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Abstract—This paper deals with a new adaptive step-size
overlay dedicated to Least Mean-Square (LMS) algorithms for
noise cancellation with reference. LMS algorithms are often used
in real-time estimations due to their robustness and simplicity,
and are guided by their constant step size. Their transient
and asymptotic performances are both linked to the step size,
which leads to the well-known trade-off between speed and
accuracy. In this paper, we propose a LMS algorithm with a
new self-adaptive overlay based on a Multiplicative Update with
Forgetting Factor (LMS-MUFF). The adaptive overlay improves
the speed and the reactivity of the algorithm. In order to tune the
algorithm parameters, we express the scalar case semi-analytical
relationship between the LMS-MUFF parameters and a false-
alarm probability, as defined from unwanted variations in the
step-size during the asymptotic mode. We compare our method to
reference methods in the literature and show that it offers better
speed and reactivity with the same asymptotic performance.

Index Terms—least mean-square algorithms; adaptive noise
cancellation algorithms; self-adaptive step size; steepest descent
algorithms.

I. INTRODUCTION

The least mean-square (LMS) algorithm [1], [2] is often
used in adaptive signal processing due to its robustness and
its low complexity. Thus, in various fields, noise-reduction
algorithms that exploit knowledge of the polluters with a
natural or synthesized reference [3], [4], [5] and equalization
algorithms [6], [7], [8] are often based on LMS. Recently,
LMS algorithms have been extensively used for cancellation
of self-interference in radio frequency transceivers, where
low complexity and exploitation of polluter knowledge are
mandatory [9], [10], [11]. Basically, the algorithm consists in
estimating the coefficients of the channel between a reference
(linked to the polluter) and the observation in order to subtract
to the observation the reference filtered by the estimated
channel. The LMS algorithm is parameterized by its step size,
and many studies have investigated the relationships between
step size and performance and the trade-off between the speed
of the algorithm and its accuracy, especially when the channel
to estimate is time varying [12], [13]. In such a case, the
performance can be expressed through the sum of a static
term, relative to the influence of the additive noise, and a
dynamic term, linked to the time variation of the channel. This
leads to an optimal step size, which is related to the minimal
mean squared error (MSE) that offers the best asymptotic
performance [14], [15], [4], [5].

However, most of the state-of-the-art studies have focused
on the asymptotic performance (and the design of the optimal
step size), where the algorithm has to track the time-varying
channel, and not on the transient performance that is related
to the convergence mode. The transient performance has a
fundamental role for the original convergence mode (i.e., at the

very beginning of the process) and when the algorithm faces
sudden reconfiguration (i.e., when the time-varying channel to
be estimated is affected by a sudden change in its model).

To improve the efficiency of the transient behavior of the
LMS algorithm, many solutions have exploited self-adaptive
step size, where the constant step size of the steepest descent is
replaced by a variable step size that is tuned according to some
criterion that provides a measure of the adaptation process
state. The objective is to have a large step size value during
the convergence mode, and a small but well-suited value after
convergence (i.e closed to the optimal step-size) [16]. The
step-size update can be additive or sometimes multiplicative,
and the criteria can be based on counting passages through
zero (i.e., on sign changes) [17], [18], on square instantaneous
error measures [19], [20], or on other statistics that are based
on the filtering of the output of the algorithm [21], [7], [22],
[23], [24]. Most of these algorithms also limit the step-size
evolution, with a maximal value to ensure convergence, and
a minimal value (which is strictly positive in the case of
multiplicative updates) to conserve reactivity [25], [26]. These
methods often offer very good initial convergence speed, but
can suffer from a trade-off between a desired reactivity (in the
case of reconfigurations) and obtained MSE after convergence.
This trade-off can be embodied by introducing the False Alarm
Probability (FAP), defined as the probability for the step to quit
its minimal value in asymptotic mode. Monitoring the FAP is
matter of importance as false alarms lead to excess MSE, and
thus loss of performance. This is particularly the case with
additive updates such that the return time (i.e., the time for
the step to re-converge after a reconfiguration to its minimal
value, which is regarded as an equilibrium) is longer than with
multiplicative updates [27].

In this paper, we propose a new adaptive-step process for the
LMS algorithm that can cope with reconfigurations and leads
to a predictable asymptotic performance, as the step rapidly
converges to its minimal limits. The Multiplicative Update
with a Forgetting Factor (MUFF) leads to a small number of
false alarms and a short return time. We show the benefits of
the proposed methods by comparing the MUFF approach with
respect to state of the art algorithms in terms of performance
and complexity. The model and the LMS-MUFF algorithm
are presented in section II. The discussion about the choice
of the charge function and the relationship between the FAP
and the parameters in the scalar case are discussed in section
III. Simulations and comparisons with the classical methods in
the literature are presented in section IV. Section V eventually
draws some conclusions.
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Fig. 1. Noise cancellation structure based on the LMS algorithm.

II. THE LMS-MUFF ALGORITHM

We consider a classical noise reduction context, where the
observed complex signal d(n) is expressed as:

d(n) =WT
opt(n)U(n) + x(n) , (1)

where U(n) is the noise reference input sliding vector with
size L ≥ 1, and x(n) is the desired signal modeled as a white
additive complex circular noise of variance σ2

x. WT
opt(n) is

assumed to be a Wide Sense Stationnary (WSS) time-varying
optimal weight vector (of size L) that models the finite impulse
response of the channel between reference and observation
between two reconfigurations. In noise cancellation problems,
which are recalled in Figure 1, the input vector U(n) is
known. The (optimal) weight vector WT

opt(n) is unknown but
is adaptively estimated by the L-size weight vector W (n) by
minimizing the instantaneous MSE |e(n)|2, which leads to the
well-known complex LMS algorithm [2]:

e(n) = d(n)−WT (n)U(n) (2)
W (n+ 1) = W (n) + µnU

∗(n)e(n) , (3)

where the real positive coefficient µn is the adaptive step size.
The proposed update for the adaptive step size is a MUFF,

and it can be expressed as follows:

µn+1 = [µn (γ + ε||G(n)||1)]
µmax

µmin
, (4)

where 0 < γ < 1 is the forgetting factor, ε > 0 is a scale
factor, ||G(n)||

1
=
∑L
i=1 |Gi(n)| is the L1 norm, and [•]µmax

µmin

means that the step value is bounded between a maximal value
µmax and a minimal value µmin, for the reasons explained in
I. G(n) is a charge vector that is defined as:

G(n) =
∂W (n)

∂µ
. (5)

and can be recursively expressed as:

G(n+ 1) = [1− µnUH(n)U(n)]G(n) + U∗(n)e(n) (6)

The chosen charge vector, G(n), offers good properties: in
asymptotic mode its norm is low, and when the system faces
reconfigurations, its norm increases. It can be noted that
the LMS-MUFF algorithm is similar to the variable step
size (VSS) algorithm [19] and the modified VSS (MVSS)
algorithm, as described by [22], whereby the differences lie in
the step update and the expression of the charge vector used
to update the step size.
If the optimal weight vector is WSS time varying, the asymp-
totic performance is composed of a static term (relative to
the variance of x(n)) and a dynamic term (relative to the
time variations of the optimal weight). The trade-off between
these terms is characterized by an optimal step size of µopt

that provides minimal asymptotic error variance [5], [11]. In
practice, the minimal step size µmin must be set to have
µmin ≈ µopt.

III. ALGORITHM PARAMETERS AND FALSE-ALARM
PROBABILITY

A. The principle of MUFF

From Equation (4), the step update can be viewed as the
product between the current step µn and K(n), which is
expressed as:

K(n) = γ + ε||G(n)||
1

(7)

The step update is parameterized by γ and ε. γ controls
the return time to equilibrium, as the step-size update is a
multiplicative one. And ε has to be chosen for the desired
false alarm, as it normalizes the impact of the charge vector
norm on the step-size update. The principle of the MUFF is:

• During transient mode, we expect K(n) > 1, due to
the derivative in (5) implying that G(n) has a large
value. The step size increases, which leads to more rapid
convergence. The stability of the LMS-MUFF is ensured
by the upper limit µmax[25].

• After convergence, in asymptotic mode, G(n) is expected
to reach very weak values, which leads to ε · |G(n)| <
1 − γ. As a consequence, K(n) becomes < 1 and the
step size decreases. As the step is bounded by µmin, it
will converge to this minimal value.

The main difference between our method and the classical
methods in the literature is shown by the MUFF. In conver-
gence mode, as the step size decreases and is bounded by a
minimal value, it converges to µmin and remains at µmin, while
ε·||G(n)||

1
is lower than 1−γ. This intrinsic threshold implies

that the asymptotic performance of the MUFF algorithm is the
same as the asymptotic performance of a constant-step-size
LMS parameterized by µmin. It is however mandatory to use
a ε that limits the number of false alarms in asymptotic mode,
that occur when K(n) > 1 (that leads to µn > µmin). We
denote pFA as the FAP, which is defined as:

pFA = Pr (K > 1) (8)

pFA = Pr

(
|G| > 1− γ

ε

)
. (9)

B. Relationship between ε and false-alarm probability in the
scalar case

We assume L = 1 with an uncorrelated zero mean input,
u(n). The charge function, G(n), can be approximated as a
complex Gaussian process as Equation (6) can be approxi-
mately described as an auto-regressive model with zero mean
state noise input, e(n)u∗(n). As a consequence, K(n) is
a function of |G(n)|, which has a Rayleigh distribution of
parameter σG/

√
2, with σ2

G as the variance of the complex
Gaussian process G(n).

its cumulative density function (CDF) is expressed as:

F (ρ, σG/
√
2) = 1− e

− ρ2

σ2
G . (10)

For a given γ and a desired FAP, the maximal acceptable ε,
denoted εmax, is expressed as:

pFA = 1− F
(

1−γ
εmax

, σG/
√
2
)

⇐⇒ εmax = 1−γ√
−σ2

Gln(pFA)
. (11)



IV. SIMULATIONS

The relationship between FAP and ε is further analyzed
through simulations, and the performance of the proposed
algorithm is compared to the classical methods in the
literature.

A. Charge function and false alarm in scalar case

1) Cumulative density function of G(n): we first consider
a scalar case, where the optimal weight Wopt is a constant
complex coefficient. The input u(n) is assumed to be an
uncorrelated unitary variance process, and the observation
signal follows Equation (1) with an additive white Gaussian
signal x(n) of unitary variance (σ2

x = 1). Figure 2 shows the
theoretical and simulated CDF of the real part and the modulus
of G(n) defined in Equation (1). The first is compared to
a Gaussian CDF with variance σ2

G/2, and the second to
a Rayleigh distribution with parameter σG/

√
2, where σ2

G

is obtained by numerical identification through Monte-Carlo
simulations. In both cases, the theory is supported by the
simulation.
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Fig. 2. Left: comparison between simulated CDF of <{G(n)} and a
theoretical Gaussian CDF of variance σ2

G/2. Right: comparison between
simulated CDF of |G(n)| and a Rayleigh CDF of parameter σG/

√
2.

2) Link between empirical charge function variance, LMS
step size and signal variance: we show the relationship
between the charge function variance σ2

G, the LMS minimal
step size µmin and the signal variance σ2

x on Figure 3. For
this, we use different values for the step size and the signal
variance and evaluate the simulated charge function variance
σ2
G. Besides, in order to stress out the dependence between

these 3 parameters, we also plot the curve H(σ2
x, µmin) =

σ2
x/(4 × µmin). It is shown that in the scalar case, we can

approximate σ2
G by H(σ2

x, µmin). It can help in practical cases
in order to find an appropriate value of ε for the MUFF overlay.

3) False-alarm probability in scalar case: For different
values of γ, Figure 4 shows the simulated FAP that is obtained
for different desired false-alarm values. For each desired FAP,
ε is obtained with Equation (11). The charge function variance
is approximated by σ2

x/(4µmin). We have set σ2
x = 1 and

µmin = 10−3. We see that theory and simulations are in
agreement. This also shows that a certain level of false alarms
can be maintained with an adequate ε through Equation (11).

4) Methodology for algorithm parameters specification:
The LMS-MUFF algorithm depends on different parame-
ters linked to the MUFF update or the desired behaviour:
(γ, ε, µmin, pFA). However, some of these parameters are re-
lated one to each other and we propose in this section a simple
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Fig. 4. Desired and obtained FAP for different values of γ and with ε
parameterized with Equation (11)

methodology to obtain a complete parametrization in the scalar
case:

• The forgetting factor γ should be set to a value close to
1 and pilots the return time to equilibrium. A classical
choice in the literature for forgetting factors is 0.99 [5].

• The minimal step size µmin is chosen to ensure a targeted
asymptotic performance (or targeted MSE) for a constant
step LMS. The link between the step size and the
asymptotic performance is model dependent (see [11] for
an example of MSE that is expressed with a time-varying
model for LMS-based noise-cancellation problems). If the
model is static (or slowly time varying); the MSE can be
approximated as µminσ

2
xσ

2
u/2 (with σ2

u the variance of
the input vector) [28].

• For a given pFA; ε is then deduced from the afore-
mentioned choices (using Equation (11)) as the charge
function variance can be approximated in the scalar case
as σ2

G ≈ σ2
x/(4µmin).

From the key aforementioned parameters (γ, µmin, pFA),
the first one γ is a constant easy to tune and the second
parameter µmin is chosen in the same way as with a constant
step approach. Hence; the proposed overlay only relies on one
key design parameter; the false alarm probability pFA.



Additions Multiplications

LMS 2L + 10 8L

VSS 2L + 16 8L + 4

MVSS 2L + 18 8L + 11

MMSD - NLMS 5L + 3 14 L + 2

LMS-MUFF 9L + 18 13L + 5

TABLE I
COMPLEXITY COMPARISON (REAL ADDITIONS AND REAL

MULTIPLICATIONS) BETWEEN METHODS

B. Comparison with the methods from the literature (multi-tap
case)

We now compare our method with three methods from the
literature: the VSS presented in [19], the MVSS presented in
[22] and the MMSD-NLMS presented in [20]. For this, we use
the same simulation case and the same algorithm parameters
as in [22]: WT

opt is a time-invariant moving-average model
with four taps, U(n) is a zero-mean white Gaussian reference
with unitary variance, and x(n) is the desired signal of unitary
variance (σ2

x = 1). The estimation is performed with a LMS
algorithm with L = 4. Also, to test the reactivity of the
different methods, a reconfiguration is applied at the middle of
the simulation (i.e., a sudden variation of the optimal weight
vector).

To have an asymptotic MSE of approximatively −31 dB, as
in [22], we chose µ = 3.5 · 10−4, for constant-step LMS. For
the MUFF algorithm, we chose µmin = 3.5·10−4 (same as the
constant-step LMS), γ = 0.99, and ε = 10−5. As specified in
[22], for the VSS algorithm, we chose α = 0.97, β = 0.99,
and γ = 10−3. We also computed the MVSS algorithm [22]
with γ = 10−2, to have a more rapid transient performance.
For the MMSD-NLMS algorithm [20], we use α = 0.99,
µmax = 0.1, and C = 10 to have the same asymptotic
performance as the constant step LMS.

Figure 5 shows the evolution of the MSE (expressed in
dB). It is shown that, as expected, our method offers the
same asymptotic performance as a classical constant step-size
LMS, but with a faster convergence mode. The asymptotic
performance of the proposed method is thus equal to the
performance of a constant-step LMS, with constant step to
minimal value µmin. In configuration γ = 10−2 for MVSS, the
literature method is as fast as the LMS-MUFF, but it does not
reach the same asymptotic level. However, when algorithms
from the literature are tuned to provide the same asymptotic
performance as constant-step LMS, the LMS-MUFF offers
better transient performance. The proposed method thus offers
a better trade-off between speed and accuracy both for initial
convergence and after a reconfiguration.

C. Complexity

In Table I, we assess the computational complexity for the
aforementioned methods with respect to the number of LMS
taps L. Complexity is assessed in terms of real additions and
real multiplications. We assume that a complex multiplication
can be carried out using three real multiplications and four
real additions[29].

The lower complexity increases (w.r.t LMS with constant
step) is obtained with VSS algorithm. This algorithm also
offers the lower reactivity in case of a reconfiguration (see
Figure 5). One can see a difference in terms of complexity
increase between VSS and MVSS in one hand and MMSD-
NLMS and LMS-MUFF at the other hand. For the former, the
step-size updates only use the output of the LMS algorithm
({e(n)} for VSS algorithm and {e(n), e(n − 1)} for MVSS
algorithm). For the latter, the step-size updates are computed
with the use of the entire reference vector. This is done through
the use of a charge function (denoted as p̂ in [20] and as G(n)
in our paper). This allows a better behaviour as demonstrated
in Figure 5. Among the compared methods, LMS-MUFF
offers an interesting trade-off between performance (best re-
activity and good asymptotic performance) and complexity
management (comparable overhead as MMSD-NLMS).

V. CONCLUSIONS

This study focuses on a new adaptive step-size LMS al-
gorithm, which is based on a multiplicative update with for-
getting factor (the LMS-MUFF). LMS algorithms are guided
by their step size, which leads to a trade-off between the
speed and asymptotic final excess mean squared error. We have
proposed a new variable step-size overlay, which is bounded
by a minimal step, and which offers the same asymptotic
performance as a constant-step LMS (with a constant step to
the minimal value) but with a more rapid convergence mode,
and a strong ability to cope with sudden reconfigurations. In
the scalar case, we have derived the semi-analytical relation-
ship between the LMS-MUFF parameters and the false alarm
probability, and we have compared our method with classical
methods from the literature. It shows that, when tuned to have
comparable asymptotic performance, our method offers better
speed and reactivity.
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