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Two different O-protected catechol diazonium salts were synthetized and reacted with microporous
Norit-S50 carbon to investigate the impact of the protecting group on the electrochemical performances
of supercapacitor electrodes in 1MH2SO4. Carbon products were characterized by thermal gravimetric
analysis (TGA), X-ray photoelectron spectroscopy (XPS) experiments and nitrogen gas adsorption-
desorption measurements to investigate the film composition, as well as the impact of the grafting on
the textural properties of the Norit-S50. Supercapacitor electrodes, prepared from carbon products, were
studied by cyclic voltammetry at different scan rates and by galvanostatic charge/discharge experiments
after deprotection of catechol-attached groups. It was found that the specific charge was improved by
introducing catechol groups under protected forms and that the potential at which the redox reaction
occurred depends on the protecting group used. With bulky triisopropylsilyl protecting groups, the
formal potential of catechol-attached moieties shifted in the positive direction by about 300mV, yielding
an energy gain significantly increased, compared to the same charge stored in the level of catechol
groups introduced with methyl protecting groups. 1100 repetitive charge/discharge curves at 1 A g�1

were achieved to study the stability of supercapacitors electrodes. Results obtained were tentatively
explained in terms of the porous structure of the carbon.
1. Introduction

Faradaic-based systems for pseudosupercapacitors are touted
for their charge storage and power potentialities, promoted by a
reversible surface redox reaction [1,2]. In particular, carbon elec-
trodes grafted with small redox molecules have been proposed to
increase capacitance beyond the double-layer charge storage pro-
cess, while avoiding the release of molecules towards liquid elec-
trolytes [3e16]. Despite a growing interest in this field, these
carbon-molecules hybrid systems suffer from a low energy den-
sity delivery at the discharge, due to the redox potential often
located far away from the electrochemical stability limits of the
liquid electrolytes. In contrast to capacitive systems, the design of
faradaic materials at a molecular scale is a promising direction to
tackle this issue. A proper selection of electroactive molecules al-
lows maximizing the energy stored in the system by positioning
their formal potential near to the low or high limit of the potential
window, because the energy increases with the square of the
voltage. This is especially true for dual-redox asymmetric systems
where both positive and negative electrodes are modified, because
the electrochemical storage at the level of molecules ideally should
occurs with high voltage swings [17e20]. Different approaches
have been developed to predict the formal potential of molecules
and identify promising candidates for storage applications [21e24].
It was found that addition of aromatic rings, electron-donating or
electron-withdrawing groups and heteroatoms have an impact on
the formal potential of redox molecules. However, the preparation
of selected molecules is rapidly becoming expensive and time
consuming. Importantly, it is well-known that the location of the
peak potential in cyclic voltammetry depends also on the relative
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strength of the adsorption of oxidized and reduced forms of redox
molecules. Accordingly, when an electroactive molecule is grafted
on porous carbons, a strong anisotropy in surface reactivity con-
tributes to the characteristic multi-peak cyclic voltammograms
[18,25]. In the literature, such splitting of the peak potential is often
attributed to the presence of different energetically favorable
binding surface sites due to the presence of different chemical
surface functionalities or structural defects, especially for the
catechol unit that is expected to diffuse into the pores [26e30]. In
the cyclic voltammograms of catechol-modified porous carbon
electrodes, two major pairs of symmetric peaks typically separated
by about 200mV are generally obtained [28e30]. In these studies,
the first reversible electrochemical system at lowest potentials was
attributed tomolecules introducedwithin themicroporous surface,
while the reversible system shifted in the positive direction cor-
responds to molecules located outside of the microporosity. By
assuming that it could be possible to selectively introduce mole-
cules on the external surface, this splintering of the peak potential
could be a simple and universal remedial solution to the limitations
of energy density for supercapacitors, especially in aqueous elec-
trolytes where the electrochemical stability potential window is
limited.

Here, we propose to prevent molecules from entering into the
micropore structure of the carbon by increasing the relative size of
catechol moieties with encumbering substituents, in order to
obtain a redox material modified only on the outer surface where
molecules are redox active at the higher potential after depro-
tection. This protection/deprotection strategy will be illustrated
with methyl and silyl protective groups due to their facile electro-
chemical deprotection [9,31]. Catechol derivatives were immobi-
lized on the microporous Norit carbon by spontaneous reaction
with the corresponding diazonium salts and carbon products were
characterized by TGA analysis, XPS experiments and nitrogen gas
adsorption-desorption measurements in order to provide infor-
mation about the film composition, as well as the impact of the
grafting on the textural properties of the porous carbon. Super-
capacitor electrodes prepared from carbon products were studied
by cyclic voltammetry and galvanostatic charge/discharge experi-
ments in aqueous electrolyte in order to study the impact of the
protecting group on their performances.

2. Experimental

2.1. Reagents and surfaces

3,4-dimethoxyaniline (98%) was purchased from Alfa Aesar, 4-
Scheme 1. General procedure for th
nitrocatechol (97%), triisopropylsilyl chloride (97%), boron tri-
fluoride etherate (�46% BF3 basis) and boron tribromide (�99.99%)
from Aldrich, imidazole (�95%) from Fluka and tert-butylnitrite
(90%) was received from ACROS. Tetrabutylammonium hexa-
fluorophosphate (Aldrich) and acetonitrile (HPLC grade, Carlo Erba)
were used as received. Carbon powder (Norit-S50) was obtained
from Norit. Glassy carbon (GC) electrodes from Bioanalytical Sys-
tems Inc. (model MF-2012; 3mm in diameter) were used for cyclic
voltammetry.

2.2. Synthesis of aryldiazonium salts

The general procedure for the synthesis of aryldiazonium salts is
described in Scheme 1 and follows synthetic routes previously
published [32,33].

3,4-dimethoxybenzenediazonium tetrafluoroborate (1). Boron
trifluoride etherate (9.79mmol, 1.5 equiv.) was added to a solution
of 3,4-dimethoxyaniline (6.53mmol, 1 equiv.) in 20mL of THF at an
ice bath temperature. After 5min stirring, tert-butylnitrite
(7.83mmol, 1.2 equiv.) was added drop wise at 0 �C. After 15min
stirring, the precipitated was filtered and washed with diethyl
ether to afford the diazonium salt in 90% yield as a black powder.

1H NMR (300MHz, (CD3)2CO, TMS): d¼ 8.55 (dd, 3J
(H,H)¼ 9.1 Hz, 4J (H,H)¼ 2.5 Hz, 1 H), 8.22 (d, 4J (H,H)¼ 2.5 Hz, 1 H),
7.56 (d, 3J (H,H)¼ 9.0 Hz, 1H), 4.17 (s, 3H), 3.99 (s, 3H). 13C NMR
(100MHz, (CD3)2CO): d¼ 161.7, 151.2, 131.9, 114.4, 113.4, 103.2, 57.8,
57.3.

3,4-dihydroxybenzenediazonium tetrafluoroborate (2). 3,4-
dimethoxybenzenediazonium tetrafluoroborate (1) (1mmol, 1
equiv), was dissolved in 3mL of toluene under argon atmosphere.
Then 1M boron tribromide in CH2Cl2 (3mmol, 3 equiv) was slowly
added at room temperature to the solution and the mixture was
stirred for 1 h at 40 �C. After cooling, MeOH (1mL) was added. After
5min stirring, the mixture was concentrated under reduced pres-
sure to give a dark residue, which was recrystallized from meth-
anol/ether. The product was obtained in 84% yield as a brown
powder.

1H NMR (300MHz, D2O, TMS): d¼ 8.06 (dd, 3J (H,H)¼ 9.0 Hz, 4J
(H,H)¼ 2.6 Hz, 1 H), 7.79 (d, 4J (H,H)¼ 2.6 Hz, 1 H), 7.18 (d, 3J
(H,H)¼ 9.0 Hz, 1H). 13C NMR (100MHz, (CD3)2CO): d¼ 161.9, 148.9,
130.7, 118.9, 117.3, 100.1.

3,4-bis((triisopropylsilyl)oxy)benzenediazonium tetra-
fluoroborate (3). A solution of 4-nitrocatechol (7.48 g, 1 equiv.),
triisopropylsilyl chloride (18.67mmol, 2.5 equiv.), imidazole
(19.10mmol, 2.55 equiv.) and dimethylaminopyridine (DMAP;
0.67mmol, 0.1 equiv.) in DMF (36mL) was stirred at room
e synthesis of diazonium salts.



temperature for 16 h. The reaction solution was poured into water
(50mL) and extracted with EtOAc (2� 50mL). The organic layers
were combined and washed with water (2� 50mL), dried over
Na2SO4, filtered and concentrated under vacuum to an orange oil.
The crude reaction mixture was purified via SiO2 chromatography
(gradient 0e10% EtOAc in hexane) to afford the triisopropylsilyl
protected nitrocatechol as a pale yellow solid in 86% yield. A sus-
pension of triisopropylsilyl protected nitrocatechol (5.99mmol, 1
equiv.) and 10% palladium on carbon (0.64 g, 0.60mmol) in ethanol
(40mL) was evacuated and flushed with hydrogen gas (1 atm). The
suspension was stirred under nitrogen atmosphere for 24 h at
40 �C. The reactionmixturewas then evacuated, flushed with argon
and then filtered through celite (50 g) with dichloromethane
(200mL). The filtrate was concentrated under vacuum and the
resulting crude oil was purified via SiO2 with dichloromethane to
afford compound 3 in 75% yield as a yellow solid. 1H NMR
(300MHz, (CD3)2CO, TMS): d¼ 7.45 (d, 3J (H,H)¼ 9.0 Hz, 1 H), 6.96
(d, 3J (H,H)¼ 9.0 Hz, 1 H), 6.13 (s, 1 H), 1.31 (m, 36 H). 13C NMR
(75MHz, CDCl3): d¼ 162.4, 145.8, 130.9, 120.3, 118.4, 99.2, 17.2, 11.7.

2.3. Chemical modification of glassy carbon and activated carbon

Before modification, glassy carbon electrodes were polished
using 0.04 mm alumina and next, sonicated in water and acetoni-
trile. Glassy carbon working electrodes were electrochemically
modified in 1 mM acetonitrile solutions of diazonium salts þ0.1 M
Bu4NPF6 by recording 10 successive cyclic voltammograms (CVs)
from 0 V to �0.7 V vs. Ag/AgNO3 at 100mV s�1. After sonication in
acetonitrile and water, modified electrodes were studied by cyclic
voltammetry at 100mV s�1 in 0.1MH2SO4. In aqueous electrolyte,
the electrode potential is referred to the Ag/AgCl system.

For the modification of the carbon powder, 400mg of carbon
Norit-S50 (NS) was dispersed in 50mL of acetonitrile by sonication
for 30min and then 1.67mmol (0.05 equivalent versus carbon) of
diazonium salts was added. After stirring at room temperature for
5 h, the reaction mixture was vacuum filtered on a Teflon filtration
membrane (from Sartorius Stedim) having a pore size diameter of
0.2 mm Carbon products obtained were thoroughly washed twice
with acetonitrile (100mL), DMF (100mL), methanol (100mL) and
acetone (100mL), before to be dried overnight at 80 �C.

2.4. Preparation of supercapacitors electrodes

Supercapacitors electrodes were prepared by mixing the active
material with polytetrafluoroethylene (PTFE, 60wt% dispersion in
water) used as binder and carbon black (superior graphite) used as
conducting additive with a ratio of 75:10:15 (wt; wt; wt) in a small
volume of ethanol until a homogeneous carbon pastewas obtained.
The carbon paste was spread to obtain a thin film which was dried
at 80 �C for 1 h. A sample of somemilligrams was pressed for 60 s at
1MPa between two stainless steel grids (80 mesh, 0.127mm, Alfa
Aesar) used as current collector.

2.5. Instrumentation

Electrochemical measurements were achieved at room tem-
perature in a three-electrode cell connected to a potentiostat/gal-
vanostat model VSP (from Bio-Logic) monitored by ECLab software.
XPS measurements were performed with a Kratos Axis Ultra
spectrometer using a Al Ka monochromatic beam working at
1486.6 eV. All spectra were recorded in the constant energy mode
at a pass energy of 20 eV. Data treatment was performed with
CasaXPS software and all spectra were calibrated taking 284.5 eV
(graphite like carbon) as a reference binding energy. Porosity
characteristics were calculated from nitrogen sorption isotherms
measured at 77 K using a Micromeritics ASAP 2020 porosimeter.
The specific surface areawas estimated by using BET, while the pore
volumes and the pore size distributions were calculated from
adsorption isotherms by using the QSDFT method. TGA analyses
were performed using a TA instruments (TGA Q500) apparatus by
heating 5mg typical masses of carbon products in nitrogen atmo-
sphere from 60 �C to 1200 �C at a rate of 10 �C/min. The tempera-
ture was maintained at 60 �C for 20min before the experiment
starts.

3. Results and discussion

3.1. Spontaneous grafting of the aryldiazonium salts on Norit S50

Fig. 1 shows XPS spectra of the C1s and N1s core levels for un-
modified and functionalized Norit carbon products.

Beside a main photoelectron peak at 284.5 eV that is assigned to
sp2 CeC bonds in graphite-like carbon, the C1s XPS spectra of
modified carbons show photoemission peaks at higher binding
energies, which are attributed to electron deficient carbon atoms.
C1s XPS spectra for the Norit carbon modified with the 3,4-
dihydroxybenzenediazonium salt and the 3,4-
dimethoxybenzenediazonium salt correlate well with two contri-
butions at around 286 eV and 287 eV in addition to the reference
peak at 284.5 eV. The peak at 286 eV can be assigned to the CeOH
and CeOeC contributions depending on whether catechol or
dimethoxybenzene units were introduced [16,34,35]. The peak at
287 eV might originate from carbonyl functionalities present at the
surface of the pristine Norit carbon or can provide from partial
oxidation of catechol groups [35]. For the Norit carbon modified
with the 3,4-bis((triisopropylsilyl)oxy)benzenediazonium salt, two
additional contributions were obtained at 283.5 eV and 285.3 eV,
which can be attributed to the CeSi bond and sp3-hybridized car-
bons providing to the silyl protecting groups [36]. A peak at
101.5 eV in the XPS spectrum of the Si2p core level also provides
evidence of the introduction of bis((triisopropylsilyl)oxy)benzene
units (Fig. S1) [37].

The N1s core-level spectra show nitrogen contributions over a
wide range of binding energy, corresponding to nitrogen species in
high and low oxidation states. Note that the unmodified carbon
does not show any nitrogen peaks, confirming that the pristine
carbon does not contain detectable nitrogen species. The presence
of N1s emission for carbons modified with diazonium salts that do
not bear any nitrogen-containing substituent, is frequently re-
ported in literature, proving that the dediazoniation step is
uncomplete during the grafting process [38]. The peak at around
400 eV has been assigned to diazenyl groups resulting to the elec-
trophilic attack of the diazonium cation on the carbon surface or on
the phenyl ring of previously attached molecules [38e40]. At
399 eV and 402 eV, two additional peaks were detected, which can
be attributed to physisorbed ACN and DMF molecules used as
rinsing solvents [41]. At higher binding energies, the presence of
two peaks at 404.8 eV and 406.4 eV with an area ratio of 1:1 is
characteristic of diazonium groups [42e44]. The peak at the high-
est binding energy is assigned by Finn and Jolly to the nitrogen
atom directly attached to the phenyl group in the diazonium salt
[44]. These peaks may be assigned to strongly physisorbed diazo-
nium salts, forming complexes with aromatic structures [45]. This
explanation is well supported by the presence of F1s and B1s peaks
in the wide XPS survey spectrum of the Norit carbon modified with
the 3,4-bis((triisopropylsilyl)oxy)benzenediazonium tetra-
fluoroborate (Fig. S2).

Importantly, with the silyl protecting groups, the N1s peak
attributed to azo-bonds became prominent compared to the other
carbon products. This is possibly due to a more efficient formation



Fig. 1. XPS spectra of C1s and N1s core levels for unmodified (a) and modified Norit carbon with 3,4-dihydroxybenzenediazonium salt (b), 3,4-dimethoxybenzenediazonium salt (c)
and 3,4-bis((triisopropylsilyl)oxy)benzenediazonium salt (d).
of azo-bonds with the 3,4-bis((triisopropylsilyl)oxy)benzenedia-
zonium salt. Nevertheless, this seems unlikely to be able to fully
account for the very marked differences in the N1s XPS spectra,
because the electrophilic attack of diazonium cations is mainly
governed by their electronic properties [46], which do not signifi-
cantly changewhen the oxygen atoms are protected withmethyl or
silyl groups. A more tenable explanation is that the molecules
protected with bulky silyl groups are selectively introduced on the
outer surface of the Norit carbon and become more “visible” by the
surface-sensitive XPS measurements [47].

3.2. Electrochemical behavior of modified Norit carbon electrodes

Fig. 2 shows CVs recorded in 1MH2SO4 on Norit carbon elec-
trodes spontaneously modified with the three diazonium salts
studied. Note that before study, the surface-attached molecules
were electrochemically deprotected by recording successive CVs in
1MH2SO4 up to 0.8 V until a stabilized CV was obtained [9]. In this
way, after deprotection, a catechol-tethered surface is obtained
whatever the diazonium salt used. However, the different locations
in potential of the electrochemical systems ascribed to the
attached-catechol moieties and their relative intensities, indicate a
possible effect of the protecting groups on the selectivity and the
efficiency of the surface grafting process.

CVs obtained shows two reversible systems separated by about
300mV, possibly due to catechol moieties in different chemical
environments. Nagaoka and Yoshino observed a similar complex
CV for the catechol adsorbed on an anodized GC electrode (the
anodic treatment creates microporosity) [28]. Authors conclude
that the more anodic reversible system corresponds to adsorption



of catechol on the outer surface, while the reversible system shifted
towards the negative direction arises from catechol adsorbed on
the micropore surface. Authors evoke a favorable p-p interaction
between catechol and graphite-like surface of glassy carbon
required to enter into the microporosity.

From our results, only the Norit carbon modified with the 3,4-
dihydroxybenzenediazonium salt give two well-defined revers-
ible systems of almost equal current intensity (Fig. 2a). After
modification with 3,4-dimethoxybenzenediazonium salt, the first
reversible system dominates (Fig. 2b), while mainly the second
system contributes to the faradaic envelope of the CV recordedwith
the Norit electrode modified with 3,4-bis((triisopropylsilyl)oxy)
benzenediazonium salt (Fig. 2c). These differences can be tenta-
tively explained in terms of the porous structure of the Norit carbon
if we assume that the pores diameter is too small for the O-pro-
tected catechol diazonium salt with bulky silyl groups, while
catechol and dimethoxybenzene derivatives can diffuse in the
porous structure.

The total specific charge (QT), determined by integrating the
area under the CVs presented in Fig. 2 and the faradaic contribution
(QF) of molecules to the charge storage, deduced by subtracting the
double-layer contribution (Qdl) of the carbon, are showed in Table 1
for all carbon products. In addition, determination of the molecule-
loading (GTGA) by TGA experiments in N2 atmosphere, gives access
to the faradaic efficiency of molecules by assuming that two elec-
trons per molecule were exchanged.

Despite QT is improved in all cases after modification, QF varies
in the order Norit-OTIPS>Norit-OME>Norit-OH, while the
molecular-loading shows the opposite, implying a better faradaic
efficiency of molecules for Norit-OTIPS. Note that the double-layer
of the Norit carbon is weakly impacted by the grafting whatever the
diazonium salt used. With Norit-OTIPS, the more important frac-
tion of molecules involved in the charge storage process is consis-
tent with an improved electrochemical accessibility of molecules,
while the important fraction of “silent” molecules with Norit-OH
and Norit-OMe can be considered as a “dead mass” due to their
isolation in the porous structures of the carbon. To verify this
assumption, CVs were recorded at different scan rates comprised
between 7mV s�1 and 150mV s�1. Fig. 3 shows the variation of the
total specific charge as a function of scan rate. For the unmodified
Norit electrode, a rapid increase of QT is noticeable at slow scan rate
(<20mV s�1), due to a larger fraction of the specific area accessible
to ions at this time scale. For supercapacitor electrodes prepared
fromNorit-OH and Norit-OMe, QT is less influenced by the scan rate
in the low scan rate domain, which is indicative of a poorer
accessibility of ions to the micropore surface. With the Norit-OTIPS,
the scan rate dependence of the total specific charge over the low
scan rate domain follows approximately the same trend that for the
unmodified Norit electrode, implying that no significant obstruc-
tion of porosity occurs during the chemical modification of the
carbon. By analogy, a previous work reported by Hapiot et al. may
provides guidance for interpretation of the scan rate effect on the
specific charge [48]. Authors have demonstrated that the use of
diazonium salts with functionalities protected by different-sized
groups allows to finely control the structure of a molecular as-
sembly at a surface, obtaining molecules spaced away from each
other with a gap created by the release of protecting groups.
Especially, the use of bulky protecting groups, such as triisopro-
pylsilyl groups, was found to increase the permeability of the
organic layer by creating diffusion channels in the layer after
deprotection. In our case, it can be assume that the use of triiso-
propylsilyl protecting groups improves the electrolyte penetrability
in the porous structure of the carbon by avoidingmolecules to enter
into the micropores of diameter less than the molecular size and by
restoring diffusion channel through the layer after deprotection.
However, there is not a clear consensus on which effect (i.e.,
textural effect or chemical effect) is responsible to the multi-peak
features of the CVs. Interestingly, when a glassy carbon electrode
polished to a mirror-like appearance was modified by electro-
chemical reduction in acetonitrile solutions containing the diazo-
nium salts studied, the grafting, which is assumed to occurred by
radical attack, produced in all cases a main reversible electro-
chemical system centered at 0.55 V vs. Ag/AgCl (Fig. S3), implying
that the porous interface could be responsible to the multi-peaks
system obtained with modified Norit electrodes. From the simi-
larities between the reversible system obtained with a perfectly flat
modified glassy carbon electrode and the second system observed
with modified Norit electrodes, it seems reasonable to propose that
this latter system can be ascribed to molecules grafted by radical
attack on the outer surface or at the micropores entrance. In this
way, a tenable explanation for the multi-peak CVs obtained with
modified Norit electrodes is that molecules introduced on the in-
ternal surface of the porous interface could be responsible for the
first reversible system. This explanation is reinforced by a recent
work of Downard et al. evoking the possibility of a spontaneous
grafting mechanism in two steps, including first the formation of a
primer organic layer on the surface by radical attack and second,
the further growth of this organic layer by reactionwith a solution-
generated reactive species [49]. If a similar mechanism operates in
this work, a process involving surface attack by radicals can account
for the spontaneous grafting reaction at short reaction times.

3.3. Impact of the chemical modification on the textural properties
of the Norit carbon

To investigate in detail the impact of the grafting on the textural
properties of the Norit carbon, nitrogen gas adsorption-desorption
measurements were achieved with unmodified and modified car-
bons (Fig. 4).

Before chemical modification, the adsorption branch of the
isotherm of the Norit carbon presents a net increase in the adsor-
bed volume at low relative pressure (P/P0) followed by a nearly
horizontal plateau in the intermediate and high P/P0 values, while
the desorption branch of the isotherm retraces nearly the same
path. Such N2 adsorption-desorption isotherms approach a
reversible type I isotherm, according to the IUPAC classification,
which is typical of a microporous structure [50]. After chemical
modification, the adsorption-desorption isotherms of the Norit
carbon show a net decrease in the adsorbed volume at low relative
pressure. The loss of adsorbed volume is becoming more pro-
nounced with protected molecules and increases in the order
Norit-OH<Norit-OMe<Norit-OTIPS. With unprotected catechol,
the BET specific surface area reduced from 1699m2 g�1 to
1349m2 g�1, while it reduced up to 1158m2 g�1 and 1113m2 g�1

with methyl and triisopropylsilyl protective groups, respectively.
These results demonstrate that the microporous surface is differ-
ently impacted by the grafting, depending on the molecular sizes.
Especially, a more important fraction of micropores is suppressed
as the molecular size increases, implying that the grafting mainly
blocks the microposity by a steric effect. For better understanding
the impact of the grafting on the carbon texture, isotherms were
further analyzed by determining the pore size distribution (Fig. 5).

Before chemical modification, the pore size distribution shows
that the Norit carbon has mainly micropores (<2 nm) with a small
fraction of mesopores between 2 and 2.5 nm. After grafting, the
pore size distribution in the micropores domain is differently
impacted according to the diazonium salt used, while the loss of the
mesopores volume is nearly the same. Such results support that the
microporosity is responsible to the complex CVs obtained with
modified Norit electrodes. Intriguingly, with the bulky silyl



Fig. 2. CVs recorded at 10mV s�1 in 1MH2SO4 with unmodified Norit carbon elec-
trode (curve in dotted line) and with Norit carbon electrodes modified with 3,4-
dihydroxybenzenediazonium salt (a), 3,4-dimethoxybenzenediazonium salt (b) and
3,4-bis((triisopropylsilyl)oxy)benzenediazonium salt (c). The current was normalized
with respect to the mass of active material (without organic binder and superior
graphite).
protecting groups, the larger micropores with 1.5e2 nm diameter
are less impacted by the chemical modification, compared to the
methyl protecting groups. Assuming that the accumulation of
molecules at the entrance of micropores is responsible to the loss of
the microporous volume, an increase in the size of molecules is
expected to favor such “constriction” phenomenon [51]. On the
contrary, for the mesopores, a progressive coverage of the inner
pore surface is expected to give a more progressive decrease of
their volume and so, mesopores are expected to be less sensitive to
the molecular size. To compare the affected pore region for the two
O-protected catechol carbon products, which give a different
location in potential for the main reversible system in cyclic vol-
tammetry, the inset of Fig. 5 presents the subtracted pore volume
distribution obtained by difference between the pore size distri-
bution for the bis((triisopropylsilyl)oxy)benzene and
dimethoxybenzene-modified Norit carbons. Assuming that the
accumulation of molecules at the pore entrance is preferred, there
is tentative evidence from the data in Fig. 5 that with pores having
diameters below 0.6 nm, both the dimethoxybenzene and the
bis((triisopropylsilyl)oxy)benzene units are large enough for
blocking pores by the grafting of a singlemolecule at their entrance,
while the grafting of silyl protected molecules more efficiently
blocks pores with 0.60e1.35 nm diameter. In contrast, pores with
diameter larger than 1.35 nm were found to be less obstructed by
the bis((triisopropylsilyl)oxy)benzene units, compared to the
dimethoxybenzene-modified Norit carbon. These changes fit well
with the molecular sizes regarded as the higher interatomic dis-
tance between the two protecting groups. Molecular sizes were
calculated by Chem3D and found to be 0.59 nm with the methyl
groups and 1.2 nm with the silyl groups. In Fig. 6, we propose to
normalize the pore size distribution of the Norit carbon by the
molecular size. With such normalized pore size distribution, it
appears that the Norit carbon has mainly pores with diameters less
than two times the size of bis((triisopropylsilyl)oxy)benzene units.

For pores with a diameter corresponding to the size of mole-
cules, accumulation of molecules at their entrance immediately
blocs their access to N2 adsorbate, while pores with normalized
diameter comprise between 1 and 2 remain accessible to the
adsorbate but do not allow the diffusion of molecules inside the
porosity. Only pores with normalized diameter more than 2, can be
accessed by molecules and can be possibly modified on their inner
surface. Such representation permits to rationalize results and
suggests that the porosity must be adapted to the molecular size.
With this approach, it would be expected that the 3,4-
bis((triisopropylsilyl)oxy)benzenediazonium salt mainly affects
the outer surface of the Norit carbon, while the 3,4-
dimethoxybenzenediazonium salt can have access to a part of the
micropore volume, which can be possibly reduced by a progressive
coverage of their inner surface. This explanation supports that the
different locations in potential of the reversible electrochemical
systems obtained in cyclic voltammetry are mainly due to a textural
effect and it was found that a higher energy corresponds to the
electric charge stored at the level of molecules grafted at the pores
entrance. In this way, this protection/deprotection strategy offers
the possibility of matching a more important energy to the faradaic
contribution of the electric charge storage by adjusting the mo-
lecular sizes to the textural properties of the carbon.

3.4. Impact of the protecting group on the energy density of
supercapacitors

In order to evaluate the benefit of the protecting groups on the
electrochemical performances of modified-carbon based super-
capacitors electrodes, galvanostatic charge/discharge experiments
were performed from 0 to 0.8 V at 1 A g�1. Fig. 7A presents the



Table 1
Electrochemical performances of supercapacitors electrodes deduced from CVs at 10mV s�1.

Carbon products QT (C g�1) Qdl (C g�1) QF (C g�1) GTGA (mol g�1) a Faradaic efficiency (%)

Norit 114.6 114.6 e e e

Norit-OH 127.1 105.8 21.3 0.00125 8.8
Norit-OMe 136.4 107.9 28.5 0.00078 19.0
Norit-OTIPS 148.9 103.3 45.6 0.00040 59.0

a The mass fraction of molecules is determined from the global weight loss at 700 �C.

Fig. 3. Evolution of the total specific charge as a function of scan rate for unmodified
and modified Norit carbons.

Fig. 4. Adsorption-desorption isotherms of nitrogen at 77 K for unmodified and
modified Norit carbons.

Fig. 5. Pore size distribution of unmodified and modified Norit carbons. The inset
shows the subtracted pore volume distribution obtained by difference between the
pore size distribution for the bis((triisopropylsilyl)oxy)benzene and
dimethoxybenzene-modified Norit carbons.
discharge curves and Fig. 7B shows the evolution of the total spe-
cific charge QT deduced to the charge/discharge curves at 1 A g�1

during the first 1100 cycles.
As I�Dt corresponds to the average specific charge, the increase

in charge/discharge time for modified carbons is indicative of an
increase in the global specific charge. After modification with
catechol derivatives a specific charge gain comprised between 20%
and 30% is obtained. Note that the two carbon products Norit-OH
and Norit-OMe give nearly the same increase in specific charge,
while the most significant improvement corresponds to Norit-
OTIPS, in good agreement with the CVs. Fig. 7B shows that, in all
cases, the specific charge slightly decrease during the first few
hundred cycles, due to the departure of just physisorbed molecules
from the surface to the liquid electrolyte, and then tends to stabilize
after 1000 charge/discharge cycles, indicating that the beneficial
effect of the catechol groups remains even after long time cycling.
The specific charge retention after 1000 cycles is 89.4% for Norit-
OH, 95.4% for Norit-OMe and 89.6% for Norit-OTIPS. Note that
carbon products where molecules or a fraction of molecules are
suspected to be grafted onto the external surface have depressed
charge retentions, probably due to a better contact between mol-
ecules and the liquid electrolyte that favours their desorption. For
the same reason, the excellent charge retention obtained with
Norit-OMe can be explained by a poorer contact between mole-
cules and the liquid electrolyte, due to their isolation in the
microporosity.

Importantly, the potential at which the redox reactions occur
change depending on the diazonium salt used for the chemical
modification. With O-methyl protected catechol moieties, a plateau
is clearly visible at around 0.35 V during the discharge, while the
discharge of catechol mainly proceed at around 0.65 V when silyl
protecting groups are used during the modification step. Note that
by using unprotected catechol diazonium salt, the plateau is less
well-defined because the two reversible systems have approxi-
mately the same current intensity. This change in potential for the
faradaic contribution to the charge storage has a profound impact
on the energy delivered at the discharge (Fig. 8). More the revers-
ible electrochemical system at higher potential becomes pro-
nounced, more the energy density increases. Whereas there is not
much difference between the total specific charges with the two
protected-catechol carbon products, the energy gain almost tripled
with silyl groups compared tomethyl groups, changing from 15% to
40%. These results make the bis((triisopropylsilyl)oxy)benzenedia-
zonium salt a good candidate for the modification of the Norit
carbon for charge storage applications and prove that themolecular
sizes must be adapted to the textural properties of porous carbons



Fig. 6. Schematic representation of the impact of the molecular size on the porous structure of the Norit carbon. In this representation, illustrated with the Norit-OTIPS carbon
product, the normalized pore size distribution is obtained by dividing pore diameters d by the molecular size l, which is assumed to be the higher interatomic distance between the
two protecting groups calculated by Chem3D.

Fig. 7. (A) Discharge curves at 1 A g�1 for unmodified and modified Norit carbon electrodes. (B) Evolution of the total specific charge during the first 1100 charges/discharge cycles.

Fig. 8. Specific energy delivered during the discharge at 1 A g�1 for unmodified and
modified Norit carbon electrodes.
to maximize the performances of carbon-molecules based hybrid
storage systems.

4. Conclusion

Two different O-protected catechol diazonium salts were syn-
thetized and introduced on the surface of the Norit-S50 carbon to
prepare supercapacitor electrodes working in 1MH2SO4. The car-
bon products obtained were characterized by TGA and XPS
experiments. After deprotection, multi-peak systems, mainly
composed of two reversible systems separated by around 300mV,
were obtained in cyclic voltammetry. Results show that the relative
intensities of these two pairs of symmetric peaks are related to the
nature of the protecting group. The role of the protecting group and
its impact on the potential at which catechol is electroactive after
deprotection were investigated by electrochemical techniques and
nitrogen gas adsorption-desorption measurements. The following
conclusions can be drawn from results.

(i) The specific charge was improved by using a O-protected
catechol diazonium salt with triisopropylsilyl groups during
the modification step.

(ii) With triisopropylsilyl protecting groups the reversible elec-
trochemical system located at higher potential dominates,
while that at lower potential mainly contributes to themulti-
peak envelope in the CV when methyl protecting groups are
used.

(iii) Due to a potential separation of around 300mV between the
two pairs of symmetric peaks, the specific energy gain
delivered at the discharge at 1 A g�1 almost tripled by using
triisopropylsilyl protecting groups, compared to the methyl
groups.

(iv) The different locations in potential of the reversible elec-
trochemical systems obtained in cyclic voltammetry seem
mainly due to a textural effect. A tenable explanation is that
the protection of catechol with bulky silyl groups does not
allows the diffusion of the diazonium salt in the micropo-
rosity, while the 3,4-dimethoxybenzenediazonium salt can



have access to a part of the micropores and can possibly
reduce their volume by a progressive coverage of their inner
surface.

The protection/deprotection strategy reported here could offer
the possibility of matching a more important energy to the faradaic
contribution of the electric charge storage in pseudo-
supercapacitors just by adapting the textural properties of the
activated carbon to the molecular size, without multi-step syn-
thesis to prepare selected molecules.
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