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Abstract

We consider decision problems that are solved in a distributed fashion by syn-
chronous mobile agents operating in an unknown, anonymous network. Each
agent has a unique identifier and an input string and they have to decide collec-
tively a property which may involve their input strings, the graph on which they
are operating, and their particular starting positions. Building on recent work
by Fraigniaud and Pelc [J. Parallel Distrib. Comput, vol. 109, pp. 117–128],
we introduce several natural new computability classes allowing for a finer clas-
sification of problems below MAV or its complement class co-MAV, the former
being the class of problems that are verifiable when the agents are provided with
an appropriate certificate. We provide inclusion and separation results among
all these classes. We also determine their closure properties with respect to set-
theoretic operations. Our main technical tool, which is of independent interest,
is a new meta-protocol that enables the execution of a possibly infinite num-
ber of mobile agent protocols essentially in parallel, similarly to the well-known
dovetailing technique from classical computability theory.

1. Introduction

1.1. Context and motivation
The last few decades have seen a surge of research interest in the direction

of studying computability- and complexity-theoretic aspects for various models
of distributed computing.

Significant examples of this trend include the investigation of unreliable fail-
ure detectors (introduced in [8]), as well as wait-free hierarchies (introduced
in [22]), which both concern crash-fault-tolerance in distributed asynchronous
systems. An unreliable failure detector is an external failure detection mecha-
nism that can make mistakes. It is composed of local modules, one on each node,
which output a set of processes that the failure detector module suspects have
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crashed. Chandra and Toueg [8] introduced this notion and a way to compare
unreliable failure detectors, and they exhibited and studied an infinite hierar-
chy of failure detector classes, leading to a way of classifying distributed tasks,
according to the weakest failure detector allowing the given task to be solved.
Another approach consists in directly classifying concurrent objects, which are
data structures shared by concurrent processes. This line of work, inspired by
the seminal paper [22], considers wait-free implementations. These are imple-
mentations such that any operation on the object by a process terminates in a
finite number of steps, even if other processes crash or have different progress
speeds. A so-called wait-free hierarchy of objects is then constructed by clas-
sifying objects depending on whether an object has a wait-free implementation
only using instances of another object as communication primitives. Finally, a
more recent work [20] deals with checkability of distributed tasks: the decision
problem associated to a task consists in determining whether a given output is
valid with respect to the task specification.

Computability- and complexity-theoretic studies for decision problems also
concern the fault-free distributed LOCAL and CONGEST models. In both
models, a communication graph describes which nodes are able to directly com-
municate. The nodes have unique IDs, and they operate in synchronous rounds,
in which any node is able to send a (possibly different) message to each of its
neighbor. There are no restrictions on the memory or computing capabilities of
the nodes. In the LOCAL model, there are even no restrictions on the size of
the messages, while the CONGEST model usually assumes that each message
has size at most O(log n) bits.

In both models, several papers studied different classes of distributed lan-
guages. A distributed language is basically a set of labeled networks. For
example, the set of properly colored networks is a distributed language. In
particular, decision and verification were studied. A distributed language is de-
cidable if there exists a distributed algorithm able to globally determine whether
the input labeled network is in the language, while a distributed language is ver-
ifiable if the membership of an instance to the language can be checked by a
distributed algorithm with the help of certificates, in a similar manner as certifi-
cates are used in the centralized complexity class NP. System-wide acceptance is
usually defined as all nodes locally accepting. System-wide rejection is usually
defined as at least one node rejecting.

Deterministic and randomized decision classes in the LOCAL model were
introduced in [26] and [18]. The latter paper also introduced one verification
class, which is somehow a variant of another verification class introduced by
Korman, Kutten, and Peleg [23]. The impact of identifiers or the lack of them
has also been investigated [13, 16, 17]. In the CONGEST model, decision and
verification were also considered [11, 21], as well as a distributed version of
property testing [5]. For a much more detailed survey, see [14].

A different approach considers the characterization of problems that can
be solved under various notions of termination detection or various types of
knowledge about the network in message-passing systems [3, 4, 6, 7, 28]. Finally,
recent works focus on the computational power of teams of mobile agents [10, 19].
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Our work lies in this latter direction.
The mobile agent paradigm has been proposed since the 90’s as a concept

that facilitates several fundamental networking tasks including, among others,
fault tolerance, network management, and data acquisition [24], and has been
of significant interest to the distributed computing community (see, e.g., the
surveys on graph exploration [9], identification of hostile nodes [25], or ren-
dezvous [27]). As such, it is highly pertinent to develop a computability theory
for mobile agents, that classifies different problems according to their degree
of (non-)computability, insofar as we are interested in really understanding the
computational capabilities of groups of mobile agents.

One may argue about the usefulness of developing a theory specifically for
mobile agent decision problems, apart from its inherent theoretical interest.
There are several reasons.

On the one hand, we believe that such a study is bound to yield inter-
mediate results, tools, intuitions, and techniques that will prove useful when
one moves on to consider from a computability/complexity point of view other,
perhaps more traditional, mobile agent problems, such as exploration [9], ren-
dezvous [27], graph searching [15], etc., which are not decision problems. One
such tool is the protocol that we develop in this paper, which enables the inter-
leaving of the executions of a possibly infinite number of mobile agent protocols.

On the other hand, we think that decision problems are inherently interest-
ing, despite the relative shortage of studies devoted to them ([10, 19]). Most
studies so far in mobile agent computing indeed concern “complex” problems,
in the sense that either the output is not binary (constructing the map of the
network, counting the number of agents or nodes, etc.) or the problem requires
specific terminal configurations (like in rendezvous) or even properties on the
sequences of configurations (like in exploration or graph searching). Decision
problems are however closely related to these more complex problems. First, a
significant proportion of the studies make initial assumptions on the maximum
and/or minimum number of agents in the network [2, 12], on the topology (like
assuming that the agents are on a tree [1]), or more generally on the possible ini-
tial configurations. Algorithms solving decision problems can be used to check
that such assumptions actually hold, before running the algorithm dedicated to
solve the problem at hand, which may consume resources. Second, certain con-
texts are subject to faults. In such cases, algorithms solving decision problems
may be used for fault tolerance purposes: agents can check (possibly by means
of certificates that were constructed while solving the main problem) whether
the achieved configuration or output satisfies the desired properties.

In this paper, we consider one of the most broadly used models of mobile
agent computing, the same as the one studied in [19]. More precisely, we consider
a distributed system in which computation is performed by one or more deter-
ministic mobile agents, operating in an unknown, anonymous network (nodes
have no identifiers and edges are only locally distinguished). Each agent is mod-
eled as a deterministic Turing machine, has a unique identifier and is provided
with an input string, and they have to collectively decide a property which may
involve their input strings, the graph on which they are operating, and their
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particular starting positions.

1.2. Related work
In [19], Fraigniaud and Pelc introduced two natural computability classes,

MAD and MAV, as well as their counterparts co-MAD and co-MAV. The class
MAD, for “Mobile Agent Decidable”, is the class of all mobile agent decision
problems which can be decided, i.e., for which there exists a mobile agent pro-
tocol such that all agents accept in a “yes” instance, while at least one agent
rejects in a “no” instance. On the other hand, the class MAV, for “Mobile Agent
Verifiable”, is the class of all mobile agent decision problems which can be ver-
ified. More precisely, in a “yes” instance, there exists a certificate such that if
each agent receives its dedicated piece of it, then all agents accept, whereas in
a “no” instance, for every possible certificate, at least one agent rejects. Cer-
tificates are for example useful in applications in which repeated verifications
of some property are required. Fraigniaud and Pelc proved in [19] that MAD is
strictly included in MAV, and they exhibited a problem which is complete for
MAV under an appropriate notion of oracle reduction.

In [10], Das et al. focus on the complexity of distributed verification, rather
than on its computability. In fact, their model differs in several aspects. First
of all, the networks in which the mobile agents operate are not anonymous, but
each node has a unique identifier. This greatly facilitates symmetry breaking, a
central issue in anonymous networks. On the other hand though, the memory
of the mobile agents is limited. Indeed, in [10], the authors study the minimal
amount of memory needed by the mobile agents to distributedly verify some
classes of graph properties. Again, the studied properties are different from the
ones studied here and in [19], since they do not depend on the mobile agents
or their starting positions. However, they may depend on labels that nodes can
possess in addition to their unique identifiers.

1.3. Our contributions
We introduce several new mobile agent computability classes which play

a key role in our endeavor for a finer classification of problems below MAV
and co-MAV. The classes MADs and MAVs are strict versions of MAD and MAV,
respectively, in which unanimity is required in both “yes” and “no” instances.
Furthermore, we consider the class co-MAV′ (and its counterpart MAV′) of mo-
bile agent decision problems that admit a certificate for “no” instances, while
retaining the system-wide acceptance mechanism of MAV. The inclusion dia-
gram that contains the inclusions known by definition of these classes (i.e., prior
to this work) is shown in Figure 1.

We perform a thorough investigation of the relationships between the newly
introduced and pre-existing classes (Sections 3 and 5). As a result, we obtain a
complete Venn diagram (Figure 2) which illustrates the tight interconnections
between them. We take care to place natural decision problems (in the mobile
agent context) in each of the considered classes. Among other results, we obtain
a couple of fundamental, previously unknown, inclusions which concern pre-
existing classes: MAD ⊆ co-MAV and co-MAD ⊆ MAV. Figure 3 contains the
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co-MAV
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co-MAV MAV MAV
0

MAD co-MAD

MADs

co-MAVs MAVs

Figure 1: An inclusion diagram that illustrates only the inclusions that are known by definition
of the classes considered in this paper. This represents our knowledge about these classes prior
to this work. Class definitions are summarized in Table 1.

MADsMAV co-MAVMAVs co-MAVs

co-MAD MAD

teamsize

degree degree

accompanied consensustreesize

allemptyallempty

mineven

Figure 2: Containments between classes below MAV and co-MAV with corresponding illustra-
tive problems. Class and problem definitions are summarized in Tables 1 and 2, respectively.

inclusion diagram of the considered classes that we obtain as a result of this
work.

We complement our results with a complete study of the closure properties of
these classes under the standard set-theoretic operations of union, intersection,
and complement (Section 6). We conclude with a discussion on a decidability
class with a much less strict acceptance mechanism, in which only one among
the participating agents is required to give the correct answer (Section 7). The
various class definitions together with the corresponding closure properties are
summarized in Table 1.

The main technical tool that we develop and use in the paper is a new
meta-protocol that enables the execution of a possibly infinite number of mobile
agent protocols essentially in parallel (Section 4). This can be seen as a mobile
agent computing analogue of the well-known dovetailing technique from classical
recursion theory.
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= MAV
0

co-MAV
0
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= MAVs \ co-MAVMAV \ co-MAVs =

MAD [ co-MAD

MAV \ co-MAV

Figure 3: The inclusion diagram of the classes below MAV and co-MAV that illustrates the
results obtained in this work. Class definitions are summarized in Table 1.

Table 1: Overview of mobile agent decidability and verifiability classes and their closure
properties. The notation yes (resp. no) means that all agents accept (resp. reject). Similarly,ıyes (resp. Ùno) means that at least one agent accepts (resp. rejects).

Definition Closure Properties
“yes” instances “no” instances Union Intersec. Compl.

MADs (∀ certificate:) yes (∀ certificate:) no 3 3 3

MAD (∀ certificate:) yes (∀ certificate:) Ùno 7 3 7

co-MAD (∀ certificate:) ıyes (∀ certificate:) no 3 7 7

MAVs ∃ certificate: yes ∀ certificate: no 3 3 7

co-MAVs ∀ certificate: yes ∃ certificate: no 3 3 7

MAV ∃ certificate: yes ∀ certificate: Ùno 7 3 7

co-MAV ∀ certificate: ıyes ∃ certificate: no 3 7 7

MAV′ ∃ certificate: ıyes ∀ certificate: no 3 3 7

co-MAV′ ∀ certificate: yes ∃ certificate: Ùno 3 3 7

2. Preliminaries

The graphs in which the mobile agents operate are simple, undirected, con-
nected, and anonymous. The edges incident to each node v (ports) are assigned
distinct local port numbers (also called labels) from {1, . . . , dv}, where dv is the
degree of node v. The port numbers assigned to the same edge at its two end-
points do not have to be in agreement. If v is a node, N(v) stands for the set of
neighboring nodes of v. A port-labeled graph G is a triple G =

(
V,E, (λv)v∈V

)
,

where λv : N(v) → {1, . . . , dv} is a function such that λv(u) is the local port
number at v that leads to its neighbor u. An automorphism of G that pre-
serves port numbers is a function α : V → V such that, for all u, v ∈ V ,
{u, v} ∈ E ⇔

{
α(u), α(v)

}
∈ E and, additionally, λv(u) = λα(v)

(
α(u)

)
.

We conventionally fix a binary alphabet Σ = {0, 1}. In view of the natural
bijection between binary strings and N which maps a string to its rank in the
quasi-lexicographic order of strings (shorter strings precede longer strings, the
rank of the empty string ε being 0), we will occasionally treat strings and natural
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numbers interchangeably. If x and y are strings, then 〈x, y〉 stands for any
standard encoding as a string of the pair of strings (x, y).

If x is a list, then |x| is the length of x and xi is the i-th element of x. We
will use a bold typeface for lists and a light typeface for list elements. If f is a
function that can be applied to the elements of x, then we will use the notation
f(x) =

(
f(x1), . . . , f(x|x|)

)
. In the same spirit, if x and y are equal-length lists

of strings, then 〈x,y〉 stands for the list
(
〈x1, y1〉 , . . . ,

〈
x|x|, y|y|

〉)
.

We recall the standard notation Σ0
j for the j-th level of the arithmetic hier-

archy (j ≥ 1), as well as Π0
j = co-Σ0

j and ∆0
j = Σ0

j ∩Π0
j . In particular, Σ0

1 is the
set of recursively enumerable (or Turing-acceptable) languages and ∆0

1 is the
set of Turing-decidable languages. If HP0 = ∅, then the problem HPj = {x ∈
Σ? : x is the encoding of a TM with oracle HPj−1 that halts with input ε} is
known to be Σ0

j -complete under the many-one reduction.

2.1. Mobile agent computations
A mobile agent protocol is modeled as a deterministic Turing machine. Mo-

bile agents are modeled as instances of a mobile agent protocol (i.e., copies of
the corresponding deterministic Turing machine) which move in an undirected,
connected, anonymous graph with port labels. Each mobile agent is provided
initially with two input strings: its ID, denoted by id, and its input, denoted
by x. By assumption, in any particular execution of the protocol, the ID of
each agent is unique. The execution of a group of mobile agents on a graph G
proceeds in synchronous steps. At the beginning of each step, each agent is pro-
vided with an additional input string, which contains the following information:
(i) the degree of the current node u, (ii) the port label at u through which the
agent arrived at u (or ε if the agent is in its first step or did not move in the
previous step), and (iii) the configuration of all other agents which are currently
on u. Then, each agent performs a local computation and eventually halts by
accepting or rejecting, or it moves through one of the ports of u, or remains at
the same node. We assume that all local computations take the same time and
that edge traversals are instantaneous. Therefore, the execution is completely
synchronous.

Let M be a mobile agent protocol, G be a graph, id be a list of distinct
IDs, s be a list of nodes of G, and x be a list of strings such that |id| =
|s| = |x| = k > 0. We denote by M(id, G, s,x) the execution of k copies
of M , the i-th copy starting on node si and receiving as inputs the ID idi
and the string xi. The tuple (id, G, s,x) is called the implicit input. Similarly,
we denote by M(id, x; id, G, s,x) the personal view of the execution of M on
the implicit input, as experienced by the agent with ID id and input x. We
distinguish between the explicit input (id, x), which is provided to the agent at
the beginning of the execution, and the implicit input, which may or may not
be discovered by the agent in the course of the execution.

Given an implicit input, we write M(id, x; id, G, s,x) = yes (resp. no) if the
agent with explicit input (id, x) accepts (resp. rejects) duringM(id, G, s,x). Fur-
thermore, we write M(id, G, s,x) 7→ yes (resp. no), if ∀i M(idi, xi; id, G, s,x) =

7
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Figure 4: Top left: A port-labeled graph G. Top right: The first few levels of the view VG(u).
Bottom: The truncated view V(2)

G (u).

yes (resp. no), and M(id, G, s,x) 7→ ŷes (resp. ıno), if all agents halt and for
some i M(idi, xi; id, G, s,x) = yes (resp. no).

Definition 1 (View). The view VG(u) from a node u in a graph G with local
port numbers is a possibly infinite tree (W,F ) with local port numbers, defined
as follows: The node set W of the tree contains all finite paths starting from u
in G, except those that traverse back and forth the same edge in consecutive
steps. There is an edge {w1, w2} ∈ F if and only if w1 corresponds to some
path u p in G and w2 corresponds to the same path augmented by some edge
p → q. The port numbers at the endpoints of {w1, w2} are the same as those
at the respective endpoints of {p, q} in G. We refer to the node of the view that
corresponds to the unique zero-length path from u in G as the root of the view.

Definition 2 (Truncated view). For T ≥ 0, the truncated view V(T )
G (u) is

the subgraph of VG(u) induced by the nodes corresponding to paths of length up
to and including T (the port label of the unique edge of each bottom-level node
in VG(u) is changed to 1).

We refer the reader to Figure 4 for an illustration of the notions of view and
truncated view. It is an easy property of VG(u), as defined above, that every
node of the view that corresponds to a path u v in G has degree equal to the
degree of v in G. Moreover, the following can be proved by a straightforward
induction on the length of the execution:
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Proposition 1. Let M be a mobile agent protocol and
(
(id), G, (s), (x)

)
be an

implicit input with a single agent, where G is not a tree. Then, for any integer
T ≥ 0, the sequences of configurations of the agent in the length-T prefixes
of the two executions M

(
(id), G, (s), (x)

)
and M

(
(id), H, (r), (x)

)
are identi-

cal, where H is a graph obtained by attaching an arbitrary labeled graph to
the bottom-level nodes of V(T+1)

G (s), and r is the root of V(T+1)
G (s). In partic-

ular, if M
(
(id), G, (s), (x)

)
terminates after T steps, then the agent concludes

its execution on H in T steps as well, with the same decision, and it only visits
nodes that belong to the first T levels of the view V(T+1)

G (s).

2.2. Mobile agent decision problems
Definition 3 ([19]). A mobile agent decision problem on anonymous graphs
is a set Π of instances (G, s,x), where G is a graph, s is a non-empty list of
nodes of G, and x is a list of strings with |x| = |s|, which satisfies the following
closure property: For every instance (G, s,x) and for every automorphism α
of G that preserves port numbers, (G, s,x) ∈ Π if and only if

(
G,α(s),x

)
∈ Π.1

We will refer to instances which belong to a problem Π as “yes” instances
of Π. Instances that do not belong to Π will be called “no” instances of Π.
The complement Π of a mobile agent decision problem Π is the problem Π =
{(G, s,x) : |s| = |x| and (G, s,x) 6∈ Π}. It is easy to check that the class of
mobile agent decision problems on anonymous graphs as defined in Definition 3
is closed under the usual set-theoretic operations:

Proposition 2. If Π,Π′ are mobile agent decision problems, then Π, Π ∪ Π′,
and Π ∩Π′ are also mobile agent decision problems.

Some examples of decision problems are shown in Table 2.

Definition 4 ([19]). A decision problem Π is mobile agent decidable if there
exists a protocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then
∀id M(id, G, s,x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ ıno.
The class of all decidable problems is denoted by MAD.

Definition 5 ([19]). A decision problem Π is mobile agent verifiable if there
exists a protocol M such that for all instances (G, s,x): If (G, s,x) ∈ Π then
∃y ∀id M

(
id, G, s, 〈x,y〉

)
7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M

(
id, G, s,

〈x,y〉
)
7→ıno. The class of all verifiable problems is denoted by MAV.

When there is no room for confusion, we will use the term certificate both
for the string y provided to an agent and for the collection of certificates y
provided to the group of agents. If we need to distinguish between the two, we
will refer to y as a certificate vector. Finally, if X is a class of mobile agent
decision problems, then co-X = {Π : Π ∈ X}.

1Note that this closure property is equivalent to the one used in [19], although the two are
syntactically different due to notational differences.
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Table 2: Definitions of some mobile agent decision problems that we use in the rest of the
paper.

accompanied = {(G, s,x) : |s| > 1}
allempty =

{
(G, s,x) : ∀i xi = ε

}
allhaltingj =

{
(G, s,x) : ∀i xi ∈ HPj

}
consensus =

{
(G, s,x) : ∀i, j xi = xj

}
degree =

{
(G, s,x) : ∀i ∃v dv = xi

}
mineven =

{
(G, s,x) : mini xi is even

}
path =

{
(G, s,x) : G is a path

}
someempty =

{
(G, s,x) : ∃i xi = ε

}
somenodes-ub =

{
(G, s,x) : ∃i xi ≥ |V (G)|

}
teamsize =

{
(G, s,x) : ∀i xi = |s|

}
treesize =

{
(G, s,x) : ∀i G is a tree of size xi

}
On occasion, we will need to express the fact that, given full knowledge of an

instance I = (G, s,x), the problem of deciding whether I ∈ Π for some mobile
agent decision problem Π belongs to the computability class C, where C is a
standard computability class such as ∆0

1 or Σ0
1. Despite the small inconsistency

in the formalism, caused by the fact that C contains languages that are subsets
of Σ? and not mobile agent decision problems as per Definition 3, we will still
write Π ∈ C to mean that

{
〈I〉 : I ∈ Π

}
∈ C, where 〈·〉 is a fixed encoding

function of mobile agent decision problem instances as strings over Σ?.

Remark 1. Note that in [19], only decidable (in the centralized sense) mobile
agent decision problems were taken into consideration. As a result, it was
by definition the case that MAD and MAV were both subsets of ∆0

1. For the
purposes of this work, we do not impose this constraint.

3. Mobile agent decidability classes

A problem Π is in co-MAD if and only if it can be decided by a mobile agent
protocol in a sense which is dual to that of Definition 4: If the instance is in Π,
then at least one agent must accept, whereas if the instance is not in Π, then
all agents must reject. We will consider one more such variant in the form of
the “strict” class MADs. A problem belongs to this class if it can be solved in
such a way that every agent always outputs the correct answer.

Definition 6. A decision problem Π is in MADs if and only if there exists a pro-
tocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∀id M(id, G, s,
x) 7→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ no.

By definition, MADs is a subset of both MAD and co-MAD and it is easy to
check that MADs = co-MADs. Moreover, all of these classes are subsets of ∆0

1,
since a centralized algorithm, provided with an encoding of the graph and the
starting positions, inputs, and IDs of the agents, can simulate the corresponding
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mobile agent protocol and decide appropriately. As mentioned in [19], path is
an example of a mobile agent decision problem which is in ∆0

1 \ MAD, since,
intuitively, an agent cannot distinguish a long path from a cycle. In fact, this
observation yields path ∈ ∆0

1 \ (MAD ∪ co-MAD).
A nontrivial problem in MADs is treesize. The problem was already shown

to be in MAD in [19]. For the stronger property that treesize ∈ MADs, we need
a modification of the protocol given in [19].

Proposition 3. treesize ∈ MADs.

Proof. On input x, each agent performs a DFS traversal of the graph while
drawing a map of it. The agent performs 2x − 2 steps or stops earlier if it is
back at its initial position with a complete map, that is without unvisited edges.
When the agent stops, if its map is complete, is a tree, and has exactly x nodes,
then it performs another full visit of the tree. Otherwise, it rejects. If it does not
meet any agent that has rejected, then it accepts. Otherwise, it rejects. Clearly,
all the agents accept if the instance belongs to treesize, and all the agents reject
if the input graph is not a tree. Lastly, if the input graph is a tree, say with
n nodes, but the instance does not belong to treesize, then there exists at least
one agent with an input different from n. This agent rejects within the 2n− 2
first steps. Therefore, no other agent can accept. This protocol proves that
treesize ∈ MADs. �

We now show that MAD and co-MAD are strict supersets of MADs.

Proposition 4. allempty ∈ MAD \MADs and allempty ∈ co-MAD \MADs.

Proof. It suffices to show that allempty ∈ MAD \ MADs, since this implies
immediately that allempty ∈ co-MAD \MADs.

The problem is in MAD in view of the following protocol: on input x, each
agent accepts if and only if x = ε. Now, suppose that allempty ∈ MADs and
let M be the corresponding mobile agent protocol. An agent that executes M
with explicit input (id, ε) and implicit input

(
(id), G, (s), (ε)

)
, where G is a ring

with an arbitrary port labeling and s is an arbitrary node of the ring (i.e., the
agent is executing M with an empty input, alone on a ring), must accept, say
after T1 steps. On the other hand, an agent that executes M with explicit
input (id′, 0), where id′ 6= id, and implicit input

(
(id′), G, (s), (0)

)
must reject,

say after T2 steps. Now, let G′ be the graph obtained by connecting one of the
bottom-level nodes of V(T1+1)

G (s) (cf. Definition 1) to one of the bottom-level
nodes of V(T2+1)

G (s), via an edge with port number 2 at both endpoints. Let s1, s2
be the nodes of G′ that respectively correspond to the roots of the two truncated
view graphs that form G′. Consider the executionM

(
(id, id′), G′, (s1, s2), (ε, 0)

)
.

Since not all inputs are empty and M is a MADs protocol, both agents should
reject. However, by Proposition 1, one of them will accept, which is a contra-
diction. �
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As we mentioned, it holds by definition that MADs is included in both MAD
and co-MAD, i.e., MADs ⊆ MAD ∩ co-MAD. In fact, we can also prove the
reverse inclusion and thus obtain MADs = MAD ∩ co-MAD: In order to obtain
this result, we employ the meta-protocol of Section 4. We state it as a theorem
without proof for the moment, and we refer the reader to Section 4.5 for a proof.

Theorem 1. MADs = MAD ∩ co-MAD.

By Theorem 1, if allempty was included in co-MAD, we would obtain allempty ∈
MADs, which we know to be false. Thus, allempty /∈ co-MAD and we obtain a
separation between MAD and co-MAD. Symmetrically, allempty ∈ co-MAD \
MAD.

4. Interleaving multiple mobile agent protocols

In order to motivate the need to introduce a tool for interleaving the execu-
tions of multiple mobile agent protocols on the same instance, we start with an
informal discussion of how to demonstrate the existence of a MADs protocol for
a given problem Π, under the assumption that Π admits both a MAD protocol
and a co-MAD protocol. Note that this would prove MAD ∩ co-MAD ⊆ MADs

and therefore it would establish Theorem 1. We will see that, to construct
the MADs protocol, we need a way to execute the MAD and co-MAD protocols
essentially in parallel on the same instance.

A first observation is that, in an execution of the MAD protocol, if an agent
decides no, then that agent knows that the instance is a “no” instance and
therefore it has the correct answer. On the other hand, if an agent decides yes,
then it has no information on whether the instance is a “yes” or a “no” instance,
because there is always the possibility that some other agent may decide no
in the same execution. In this sense, we say that a no answer is decisive for
an agent that executes the MAD protocol. Moreover, in an execution of the
MAD protocol on a “no” instance at least one agent is guaranteed to give a
decisive answer. Similarly, a yes answer is decisive for an agent that executes
the co-MAD protocol, and in an execution of the co-MAD protocol on a “yes”
instance at least one agent will give a decisive answer.

Now, let us assume, for the sake of argument, that the agents are able to
execute both protocols in parallel on the same instance. In view of the above
observation, at least one agent is guaranteed to give a decisive answer, either in
the MAD protocol or in the co-MAD protocol. At that point, that agent knows
whether the instance is a “yes” or “no” instance, and the only thing missing in
order to construct the MADs protocol is a way for that agent to disseminate the
correct answer to the other agents.

It is, therefore, necessary to have a tool that enables the execution of mul-
tiple mobile agent protocols on the same instance, and that also permits the
mobile agents to make decisions based on the outcomes of these executions. In
centralized computing, the well known dovetailing technique achieves this in-
terleaving of different computations on the same input. Centralized dovetailing
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proceeds in phases: in phase T , the first T steps of the first T programs are
executed. At this point, an auxiliary function is executed, which decides, based
on these executions, whether to accept, reject, or continue with the next phase.

Correspondingly, we develop in this section a generic mobile agent meta-
protocol which enables the interleaving of a possibly infinite number of mobile
agent protocols on the same instance. It, also, proceeds in phases: in phase T ,
the agents execute the first T steps of the first T mobile agent protocols and then
decide whether to accept, reject, or proceed to the next phase. This decision
is taken independently by each agent, by locally executing a function, which is
given as a parameter to the meta-protocol. We call this function a local decider.

Remark 2. In the example of proving MAD ∩ co-MAD ⊆ MADs, if an agent
has nor reached a decisive answer so far in any of the two protocols, then the
local decider instructs that agent to continue to the next phase. Otherwise, that
agent terminates and acceps or rejects according to the decisive answer.

Still, it may happen that one or more agents halt as a result of executing
the local decider, while others decide to continue. In such a case, the execution
of the protocols in the next phase could be corrupted because the halted agents
no longer participate in the protocol. However, these halted agents can now be
regarded as fixed tokens and the meta-protocol uses them in order to create a
map of the graph. In fact, this is done in such a way as to ensure that all non-
halted agents obtain not only the map of the graph but actually full knowledge
of the implicit input. Based on this knowledge, each agent decides irrevocably
whether to accept or reject by means of a second function which is given as a
parameter to the meta-protocol, and which we call a global decider.

Remark 3. In the example of proving MAD ∩ co-MAD ⊆ MADs, the global
decider, which is executed with full knowledge of the implicit input, simulates
locally the MAD protocol and accepts if and only if all agents in the simulation
accept.

In Section 4.1, we define formally the properties of global and local deciders
and we present two auxiliary procedures that are used in the meta-protocol.
Section 4.2 contains an informal description of the meta-protocol. Section 4.3
contains the complete pseudocode and Section 4.4 contains the proofs of some
basic properties. Finally, in Section 4.5 we explain how we use the meta-protocol
in proofs and we give two fairly simple applications (including the proof of
Theorem 1).

4.1. Ingredients of the meta-protocol
We propose a generic meta-protocol PN ,f,g, which is parameterized byN , f, g.

The set N is a, possibly infinite, recursively enumerable set of mobile agent
protocols whose executions will be interleaved. Let Ni, i ≥ 1, denote the i-th
protocol in such an enumeration. The functions f and g are the global and lo-
cal deciders, respectively. These are computable functions which represent local
computations with the following specifications:
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Global decider: The function f maps pairs consisting of an explicit and an im-
plicit input, i.e., tuples of the form (id, x; id, G, s,x), to the set {accept, reject}.
In this case, we say that f is a global decider. When an agent executes f , it
halts by accepting or rejecting according to the outcome of f .
Local decider: The function g takes as input the current phase number T , an
explicit input (id, x), and a list (H1, . . . ,Hσ) of arbitrary length σ, where eachHj

is the history of the partial execution of Nj(id, x; id, G, s,x) for at most T steps
and (id, G, s,x) is an implicit input common for all histories H1, . . . ,Hσ. The
outcome of g is one of {accept, reject, continue}. When an agent executes g,
it halts in the corresponding state if the outcome is accept or reject, otherwise
it continues without halting.

If for every implicit input (id, G, s,x) and for every T0, there exists a T ≥
T0 and some i such that the local computation g(T, idi, xi, H1, . . . ,Hmin(T,|N |))
returns either accept or reject, where each Hj is an encoding of the execution
of Nj(idi, xi; id, G, s,x) for at most T steps, then we say that g is a local decider
for N .

The meta-protocol uses the following procedures Create-Map and Rdv:
Procedure Create-Map(R): An agent executes this procedure only when
it is on a node which contains at least one halted (or idle) agent. Starting from
this node, and treating the halted agent as a fixed mark, it attempts to create
a map of the graph assuming that the graph contains at most R nodes (and,
therefore, that the maximum degree of the graph is at most R). More precisely,
the agent first creates a map consisting of a single node corresponding to the
marked node r, with dr pending edges with port numbers from 1 to dr. Then,
while there remain some pending edges and there are at most R explored nodes,
the agent explores some arbitrary pending edge as follows. The agent goes to
the known extremity u of the pending edge by using the map and traverses it.
It then determines whether its current position v corresponds to a node of its
map, as follows: For every node w in its map, it computes a path in the map
going from w to r and follows the corresponding sequence of port numbers in
the unknown graph, starting from v. If it leads to the marked node, then v = w
and the agent updates its map by linking the pending edges of u and w with
the appropriate port numbers. Otherwise, it retraces its steps to come back
to v and tests a next node w. If all nodes turn out to be different from v, then
the agent goes back to the marked node through u, and updates its map by
adding a new node corresponding to v, linked to u, and with the appropriate
number of new pending edges. At the end of the procedure, the agent either has
a complete map of the graph, or knows that the graph has more than R nodes.
This procedure takes at most 4R4 steps.
Procedure Rdv(R, id): This procedure guarantees that a group of k agents
which (a) know the same upper bound R on the number of nodes in the graph,
(b) have distinct id’s {id1, . . . , idk}, and (c) start executing Rdv(R, idi) at the
same time from different nodes si, will all meet each other after finite time.
Moreover, each agent knows when it has met all other agents executing Rdv,
even without initial knowledge of k. Note that R is also an upper bound on
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the maximum degree, the diameter, and therefore also on the maximum radius
of a ball in the graph. The Rdv procedure uses as a subroutine the following
Explore-Ball procedure: An agent executing Explore-Ball(R) attempts
to explore the ball of radius R around its starting node si, assuming an upper
bound of R on the maximum degree of the graph. This is achieved by having the
agent try every sequence of length R of port numbers from the set {1, . . . , R},
retracing its steps backward after each sequence to return to si. If a particular
sequence instructs the agent to follow a port number that does not exist at
the current node (i.e., the port number is larger than the degree of the node),
then the agent aborts that sequence and returns to si. Attempting all possible
sequences takes at most B(R) = 2R · RR steps. If an agent finishes earlier, it
waits on si until B(R) steps are completed. Therefore, a team of agents that
start executing Explore-Ball(R) at the same time from different nodes are
synchronized and back at their starting positions after B(R) steps.

Now, for each bit of idi, the Rdv procedure executes the following: If the bit
is 0, the agent waits at si for B(R) steps and then executes Explore-Ball(R),
whereas if the bit is 1, the agent first executes Explore-Ball(R) and then waits
on its starting position for B(R) steps. After it exhausts the bits of idi, the
agent executes twice Explore-Ball(R). This guarantees that, if the number
of nodes is at most R, then after 2 ·(|idi|+1) ·B(R) steps, each agent i is located
at si and has met all other agents executing Rdv. Note that after every integer
multiple of B(R) steps, each agent is located at its initial node si.

4.2. Description of the meta-protocol
We start with an informal description of the meta-protocol and we give the

complete pseudocode in Section 4.3.
The meta-protocol PN ,f,g works in phases, which correspond to increasing

values of a presumed upper bound T on the number of nodes in the graph, the
length of all agent identifiers, and the completion time of protocols N1, . . . , NT .
We will say that an agent is idle if it is waiting indefinitely on its starting node
for some other agent to provide it with the knowledge of the full implicit input
(i.e., executing line 39). We will say that an agent is participating if it is not
halted and not idle. Note that an agent may halt only as a result of executing
one of the decider functions f and g. In each phase T , the agents perform the
following actions (see also Fig. 5):

Search for nearby starting positions and set flags.. Each participating agent i
first executes Rdv(2T, idi) for at most 2(T + 1)B(2T ) steps (line 5). By design
of Rdv, this guarantees that agent i will explore its 2T -neighborhood at least
once and, in particular, if T ≥ |idi|, then for each other participating agent,
agent i will explore its 2T -neighborhood at least once with that agent staying
on its starting node. If, in the process, the agent meets any agent, then it sets
its accompanied flag. It also sets its neutralized flag if the encountered agent is
participating and it has a lexicographically larger ID. If the encountered agent
is halted or idle, the agent sets its mapseeker flag. Finally, if the agent finds a
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Figure 5: High-level flowchart of the meta-protocol of Section 4.

node with degree larger than 2T or if the length of its ID is greater than T , it
sets its cautious flag. All agents synchronize at this point (line 17).

Mapseeker agents attempt to create a map of the graph.. Next, each agent i
with the mapseeker flag set moves to a halted or idle agent which it has found
previously, while executing Rdv in the current phase (in line 5). Then, it at-
tempts to create a map of the graph by executing Create-Map(T ) and returns
to si. Overall, this takes at most 4T 4 + 4T steps. Meanwhile, non-mapseeker
agents wait for 4T 4 + 4T steps. All agents synchronize at this point (line 24).

So far, we have achieved that, if T ≥ n, where n is the number of nodes
in G, then either no agent is a mapseeker having the full map of G, or all
participating agents have the mapseeker flag set and they have the full map
of G (Lemma 4.4 below). If all mapseeker agents have the full map of G and
T ≥ n, then each such agent i executes Rdv(n, idi), which guarantees that,
finally, it is located at si and has met all other agents executing Rdv, as well
as all halted and idle agents. While executing Rdv, the agent collects starting
position and input information from all other mapseeker, halted, and idle agents
that it encounters. At this point, each mapseeker does a final exploration of the
graph to provide its knowledge to the idle agents. Then, after concluding this
last exploration, each mapseeker executes f (line 28) with full knowledge of the
implicit input (Lemma 4.4).

Perform dovetailing.. At this point, if no agent is a mapseeker having the full
map of G, the agents execute each of the protocols N1, . . . , Nmin(T,|N |) for at
most T steps, and then retrace backward to si (agents are synchronized after
executing each protocol, line 33). If any of these protocols instructs an agent to
halt, the agent instead waits until the T -step execution period has finished, and
then returns to si. If the agent does not have the cautious or accompanied flags
set, it then executes g(T, id, x,H1, . . . ,Hmin(T,|N |)), where Hj is the history of
the T -step execution of Nj with explicit input (id, x). All agents that do not halt
as a result of executing g are synchronized at the end of the current phase. It
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is guaranteed that the histories fed to the local decider g correspond to correct
executions of the corresponding protocols for implicit input (id, G, s,x), even
though some of the agents may have halted or become idle in earlier phases
(Lemma 4.4 and Corollary 1) (line 37).

Neutralized agents become idle.. Finally, at the end of the phase, neutralized
agents start waiting for the implicit input (i.e., they become idle), and when
they receive it (from some mapseeker agent), they execute the global decider f
(line 40).

4.3. Pseudocode
Explicit input: (id, x). Implicit input: (id, G, s,x).
1: T ← 1
2: neutralized, accompanied← false
3: loop

I all participating agents are synchronized at this point
4: cautious,mapseeker← false

5: Execute Rdv(2T, id) for 2(T + 1)B(2T ) steps
6: if met an agent then
7: accompanied← true
8: end if
9: if met a participating agent with lexicographically larger ID then

10: neutralized← true
11: end if
12: if found a halted or idle agent then
13: mapseeker← true
14: else if found a node with degree greater than 2T or |id| > T then
15: cautious← true
16: end if
17: Wait until 2(T+1)B(2T ) steps have passed since last synchronization

point
I all participating agents are synchronized at this point

18: if mapseeker then
19: Move to the halted or idle agent with the lexicographically smallest

ID among those found during step 5
20: Execute Create-Map(T )
21: Return to starting node and wait until 4T 4 + 4T steps have passed

since last synchronization point
22: else
23: Wait for 4T 4 + 4T steps
24: end if

I all participating agents are synchronized at this point

25: if mapseeker and full map of n nodes is known and T ≥ n then
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26: Execute Rdv(n, id), while collecting starting position and input in-
formation from mapseeker, halted, and idle agents

27: Provide the implicit input to idle agents and return to starting node

28: Execute f(id, x; id, G, s,x) . Local computation
29: end if

30: for j ← 1 to min
(
T, |N |

)
do

31: Execute T steps of Nj with explicit input (id, x), without halting
32: Let Hj be the corresponding history
33: Return to starting node

I all participating agents are synchronized at this point
34: end for
35: if cautious = accompanied = false then
36: Execute g(T, id, x,H1, . . . ,Hmin(T,|N |)) . Local computation
37: end if

38: if neutralized then
39: Remain idle until the implicit input (id, G, s,x) is provided by a

mapseeker
40: Execute f(id, x; id, G, s,x) . Local computation
41: end if
42: T ← T + 1
43: end loop

4.4. Properties of the meta-protocol
In each phase, either all or none of the participating agents (i.e., non-halted

and non-idle) execute f (line 28).

Proof. We show that if the condition of line 25 is true for one participat-
ing agent, then it is true for all participating agents. Indeed, since there ex-
ists at least one mapseeker agent, there must exist at least one halted or idle
agent. Moreover, since the size of G is n and T ≥ n, every participating agent
will locate at least one halted or idle agent while executing Rdv(2T ) (line 5),
and thus all participating agents will become mapseeker agents. Consequently,
since T ≥ n, all of them will obtain the full map of the graph while executing
Create-Map(T ) (line 20) and also all of them will obtain the starting position
and input information from all halted and idle agents. �

Any agent that executes f (line 28 or 40) has full knowledge of the implicit
input (id, G, s,x).

Proof. By the properties of the Rdv procedure, since T ≥ n, all mapseeker
agents will meet each other while executing line 26, and thus they will proceed
to execute f at line 28 with full knowledge of the map of the graph and the
starting positions and inputs of all agents. Moreover, an agent that executes f
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at line 40 has received the implicit input from a mapseeker who is executing
line 27, therefore it knows the full implicit input. �

If an agent i executes g (line 36) during phase T , then no other agent’s
starting node is at distance 2T or less from si.

Proof. Since cautious = false, the execution of Rdv(2T, id) for 2(T+1)B(2T )
steps at line 5 did not reveal any node of degree greater than 2T and, moreover,
|id| ≤ T . By the properties of Rdv, this implies that the agent completely
explored the 2T -ball around si at least once while any other participating agent
was sitting on its respective starting node. Therefore, since, in addition, we
have accompanied = false, the lemma follows. �

By Lemma 4.4, we obtain the following corollary:

Corollary 1. Any agent i that executes g (line 36) has histories which cor-
respond to the correct histories of Nj(idi, xi; id, G, s,x) for T steps (1 ≤ j ≤
min

(
T, |N |

)
), even though some of the agents may have halted or become idle

in earlier phases.

In view of Corollary 1, we can show that all agents terminate and, in fact,
they all terminate on their respective starting nodes.

Let f be a global decider and let g be a local decider for N . Then, each
agent halts under the execution PN ,f,g(id, G, s,x) by executing either f or g.
Moreover, each agent i halts on its starting node si.

Proof. Let n be the size of G. We first show that at least one agent will halt or
become idle. By Corollary 1 and by the local decider property of g, there exists a
phase T ≥ max

(
n,maxi |idi|

)
in which some agent i would halt if it executed g

at line 36. By the choice of T , this agent cannot have the cautious flag set.
Therefore, it either executes g, and therefore it halts, or its accompanied flag is
set. But then, it either met a participating agent while executing the Rdv at
line 5 resulting in one of the two agents becoming neutralized and thus idle at
the end of the phase, or it met an agent which had already halted or become
idle in an earlier phase.

Now, let T0 be the phase in which the first agent halts or becomes idle and
let T1 = max

(
T0+1, n,maxi |idi|

)
. During phase T1, all participating agents will

explore the whole graph while executing Explore-Ball at line 5, and therefore
they will all locate the agent that halted or became idle during phase T0 and
they will set their mapseeker flag. Subsequently, they will all obtain the full
map of G while executing Create-Map at line 20, and finally they will all
execute f at line 28 after providing the correct implicit input to all idle agents,
which will execute f at line 40. By the global decider property of f , all agents
will then halt.

It remains to show that each agent i halts on si. By inspection of the meta-
protocol, an agent halts only by executing f or g, and these functions are only
executed when the agent is on si. �
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4.5. Applications of the meta-protocol
To summarize, the meta-protocol is a generic tool that enables us to inter-

leave the executions of a possibly infinite set of mobile agent protocols. Eventu-
ally, each agent accepts or rejects, based either on the histories of the executions
of a number of these protocols (by means of the local decider), or on full knowl-
edge of the implicit input (by means of the global decider).

We typically use the meta-protocol in order to place a particular problem
in one of the mobile agent computability classes of Table 1. A common part of
the proofs consists in defining the list of protocols N and suitable deciders f
and g, and in showing that f and g indeed satisfy the global and local decider
properties, respectively. This is followed by a part tailored to each particular
result, where we use the properties of the meta-protocol (Lemmas 4.4–4.4 and
Corollary 1) and the particular definitions of f and g, in order to show that
agents that execute PN ,f,g always terminate in the desired state. The desired
state is indicated by the class in which we wish to place the problem. For
example, if we wish to show that a problem is in MADs, we will have to show
that all agents give the correct answer for all implicit inputs.

We will employ the meta-protocol in subsequent sections to prove Theo-
rems 3, 4, 5, and 7. In order to demonstrate the basic layout of such proofs, we
now give the proof of Theorem 1 from Section 3.

Theorem 1. MADs = MAD ∩ co-MAD.

Proof. It suffices to show that MAD ∩ co-MAD ⊆ MADs. Let Π ∈ MAD ∩
co-MAD and let N1 be a MAD protocol for Π and N2 be a co-MAD protocol
for Π. We use the meta-protocol PN ,f,g with N = (N1, N2) and deciders f
and g defined as follows:

• To compute f(id, x; id, G, s,x): Simulate locally the execution of N1 on
the implicit input (id, G, s,x). If at least one agent rejects, return reject.
Otherwise, return accept.

• To compute g(T, id, x,H1, H2): If H1 is the history of an execution of N1

which terminates in a rejecting state, then return reject. If H2 is the
history of an execution of N2 which terminates in an accepting state, then
return accept. Otherwise, return continue.

The function f is clearly a global decider. To see that g is a local decider, note
that any given instance is either a “yes” instance, in which case at least one agent
executing N2 will accept, or it is a “no” instance, in which case at least one agent
executing N1 will reject. In any case, given sufficiently long histories H1, H2,
the execution of g will result in a return value in {accept, reject} for at least
one agent.

It remains to show that all agents terminate in the correct state. By Lemma 4.4,
each agent halts by executing either f or g. By Lemma 4.4, an agent that halts
by executing f will execute it with the correct full knowledge of the implicit
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input, and therefore, by definition of MAD, the local simulation of N1 will re-
sult in at least one agent rejecting if and only if the instance is a “no” instance.
Therefore, the agent executing f will reject if and only if (G, s,x) /∈ Π.

Finally, let i be an agent that halts by executing g. By Corollary 1, when it
halts,H1 andH2 are the correct histories ofN1(idi, xi; id, G, s,x) andN2(idi, xi; id, G, s,x),
respectively. If the agent accepts, then by definition of g, H2 terminates in an
accepting state, therefore by definition of co-MAD, (G, s,x) ∈ Π. On the other
hand, if the agent rejects, then by definition of g, H1 terminates in a rejecting
state, therefore by definition of MAD, (G, s,x) /∈ Π. We conclude that all agents
give the correct answer and thus Π ∈ MADs. �

We conclude this section with a second fairly simple application of the meta-
protocol, which may be of independent interest: We show that, without loss of
generality, we can assume that any protocol terminates by having all agents
back on their respective starting nodes.

Theorem 2. Let M be a terminating mobile agent protocol. Then, there exists
a mobile agent protocol M (r) such that for every implicit input (id, G, s,x), each
agent i halts in the same state (accepting or rejecting) under M (r)(id, G, s,x) as
under M(id, G, s,x) and, furthermore, it halts on its starting node si.

Proof. Let N = (M). Let f(id, x; id, G, s,x) be defined as follows: Simulate
M(id, G, s,x) locally and halt in the same state as the agent with ID id. Let
g(T, id, x,H) be defined as follows: Examine the history H and, if it terminates,
then accept or reject according to the result of H. Otherwise, continue.

Since we assume that in M(id, G, s,x) all agents halt, it is straightforward
to verify that f is a global decider and g is a local decider. Now, let us examine
what happens when PN ,f,g is executed:

By Lemma 4.4, if an agent halts by executing f , then it indeed terminates
in the same state as if it had executed M . By the local decider property of g
and Corollary 1, if an agent halts by executing g, then again it halts in the same
state as if it had executed M . Finally, by Lemma 4.4, all agents halt and, in
fact, each halts on its respective starting node. �

5. Mobile agent verifiability classes

5.1. Verification with unanimity
Similarly to MADs, we will consider an analogous “strict” version of MAV:

Definition 7. A decision problem Π is in MAVs if and only if there exists a pro-
tocolM such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M

(
id, G,

s, 〈x,y〉
)
7→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M

(
id, G, s, 〈x,y〉

)
7→ no.

Note that, for “yes” instances, there can be certificates that lead some agents
to accept and some agents to reject. The decision is thus not necessarily unan-
imous for all certificates in all instances.
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By definition, MAVs ⊆ MAV. Moreover, MAV ⊆ Σ0
1, since a centralized

algorithm can simulate the MAV protocol for all possible certificate vectors (by
classical dovetailing) and accept if it finds a certificate for which all agents
accept. By taking complements, we obtain as well that co-MAVs ⊆ co-MAV ⊆
Π0

1.
There exist several nontrivial problems in MAVs and co-MAVs (Proposi-

tion 5). Furthermore, we can show that MAV is a strict superset of MAVs

and, as a corollary, co-MAV is a strict superset of co-MAVs (Proposition 6).

Proposition 5. accompanied ∈ MAVs and consensus ∈ co-MAVs.

Proof. For each problem we give only the corresponding verification protocol
and we omit the straightforward correctness proof.

A MAVs protocol for accompanied is the following: On explicit input
(
id, 〈x, y〉

)
,

each agent interprets y as an integer representing the size of the graph. Then, it
executes Rdv(y, id). After Rdv concludes, the agent accepts if it has met any
other agent, otherwise it rejects.

A co-MAVs protocol for consensus is the following: On explicit input
(
id, 〈x, y〉

)
,

each agent interprets y as an integer representing the size of the graph. Then,
it executes Rdv(y, id), while storing all inputs from the agents it encounters,
including its own. After Rdv concludes, the agent accepts if all the inputs it
has recorded are the same, otherwise it rejects. �

Proposition 6. degree ∈ MAV \ (MAVs ∪ co-MAV).

Proof. The problem is in MAV in view of the following protocol: The certifi-
cate y provided to each agent is interpreted as a sequence of port numbers to
follow. If, after following y, the agent reaches a node of degree equal to its input,
then it accepts, otherwise it rejects.

Now, suppose that degree ∈ MAVs and let M be the corresponding pro-
tocol. An agent that executes M with explicit input

(
id, 〈3, ε〉

)
and implicit

input
(
(id), G, (s), (〈3, ε〉)

)
, where G is an arbitrarily labeled ring and s is an

arbitrary node of G, must reject, say after T1 steps, because the ring does not
contain a node of degree 3. On the other hand an agent that executesM with ex-
plicit input

(
id′, 〈2, y〉

)
, where id′ 6= id, and implicit input

(
(id′), G, (s), (〈2, y〉)

)
must clearly accept for some certificate y = y?, say after T2 steps. Let G′

be the graph resulting from connecting one bottom-level node of V(T1+1)
G (s)

(cf. Definition 1) to one bottom-level node of V(T2+1)
G (s) (the new edge re-

ceives port number 2 at both endpoints). By Proposition 1, in the execution
M

(
(id, id′), G′, (s1, s2), (〈3, ε〉 , 〈2, y?〉)

)
, where s1 and s2 are the respective roots

of the truncated views that form G′, one of the agents will accept, whereas both
should reject because G′ does not contain any node of degree 3 and hence this
is a “no” instance of the problem.2 This contradicts the existence of a MAVs

protocol for degree.

2Recall that the degree of each node in the view is equal to the degree of some node in the
original graph, apart from the leaves of the view which of course have degree 1.
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Furthermore, suppose that degree ∈ co-MAV and let M be the correspond-
ing protocol. An agent that executes M with explicit input

(
id, 〈1, y1〉

)
and

implicit input
(
(id), G, (s), (〈1, y1〉)

)
, where G is an arbitrarily labeled ring and

s is an arbitrary node of G, must reject for some certificate y1 = y?1 , say after T1
steps, because the ring does not contain a node of degree 1. Similarly, there
exists y?2 such that an agent that executes M with explicit input

(
id′, 〈1, y?2〉

)
,

where id′ 6= id, and implicit input
(
(id′), G, (s), (〈1, y?2〉)

)
rejects, say after T2

steps. Let G′ be the graph resulting from connecting one bottom-level node
of V(T1+1)

G (s) (cf. Definition 1) to one bottom-level node of V(T2+1)
G (s) (the new

edge receives port number 2 at both endpoints). By Proposition 1, in the execu-
tionM

(
(id, id′), G′, (s1, s2), (〈1, y?1〉 , 〈1, y?2〉)

)
, where s1 and s2 are the respective

roots of the truncated views that form G′, both agents will reject. However,
this is a “yes” instance of the problem, because it contains two nodes of degree 1
(the remaining bottom nodes of the two truncated views3). This contradicts
the existence of a co-MAV protocol for degree. �

Proposition 6 also separates MAV from co-MAV. In order to separate Σ0
1

from MAV and Π0
1 from co-MAV, we observe that the teamsize problem, which

is clearly in ∆0
1 = Σ0

1 ∩ Π0
1, is neither in MAV nor in co-MAV.

Proposition 7. teamsize ∈ ∆0
1 \ (MAV ∪ co-MAV).

Proof. Suppose, for the sake of contradiction, that teamsize ∈ MAV and letM
be the corresponding protocol. An agent that executes M with explicit in-
put

(
id, 〈1, y〉

)
and implicit input

(
(id), G, (s), (〈1, y〉)

)
, where G is an arbitrar-

ily labeled ring and s is an arbitrary node of G, must accept for some y =
y?, say after T1 steps. Similarly, an agent with explicit input

(
id′, 〈1, y?〉

)
,

where id′ 6= id, and implicit input
(
(id′), G, (s), (〈1, y?〉)

)
must accept, say af-

ter T2 steps. Let G′ be the graph obtained by connecting one bottom-level
node of V(T1+1)

G (s) (cf. Definition 1) to one bottom-level node of V(T2+1)
G (s)

(the new edge receives port number 2 at both endpoints). By Proposition 1,
if s1 and s2 are the roots of the truncated views forming G′, in the execu-
tion M

(
(id, id′), G′, (s1, s2), (〈1, y?〉 , 〈1, y?〉)

)
both agents will accept, whereas

at least one should reject. This contradicts the existence of a MAV protocol
for teamsize.

By a completely symmetric argument, with input 2 instead of 1, we also
obtain a contradiction under the assumption that teamsize ∈ co-MAV. �

5.2. Decision problems with “no” certificates
In classical computability, the class Π0

1 = co-Σ0
1 can be seen as the class of

problems that admit a “no” certificate, i.e.: for “no” instances, there exists a
certificate that leads to rejection, whereas for “yes” instances, no certificate can

3Note that V(T1+1)
G (s) and V(T2+1)

G (s) are simply paths of length 2(T1 +1) and 2(T2 +1),
respectively, and G′ is a path of length 2(T1 + 1) + 2(T2 + 1) + 1.
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lead to rejection. In this respect, while MAV can certainly be considered as the
mobile agent analogue of Σ0

1, co-MAV is not quite the analogue of Π0
1. Problems

in co-MAV indeed admit a “no” certificate, but the acceptance mechanism is
reversed: for “no” instances, there exists a certificate that leads all agents to
reject. This motivates us to define and study co-MAV′, the class of mobile
agent problems that admit a “no” certificate while retaining the MAV acceptance
mechanism, as well as its complement MAV′. We give the definition of MAV′

below.

Definition 8. A decision problem Π is in MAV′ if and only if there exists a pro-
tocolM such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M

(
id, G,

s, 〈x,y〉
)
7→ ŷes, whereas if (G, s,x) /∈ Π then ∀y ∀id M

(
id, G, s, 〈x,y〉

)
7→ no.

By definition, it holds that MAVs ⊆ MAV′ and co-MAVs ⊆ co-MAV′. To
show MAV′ = MAVs (and thus co-MAV′ = co-MAVs), we need to “boost” the
MAV′ protocol so that the agents answer unanimously even in “yes” instances.
We achieve this by supplying an extra certificate, which is interpreted as the
number of nodes of the graph. This enables the agents to meet and exchange
information in “yes” instances, and therefore reach a unanimous decision. The
meta-protocol from Section 4 essentially provides “for free” the necessary sub-
routines for meeting and exchanging information.

Theorem 3. MAV′ = MAVs and co-MAV′ = co-MAVs.

Proof. It suffices to show that MAV′ ⊆ MAVs. Let Π ∈ MAV′ and let M be
a MAV′ protocol for Π. We will use the meta-protocol PN ,f,g of Section 4 in
order to give a MAVs protocol for Π. The explicit input to the meta-protocol
will be of the form

(
id, 〈x, 〈y1, y2〉〉

)
, where x is the input string and 〈y1, y2〉 is

the certificate. The first part of the certificate, y1, will be interpreted as the
number of nodes in the graph. The second part of the certificate, y2, will be
interpreted as the certificate for the MAV′ protocol. The idea is that all agents
perform the MAV′ protocol with certificate y2 and, if that protocol instructs an
agent to accept (which is a decisive answer for the MAV′ protocol), then the
agent accepts. On the other hand, if the MAV′ protocol instructs an agent to
reject, then it rejects only after y1 meta-protocol phases have been executed.
This ensures that, in a “yes” instance, an agent that would reject in view of the
MAV′ protocol will have the chance to meet some other agent that will have
accepted.

Let N = (N), where N is the following protocol: Protocol N executes
M with explicit input

(
id, 〈x, y2〉

)
. For the deciders of the meta-protocol, we

compute f
(
id, 〈x, 〈y1, y2〉〉 ; id, G, s, 〈x, 〈y1,y2〉〉

)
as follows: simulate locally M

on implicit input
(
id, G, s, 〈x,y2〉

)
. If some agent in the simulation accepts,

then accept. Otherwise, reject. Finally, we compute g
(
T, id, 〈x, 〈y1, y2〉〉 , H

)
as

follows: If H is a history that ends by accepting, then accept. If it ends by
rejecting and T (the current phase number of the meta-protocol) is larger than
or equal to y1, then reject. In any other case, continue (g is not decisive yet).
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The global decider property clearly holds for f , as it always either accepts
or rejects. For g, the local decider property holds because eventually T will
become so large that all agents terminate M on one hand, and T will be larger
than all values y1 on the other hand. At that point g will return a decisive result
(either accept or reject).

It remains to show that PN ,f,g is indeed a MAVs protocol for Π. Let (G, s,x) ∈
Π. By definition of MAV′, there exists a certificate y? such that for all id, at
least one agent accepts under the execution M

(
id, G, s, 〈x,y?〉

)
. Let n be a

vector with |n| = |y?| and ni = |V (G)| for all i. We will show that, for any ID
vector id, the execution PN ,f,g

(
id, G, s, 〈x, 〈n,y?〉〉

)
results in all agents accept-

ing. Consider an agent that halts by executing f . By Lemma 4.4, the agent
knows the full implicit input, and by the property of y?, at least one agent will
accept in the simulation. Therefore, the agent that halts by executing f will
accept. Now, consider an agent that halts by executing g. By definition of g,
and from the fact that g is only executed when the cautious and accompanied
flags are not set, that agent may reject only if it is alone in the graph and, by
Corollary 1, only if it rejects under the execution M

(
id, G, s, 〈x,y?〉

)
, which is

a contradiction. Therefore, any agent that halts by executing g will accept. By
Lemma 4.4 all agents halt, and thus, for “yes” instances, all agents accept under
PN ,f,g.

Finally, let (G, s,x) /∈ Π. By definition of MAV′, for all certificates y and
all id, all agents reject under the execution M

(
id, G, s, 〈x,y〉

)
. Therefore, by

Lemma 4.4, any agent that halts by executing f will reject. Moreover, by
Corollary 1, any agent that halts by executing g must also reject. Finally, by
Lemma 4.4, all agents reject. �

In view of Theorem 3, it follows that MAD ⊆ MAV∩ co-MAV and co-MAD ⊆
MAV ∩ co-MAV. We separate MAV ∩ co-MAV from MAD and co-MAD with the
problem mineven. In fact, we prove a stronger separation between MAV∩co-MAV
and MAVs ∪ co-MAVs ⊇ MAD ∪ co-MAD:

Proposition 8. mineven ∈ (MAV ∩ co-MAV) \ (MAVs ∪ co-MAVs).

Proof. We prove mineven ∈ MAV \MAVs. A MAV protocol for mineven is the
following: The certificate yi provided to each agent is interpreted as the number
of nodes of the graph. Then, the agents execute a protocol which guarantees
that, if they have received the correct certificate, they will all meet each other at
least once. For instance, this is guaranteed if each agent executes Rdv(yi, idi),
where Rdv is one of the auxiliary procedures for the meta-protocol (see Sec-
tion 4.1). At the same time, the agent collects the input values of other agents
that it meets. Finally, it accepts if and only if the minimum of all collected
input values (including its own) is even. For “yes” instances, there exists a cer-
tificate for which each agent meets all other agents, collects their inputs, and
verifies correctly that the minimum input is even. On the other hand, for “no”
instances, for every certificate, each agent collects a certain subset of the input
values of the agents. The agent that received the minimum input (which is odd,
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since we are in a “no” instance), will always have a subset in which the minimum
value is odd. Therefore, that agent will reject.

Furthermore, suppose that mineven ∈ MAVs and let M be the correspond-
ing protocol. An agent that executes M with explicit input

(
id, 〈1, y1〉

)
and

implicit input
(
(id), G, (s), (〈1, y1〉)

)
, where G is an arbitrarily labeled ring and

s is an arbitrary node of G, must reject for every y1, since this is a “no” in-
stance. We fix a certificate y1 and let T1 be the number of steps until the
agent rejects. On the other hand, an agent that executes M with explicit in-
put

(
id′, 〈2, y2〉

)
and implicit input

(
(id′), G, (s), (〈2, y2〉)

)
must accept for some

certificate y2 = y?2 , say after T2 steps. Let G′ be the graph obtained by connect-
ing one bottom-level node of V(T1+1)

G (s) (cf. Definition 1) to one bottom-level
node of V(T2+1)

G (s) (the new edge receives port number 2 at both endpoints).
By Proposition 1, if s1 and s2 are the roots of the truncated views forming G′,
in the execution M

(
(id, id′), G′, (s1, s2), (〈1, y1〉 , 〈2, y?2〉)

)
one agent will accept,

whereas both should reject. This contradicts the existence of a MAVs protocol
for mineven.

By similar arguments, we can prove that minodd ∈ MAV \ MAVs, where
minodd =

{
(G, s,x) : mini xi is odd

}
. Therefore, since minodd = mineven, we

obtain mineven ∈ co-MAV \ co-MAVs. �

5.3. Connections with the decidability classes
We explore the relationships among the decidability classes of Section 3 and

the classes defined in this section. From the definitions we know that MAD ⊆
co-MAV′, therefore, by Theorem 3, MAD ⊆ co-MAVs. Similarly, co-MAD ⊆
MAVs. Therefore, since MADs ⊆ MAD ∩ co-MAD, we also have that MADs ⊆
MAVs ∩ co-MAVs.

We show in Theorem 4 that, in fact, MADs = MAVs∩co-MAVs. Furthermore,
from the definitions and Theorem 3, we have MAD ⊆ MAV ∩ co-MAVs and
co-MAD ⊆ MAVs ∩ co-MAV. We show that these actually hold as equalities in
Theorem 5 below. The proof of Theorem 4 (resp. Theorem 5) is based on trying
all possible combinations of certificates for the MAVs (resp. MAV) and co-MAVs

protocols. Here, we use the full power of the meta-protocol of Section 4 in order
to interleave and synchronize this infinite number of executions.

Theorem 4. MADs = MAVs ∩ co-MAVs.

Proof. It suffices to show that MAVs ∩ co-MAVs ⊆ MADs. Let N1 be a MAVs

protocol for Π and let N2 be a co-MAVs protocol for Π, where Π ∈ MAVs ∩
co-MAVs. In order to show that Π ∈ MADs, we will use the meta-protocol
PN ,f,g with a collection N defined as follows:

For ρ ≥ 1, let Tρ denote the set of all functions that map strings of length
up to ρ to strings of length up to ρ and let (Tρ,j)1≤j≤|Tρ| be a fixed enumeration
of Tρ. Now, for i ∈ {1, 2}, we define the protocol Nρ,j

i :

• On explicit input (id, x), Nρ,j
i first checks if |id| ≤ ρ. If so, then it computes

y = Tρ,j(id), otherwise it sets y = ε. Finally, it executes Ni with explicit
input

(
id, 〈x, y〉

)
.
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Let N =
{
Nρ,j
i : i ∈ {1, 2}, ρ ≥ 1, 1 ≤ j ≤ |Tρ|

}
. Note that N is an infinite set

of mobile agent protocols, but it admits an effective enumeration.

Remark 4. The following holds by construction: For every k ≥ 1, every list of
distinct strings id, every list of strings y with |id| = |y| = k, and every ρ ≥ ρ0,
where ρ0 is the maximum of all lengths of strings in id and y, there exists j in
the range 1 ≤ j ≤ |Tρ| such that Tρ,j(id) = y.

We now define the functions f and g of the meta-protocol.

• To compute f(id, x; id, G, s,x): Simulate locally, by classical dovetailing,
all protocols in N on the implicit input (id, G, s,x). If, for some pair (ρ, j),
Nρ,j

1 results in all agents accepting, then accept. If, for some pair (ρ, j),
Nρ,j

2 results in all agents rejecting, then reject.

• To compute g(T, id, x,H1, . . . ,Hσ): If, for some (i, ρ, j), Hi represents an
execution of Nρ,j

1 which terminates in an accepting state, then accept. If,
for some (i, ρ, j), Hi represents an execution of Nρ,j

2 which terminates in
a rejecting state, then reject. Otherwise, continue.

If we are in a “yes” instance, then there exists a certificate vector for which
all agents executing N1 accept, and for any certificate vector, all agents that
execute N2 accept. Therefore, an agent that executes f can never reject and,
since by Remark 4 each certificate vector is eventually tested, the agent will
eventually accept. Conversely, if we are in a “no” instace, then for any certificate
vector, all agents that execute N1 reject, and there exists a certificate vector
for which all agents executing N2 reject. Therefore, an agent that executes f
can never accept and it will eventually reject. The function f is therefore a
global decider, and all agents that halt by executing f accept if we are in a “yes”
instance, or reject if we are in a “no” instance.

The function g is a local decider for similar reasons, and in fact any agent
that halts by executing g accepts in a “yes” instance, or rejects in a “no” instance.
Suppose that we are in a “yes” instance and let y? be the certificate vector that
causes all agents executing N1 to accept. By Remark 4, whatever the particular
agent IDs are, there exists a pair (ρ, j) such that, whenever the agents execute
Nρ,j

1 in their list of protocols, they are actually executing N1 with the certificate
vector y?. Therefore, after a sufficiently large number of phases of the meta-
protocol, Nρ,j

1 will be eventually fully executed, causing at least one agent to
accept as a result of executing g. At the same time, since we are in a “yes”
instance, for all (ρ, j), the protocols Nρ,j

2 result in agents accepting, therefore
no agent can reject as a result of executing g. On the other hand, in a “no”
instance, there exists a certificate vector that causes all agents executing N2 to
reject. By similar arguments, it follows that g satisfies the local decider property
and, in fact, no agent can accept as a result of executing g. �

Remark 5. Theorem 1 can also be obtained as a corollary of Theorems 3 and 4.
Indeed, we know by definition that MAD ⊆ co-MAV′ and co-MAD ⊆ MAV′, and
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thus by Theorem 3 we have MAD ⊆ co-MAVs and co-MAD ⊆ MAVs. It follows,
then, that MAD ∩ co-MAD ⊆ MAVs ∩ co-MAVs, which yields MAD ∩ co-MAD ⊆
MADs by Theorem 4.

Theorem 5. MAD = MAV ∩ co-MAVs and co-MAD = MAVs ∩ co-MAV.

Proof. It suffices to show that MAV ∩ co-MAVs ⊆ MAD. Let N1 be a MAV
protocol for Π and let N2 be a co-MAVs protocol for Π, where Π ∈ MAV ∩
co-MAVs. In order to show that Π ∈ MAD, we will use the meta-protocol PN ,f,g
with the same N , f , and g as in the proof of Theorem 4, except that whenever
N1 is referenced we substitute the MAV protocol for Π.

Suppose that for some implicit input (id, G, s,x), some agent rejects while
executing PN ,f,g. If the agent rejects by executing f , then there exists a cer-
tificate vector for which all agents executing N2 on this implicit input reject.
Therefore, the implicit input corresponds to a “no” instance of Π. If the agent
rejects by executing g, then there exists a certificate vector which causes at least
one agent executing N2 to reject. By the definition of co-MAVs, this implies that
the implicit input corresponds to a “no” instance.

Now, suppose that all agents accept while executing PN ,f,g. If at least one of
them accepts by executing f , then it knows the implicit input and it decides cor-
rectly, therefore the implicit input corresponds to a “yes” instance. If all of them
accept by executing g, then for each agent i let N1

(
idi, 〈xi, yi,i〉 ; id, G, s, 〈x,yi〉

)
be the accepting execution of N1 that led that agent to accept. That is, agent i
executed one of the protocols Nρi,ji

1 for Ti steps and this execution corresponded
to an accepting execution of N1 with certificate vector yi (thus the particular
certificate string of agent i was yi,i). By Lemma 4.4, for each agent i, the start-
ing positions of all other agents are at distance strictly greater than 2Ti from si.
Therefore, if agent i executes protocol N1 with explicit input

(
idi, 〈xi, yi,i〉

)
,

it halts after Ti steps without meeting any other agent and, in fact, we have
the stronger property that it will halt after Ti steps whatever certificates are
provided to the other agents. Consequently, the execution of N1 with implicit
input

(
id, G, s, 〈x, z〉

)
, where z = (y1,1, y2,2, . . . , y|s|,|s|), must result in all agents

accepting. By the definition of MAV, this implies that (G, s,x) is a “yes” instance
of Π. �

Note that it was shown in [19] that, if we consider decision problems that
are decidable or verifiable under the promise that the instance contains a single
agent (thus giving rise to the classes MAD1 and MAV1), then it holds that
MAD1 = MAV1 ∩ co-MAV1. Theorems 4 and 5 can be seen as generalizations of
that result to multiagent classes.

Proposition 9. accompanied ∈ MAVs \ co-MAD and consensus ∈ co-MAVs \
MAD.

Proof. It suffices to show that accompanied /∈ co-MAD and consensus /∈ MAD,
by Proposition 5.
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For a contradiction, let M be a MAD protocol for either accompanied or
consensus. An agent that executes M with explicit input (id, ε) and implicit
input

(
(id), G, (s), (ε)

)
, where G is a ring with an arbitrary port labeling and s

is an arbitrary node of G (i.e., the agent is executing M with an empty input,
alone on a ring), must accept, say after T1 steps. Similarly, an agent with explicit
input (id′, 0) and implicit input

(
(id′), G, (s), (0)

)
, where id′ 6= id, must accept,

say after T2 steps. Now, let G′ be the graph obtained by connecting one of the
bottom-level nodes of V(T1+1)

G (s) (cf. Definition 1) to one of the bottom-level
nodes of V(T2+1)

G (s), via an edge with port number 2 at both endpoints. Let s1, s2
be the nodes of G′ that respectively correspond to the roots of the two truncated
view graphs that form G′. Consider the executionM

(
(id, id′), G′, (s1, s2), (ε, 0)

)
.

Since there are several agents, with different inputs, and M is a MAD protocol
for either accompanied or consensus, at least one agent should reject. However,
by Proposition 1, both of them will accept, which is a contradiction. �

In view of Theorem 5, Proposition 9 yields a separation between MAVs

and co-MAV, as accompanied ∈ MAVs\co-MAV, and a separation between co-MAVs

and MAV, as consensus ∈ co-MAVs \MAV.
By combining the results of this section with the results of Section 3, we

obtain a picture of the relationships among the classes below MAV and co-MAV,
as illustrated in Figure 2.

6. Closure properties

In this section, we discuss closure properties of the various classes that we
have considered in this work under the set-theoretic operations of union, inter-
section, and complement. Recall that these are summarized in Table 1.

The class MADs is easily seen to be closed under union: If Π1,Π2 ∈ MADs via
protocols M1 and M2, respectively, then Π1 ∪Π2 ∈ MADs via a straightforward
application of the meta-protocol for N = (M1,M2). The global decider f just
simulates both M1 and M2 on the implicit input and accepts if and only if at
least one of them results in all agents accepting. The local decider g accepts
if either of the histories H1 and H2 is accepting, rejects if both are rejecting,
and otherwise continues. We have already observed that MADs is closed under
complement. Therefore, MADs must be closed under intersection as well.

The class MAD is clearly not closed under complement: If it were, then by
Proposition 4 we would get that allempty ∈ (MAD ∩ co-MAD) \ MADs, which
contradicts Theorem 1. Furthermore, MAD is not closed under union: Consider
the problems allempty and allzero =

{
(G, s,x) : ∀i xi = 0

}
, which are both

in MAD. We have, though, that allempty ∪ allzero /∈ MAD, as we can place two
agents with inputs ε and 0 (a “no” instance of allempty ∪ allzero) on antipodal
nodes of a sufficiently large ring, which will force them to decide while unaware
of each other’s existence, therefore both will accept. We can show, however, that
MAD is closed under intersection. If Π1,Π2 ∈ MAD via protocols M1 and M2,
respectively, then Π1∩Π2 ∈ MAD via a straightforward application of the meta-
protocol for N = (M1,M2). The global decider f simulates both M1 and M2
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on the implicit input and accepts if and only if both of them result in all agents
accepting. The local decider g accepts if both of the histories H1 and H2 are
accepting, rejects if at least one is rejecting, and otherwise continues. From the
closure properties of MAD, we obtain immediately that co-MAD is closed under
union and it is not closed under intersection and under complement.

By standard applications of the meta-protocol similar to the ones described
before, we can also obtain that MAVs, and thus co-MAVs, are both closed under
union and intersection, that MAV is closed under intersection, and thus that
co-MAV is closed under union. However, MAVs and co-MAVs are not closed un-
der complement, because that would yield accompanied ∈ (MAVs ∩ co-MAVs) \
co-MAD, contradicting Theorem 4. MAV and co-MAV are also not closed under
complement because degree ∈ MAV \ co-MAV. Finally, MAV is not closed un-
der union, which implies that co-MAV is not closed under intersection, for the
following reasons. Consider the problems degree and diffdeg =

{
(G, s,x) : ∀i G

contains at least xi nodes of pairwise different degrees
}
, which are both in MAV.

We have, though, that degree ∪ diffdeg /∈ MAV. Indeed, an agent with input 1
alone in a ring will accept for some certificate, as this forms a “yes” instance of
diffdeg (although it is a “no” instance of degree). Similarly, an agent with input 2
alone in a ring will accept for some certificate, as this forms a “yes” instance
of degree (although it is a “no” instance of diffdeg). Now, placing these agents
with inputs 1 and 2 (a “no” instance of degree∪ diffdeg) on antipodal nodes of a
sufficiently large ring with the same certificates will force them to decide while
unaware of each other’s existence, and therefore both will accept.

7. Relaxing the unanimity constraints

In the classes that we have considered so far, it was always the case that the
agents needed to give a unanimous answer either for all “yes” instances or for all
“no” instances (or in both cases for MADs). One might be tempted to define a
“relaxed” version of these classes, in which the only requirement is that at least
one agent gives the correct answer, as follows:

Definition 9. A decision problem Π is in MADr if and only if there exists a
mobile agent protocolM such that for all instances (G, s,x): if (G, s,x) ∈ Π then
∀id M(id, G, s,x) 7→ ŷes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) 7→ıno.

It is easy to check that MADr = co-MADr. Moreover, given the looseness of
the acceptance mechanism in MADr, it is perhaps not surprising that it contains
problems of varying difficulty. Indeed, let us define the following transformations
of mobile agent decision problems:

Definition 10. Let Π be any mobile agent decision problem. Then, we define
the following problems:

• [Π]ε = allempty ∪ (someempty ∩Π) = someempty ∩ (allempty ∪Π)

• [Π]r = accompanied ∩ somenodes-ub ∩Π
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It turns out that MADr contains both [Π]ε and [Π]r for any problem Π:

Proposition 10. For every mobile agent decision problem Π, [Π]ε ∈ MADr and
[Π]r ∈ MADr.

Proof. It is easy to verify that the following protocol decides [Π]ε in the MADr

sense: on input x, each agent accepts if x = ε and rejects otherwise.
For [Π]r, consider the following protocol, where Procedure Rdv(·, ·) is the

procedure that we defined in Section 4.1:

Explicit input: (idi, xi). Implicit input: (id, G, s,x).
1: Execute Rdv(xi, idi)
2: if met no agents or met some agent with (xj , idj) lexicographically larger

than (xi, idi) then
3: reject
4: else
5: accept
6: end if

Observe that the execution of the above protocol on any implicit input (id, G, s,x)
will result in at least one agent rejecting. Indeed, the agent with the lexicograph-
ically smallest pair (x, id) will always reject, whether it meets any other agent
or not. It follows, then, that in every “no” instance of [Π]r, we have the desired
property that at least one agent rejects.

In a “yes” instance of [Π]r, there are at least two agents and at least one
of them has received an input that is an upper bound for |V (G)|. Therefore,
the agent with the lexicographically largest (xi, idi) will meet every other agent
during step 1 and it will accept at line 5. Indeed, consider any other agent, with
explicit input (idj , xj). If xj < xi, then B(xi) > 2B(xj) and thus the last call to
Explore-Ball(xi) by the agent i will find the halted agent j. Otherwise the
two Rdv procedures are synchronized and the meeting will occur before both
agents halt. See Section 4.1 for justifications of both cases. �

The class MADr, as defined above, can be seen as being too large, in that it
contains problems which are arbitrarily high in the arithmetic hierarchy:

Theorem 6. For every j ≥ 1, MADr contains a Σ0
j -complete problem.

Proof. Fix an encoding of Turing machines as strings over Σ?, where ε encodes
a Turing machine that halts immediately without performing any transitions.
We show that [allhaltingj ]ε, which is in MADr by Proposition 10, is Σ0

j -complete
for all j ≥ 1. The problem allhaltingj is easily seen to be in Σ0

j , therefore also
[allhaltingj ]ε ∈ Σ0

j .
Moreover, HPj ≤m [allhaltingj ]ε via the following reduction: On input x, the

reduction returns (G, s,x) where G is a graph with one node and x = (ε, x).
Indeed, if x ∈ HPj , then (G, s,x) ∈ [allhaltingj ]ε because at least one agent
receives ε and both inputs correspond to Turing machines with oracle HPj−1
that halt when executed with input ε. Conversely, if (G, s,x) ∈ [allhaltingj ]ε,
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then either (G, s,x) ∈ allempty and therefore x = ε ∈ HPj , or (G, s,x) ∈
allhaltingj and therefore x ∈ HPj . �

On the other hand, there are also problems that are arbitrarily high in the
arithmetic hierarchy and do not belong to MADr, like allhaltingj , which is Σ0

j -
complete:

Proposition 11. For all j ≥ 1, allhaltingj /∈ MADr.

Proof. If allhaltingj ∈ MADr, then this would imply that there exists a protocol
that decides whether a single agent on a single-node graph has received an
input x ∈ HPj . However, HPj is undecidable. �

In fact, even some problems in ∆0
1 do not belong to MADr. This is for

example the case for the problem path, again because intuitively a single agent
cannot distinguish a (sufficiently long) path from a cycle. We end this section
by presenting some additional results linking the standard computability classes
and the mobile agent computability classes thanks to some properties of MADr.

Theorem 7. MADr ∩ Σ0
1 ⊆ MAV.

Proof. LetM be a MADr protocol for a mobile agent decision problem Π, and
assume that Π is also in Σ0

1. Recall that Π ∈ Σ0
1 means that there exists a

decidable predicate R(·, ·) such that, for every instance I encoded by 〈I〉 ∈ Σ?,
I ∈ Π⇔ ∃c ∈ Σ?R

(
〈I〉, c

)
.

We will use the meta-protocol PN ,f,g with explicit input of the form
(
id, 〈x, 〈y, c〉〉

)
,

in order to give a MAV protocol for Π. Let N = (M) and f, g be defined as fol-
lows: To compute f

(
id, 〈x, 〈y, c〉〉 ; id, G, s, 〈x, 〈y, c〉〉

)
, return accept ifR

(
〈I〉, c

)
,

where 〈I〉 is the encoding of the instance I = (G, s, 〈x, 〈y, c〉〉), otherwise return
reject. To compute g(T, id, 〈x, 〈y, c〉〉 , H), if T < y or H does not terminate,
return continue. Otherwise, return accept if H accepts, or reject if H rejects.

Observe that, in a “no” instance, for every certificate vector 〈y, c〉, at least
one agent rejects. Indeed, if all of the agents decide via the local decider g, then
by Corollary 1 and the definition of the MADr protocol for Π, at least one of
them will reject. If at least one decides via the global decider f , then that agent
will reject by definition of the predicate R.

In a “yes” instance I, we can provide to the agents the certificate vector 〈n, c〉,
where n is a vector with all components equal to the size n of the graph, and c is
a vector with all components equal to the string c which renders R

(
〈I〉, c

)
true.

With this certificate, if some agent decides during phase T via the local decider,
then this means that T ≥ n and, by Lemma 4.4, that agent is the only agent
in the instance and therefore it will accept by definition of the MADr protocol.
Consequently, if there are two or more agents, they will all decide via the global
decider f , and therefore they will all evaluate R

(
〈I〉, c

)
and accept. In all cases,

given the certificate vector 〈n, c〉, all agents accept. �

Corollary 2. MADr ∩ Π0
1 ⊆ co-MAV.
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Proof. This follows from Theorem 7 and the fact that MADr = co-MADr. �

Corollary 3. MADr ∩∆0
1 ⊆ MAV ∩ co-MAV.

Proof. This follows from Theorem 7, Corollary 2, and the fact that ∆0
1 =

Σ0
1 ∩ Π0

1. �

Corollary 4. For every mobile agent decision problem Π ∈ Σ0
1, [Π]ε ∈ MAV

and [Π]r ∈ MAV.

Proof. This follows from Proposition 10, Theorem 7, and the observation that
if Π ∈ Σ0

1, then clearly also [Π]ε ∈ Σ0
1 and [Π]r ∈ Σ0

1. �

Corollary 5. For every mobile agent decision problem Π ∈ Π0
1, [Π]ε ∈ co-MAV

and [Π]r ∈ co-MAV.

Proof. This follows from Proposition 10, Corollary 2, and the observation that
if Π ∈ Π0

1, then clearly also [Π]ε ∈ Π0
1 and [Π]r ∈ Π0

1. �

8. Discussion

A common feature of the classes that we considered in this work is that the
certificates that are given to the agents as part of the verification protocol do
not depend on the agent identifiers. This was also the case in [19]. This is
consistent with the fundamental assumption that the property to be decided
by the system of mobile agents involves only the graph, the starting positions
of the agents, and their respective inputs (cf. Definition 3). In other words,
the membership of a given instance in a given mobile agent decision problem is
independent of the assignment of identifiers to the agents, which can be seen as
saying that the agent identifiers are essentially only used for symmetry breaking
purposes. Nevertheless, it would also be interesting to consider mobile agent
verification classes in which the certificates may depend on the agent identifiers.

A further noteworthy point is that, apparently, the main source of difficulty
for the decidability of mobile agent problems is the fact that the agents can-
not distinguish between instances that contain only one agent and instances
that contain two or more agents. Indeed, under the promise that the instance
contains a single agent, the corresponding classes satisfy MAD1 = co-MAD1 =
MAV1 ∩ co-MAV1 [19] and thus the inclusion diagram of Figure 3 collapses to
a great extent. On the other hand, under the promise that there are two or
more agents, the agents can perform rendezvous with increasing guesses on the
number of nodes until they learn the implicit input, and thus they decide all
decidable problems. Conversely, a promise that the instance contains at most
two agents does not seem to give any immediately exploitable information to a
verification algorithm. It would be interesting if one could formalize this obser-
vation by comparing MAV to the class of problems that admit a MAV protocol
under the promise that the instance contains at most two agents.
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We leave as an interesting and challenging direction for future work the
computability-theoretic classification of mobile agent problems that do not fall
within the framework of decision problems, such as exploration, map construc-
tion, rendezvous or pattern formation problems, among others. This may require
significant adaptation of the current class definitions and techniques.
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