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Abstract—Range-only target motion analysis (ROTMA) is the 

topic of this paper: we focus our study on the numerical aspect 

and performance of the maximum likelihood estimates (MLE) 

for some scenarios when the noise polluting the measurements is 

additive and Gaussian. The performance is compared to the 

Cramér–Rao lower bound (CRLB).  

I. INTRODUCTION 

Range-only target motion analysis (ROTMA) has been 

treated in the literature for various applications, the target 

having a constant velocity (CV) motion: for example in [1], 

[2] and [3], maritime surveillance radar systems, ISAR 

(inverse synthetic aperture radar), are studied. It offers also 

an efficient way to calibrate a sonar array [4]. ROTMA is 

encountered in the robotic domain by radio-frequency [5] [6]. 

Local observability was analysed by the rank of the Fisher 

information matrix (FIM) [7]. Global observability conditions 

were proposed recently in [8] and [9]. In the same vein, we 

present here some aspects of estimation (which was not 

addressed in [8] and [9]), in particular for scenarios where 

observability is not acquired and for which the FIM is full-

ranked, or conversely for scenarios where the trajectory of 

the target is observable, but the FIM is singular. This 

motivates the structure of our paper. 

In section II, we present the assumptions and notations. 

Section III is devoted to the special case where the observer 

is in CV motion too. In section IV, the observer’s trajectory is 

composed of two legs. Here, the target’s trajectory can be 

observable or not [8]. Section V presents a case where the 

order of the observer’s kinematic model is greater than that of 

the target, and still the trajectory of the target is unobservable 

[9]. We end with a more favourable case: the observer’s 

trajectory contains an arc of a circle and this suffices to 

guarantee observability [9]. The conclusion follows. 

II. HYPOTHESES, DEFINITIONS AND NOTATIONS 

A. Model of Target’s and Observer’s Kinematics 

A target (T) and an observer (O) move in the same plane, 

given a Cartesian system. The target has a CV motion all 

along the scenario, while the observer maneuvers (the term 

“maneuver” is employed when the observer is not in CV 

motion).  

For the observer, the position and velocity at time t are 

respectively   tPO
 and  

 
dt

tdP
tV O

O  . Both are concatenated 

into the vector       TTT tVtPtX OOO  . For the target, the 

notations are similar:  tPT
,  

dt

tdP
V T

T  , and 

    TTT

TTT VtPtX  . Obviously,     TTT VtPtP  0 . Note 

that whatever t ,  tXT
 entirely defines the target’s 

trajectory. For a chosen *t , the state vector   *tXT
 will be 

simply denoted  TyxyxX  . The motion of the 

target relative to the observer is given by      tPtPtP OTOT   

and by  
 

dt

tdP
tV OT

OT  . We define the vector 

     tXtXtX OTOT  . All the angles are clockwise-positive: 

the angle  WNorth,  is denoted W . The range and the 

bearing at time t  are given respectively by    tPtr OT  and 

   tPt OT . 

B. Measurements Model and Estimate 

For the sake of simplicity, the notations 
kr  and 

k  will 

stand for  ktr  and  kt ,  respectively. In order to emphasize 

the functional link of 
kr  with the state vector X , we use the 

notation  Xrk
. The range measurement collected at 

  tktk  1  and denoted 
kmr ,

 obeys the equation 

  kkkm Xrr ,
 (1), where 

k  is the measurement noise 

assumed to be Gaussian, temporally white and zero mean; its 

standard deviation is 
kr, . The set of N available range 

measurements is  Nmmmm rrrr ,2,1, ,,,  . The aim of the RO-

TMA is to estimate the state vector X  given the 

measurements
mr . Note that in all the scenarios, the observer 

starts from    T000 OP . The chosen estimate is the MLE 

(or equivalently the LSE since the noise is additive and 

Gaussian). Its empirical covariance matrix will be compared 

to the Cramér–Rao lower bound (CRLB), which is the 

inverse of the FIM for unbiased estimators. 

III. THE OBSERVER’S TRAJECTORY CONSISTS OF ONE LEG 

ONLY 

In [8], we showed that when the observer is in CV motion, 

the trajectory of the target is observable up to an isometry 

(rotation or axial symmetry). We characterized the set of 



targets (true target and ghost-targets) O in the same range as 

the target of interest: 
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the range  Xrk
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. This property 

allows us to define a linear estimate. 

A. Linear Estimate 

Let us consider the measurement equation (1) and express 

the squares of its two elements
2
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222 22Var krkrk r   . So, we end up 

with the set of measurement equations 

kkkkm Zr   kA
2

,  for Nk ,,1 . Note that 
k  is 

zero-mean but no longer Gaussian. Still, it is legitimate to 

compute the weighted linear least squares estimator of Z  that 
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 

1

1
2

22

2

1

1

2

,

2
1

11
4

1ˆ







 

































 

N

k

k

rk

r

N

k
k

WLS

r

r
ZCov k

T

kk

T

k AAAA



 

. 

The computation of 
WLSẐ  assumes the knowledge of 2

kr . To 

alleviate this, in practice, we replace 2
kr  by 2

,kmr : 
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B. Efficiency of the Linear Estimate 

The FIM  is given by    k
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that is,     WLSROTMA ZCovZ ˆB
1
. 

When k
rk

r any for  ,1
2

2


 , then    WLSROTMA ZCovZ ˆB . 

The proposed estimator 
WLSẐ  is hence approximately 

efficient. Numerous simulations (not reported here) have 

confirmed this conclusion. 

IV. THE OBSERVER’S TRAJECTORY CONSISTS OF TWO LEG  

Now, the observer’s trajectory is composed of two legs, 

not necessarily traveled with the same speed: the velocities 

are 
1,OV  when t  and 

2,OV  when t . The motion 

equation is       iOOO VtPtP ,  . We know from 

Proposition 3 of [8] that one ghost at most exists whose 

trajectory is defined by      OOVVG XXXX
OO

  1,2,2 SI , 

where 
OX  stands for  *tXO

, and  1,2,2 OO VV S  is the matrix of 

the symmetry around the line spanned by the vector 

1,2, OO VV  . To minimize  
 
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
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,


, we have 

recourse to the Gauss–Newton algorithm which will return 

X̂  or      OOVVG XXXX
OO

 
ˆˆ

1,2,2 SI , in unobservable 

cases. Two scenarios have been considered: in the first one, 

the target’s trajectory is observable, and in the second one, 

proposed in [3], the target’s trajectory is unobservable. For 

each scenario, 500 Monte Carlo simulations have been run. 

For each simulation, we compute the MLE X̂  and, if existing, 

the corresponding ghost 
GX̂ . The performance of the MLE is 

evaluated by its empirical bias and the comparison of the 

empirical standard deviations of its components with the 

square roots of the diagonal elements of the CRLB. 

A. Observable Scenario 

The first leg of the observer is characterized by a heading 

of 45° and a speed of 4 m/s. The instant of its heading change 

is  s780 . During its second leg, the speed and the heading 

of the observer are equal to 8.49 m/s and –70.53°, 

respectively. The target starts at     (m)0000,40
T

TP , its 

speed is 5.74 m/s, and its heading is 60.5°, corresponding to 

velocity   (m/s)225
T

TV . The duration of the scenario is 

                                                 
1  Let A and B  be two symmetric matrices, BA   means that the 

matrix  AB  is a non-negative matrix. 



26 min. The measurements are acquired every 4 s ( st 4 ), 

and the standard deviation of the noise is 50r  m. The 

estimates and the performance are given at the final time. Fig. 

1 depicts the scenario and the 500 estimates (O and T are for 

the initial positions of the observer and the target, 

respectively). Because the FIM is singular [8], the CRLB 

cannot be computed; therefore in Table I the column “ CRLB ” 

contains no value. We observe that the sets of MLEs are 

“croissant-shaped”. This is why we present the results in 

Cartesian coordinates for the estimated target’s position 

 Tyx  and in polar coordinates  Tr for the estimated 

relative position of the target w.r.t. the observer. 

TABLE I 

PERFORMANCE OF THE MLE AT FINAL TIME 

X  Bias  CRLB
 ̂  

x 11780 m 18.87 - 30.14 

y 4401 82.69 - 803.47 

x 5 m/s 0.006 - 0.04 

y 2.828 m/s 0.17 - 0.46 
 

r 15825 m 1.74 - 7.54 

 90 ° 0.3 - 2.91 

 

 
Fig. 1. The scenario and the estimates in an observable leg-by-leg case 

 

Numerous other simulations with various scenarios allow us 

to conclude that the MLE is unbiased. But we cannot claim 

that the MLE reaches the CRLB, because for such scenarios, 

the FIM is singular.  

B. Unobservable Scenario(see [3]) 

 In [3] the authors proposed the following scenario whose 

duration is 30 min to test a particle filter. The first heading 

and the speed of the observer are respectively -80° and 2.57 

m/s. At t=15 min, it changes its course and the second 

heading is 146° and keeps the same speed. At the very 

beginning, the target is at     (m)071,7071,70
T

TP , its 

heading is -135° and its speed is 7.72 m/s (see Fig. 2(a)). The 

sampling rate is equal to 60 s and the standard deviation is 

20r m. As in [3], the estimates are given at time t*=26 

min. In Table II, we give the estimate of the state vector at 

this time. Fig. 2(b) depicts the 90%-confidence ellipsoid (in 

red) together with the cloud of the position estimates (in blue), 

and their corresponding ghost-estimates (in red). Here, 

despite the presence of a ghost, the MLE is efficient. Note 

that adding a third leg does not guarantee observability [8]. 

TABLE II 
PERFORMANCE OF THE MLE AT TIME t*=26 MIN.  

X  Bias  CRLB  ̂  
x -1444.8 m 6.84 10.93 11.12 

y -1444.8 m 15.21 12.84 12.86 

x -5.46 m/s 0.001 0.03 0.03 

y -5.46 m/s 0.002 0.04 0.04 

r 455.05 m 0.49 11.09 11.99 

 165.31 ° 0.11 1.60 1.64 

 

 

 
Fig. 2. (a) The scenario and the estimates in Clark’s scenario [3], (b) 

magnification around the estimates. 

V. THE OBSERVER IS IN CONSTANT ACCELERATION MOTION 

In the two scenarios presented hereafter, the initial velocity 

vector of the observer is  T210 (m/s). Its acceleration vector 

is  T00416.0  (m/s
2
). In both scenarios, we choose 

mr 20  and st 1 . 

A. Example of Observable Case 

The target starts at  T04000  (m), with a velocity equal to  

 T210 (m/s). Note that the observer and the target are on a 

rendezvous route. In this case the FIM is singular [9]. 

The estimates and the performance are given in Table III. 

TABLE III 

PERFORMANCE OF THE MLE AT FINAL TIME 

X  Bias  CRLB  ̂  
x -410 m 2.31 - 5.58 

y 710 m 85.30 - 78.48 

x 10 m/s 0.02 - 0.04 

y 2 m/s 0.43 - 0.48 

r 1319 m 2.80 - 3.13 



 -90 ° 3.70 - 3.41 

B. Example of Unobservable Case 

The target starts at  T34642000  (m) with a velocity 

 T3.166.14 (m/s). The observer and the target are not on a 

rendezvous route and the bearings are not constant. Three 

ghosts exist (the maximum number of ghosts). Fig. 3 depicts 

the result: the estimates of the initial and final position of the 

target (T), and the couples of estimates of the three ghost-

targets’ positions (G).  Note that the three other solutions are 

computed from the MLE returned by the algorithm [9]. 

 

 
Fig. 3. The scenario and the estimates in an unobservable case. 

 

The estimate and its performance are given in Table IV. 

TABLE IV  

PERFORMANCE OF THE MLE AT FINAL TIME 

X  Bias  CRLB  ̂  
x 7241.4 m 14.47 53.58 59.29 

y 9315.7 m 10.22 37.19 41.84 

x 14.6 m/s 0.02 0.39 0.39 

y 16.3 m/s 0.03 0.21 0.21 

r 10678 m 0.09 3.73 3.70 

 36 ° 0.1 0.35 0.39 

VI. THE OBSERVER’S TRAJECTORY CONTAINS AN ARC OF A 

CIRCLE  

Now the observer’s trajectory is composed of two legs 

linked by an arc of a circle. The target’s trajectory was 

proved to be observable in [9]. No problem of convergence is 

indicated in our numerous simulations, provided the number 

of measurements during the arc of a circle is greater than 50 

(otherwise, the routine can be stalled in a local minimum). In 

the scenario presented here, the initial position of the 

observer is  T
000,101000  (m) with speed equal to 4 m/s. 

Its first heading is 90°. At time 7001  s, it begins its 

circular maneuver and finishes it at time 9802  s. At this 

time its new heading is equal to 225°. Meanwhile, the target 

has started at  T000,252000 (m), with a speed equal to 2 

m/s following a route equal to 180°. The total duration of the 

scenario is 26 minutes. The standard deviation is 50 m. The 

performance is summarized in Table V: we observe again 

that the MLE is efficient. Numerous simulations, not reported 

here, confirm this claim.  

TABLE V 

PERFORMANCE OF THE MLE AT FINAL TIME 

X  Bias CRLB  ̂  
x -2000 m 0.85 138.56 146.68 

y 21888 m 0.25 49.58 53.04 

x 0 m/s 0.003 0.14 0.15 

y -2 m/s 0.0005 0.04 0.05 

r 15030 m 0.31 8.23 8.98 

 -17.35 ° 0.0025 0.56 0.59 

VII. CONCLUSION 

Three types of scenario were used to study the MLE in 

ROTMA: observable scenarios with nonsingular FIM, 

observable scenario with singular FIM and unobservable 

scenario with nonsingular FIM. For the first one, the MLE 

is efficient. For the second, the MLE is unbiased, but we 

cannot compute the CRLB. For the last, the MLE 

restricted to the local solution corresponding to the true 

target is efficient too. When several solutions exist 

(presence of ghost-targets), we are able to give the other 

solution(s) from the one returned by the algorithm. This 

study could be extended to the case of maneuvering 

targets as in [10]. 
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