. Asymptotic independence195

models assume dependence of variables at moderate levels but independence as the levels196

approach the supremum of the support of the distribution. In particular the probability of197

one variable being larger than its η-quantile conditionally on another variable being larger198
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than its η-quantile,199

χi j(η) = pr(Xj > F−1
j (η)|Xi > F−1

i (η)), (6)

converges to 0 as η → 1, whatever the dependence at sub-extremal levels (provided the200

two variables are not almost surely equal), as illustrated Figure 1. The Gaussian depen-201

dence model, for example, belongs to this class as soon as its correlation coefficient is not202

1, no matter how close to 1 [Coles et al., 1999]. Asymptotic dependence models, on the203

contrary, assume that some dependence remains at infinite levels, i.e. that χi j(η) converges204

to a positive value χ+i j as η→ 1, as illustrated Figure 1. In practice distinguishing between205

weakly asymptotically dependent variables (χ+i j close to 0) and asymptotically independent206

variables reveals difficult [Coles et al., 1999], and this is confirmed on our data. A sepa-207

rate analysis revealed that, when considering annual maxima, the asymptotically dependent208

Brown-Resnick process (see Section 3.2.2) and the asymptotically independent version of209

Wadsworth and Tawn [2012] are actually pretty equivalent. Comparison of the values of210

CLIC [Davison et al., 2013] in the stationary and non-stationary cases gave preference to211

either model depending on the period, in equal proportion, with always very similar val-212

ues of CLIC. Indeed the estimated probabilities of co-occurrence, e.g. of χi j(η) in (6), are213

pretty similar whatever model when η lies in the observed range of values, making selec-214

tion difficult. Extrapolation at much larger levels obviously differ but according to CLIC215

no clear preference is given to either family of models. In this article, we have chosen to216

consider the asymptotically dependent case, discarding asymptotically independent mod-217

els for the sake of concision, but also because, from a physical point of view, we don’t218

see why more and more extreme storms should be less and less extended, as assumed by219

asymptotically independent models. However we keep in mind that our choice may not be220

optimal at extrapolation, and so that estimations of e.g. χi j(η) might be only valid in the221

observed range of values, in which case the choice of model seems to have little impact.222

3.2.2 Brown-Resnick model227

Let assume that the daily rainfall variables Xjs, or equivalently the Yjs of (3), are228

asymptotically dependent. Following de Haan and Ferreira [2006], chapter 9, well-founded229

asymptotically dependent models for maxima belong to the family of max-stable pro-230

cesses. Thibaud et al. [2013] justify that this theory can be used for large exceedances.231

Various parametric models of max-stable processes have been proposed in the literature.232

The most popular ones are the Smith process, the Schlather process [Schlather, 2002], the233
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Figure 1. Theoretical conditional exceedance probabilities χi j (η) = pr(Xj > F−1
j (η)|Xi > F−1

i (η)) for (left)

an asymptotically dependent model corresponding to a max-stable process with extremal coefficient θi j = 1,

1.2, 1.4, 1.6, 1.8, 2; (right) an asyptotically independent model constructed as the inverted max-stable process

of the left panel [Wadsworth and Tawn, 2012].

223

224

225

226

Brown-Resnick process [Kabluchko et al., 2009], the Geometric Gaussian process [Davi-234

son et al., 2012] and the Extremal-t process [Opitz, 2013]. Few comparative studies exist235

in the literature but the overall consensus is to prefer the Brown-Resnick, Extremal-t and236

Geometric Gaussian processes towards the Smith and Schlather processes [Davison et al.,237

2012; Gaume et al., 2013], with actually very similar performances for the three first ones238

but a slightly better robustness of the Brown-Resnick process [Nicolet et al., 2017]. This239

lead us to consider the Brown-Resnick process for this study. Alternative options to max-240

stable modeling could be to consider generalized Pareto processes [Ferreira and de Haan,241

2014; Dombry and Ribatet, 2015; Thibaud and Opitz, 2015].242

Huser and Davison [2013] derive a closed-form expression for the multidimensional243

joint distribution of Brown-Resnick process. In particular, the bivariate distribution func-244

tion is given by [Kabluchko et al., 2009]:245

pr(Yi ≤ yi,Yj ≤ yj) = exp
{
−

1
yi
Φ

(
ai j
2
+

1
ai j

log
yj

yi

)
−

1
yj
Φ

(
ai j
2
+

1
ai j

log
yi

yj

)}
, (7)

for yi and yj > v, where Φ is the standard Gaussian cumulative distribution function,246

ai j = {2γ(| |si − sj | |)}1/2, with γ the (unknown) semivariogram of an intrinsically Gaussian247

process, and | |si − sj | | the distance between stations i and j. Usual practice is to use the248
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isotropic semivariogram,249

γ(| |si − sj | |) =
(
| |si − sj | |

λ

)κ
, (8)

with λ > 0 and 0 < κ ≤ 2 unknown parameters to estimate.250

Combining (3) and (7) gives that, for any η ≥ α, the probability (6) of one variable251

being larger than its η-quantile conditionally on another variable being larger than its η-252

quantile is253

χi j(η) = = (1 − 2η + ηθi j )(1 − η)−1, (9)

as illustrated Figure 1.254

The scalar θi j in (9) is defined by θi j = 2Φ{γ(| |si − sj | |)1/22−1/2} ∈ [1, 2] and is255

termed the extremal coefficient. For the semivariogram γ defined by (8),256

θi j = 2Φ
(
| |si − sj | |κ/2λ−κ/22−1/2

)
. (10)

Whatever choice of γ, when θi j = 1, Xi and Xj are completely dependent, and χi j(η) in257

(9) is uniformly 1. When θi j = 2, Xi and Xj are independent and χi j(η) = 1 − η. Besides,258

whatever θi j ∈ [1, 2],259

χ+i j := lim
η→1

χi j(η) = 2 − θi j . (11)

Actually, whatever θi j , χi j(η) can be approximated by χ+i j with less than 10−2 error as260

soon as η ≥ 0.99, and in particular for the JJAS season as soon as we consider exeedances261

of the yearly return level. However, let us recall that extrapolation of χi j(η) beyond the262

range of observed values is very uncertain for our data because it relies on the assump-263

tion of asymptotic dependence, which we were unable to clearly validate. Thus, rather264

than a limit at infinite levels, χ+i j will be interpreted in the rest of this article as the con-265

ditional probability of concomitant large exceedances, the term "large" embracing roughly266

the range of observed values (i.e. up to about the 100-year return level).267

3.2.3 Accounting for anisotropy268

According to (10) combined with (9), the Brown-Resnick is an isotropic model of269

concomitance: any two pairs of stations at the same distance apart have the same condi-270

tional probability of concomitant exceedance, whatever η. This means that the set of sites271

sj such that χi j(η) = p, are circles centered on station i. However assumption of isotropy272

is often violated for hydrometeorological variables, which tend to show increased depen-273

dence in the direction of the governing wind fields [Ali et al., 2003; Blanchet and Davison,274
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2011; Gaume et al., 2013; Nicolet et al., 2016]. In order to account for such anisotropy, we275

replace in (8) and (10) the isotropic distance by the anisotropic distance defined as276

| |si − sj | |2 = (sj − si)′M ′M(sj − si) (12)

where si and sj are 2D-coordinates vectors, s′ is the transpose of s and277

M =
©­­«

cosψ sinψ

−b sinψ b cosψ

ª®®¬ (13)

with b > 1 the elongation coefficient and ψ ∈ [− π
2 ,

π
2 ] the angle. Now the set of sites sj278

such that χi j(η) = p are ellipses centered on station i, with the major axis oriented along279

ψ and an elongation (ratio of the major and minor axes) equal to b.280

3.2.4 Inference281

Model (7) involves four parameters: λ and κ driving the strength of dependence282

along the major axis at a fixed distance, b driving the strength of anisotropy and ψ giv-283

ing the direction of major dependence. Assuming temporal independence of the y’s, but284

spatial dependence, the log-likelihood of the model is written:285

`(λ, κ, b, ψ) =
T∑
t=1

log g(y1t, . . . , yNt ) (14)

where g is the multivariate density of Brown-Resnick model. Wadsworth and Tawn [2014]286

gives a closed form expression for g, however its computation results in a combinatorial287

explosion [Davison and Gholamrezaee, 2011; Castruccio et al., 2016]. It is possible to288

circumvent this issue by making estimation based on the pairwise log-likelihood [Varin289

et al., 2011; Padoan et al., 2010]290

`1(λ, κ, b, ψ) =
T∑
t=1

N−1∑
i=1

N∑
j=i+1

log gi j(yit, yjt ), (15)

where gi j is the bivariate density of (Yi,Yj), i.e. associated to (7), and N is the number of291

stations.292

In applying pairwise likelihood we must account for the fact that exceedances may293

occur in both variables, in one variable or in neither, whereas the bivariate density asso-294

ciated to (7) is only valid when both variables exceed the threshold v. To do so we apply295

the censoring approach described by Coles [2001], Section 8.3.1, and used in the context296

of threshold exceedances of spatial extremes in Thibaud et al. [2013]; Bacro and Gaetan297
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[2014]; Huser and Davison [2014]; Raillard et al. [2014], for example. Writing Gi j the bi-298

variate distribution, valid only when both variables exceed v, the likelihood contribution of299

sites i and j in (15) is:300

gi j(yit, yjt ) =



∂i∂jGi j(yit, yjt ), yit > v, yjt > v;

∂iGi j(yit, v), yit > v, yjt ≤ v, ;

∂jGi j(v, yjt ), yit ≤ v, yjt > v;

Gi j(v, v), yit ≤ v, yjt ≤ v;

(16)

∂iGi j denotes the differentiation with respect to yi in (7). No analytical expression for the301

maximum of (15) under (16) is available but maximization may be performed numerically302

(e.g. quasi-Newton method).303

3.3 Workflow304

Two frameworks are considered in this study. The first one assumes stationarity over305

the observation period. The workflow consists of the following steps:306

• For each station j, the empirical α-quantile is computed. The marginal GPD distri-307

bution Fj above this threshold is estimated by maximum likelihood.308

• The data xjt exceeding the threshold are transformed into unit-Fréchet variates309

yjt = −1/log Fj(xjt ). For the data xjt below the threshold, the exact value of yjt310

is not necessary since to compute (16) one only needs to know that yjt is in this311

case below v.312

• The anisotropic Brown-Resnick model for the region R of interest is estimated313

based on the {yjt, j ∈ R, t = 1, . . .T}, by maximizing the pairwise log-likelihood314

(15) under (7) with censoring (16).315

This gives one anisotropic Brown-Resnick model for each of the three networks. Deter-316

mining the threshold above which this workflow may be applied is a bias-variance trade-317

off. Too low a threshold is likely to violate the assumptions of extreme value theory, lead-318

ing to bias. Too high a threshold implies too few excesses to estimate the model, lead-319

ing to high variance. In this article, the threshold is set to the empirical 97% quantile of320

daily rainfall at each station, i.e. α = 0.97. This is slightly higher than the thresholds of321

Thibaud et al. [2013] (90%-quantile) and Huser and Davison [2014] (95%-quantile) for322

example but we use here longer time-series, so the number of exceedances is roughly sim-323

ilar. Setting the threshold to the 95%-quantile leads anyway to similar results (not shown).324
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The second framework considers 20-year moving windows from 1950-1969 to 1995-325

2014. The workflow consists of the same steps but applied to each window separately326

(i.e. considering only the days t within the window). This means that the threshold is re-327

computed for each window and thus different thresholds are used for different windows.328

However the models considered here rely on asymptotic theory, so they should apply329

equally for any large enough threshold. We checked that using for each window the 97%-330

quantile of the entire period does not affect the results, but this implied considering dif-331

ferent amounts of data depending on the window, which is not recommended for model332

comparison and in particular for what matters uncertainty, so we prefer showing results of333

the window-dependent threshold case. Applying the above workflow gives us one Brown-334

Resnick model for each network and each window. Given the shortness of its observation335

period (25 years), the moving-window framework is not applied to the AMMA-CATCH336

network.337

4 Results338

4.1 Stationary case339

4.1.1 Marginal distributions340

Although marginal distributions are not the scope of this paper, they are interest-341

ing to study to better understand the climatology of rainfall in the region. Figure 2 shows342

the maps of (a): mean annual rainfall, (b): mean proportion of rainfall days, (c): mean343

of non-zero daily rainfall and (d): 50-year return levels in Senegal and Central Sahel in344

JJAS season, for the period 1950-2014. For the three former cases, empirical values are345

plotted while the 50-year return level at station j is given by F̂−1
j (1 − 1/(KL)), where346

L = 122 is the number of days in the JJAS season per year, K = 50 and F̂j is an esti-347

mate of the marginal distribution Fj at station j. Values for the AMMA-CATCH network348

are not shown on this figure because the observation period is much shorter (1990-2014).349

Let just note that the average values for AMMA-CATCH network are of the same order as350

the values found in Niamey region in Figure 2. For example the mean 50-year return level351

for AMMA-CATCH network is around 110 mm.352

The 50-year return levels (d) in both Senegal and the Central Sahel show a N-S in-360

crease, although in Senegal the distance to the ocean seems also to play a role with larger361

values when moving closer to the Atlantic West coast. The 50-year return levels in Sene-362
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Figure 2. (a): Annual rainfall, (b): proportion of rainfall days, (c): mean of non-zero daily rainfall and

(d): 50-year return level of daily rainfall accumulation (mm) in Senegal and Central Sahel in JJAS season,

for the period 1950-2014. The black crosses in the Central Sahelian map show AMMA-CATCH network.

Coordinates are UTM coordinates.
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Senegal Central Sahel

(a) (b) (c) (d) (a) (b) (c) (d)

(a) 1.00 0.98 0.76 0.83 1.00 0.96 0.47 0.65

(b) 0.98 1.00 0.64 0.71 0.96 1.00 0.23 0.43

(c) 0.76 0.64 1.00 0.96 0.47 0.23 1.00 0.94

(d) 0.83 0.71 0.96 1.00 0.65 0.43 0.94 1.00
Table 1. Pattern correlation table of (a): Annual rainfall, (b): proportion of rainfall days, (c): mean of non-

zero daily rainfall and (d): 50-year return level of daily rainfall accumulation (mm) in Senegal and Central

Sahel in JJAS season, for the period 1950-2014.

357

358

359

gal are on average 20% larger than in the Central Sahel. This superiority applies actually363

for all K ≥ 1 year, with greater differences as the return period increases. The 50-year364

return level map in the Central Sahel shows a similar pattern to the 20- and 100- year re-365

turn level maps produced in Panthou et al. [2012] over the same area but considering an-366

nual maxima. The fact that it differs from the 50-year return level map of Senegal both in367

terms of magnitude and shape is a novel result.368

As shown in Table 1, the proportion of rainfall days (b) explains more the annual369

totals (a) than the mean of non-zero daily rainfalls (c), as already noted in Le Barbé and370

Lebel [1997]; Le Barbé et al. [2002]. The return level map of the Central Sahel (d) is371

more correlated to the proportion of rainfall days (b) than to the mean of non-zero daily372

rainfalls (c), which is more patchy. This suggests that the N-S increase of extreme rainfall373

intensity is more driven by the occurrence of the rainfall systems than by their own inten-374

sity. In Senegal, correlation between the return level map (d) and the proportion of rainfall375

days (b) is even larger. However the NE-SW gradient of return level maps (d) differs from376

the N-S gradient characterizing the mean number of rainfall days (b), while the mean of377

non-zero daily rainfall (c) displays a slight east-west distortion near the coast. This sug-378

gests that the spatial organization of extreme rainfall in Senegal might be a combined ef-379

fect of rainfall occurrence and influence of oceanic moisture entries. This additional local380

oceanic moisture might also explain why extremes are more intense in Senegal than in the381

Central Sahel.382
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4.1.2 Co-occurrence of extremes383

Fig. 3 shows the empirical estimates of χi j(0.99), the conditional probability of co-384

exceeding the 99%-quantile, for all the pairs of stations (i, j) lying in either region. The385

value of p = 0.99 is chosen for illustration with the aim of being far enough in the tail386

of the distribution while having enough points to make robust empirical estimations. Re-387

mind that the 99% quantile corresponds almost to the 1-year return level in JJAS. Esti-388

mates are plotted as a function of the anisotropic distance (12) obtained from the esti-389

mated Brown-Resnick model of Section 3.2.2 (i.e. with the estimated matrix M in (12))390

for the 1950-2014 period. Each plot contains N(N −1)/2 points corresponding to the num-391

ber of pairs of stations. The scatter plot of empirical estimates versus anisotropic distance392

follows relatively well the curve of χi j(0.99) predicted by the estimated Brown-Resnick393

model, which is given by combining (9), (10), (12) and (13). Let us recall that the model394

is fitted on the rainfall data directly, and not on the empirical values of χi j(0.99) which395

are uncertain and are only shown here to help judging the quality of the fit. All in all,396

goodness-of-fit seems satisfactory. Furthermore, in the Central Sahel case, the empirical397

estimates of the AMMA-CATCH network are also relatively well aligned along the pre-398

dicted curve, although the estimation is made independently of these data. However the399

estimated model tends to slightly underestimate the probability of conditional exceedances400

at very small distance. This may be due to the combination of several factors: first, the401

fact that AMMA-CATCH network covers a much smaller domain and dependence in the402

Niamey region may be slightly different than in the whole Central Sahel box. Related to403

this is the fact that few pairs are located at short distances in the Central Sahel network,404

and this may induce some bias for estimating the small scale dependence. Add to this the405

fact that AMMA-CATCH network covers only the most recent period (1990-2015) and co-406

occurrence of extremes may have changed since 1950. This question will be investigated407

in Section 4.2.408

In order to allow comparison of the estimated probability of concomitant exceedances415

in the two region, we plot in Fig. 4 the values of χ+i j as a function of the difference in co-416

ordinates (sj − si), in the two regions, adding the plot obtained for Niamey region from417

AMMA-CATCH network. Remind that χ+i j is an approximate of the conditional prob-418

ability of exceeding the K-year return level, for any K ≥ 1 but K ≤ 100 to embrace419

roughly the observed range of levels. For shortness, it is referred below as the conditional420

probability of concomitant large exceedances. As mentioned in Section 3.2.3, contours of421
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Figure 3. Empirical estimates of χi j (0.99), the conditional probability of co-exceeding the 99%-quantile,

for all pairs (i, j) lying in (left) Senegal and (right) the Central Sahel, as a function of the anisotropic distance

(12). The red curve shows the values predicted by the estimated Brown-Resnick process for the 1950-2014

period. The horizontal lines at abscissa 1 and 0.01 correspond respectively to cases of complete dependence

and independence. In the Central Sahel case, the gray points show the empirical estimates obtained for the

AMMA-CATCH network covering the period 1990-2014.
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413

414

χ+i j = p delineate circles or ellipses, depending on whether dependence is respectively422

isotropic or anisotropic. Fig. 4 shows that a slight anisotropy is found in Senegal. The423

conditional probability of concomitant large exceedances is slightly larger in the E-50-424

N direction (i.e. bearing 50◦ anti-clockwise from East, with ψ of (13) estimated to 50◦).425

Anisotropy is more marked in the Central Sahel region with enhanced concomitance in the426

E-W direction (ψ̂ ≈ 0). At a given distance, Senegal shows a slightly larger probability427

of concomitance than the Central Sahel. For example there is on average 12% chance that428

a location in Senegal receives some extreme rainfall amount a day when extreme amount429

is received 100km away (i.e. the average χ+i j is 0.12 at 100km distance). In the Central430

Sahel, there is on average 9% chance. In Niamey region, we find a marked anisotropy, as431

in the Central Sahel case, however the direction of maximum probability of concomitance432

is shifted to E-15-N. The dependence is also larger than in the entire Central Sahel region433

with e.g. on average 15% chance of conditional large exceedances at 100km distance. As434

already mentioned, these differences may be due to the different domains, periods of ob-435

servations and spatial scales the two networks allow to document.436
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Figure 4. Values of χ+i j , the conditional probability of concomitant large exceedances, under Brown-

Resnick model, as a function of the difference in UTM coordinates (si − sj ), for sites lying in (left) Senegal,

(middle) the Central Sahel, and (right) the region of Niamey. In the latter case, estimation is based on the

1990-2014 period while in the two former cases it is based on the 1950-2014 period. The gray dotted lines

show the direction of maximum conditional probability of large exceedances, given by ψ of (13).
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4.2 Moving window case442

4.2.1 Marginal distributions443

Fig. 5 shows the evolution of the regional averages of (a): mean annual rainfall, (b):444

mean proportion of rainfall days, (c): mean of non-zero daily rainfall and (d): 50-year445

return levels, estimated on 20-year moving windows from 1950-1969 to 1995-2014. The446

95% confidence intervals are obtained from 200 bootstrap samples, resampling the days447

with replacement for each window and each station. Surprisingly contrasting results are448

found in Senegal and the Central Sahel for the mean values (a to c). In Senegal, three449

periods are found for the mean annual rainfall (a), with a decrease from the 50s to the450

70s, followed by a relative stationarity till the 80s and an increase since then. This is in451

line with the results of Lebel and Ali [2009] and Nicholson [2013]. The increase since452

the 80s is due to an increase in both the proportion of wet days (b) and the mean rainfall453

during wet days (c). Despite the increase in the last decades, the levels of the mean values454

(a to c) at the end of the period have barely reached the stationary levels. In the Central455

Sahel, two periods are mainly found for the mean values (a to c). A decrease is found456

from the 50s to the 70s, as in Senegal, but followed by an increase since the 70s, which is457

particularly strong for the mean rainfall during wet days (c).458
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Figure 5. Regional averages of (a): mean annual rainfall, (b): mean proportion of rainfall days, (c): mean

of non-zero daily rainfall and (d): 50-year return levels, estimated on 20-year moving windows from 1950-

1969 to 1995-2014, in (left) Senegal, and (right) the Central Sahel. The dashed horizontal lines show the

averages obtained over the whole period. The colored bands show the 95%-confidence intervals obtained

from 200 bootstrap samples.
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For the 50-year return level (d), similar evolutions are found for the two regions,464

with two main regimes. First, a decrease between the 50s and the 70s, with return levels465

15% smaller in 1968-1977 than they used to be in 1950-1969. This period of decrease is466

followed by a period of increase in both regions since the 70s-80s, particularly in Sene-467

gal. The 50-year return levels in Senegal have exceeded the stationary levels since the468

80s and almost reached the levels of the beginning of the period. In the Central Sahel,469

the stationary levels have barely been recovered so far. These results on extreme rainfalls470

evolution in the Central Sahel are coherent with Panthou et al. [2013] who found a sig-471

nificant decrease of around 10% in the 2-year return level of the periods 1950-1969 and472

1970-1990. Over the recent decade, the evolution of the K-year return level in the Cen-473

tral Sahel is also in line with the upward trend in daily rainfall maxima shown by Panthou474

et al. [2014].475

4.2.2 Co-occurrence of extremes476

Fig. 6 shows the ellipses of the contours {χ+i j = 0.1} predicted by the Brown-477

Resnick model estimated on 20-year moving windows for the two regions. Thus each el-478

lipse delineates the set of points having 10% chance of exceeding some extreme level a479

day when some extreme level is exceeded in the center of the ellipses. To better assess480

changes in these ellipses, we also plot in Fig. 6 the length of the minor and major axis of481

the ellipses. In order to assess uncertainty in these values, a bootstrap method is applied.482

For each window and each region, i) we sample the days with replacement; ii) we estimate483

the marginal GPD distributions on the bootstrap data exceeding the threshold u j used for484

the original data (thus the threshold itself does not change along the bootstrap procedure);485

iii) we transform the data exceeding the threshold into unit-Fréchet variates; iv) we fit the486

anisotropic Brown-Resnick model on these new data. We apply this 200 times, giving 200487

bootstrap estimations for each window. The confidence bands in Fig. 6 show the 0.025-488

and 0.975-quantile of these estimations.489

In Senegal, concomitance for the periods 1950-1969 to 1975-1994 is characterized490

by a preferred direction in the E-50-N direction, which is also the direction found in the491

stationary case (see Section 4.1.2). However concomitance of the largest rainfalls along492

this direction was more likely during this period than over all 1950-2014, as shown by the493

major axis compared to the stationary case in Fig. 6. This anisotropy can be considered as494

–20–



Confidential manuscript submitted to JGR-Atmospheres

relatively significant since there is little overlap of the 95% confidence bands of the major495

and minor axis lengths.496

For the periods 1976-1995 to 1981-2000, ellipses are less and less elongated, which497

means that within this period, the preferred direction of concomitance vanished. Finally,498

from 1982-2001 to 1995-2014, concomitance is characterized by a stability in the shape of499

the ellipses which are roughly isotropic (i.e. the lengths of the major and minor axes are500

equal). Thus since the 80s concomitance of extreme rainfall is as likely in any direction501

but weaker than it used to be, as shown by the red ellipses of Fig. 6.502

In the Central Sahel, the periods from 1950-1969 to 1981-2000 are characterized by503

a relative stability in the shape of the ellipses of co-occurrence, with a preferred direction504

in roughly the E-W direction, as in the stationary case of Section 4.1.2. Judging by the505

confidence bands in Fig. 6, this preferred direction is highly significant. As for the Sene-506

gal, a change in the shape of the ellipses is found in the 80s but surprisingly with opposite507

consequences. The period from 1982-2001 to 1990-2014 is characterized by a strong en-508

largement of the ellipses of Fig. 6 in all directions, meaning that, contrary to Senegal,509

co-occurrence tends to be significantly stronger in all directions these last years.510

5 Conclusions and Discussion516

In this paper we study the co-occurrence of extreme daily rainfall and its evolution517

since 1950 in two Sahelian regions: the Western (Senegal) and the Central Sahel. Our518

approach is based on a max-stable modeling of rainfall threshold exceedances. This allows519

us to quantify the probability of experiencing concomitant extremes in these regions and520

to document, in a moving window approach, whether and to what extend this probability521

has evolved since 1950.522

Some features of the evolution of extreme rainfall regime appear to be consistent523

for both studied Sahelian regions. They concern the evolution of the marginal distribu-524

tions of extreme daily rainfall. A change in the 80s is found with a period of decreasing525

rainfall intensity between the 50s and the 70s, followed by a period of increasing inten-526

sity since the 80s. This confirms previous results found for the Central Sahel by Panthou527

et al. [2013] and Panthou et al. [2014]. It is also in line with the increasing trend in ex-528

treme rainfall detected since 1982 by Taylor et al. [2017] over the entire Sahel. However529

some results show contrasted evolutions between Senegal and the Central Sahel. In Sene-530
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Figure 6. Top: Contours of {χ+i j = 0.1} estimated on 20-year moving windows in (left) Senegal, and (right)

the Central Sahel. The dotted black ellipses are the contours obtained in the stationary case (see Fig. 4). Bot-

tom: Length of the major (blue) and minor (red) axes of the ellipses delineating the contours {χ+i j = 0.1}, as

a function of the starting year of the 20-year moving windows. The bands show the 95% confidence intervals

obtained for 200 bootstrap samples. The dotted horizontal lines are the values obtained in the stationary case.
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gal, a change is found in the 80s in the size and direction of the ellipses delineating the531

contours of co-occurrence at extreme levels, with preferred co-occurrence in the direction532

E-50-N before the 80s, and isotropic co-occurrence with lesser extent afterwards. In the533

Central Sahel, a change is also found in the 80s but with opposite consequences. Ellipses534

of co-occurrence show a greater extent after the 80s, while anisotropy remains in the E-W535

direction over the whole period.536

These contrasts raise several questions about the evolution of extreme precipitation537

systems. In the Sahel, most of the rainfall is produced by Mesoscale Convective Systems538

(MCSs). MCSs are often organized in squall lines propagating from East to West. Under539

particular conditions, organized convective systems can be stationary (long-lasting sys-540

tems) and may produce large rainfall amounts over a particular location [Lafore et al.,541

2017; Vischel et al., 2017]. Local convection can also occur, but this generally produces542

less rainfall. We refer to Laurent et al. [1998] and Mathon et al. [2002] for a review of543

MCSs climatology in the Sahel.544

The observed evolution of the ellipses of co-occurrence in extremes can be inter-545

preted in light of a change in typology of extreme precipitation systems, assuming some546

link between the two of them. First, one can postulate that anisotropic ellipses correspond547

to propagative systems, while isotropic ellipses correspond to stationary systems, and that548

the more elongated the ellipses, the more propagative the system. Second, larger probabil-549

ities of concomitant extremes (larger minor axis and/or bigger ellipses) can be expected to550

come from bigger extreme rainfall systems.551

If these assumptions hold, then the increase in the size of the ellipses since the552

80s in the Central Sahel would be a consequence of more propagative and slightly big-553

ger MCSs. This is a plausible hypothesis since the more organized systems in this re-554

gion [Mesoscale Convective Complex, as defined by Mathon et al., 2002] have such spa-555

tial characteristics and are very rainy efficient [Laurent et al., 1998; Mathon et al., 2002].556

The way we interpret the changes in ellipse features is supported by the recent results of557

Taylor et al. [2017]. They show from Infra-Red (IR) satellite data (period 1982-2016) that558

the trend in extreme rainfall is associated with a significant increasing trend in the verti-559

cal development of the largest Sahelian MCSs, that are known to propagate faster, and to560

a smaller extent with a trend in their horizontal extension. This evolution of MCS features561
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is retrieved in Fig. 6 where the trend in the major axis of ellipses in the Central Sahel is562

more pronounced than the trend in their minor axis.563

Following the same reasoning in Senegal, the transition between anisotropic to isotropic564

ellipses could be the manifestation of (i) a transition between a large proportion of prop-565

agative systems to a large proportion of stationary systems, (ii) a more erratic propagative566

direction of systems, and/or (iii) more localized but intense convection.567

The reasons for such a contrasted evolution of extreme rainy system features be-568

tween Senegal and the Central Sahel still have to be determined. The main drivers of the569

rainfall intensification in the Sahel have been recently identified by Taylor et al. [2017].570

They incriminate the warming of the Saharan (in link to anthropogenic GHG emissions)571

since it intensifies convection within MCSs through increased wind shear and intrusion of572

the hot and dry Saharan air layer at the mid-troposphere. These factors tend to decrease573

the occurrence of small and localized systems (due to higher convective energy barriers574

initiating convection) but favor higher development and stronger storms once convection575

is initiated. While these processes support our results in the Central Sahel, they do not576

directly explain why storm properties evolved differently in the Western Sahel. Lebel and577

Ali [2009] have pointed out the presence of an East-West contrast over the period 1990-578

2007 with a Western Sahel remaining dryer than the Central Sahel for which a relative579

increase of mean annual rainfall was observed. This zonal rainfall dipole is also a consis-580

tent pattern in GCM rainfall projections [Monerie et al., 2012; Gaetani et al., 2017] and is581

expected to accentuate over the 21st century [James et al., 2015]. The warming of the Sa-582

hara is also thought to be responsible for this contrast especially through the enhancement583

of the Saharan Heat Low activity which simultaneously favors air subsidence in the West584

- preventing deep moist convection - and accentuates monsoon fluxes in the Central Sahel585

[Monerie et al., 2012; James et al., 2015; Lavaysse et al., 2015].586

However the way these changes in monsoon circulation might affect extreme rainy587

systems properties differently in the West and the Central Sahel remains an open question.588

In addition to these synoptic features, more local processes due to land-ocean interface589

can also not be excluded to have an influence on storm development and propagation.590

While the main objective of the present paper was to apply a modern statistical591

frameworks to characterize the extreme rainfall co-occurrence, the way we interpret the592

results in light of changes in storm features and atmospheric environment calls for further593
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research. Next work will be to use other datasets from which MCS properties can be in-594

ferred to confirm the contrasted trends in MCS properties in Senegal and Central Sahel.595

To that end, the direct analysis of brightness temperature from IR satellite data as in Tay-596

lor et al. [2017] or the analysis of IR-derived MCS tracking products [as those proposed597

by Fiolleau and Roca, 2013] might be considered. Further work is also required to better598

understand the atmospheric mechanisms responsible for the contrasted changes in storms599

properties. A first option to that end is to make an analytic approach similar to that pro-600

posed by Taylor et al. [2017], including the analysis of regional contrasts in storms proper-601

ties within the Sahel. A second possibility is to extend the case studies of extreme events602

such as Lafore et al. [2017] and Vischel et al. [2017] in Ouagadougou to other locations in603

the Sahel [see e.g. Engel et al., 2017]. Atmospheric simulation experiments, in particular604

high-resolution convection-permitting simulations, could also be very helpful to find some605

physical explanations of the observed trends in the co-occurrence of extremes.606
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