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Performance of Range-Only TMA

Range-only target motion analysis (ROTMA) is the topic of this paper: we focus our study on the numerical aspect and performance of the maximum likelihood estimates (MLE) for some scenarios when the noise polluting the measurements is additive and Gaussian. The performance is compared to the Cramér-Rao lower bound (CRLB).

I. INTRODUCTION

Range-only target motion analysis (ROTMA) has been treated in the literature for various applications, the target having a constant velocity (CV) motion: for example in [START_REF] Ristic | Target Motion Analysis using Range-Only Measurements: Algorithms, Performance and Application to ISAR Data[END_REF], [START_REF] Sathyan | Multiple Hypothesis Tracking with Multiframe Assignment Using Range and Range-rate Measurements[END_REF] and [START_REF] Clark | A Gaussian mixture filter for Range-Only Tracking[END_REF], maritime surveillance radar systems, ISAR (inverse synthetic aperture radar), are studied. It offers also an efficient way to calibrate a sonar array [START_REF] Pillon | Method for Antenna Angular Calibration by Relative Distance Measuring[END_REF]. ROTMA is encountered in the robotic domain by radio-frequency [START_REF] Cevher | A range-only multiple target particle filter tracker[END_REF] [START_REF] Huang | A Bank of Maximum A Posteriori Estimators for Single-Sensor Range-only Target Tracking[END_REF]. Local observability was analysed by the rank of the Fisher information matrix (FIM) [START_REF] Song | Observability of Target Tracking with Range-Only Measurements[END_REF]. Global observability conditions were proposed recently in [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF] and [START_REF] Jauffret | Observability: Range-Only vs. Bearings-Only Target Motion Analysis when the Observer Maneuvers Smoothly[END_REF]. In the same vein, we present here some aspects of estimation (which was not addressed in [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF] and [START_REF] Jauffret | Observability: Range-Only vs. Bearings-Only Target Motion Analysis when the Observer Maneuvers Smoothly[END_REF]), in particular for scenarios where observability is not acquired and for which the FIM is fullranked, or conversely for scenarios where the trajectory of the target is observable, but the FIM is singular. This motivates the structure of our paper.

In section II, we present the assumptions and notations. Section III is devoted to the special case where the observer is in CV motion too. In section IV, the observer's trajectory is composed of two legs. Here, the target's trajectory can be observable or not [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF]. Section V presents a case where the order of the observer's kinematic model is greater than that of the target, and still the trajectory of the target is unobservable [START_REF] Jauffret | Observability: Range-Only vs. Bearings-Only Target Motion Analysis when the Observer Maneuvers Smoothly[END_REF]. We end with a more favourable case: the observer's trajectory contains an arc of a circle and this suffices to guarantee observability [START_REF] Jauffret | Observability: Range-Only vs. Bearings-Only Target Motion Analysis when the Observer Maneuvers Smoothly[END_REF]. The conclusion follows.

II. HYPOTHESES, DEFINITIONS AND NOTATIONS

A. Model of Target's and Observer's Kinematics

A target (T) and an observer (O) move in the same plane, given a Cartesian system. The target has a CV motion all along the scenario, while the observer maneuvers (the term "maneuver" is employed when the observer is not in CV motion).

For the observer, the position and velocity at time t are respectively

  t P O and     dt t dP t V O O  . Both are concatenated into the vector         T T T t V t P t X O O O



. For the target, the notations are similar:

  t P T ,   dt t dP V T T 
, and

      T T T T T T V t P t X  . Obviously,     T T T V t P t P   0 . Note that whatever t ,   t X T
entirely defines the target's trajectory. For a chosen * t , the state vector

  * t X T will be simply denoted   T y x y x X   
. The motion of the target relative to the observer is given by       



. We define the vector 

      t X t X t X O T OT   . All
  N m m m m r r r r , 2 , 1 , , , ,  
. The aim of the RO-TMA is to estimate the state vector X given the measurements r . Note that in all the scenarios, the observer

starts from     T 0 0 0  O P
. The chosen estimate is the MLE (or equivalently the LSE since the noise is additive and Gaussian). Its empirical covariance matrix will be compared to the Cramér-Rao lower bound (CRLB), which is the inverse of the FIM for unbiased estimators.

III. THE OBSERVER'S TRAJECTORY CONSISTS OF ONE LEG

ONLY

In [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF], we showed that when the observer is in CV motion, the trajectory of the target is observable up to an isometry (rotation or axial symmetry). We characterized the set of targets (true target and ghost-targets) O in the same range as the target of interest:

                           matrix orthogonal an being , 0 0 2 H H I O O OT OT V P V P O .
O can be defined by a 3-dimensional state vector

    T        2 2 * 2 * OT OT T OT OT V t P V t P Z . Indeed, for any * t , we have Z r k k A  2 , with     2 * * 1 t t t t k k k    A . Therefore, the range   X r k is reparametrized into   Z r k
. This property allows us to define a linear estimate.

A. Linear Estimate

Let us consider the measurement equation ( 1) and express the squares of its two elements:

2 , , 2 2 , 2 k r k r k k k m r r r      . The noise intervening in this new equation is then 2 , , 2 k r k r k r    whose first two moments are   2 2 , , 2 E r k r k r k r      and     2 2 2 2 , , 2 2 2 Var r k r k r k r k r r        (since k r,
 is Gaussian). We introduce then another "measurement":

2 2 , , r k m k m r    
.We define also the "noise":

2 2 , , 2 r k r k r k k r       
whose first two moments are now

  0 E  k  and     2 , 2 2 2 2 2 Var k r k r k r        
. So, we end up with the set of measurement equations

k k k k m Z r        k A 2 , for N k , , 1   . Note that k
 is zero-mean but no longer Gaussian. Still, it is legitimate to compute the weighted linear least squares estimator of Z that

minimizes the criterion         N k k m k Z Z C 1 2 , 2 , 1 k A    :                       N k k m k N k k WLS Z 1 , 2 , 1 1 2 , 1 1 ˆ     T k k T k A A A which is unbiased. Its covariance matrix is   1 1 2 2 2 2 1 1 2 , 2 1 1 1 4 1 ˆ                             N k k r k r N k k WLS r r Z Cov k T k k T k A A A A     . The computation of WLS Z ˆ assumes the knowledge of 2 k r . To alleviate this, in practice, we replace 2 k r by 2 ,k m r :                       N k k m k m N k k m WLS Z 1 , 2 , , 1 1 2 , , 1 1 ˆ     T k k T k A A A , with   2 2 , 2 2 , , 2 2 r k m r k m r       .

B. Efficiency of the Linear Estimate

The FIM is given by

  k T Z k Z N k r ROTMA r r Z     1 2 1  F with T k A k k Z r r 2 1   . Hence   k T k A A F    N k k r ROTMA r Z 1 2 2 1 4 1  and the CRLB is       1   Z Z ROTMA ROTMA F B
. The theoretical Cramér-Rao inequality is respected: 

1 1 2 2 2 2 1 1 2 2 2 1 1 1 4 1 4                              N k k r k r N k k r r r r k T k k T k A A A A     , that is,     WLS ROTMA Z Cov Z  B 1 .

When

      i O O O V t P t P ,     
. We know from Proposition 3 of [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF] that one ghost at most exists whose trajectory is defined by

      O O V V G X X X X O O       1 , 2 , 2 S I ,
where

O X stands for   * t X O , and   1 , 2 , 2 O O V V  

S

is the matrix of the symmetry around the line spanned by the vector

1 , 2 , O O V V  . To minimize                 N k k R k k m X r r X C 1 2 , ,



, we have recourse to the Gauss-Newton algorithm which will return

X ˆ or       O O V V G X X X X O O       1 , 2 ,

2

S I

, in unobservable cases. Two scenarios have been considered: in the first one, the target's trajectory is observable, and in the second one, proposed in [START_REF] Clark | A Gaussian mixture filter for Range-Only Tracking[END_REF], the target's trajectory is unobservable. For each scenario, 500 Monte Carlo simulations have been run.

For each simulation, we compute the MLE X ˆ and, if existing, the corresponding ghost G X ˆ. The performance of the MLE is evaluated by its empirical bias and the comparison of the empirical standard deviations of its components with the square roots of the diagonal elements of the CRLB.

A. Observable Scenario

The first leg of the observer is characterized by a heading of 45° and a speed of 4 m/s. The instant of its heading change is s 780 



. During its second leg, the speed and the heading of the observer are equal to 8.49 m/s and -70. ), and the standard deviation of the noise is 50  r  m. The estimates and the performance are given at the final time. Fig. 1 depicts the scenario and the 500 estimates (O and T are for the initial positions of the observer and the target, respectively). Because the FIM is singular [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF], the CRLB cannot be computed; therefore in Table I the column " CRLB  " contains no value. We observe that the sets of MLEs are "croissant-shaped". This is why we present the results in Cartesian coordinates for the estimated target's position Numerous other simulations with various scenarios allow us to conclude that the MLE is unbiased. But we cannot claim that the MLE reaches the CRLB, because for such scenarios, the FIM is singular.

B. Unobservable Scenario(see [3])

In [START_REF] Clark | A Gaussian mixture filter for Range-Only Tracking[END_REF] the authors proposed the following scenario whose duration is 30 min to test a particle filter. The first heading and the speed of the observer are respectively -80° and 2.57 m/s. At t=15 min, it changes its course and the second heading is 146° and keeps the same speed. At the very beginning, the target is at

    (m) 071 , 7 071 , 7 0 T  T P
, its heading is -135° and its speed is 7.72 m/s (see Fig. 2(a)). The sampling rate is equal to 60 s and the standard deviation is 20  r  m. As in [START_REF] Clark | A Gaussian mixture filter for Range-Only Tracking[END_REF], the estimates are given at time t*=26 min. In Table II, we give the estimate of the state vector at this time. Fig. 2(b) depicts the 90%-confidence ellipsoid (in red) together with the cloud of the position estimates (in blue), and their corresponding ghost-estimates (in red). Here, despite the presence of a ghost, the MLE Note that adding a third leg does not guarantee observability [START_REF] Pillon | Observability: Range-Only vs. Bearings-Only Target Motion Analysis for a Leg by Leg Observer's Trajectory[END_REF]. 

A. Example of Observable Case

The target starts at   T 0 4000  (m), with a velocity equal to   T 2 10 (m/s). Note that the observer and the target are on a rendezvous route. In this case the FIM is singular [START_REF] Jauffret | Observability: Range-Only vs. Bearings-Only Target Motion Analysis when the Observer Maneuvers Smoothly[END_REF]. The estimates and the performance are given in Table III. 

B. Example of Unobservable Case

The target starts at   T 3464 2000 (m) with a velocity   T 3 . 16 6 . 14 (m/s). The observer and the target are not on a rendezvous route and the bearings are not constant. Three ghosts exist (the maximum number of ghosts). Fig. 3 depicts the result: the estimates of the initial and final position of the target (T), and the couples of estimates of the three ghosttargets' positions (G). Note that the three other solutions are computed from the MLE returned by the algorithm [START_REF] Jauffret | Observability: Range-Only vs. Bearings-Only Target Motion Analysis when the Observer Maneuvers Smoothly[END_REF]. The estimate and its performance are given in Table IV. VI. THE OBSERVER'S TRAJECTORY CONTAINS AN ARC OF A CIRCLE Now the observer's trajectory is composed of two legs linked by an arc of a circle. The target's trajectory was proved to be observable in [START_REF] Jauffret | Observability: Range-Only vs. Bearings-Only Target Motion Analysis when the Observer Maneuvers Smoothly[END_REF]. No problem of convergence is indicated in our numerous simulations, provided the number of measurements during the arc of a circle is greater than 50 (otherwise, the routine can be stalled in a local minimum). In the scenario presented here, the initial position of the VII. CONCLUSION Three types of scenario were used to study the MLE in ROTMA: observable scenarios with nonsingular FIM, observable scenario with singular FIM and unobservable scenario with nonsingular FIM. For the first one, the MLE is efficient. For the second, the MLE is unbiased, but we cannot compute the CRLB. For the last, the MLE restricted to the local solution corresponding to the true target is efficient too. When several solutions exist (presence of ghost-targets), we are able to give the other solution(s) from the one returned by the algorithm. This study could be extended to the case of maneuvering targets as in [START_REF] Clavard | Target Analysis of a Source in a Constant Turn from a Nonmaneuvering Observer[END_REF].

.

  The duration of the scenario is1 LetA and B be two symmetric matrices,BA  means that the matrix A B  is a non-negative matrix. 26 min. The measurements are acquired every 4 s (

  relative position of the target w.r.t. the observer.

Fig. 2 .

 2 Fig. 2. (a) The scenario and the estimates in Clark's scenario [3], (b) magnification around the estimates.V. THE OBSERVER IS IN CONSTANT ACCELERATION MOTIONIn the two scenarios presented hereafter, the initial velocity vector of the observer is   T 2 10 (m/s). Its acceleration vector

Fig. 3 .

 3 Fig.3. The scenario and the estimates in an unobservable case.

  the angles are clockwise-positive:

	the angle 	North,	W		is denoted W  . The range and the
	bearing at time t are given respectively by   t r		P OT	  t	and
		  t		P OT 	  t	.
	B. Measurements Model and Estimate
				For the sake of simplicity, the notations k r and k  will
	stand for   k t r	and   k t 	, respectively. In order to emphasize
	the functional link of k r with the state vector X , we use the
	notation	r k	  X	. The range measurement collected at
	t k			  t k   1	and denoted	m r ,	k	obeys the equation
	m r	,	k		k r	  k X  	(1), where k  is the measurement noise
	assumed to be Gaussian, temporally white and zero mean; its
	standard deviation is	k  . The set of N available range r,
	measurements is

TABLE II PERFORMANCE

 II OF THE MLE AT TIME t*=26 MIN.

	X	Bias		CRLB	ˆ
	 x -1444.8 m	6.84	10.93	11.12
	 y -1444.8 m	15.21	12.84	12.86
	 x  -5.46 m/s	0.001	0.03	0.03
	 y  -5.46 m/s	0.002	0.04	0.04
	 r 455.05 m	0.49	11.09	11.99
	  165.31 °	0.11	1.60	1.64

  (m), with a speed equal to 2 m/s following a route equal to 180°. The total duration of the scenario is 26 minutes. The standard deviation is 50 m. The performance is summarized in TableV: we observe again that the MLE is efficient. Numerous simulations, not reported here, confirm this claim.

	observer is  	1000	 T 000 , 10	(m) with speed equal to 4 m/s.
	Its first heading is 90°. At time		1 	700	s, it begins its
	circular maneuver and finishes it at time		2 	980	s. At this
	time its new heading is equal to 225°. Meanwhile, the target
	has started at  	2000	 T 000 , 25

TABLE V PERFORMANCE

 V OF THE MLE AT FINAL TIME X

		Bias		CRLB	ˆ
	 x -2000 m	0.85	138.56	146.68
	 y 21888 m	0.25	49.58	53.04
	 x  0 m/s	0.003	0.14	0.15
	 y  -2 m/s	0.0005	0.04	0.05
	 r 15030 m	0.31	8.23	8.98
	  -17.35 °	0.0025	0.56	0.59