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SIMULATION OF ORIENTED PATTERNS WITH PRESCRIBED
LOCAL ORIENTATION USING ANISOTROPIC GAUSSIAN FIELDS∗

KÉVIN POLISANO† , MARIANNE CLAUSEL† , LAURENT CONDAT‡ , AND VALÉRIE

PERRIER†

Abstract. We consider a stochastic framework for oriented texture modeling. We study a
large class of generalized Gaussian fields, called Generalized Anisotropic Fractional Brownian Fields
(GAFBF), which combines a local version of an Anisotropic Fractional Brownian Fields (AFBF) with
Multifractional Brownian Fields (MBF). This mixture enables to control both the local orientation
and the roughness of the texture. A second model based on fields deformation and called Warped
Anisotropic Fractional Brownian Fields (WAFBF) is also studied. In this paper, we first establish
theoretical results of these new stochastic models, and describe their properties. The notion of
orientation for localizable random fields we introduced in our previous works is relevant to give
explicit formulas for the orientations of these two models, insuring the control of the expected one.
Furthermore, we investigate different ways to simulate a collection of textures with prescribed local
orientation and roughness. These procedures serve for concretely observe the behavior of these fields
ans as a benchmark for the validation of anisotropy detection tools. We finally propose methods for
estimating the anisotropy of a specific AFBF and for characterizing the probability distribution of
orientation estimators.
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1. Introduction. Texture modeling is a challenging issue of image processing.
There is a variety of texture methods in the field of computer vision, namely struc-
tural, statistical, model-based and transform-based methods [18, 51, 45, 12, 41, 47].
While it is difficult to give a strict mathematical definition of textures, most proposed
methods tackle their analysis and synthesis using random fields. In many cases, the
model has to incorporate some important characteristics of the data as roughness or
anisotropy properties. Several examples can be found in image processing, hydrology,
geostatistics and spatial statistics (see, for example, Davies and Hall [14], Bonami and
Estrade [9], Benson et al. [6]). It gives rise to several models including both roughness
and anisotropy properties as fractional Brownian sheet [24, 1], anisotropic fractional
Brownian field (AFBF) [9] or [21, 6] using the fractal framework. Typically, an AFBF
has a harmonizable representation of the form

(1.1) X(x) =

∫
R2

(
e j〈x, ξ〉 − 1

)
f(ξ)1/2 Ŵ(dξ) ,

where f is the density function carrying the anisotropy property. The AFBF are fields
with stationary increments. Stationary models have been especially of interest after
Julesz’s conjecture [22], which states that humans cannot distinguish between textures
with identical second-order statistics. This conjecture has proved to be false in the
general case [23]. Others models of anisotropic textures called locally parallel textures,
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have also been recently introduced in [32]. The mathematical definition and compu-
tational synthesis of locally anisotropic textures is then an important issue, since it
provides flexible models enabling to test estimation procedures of the anisotropic local
characteristics of an image. It could be also a first step to test isotropy properties of
an image as in [44] or [42]. Here we focus on anisotropic local properties of Gaussian
textures and provide a new Gaussian model whose anisotropic and roughness proper-
ties are prescribed at every point, through a local density function (x, ξ) 7→ f(x, ξ),
whose harmonizable representation is

(1.2) X(x) =

∫
R2

(
e j〈x, ξ〉 − 1

)
f(x, ξ)1/2 Ŵ(dξ) .

It is a first preliminary and important step in defining new statistical estimators of the
local anisotropic features of a given texture. As in the case of multifractional Brownian
motion (see [35, 4] for a definition and [3, 1, 2] for a deep study of properties of
MBM and some of its extensions in various framework) which extend usual fractional
Brownian motion (FBM) in the sense that the tangent fields of MBM are FBM, our
model is an extension of anisotropic fractional Brownian field (AFBF) defined [9] in
the sense that at each point its tangent fields is a AFBF. Since efficient methods
as turning bands [7] have been developed for simulation of AFBF, we can provide
efficient ways of synthesize the model.

The paper is organized as follows. In section 2 we briefly review some definitions.
We also introduce our new model of locally self-similar Gaussian fields with prescribed
local orientation, and give its main properties such as the tangent fields and covariance
expressions needed for the further synthesis. In section 3 we define the notion of
orientation for a large class of Gaussian fields called localizable fields, based on a
Riesz-wavelet decomposition with an isotropic filter. In section 4, we use the results
stated in section 2 to provide a synthesis method of our model based on turning bands.
We also give an heuristic to simulate a more efficient simulation method in two steps
for a subclass of the model where the local density is a cone and where the Hurst
index is varying, thanks to the kriging method and the knowledge of the covariance.
Then another model of deformation fields, more suited for texture synthesis with
constant Hurst index, is provided in section 5. Finally, methods for detecting and
characterizing orientations of a specific AFBF are developed in section 6.

2. A Gaussian locally-self model with prescribed local orientation.

2.1. Definitions. We recall below the definition of Generalized Anisotropic
Fractional Brownian Fields (GAFBF) introduced in [39]. This general Gaussian field
model is defined from two functions h from R2 to [0, 1] and C from R2 × R2 to R+

satisfying the following set of assumptions:

Assumptions (H)

(i) h is a β–Hölder function, such that

a = inf
x∈R2

h(x) > 0, b = sup
x∈R2

h(x) < β ≤ 1 .

(ii) (x, ξ) 7→ C(x, ξ) is bounded, that is

∀(x, ξ) ∈ R2 × R2, C(x, ξ) 6M .
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(iii) ξ 7→ C(x, ξ) is even and homogeneous of degree 0:

∀ρ > 0, C(x, ρξ) = C(x, ξ) .

(iv) x 7→ C(x, ξ) is continuous and there exists some η, with β ≤ η ≤ 1 such that

(2.1) ∀x ∈ R2, Ax
def
= sup

z∈R2

‖z‖−2η
∫
S1

[
C(x+ z,Θ)− C(x,Θ)

]2
dΘ <∞ .

Morever x 7→ Ax is bounded on any compact set of R2.
(S1 denotes the unit circle, that is S1 = {Θ ∈ R2, ‖Θ‖ = 1}).

The definition of the GAFBF in the general framework (1.2) is then:

Definition 2.1 (Generalized Anisotropic Fractional Brownian Fields).
Let us consider h : R2 → [0, 1] and C satisfying Assumptions (H). We then define
the Generalized Anisotropic Fractional Brownian Fields (GAFBF) by

(2.2) X(x)
def
=

∫
R2

(e j〈x, ξ〉 − 1)
C(x, ξ)

‖ξ‖h(x)+1
Ŵ(dξ) .

Remark 2.2. Assumption (i) requiring that the Hölder coefficient β of X has to
be greater than the supremum of h denoted by b, means that the function h which
prescribes the local regularity h(x) of X, cannot have a greater irregularity than the
regularity of the field it governs. It is therefore a reasonable assumption, which is also
made in the founding article of the multifractional Brownian motion [35, 4].

Remark 2.3. Now let us comment on the assumptions made about the function
C which encodes the local anisotropy of the field X. Assumption (iii) requiring that
C is even in ξ ensures that X is real and the degree homogeneity 0 simply means that
for x ∈ R2 fixed, if we know the function Θ 7→ C(x,Θ) on S1, then C is known for
all frequencies since it is constant on the radial lines ξ = ρΘ, the anisotropy being a
directional notion. Finally, the last assumption (iv) on C is stronger than continuity
but weaker than hölderianity, since when x 7→ C(x, ξ) is η–Hölder (with a regularity
at least equal to that of h since β ≤ η), then it satisfies (2.1) with the same constant
Ax ≡ A everywhere. We thus underline that the assumption (H) are not restrictive
and that the GAFBF model define a large class of Gaussian fields controlling local
regularity and anisotropy.

We review hereafter few examples of such fields:

• For h ≡ H and C ≡ 1 we recover the Fractional Brownian Field (FBF) [28],
which is the only isotropic Gaussian field self-similar with parameter H and
with stationary increments (see Figure 1a, Figure 1b and Figure 1c).

• For h ≡ h(x) and C ≡ 1 we recover the Multifractional Brownian Field
(MBF) whose regularity governed by h can spatially varied [35, 4]. This field
has no longer stationary increments and is locally asymptotically self-similar
(see Figure 1d).

• For h ≡ H and C ≡ C(ξ/ ‖ξ‖) we obtain self-similar fields with parameter H
and with stationary increments (H-sssi), for which results a global anisotropy
[9, 7]. The function ξ 7→ C(ξ/ ‖ξ‖) is called the anisotropy function.
Example: The elementary fields
When the anisotropy function C(ξ/ ‖ξ‖) = cθ1,θ2(arg ξ) is a cone, that is
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(a) H = 0.2 (b) H = 0.5 (c) H = 0.8 (d) h(x) = 0.5 + 0.4x1

Fig. 1: (a)-(c) Fractional Brownian Fields (FBF) for different Hurst index and (d) a
Multifractional Brownian Field (MBM) for a Hurst function varying horizontally.

cθ1,θ2 : θ 7→ 1[θ1,θ2](θ) is a π-periodic function defined on (−π/2, π/2], we
specifically obtain a H-sssi field called elementary field in the terminology of
[7], whose harmonizable representation is:

(2.3) YH,θ1,θ2(x)
def
=

∫
R2

(
e j〈x, ξ〉 − 1

) cθ1,θ2(arg ξ)

‖ξ‖H+1
Ŵ(dξ), ∀x ∈ R2 .

These elementary fields produce globally oriented textures in the direction
perpendicular to α0 = 1

2 (θ1 + θ2), whose degree of directionality is controlled
by the half-width of the cone δ = |θ1 − θ2| /2, as illustrated in Figure 2.

• For h ≡ H and C ≡ C(x, ξ) we proposed in [37, 38] a local version of these
elementary fields for which results a texture locally oriented (see Figure 3).

• For h ≡ h(x) and C ≡ C(x, ξ), we extend in this paper the previous case by
taking into account local orientation and local roughness both. The corre-
sponding Gaussian field, called Locally Anisotropic Fractional Brownian Field
(LAFBF), is presented in Definition 2.6 and will be simulated in section 4.

Remark 2.4. Let us note that the usual models such as the fractional Brownian
field (FBF) or the multifractional Brownian field (MBF), are respectively normalized
by a constant CH and a function Ch(x), where

(2.4) CH =
π3/2Γ

(
H + 1

2

)
HΓ (2H) sin(Hπ)Γ (H + 1)

,

so that the variance of the field is equal to 1 on the unit sphere, i.e Var[X(x)] = 1, for
all x ∈ S1. We must therefore ensure that such a normalization does not contravene
the condition (2.1), hence the preliminary lemma that follows.

Lemma 2.5. Let C̃ : (x, ξ) 7→ C̃(x, ξ) be a local anisotropy function satisfying
assumptions (H), so that in particular the condition (2.1). We define a normalized
function N : x 7→ N(x), supposed to be C1 and bounded. Then, the normalized local
anisotropy function C defined by:

(2.5) C(x, ξ) =
C̃(x, ξ)

N(x)
,

also satisfies assumptions (H) and in particular (2.1).
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(a) (b)
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θ1

θ2

δ

Texture

orientation α0
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δ
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θ2

δ

Texture

orientation

Fig. 2: Simulation of an elementary field of size r = 255, α0 = π/6, H = 0.5 and
different half-width of the cone (a)-(d) δ = 3.10−1, (b)-(e) δ = 2.10−1 et (c)-(f)
δ = 1.10−1.

Proof. Showing that C satisfies assumptions (ii) and (iii) is straightforward. Let

us examine assumption (iv). Let us take x ∈ R2 and z ∈ B(0, 1). Since C̃ is bounded
by MC̃ and N is supposed to be C1 and bounded on R2 in a range [mN ,MN ], we
have

∣∣C(x+ z, ·)− C(x, ·)
∣∣ =

∣∣∣∣∣ C̃(x+ z, ·)
N(x+ z)

− C̃(x, ·)
N(x)

∣∣∣∣∣ ,
=

∣∣∣∣∣ (C̃(x+ z, ·)− C̃(x, ·))N(x) +
(
N(x+ z)−N(x)

)
C̃(x, ·)

N(x+ z)N(x)

∣∣∣∣∣ ,
≤

∣∣∣C̃(x+ z, ·)− C̃(x, ·)
∣∣∣MN +

∣∣N(x+ z)−N(x)
∣∣MC̃

m2
N

.

By integrating, and using the inequality (a+ b)2 ≤ 2(a2 + b2), we get

‖z‖−2η
∫
S1

∣∣C(x+ z,Θ)− C(x,Θ)
∣∣2 dΘ

≤ 2M2
N

m4
N

‖z‖−2η
∫
S1

∣∣∣C̃(x+ z,Θ)− C̃(x,Θ)
∣∣∣2 dΘ ,

+
4πM2

C̃

m4
N

‖z‖−2η
∣∣N(x+ z)−N(x)

∣∣2 .
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N is C1, so by the mean value inequality:

‖z‖−2η
∣∣N(x+ z)−N(x)

∣∣2 ≤ Λ2
x‖z‖2−2η ≤ Λ2

x ,

since z ∈ B(0, 1) and 0 ≤ η ≤ 1. Moreover x 7→ Λx is bounded on every compact

since N is C1. By assumption C̃ satisfies (2.1), then we have for all x ∈ R2

(2.6)

sup
z∈B(0,1)

‖z‖−2η
∫
S1

[
C(x+ z,Θ)− C(x,Θ)

]2
dΘ ≤ 2M2

N

m4
N

Ãx +
4πM2

C̃

m4
N

Λ2
x︸ ︷︷ ︸

Ax

<∞ .

and Ax is bounded on every compact since Ãx and Λ2
x are bounded on every compact

Definition 2.6 (Locally Anisotropic Fractional Brownian Field).
Let h : R2 → [0, 1] be a β–Hölder function satisfying a = infx∈R2 h(x) > 0 and
b = supx∈R2 h(x) < β ≤ η ≤ 1/2 ; and let α, δ two 2η–Hölder functions defined
from R2 to R. In addition, we assume that 0 < infx∈R2 δ(x) ≤ supx∈R2 δ(x) < π.
We define the Locally Anisotropic Fractional Brownian Field (LAFBF) Bhα,δ with
Hurst function h, orientation function α and directionality function δ, by the following
harmonizable representation:

(2.7) Bhα,δ(x)
def
=

1

Chα,δ(x)

∫
R2

(
e j〈x, ξ〉 − 1

) cα,δ(x, arg ξ)

‖ξ‖h(x)+1
Ŵ(dξ) .

with the local anisotropy function

(2.8) cα,δ(x, ·) = cα(x)−δ(x),α(x)+δ(x) ,

where the π–periodic function θ 7→ cθ1,θ2(θ) is defined on (−π/2, π/2] by:

(2.9) cθ1,θ2(θ) = 1[θ1,θ2](θ), θ ∈ (−π/2, π/2], x ∈ R2 ,

and where Chα,δ(x) is a C1 normalized function, which is bounded and will be explicitly
defined in (2.25).

Remark 2.7. The local anisotropy function cα,δ(x, ·) is the localized version of the
elementary field’s anisotropy function. Thus, cα,δ(x, ·) can be viewed as a cone, where
α and δ are now functions which govern spatially the orientation and the directionality
in every x ∈ R2, as illustrated in Figure 3 for h ≡ H constant, corresponding to the
definition introduced in [37]. Intuitively, the smaller δ(x) is, the more the texture will
be sharply oriented in the direction α(x) on the neighborhood of a point x ∈ R2. We
will precise the notion of orientation of a Gaussian field in section 3. In this extended
definition, the Hurst function h is an indicator of the texture roughness which can
now vary spatially. The restricted condition relating to the range of h can be relaxed
using a C∞-regularized version c̃α,δ of the characteristic function.

Proposition 2.8. The functions h and C(x, ξ) =
cα,δ(x,arg ξ)

Chα,δ(x)
in Definition 2.6

satisfy assumptions (H), that is the LAFBF is a specific case of the GAFBF model.

Proof. The function h clearly satisfies (H), with the stronger constraint η ≤ 1/2
(and then β ≤ 1/2). Since Chα,δ is supposed to be C1 and bounded on R2, then
according to Lemma 2.5 it is sufficient to prove that

(2.10) ∀x ∈ R2, sup
z∈B(0,1)

‖z‖−2η
∫
S1

[
C̃(x+ z,Θ)− C̃(x,Θ)

]2
dΘ ≤ Ax <∞ ,
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~Vx0

c̃α,δ(x0, arg ξ)

x0

δ

Texture
orientation

f 1/2(x0, ξ) =
cα,δ(x0, arg ξ)

‖ξ‖H+1

(a) (b) (c)

Fig. 3: (a) LAFBF synthesis in every point x = (x1, x2), the resulting texture is
oriented according to the vector field V (x1, x2) = (− sinα(x1, x2), cosα(x1, x2)) with
α(x1, x2) = −π2 + x1, δ = 3.10−2 and H = 0.8 constants, (b) zoom around a point
x0 illustrating that the LAFBF behaves locally as an elementary field, (c) a diagram
illustrating the role played by parameters α and δ in a neighborhood of a point x0,
respectively encoding the local orientation of the texture (governed by the cone’s
direction) and its directionality (governed by the cone’s half-width).

where
C̃(x, ξ) = cα,δ(x, arg ξ) = cα(x)−δ(x),α(x)+δ(x)(arg ξ) .

Let us fix x ∈ R2. Since α and δ are continuous, there exists ν > 0 such that for

‖z‖ < ν the cones C̃(x + z, ·) and C̃(x, ·) intersect each other. We then distinguish
two cases:

• If there exists z ∈ B(0, ν)c such that the functions C̃(x, ·) and C̃(x + z, ·)
have disjointed supports, then the quantity (2.10) is computed from:∫

S1
C̃(x+ z,Θ)2 dΘ = 2

∫ 2π

0

1α(x+z)−δ(x+z),α(x+z)+δ(x+z)(θ) dθ ,

= 4δ(x+ z) .

∫
S1
C̃(x,Θ)2 dΘ = 2

∫ 2π

0

1α(x)−δ(x),α(x)+δ(x)(θ) dθ ,

= 4δ(x) .

Hence

‖z‖−2η
∫
S1

[
C̃(x+ z,Θ)− C̃(x,Θ)

]2
dΘ ≤ 8 supx∈R2 δ(x)

‖z‖2η
≤ 8π

ν2η
<∞ .

• Else if z ∈ B(0, ν), then we have to withdraw the intersection:∫ 2π

0

1α(x+z)−δ(x+z),α(x+z)+δ(x+z)(θ)1α(x)−δ(x),α(x)+δ(x)(θ) dθ

=

∫ 2π

0

1max(α(x+z)−δ(x+z),α(x)−δ(x)),min(α(x+z)+δ(x+z),α(x)+δ(x))(θ) dθ ,

= min(α(x+ z) + δ(x+ z), α(x) + δ(x))

−max(α(x+ z)− δ(x+ z), α(x)− δ(x)) ,
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and using the relations max(a, b) = a+b+|a−b|
2 and min(a, b) = a+b−|a−b|

2 we
obtain

‖z‖−2η
∫
S1

[
C̃(x+ z,Θ)− C̃(x,Θ)

]2
dΘ ,(2.11)

= 2 ·
∣∣α−(x+ z)− α−(x)

∣∣+
∣∣α+(x+ z)− α+(x)

∣∣
‖z‖2η

,

with α−(x) = α(x)− δ(x) and α+(x) = α(x) + δ(x). Finally, since α and δ
are 2η–Hölder functions with η ≤ 1/2, then α− and α+ are too, therefore the
supremum of the quantity Proof 2 on all z ∈ B(0, 1) is finite, which concludes
the proof.

2.2. Properties of the GAFBF and LAFBF. The simulation of the GAFBF
or LAFBF and the definition of the local orientations require to describe the random
field locally. To this purpose we need the notion of tangent fields. This enables to link
GAFBF with H-sssi fields, and in particular LAFBF with elementary fields, viewed
as a local version of the latter. Then, we both explicit the covariance characterizing
the elementary fields and further the LAFBF, which is useful for the exact simulation
of this field.

2.2.1. Tangent field. We now introduce the notion of tangent fields. We first
recall, following [5, 16, 17], the definition of H–localizable Gaussian fields.

Definition 2.9 (Localizable Gaussian field). Let H ∈ (0, 1). We say that the
random field X = {X(x), x ∈ R2} is H–localizable at x0 ∈ R2 with tangent field (or
local form) the random field Yx0 = {Yx0(x), x ∈ R2} if

(2.12)

{
X(x0 + ρx)−X(x0)

ρH

}
x∈R2

d−→
{
Yx0(x)

}
x∈R2 ,

as ρ → 0, where
d→ means convergence in distribution, that is the weak convergence

for stochastic processes (see [8]). A random field X = {X(x), x ∈ R2} is said to be
localizable if for all x ∈ R2 it is H–localizable for some H ∈ (0, 1).

In Theorem 3.9 and Corollary 3.10 of [16], Falconer proved the following result that we
state in the Gaussian case. It enables to describe the whole class of possible tangent
fields of a Gaussian field with continuous sample paths.

Theorem 2.10. Let X be a localizable Gaussian field with continuous sample
paths. For almost all x0 in R2 the tangent field Yx0 of X at x0 has stationary
increments and is self-similar, that is for some H ∈ (0, 1) and for all ρ ≥ 0,

(2.13) {Yx0(ρx), x ∈ R2} (fdd)
= {ρHYx0(x), x ∈ R2} .

In short, a Gaussian field with continuous sample paths will have at a.e. point, a
“fractal” tangent field behaving like a FBF. Roughly speaking, the random field X
admits the tangent field Yx0 at a given point x0 if it behaves locally as Yx0 when
x→ x0. This notion has been first introduced in [4] to describe the local behavior of
Multifractional Brownian Motion (which behaves locally as a FBM).
We now illustrate this notion considering a classical example of Gaussian field with
prescribed tangent field: the Multifractional Brownian Field defined in the unidimen-
sional setting in [27], and in the multivariate case in [5, 20].
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Example: The Multifractional Brownian Field (MBF)
Let h : R2 → (0, 1) be a continuously differentiable function whose range is supposed
to be a compact interval [a, b] ⊂ (0, 1). The Multifractional Brownian Field with mul-
tifractional function h, is the Gaussian field defined by its harmonisable representation
as follows

(2.14) Xh(x) =

∫
R2

e j〈x, ξ〉 − 1

‖ξ‖h(x)+1
dŴ(ξ) .

The tangent field Yx0 of the MBF Xh at point x0 is a FBF of order h(x0).

In the following proposition, we provide an explicit expression of the tangent field
of a GAFBF and LAFBF at any point.

Proposition 2.11. The Gaussian field X defined by the harmonisable represen-
tation (2.2) admits a H-sssi tangent field Yx0 at any point x0 ∈ R2 defined as
(2.15)

Yx0(x) =

∫
R2

(e j〈x, ξ〉 − 1)f1/2(x0, ξ)Ŵ(dξ) =

∫
R2

(e j〈x, ξ〉 − 1)
C(x0, ξ)

‖ξ‖h(x0)+1
Ŵ(dξ) .

In particular, the LAFBF Bhα,δ (2.7) with Hurst function h, orientation function α

and directionality function δ admits at any point x0 ∈ R2 the tangent field

(2.16) Yx0(x) =
1

Chα,δ(x0)

∫
R2

(
e j〈x, ξ〉 − 1

) cα(x0)−δ(x0),α(x0)+δ(x0)(arg ξ)

‖ξ‖h(x0)+1
Ŵ(dξ) ,

which corresponds to an elementary field YH,θ1,θ2 (2.3) where H = h(x0), θ1 = α(x0)−
δ(x0) and θ2 = α(x0) + δ(x0). Locally the LAFBF behaves like an elementary field.

Proof. The proof was given in our previous paper [39, Proposition 9].

2.2.2. Covariance. A Gaussian random field is completely characterized by its
mean and covariance function. Moreover, we have the following result:

Proposition 2.12 (Semi-variogram). A Gaussian random fields with stationary
increments X is completely characterized by its variogram (or semi-variogram) vX
defined by:

(2.17) ∀y ∈ R2, vX(y) =
1

2
E
[
(X(y)−X(0))2

]
,

since the covariance is related to the variogram as follows:

∀y, z ∈ R2, Cov(X(y)−X(0), X(z)−X(0)) = vX(y) + vX(z)− vX(y − z) .

Proof. Since X has stationary increments, we have equally variance of increments
with same size:

vX(y − z) =
1

2
E
[
(X(y − z)−X(0))2

]
=

1

2
E
[
(X(y)−X(z))2

]
,

=
1

2
E
[
X(y)2

]
+

1

2
E
[
X(z)2

]
− E

[
X(y)X(z)

]
.

Besides,

vX(y) =
1

2
E
[
X(y)2

]
+

1

2
E
[
X(0)2

]
− E

[
X(y)X(0)

]
,(2.18)

vX(z) =
1

2
E
[
X(z)2

]
+

1

2
E
[
X(0)2

]
− E

[
X(z)X(0)

]
,(2.19)
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so that

vX(y) + vX(z)− vX(y − z)

= E
[
X(y)X(z)

]
+ E

[
X(0)2

]
− E

[
X(y)X(0)

]
− E

[
X(z)X(0)

]
,

= Cov(X(y)−X(0), X(z)−X(0)) .

We observed in Proposition 2.11 that at each point x0, the tangent field Yx0 of a
LAFBF Bhα,δ is no more and no less than an elementary field YH,θ1,θ2 defined in (2.3),
which is a particular case of H-sssi fields that is with stationary increments. Then
from Proposition 2.12 the elementary field YH,θ1,θ2 is completely characterized by its
variogram, whose expression can be explicitly computed as follows:

Proposition 2.13. The semi-variogram of YH,θ1,θ2 is given by

(2.20) ∀x ∈ R2, vH,θ1,θ2(x) = 22H−1γ(H)CH,θ1,θ2(argx)‖x‖2H ,

where CH,θ1,θ2 is a π-periodic function defined on (−π/2, π/2] by
(2.21)

CH,θ1,θ2(θ) =



βH

(
1−sin(θ2−θ)

2

)
+ βH

(
1−sin(θ1−θ)

2

)
, if θ1 6 θ + π/2 6 θ2

βH

(
1+sin(θ2−θ)

2

)
+ βH

(
1+sin(θ1−θ)

2

)
, if θ1 6 θ − π/2 6 θ2∣∣∣∣βH ( 1−sin(θ2−θ)

2

)
− βH

(
1−sin(θ1−θ)

2

)∣∣∣∣ , otherwise

,

and βH is the incomplete Beta function defined by

∀t ∈ [0, 1], βH(t) =

∫ t

0

uH−1/2(1− u)H−1/2 ,

and

(2.22) γ(H) =
π

HΓ (2H) sin(Hπ)
.

Proof. The proof is given in the supplementary material of [7].

Proposition 2.14. The covariance of the elementary field YH,θ1,θ2 defined in
(2.3) and denoted by rH,θ1,θ2 have from Proposition 2.12 the following expression:

∀x,y ∈ R2, rH,θ1,θ2(x,y)
def
= Cov

(
YH,θ1,θ2(x), YH,θ1,θ2(y)

)
,(2.23)

= vH,θ1,θ2(x) + vH,θ1,θ2(y)− vH,θ1,θ2(x− y) .

We are now able to give an explicit formula for the covariance of a LAFBF. We
have established the following result:

Proposition 2.15. The covariance of a LAFBF Bhα,δ(x) (2.7), with functions

θ1(x) = α(x)− δ(x) and θ2(x) = α(x) + δ(x), is given for all x,y ∈ R2 by:

Cov
(
Bhα,δ(x), Bhα,δ(y)

)
(2.24)

=
1

Chα,δ(x)Chα,δ(y)
r(h(x)+h(y))/2,max(θ1(x),θ1(y)),min(θ2(x),θ2(y))(x,y) ,

where rH,θ1,θ2 is the expression (2.23) of the covariance of an elementary field.
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Proof. By definition,

Chα,δ(x)Chα,δ(y)E
[
Bhα,δ(x)Bhα,δ(y)

]
=

∫
R2

(e j〈x, ξ〉 − 1)
1[θ1(x),θ2(x)](arg ξ)

‖ξ‖h(x)+1
(e j〈y, ξ〉 − 1)

1[θ1(y),θ2(y)](arg ξ)

‖ξ‖h(y)+1
dξ .

Note that, if min(θ2(x), θ2(y)) < max(θ1(x), θ1(y)) then

1[θ1(x),θ2(x)](arg ξ)1[θ1(y),θ2(y)](arg ξ) = 0 ,

whereas if min(θ2(x), θ2(y) ≥ max(θ1(x), θ1(y)), one has

1[θ1(x),θ2(x)](arg ξ)1[θ1(y),θ2(y)](arg ξ) = 1[max(θ1(x),θ1(y)),min(θ2(x),θ2(y))](arg ξ) ,

which directly implies that, in this case,

Chα,δ(x)Chα,δ(y)E
[
Bhα,δ(x)Bhα,δ(y)

]
=

∫
R2

(e j〈x, ξ〉 − 1)(e j〈y, ξ〉 − 1)
1[max(θ1(x),θ1(y)),min(θ2(x),θ2(y))](arg ξ)

‖ξ‖h(x)+h(y)+2
dξ .

We now use the explicit expression of the covariance of an elementary field given in
Proposition 2.15, which reads

Cov(YH,θ1,θ2(x)YH,θ1,θ2(y)) =

∫
R2

(e j〈x, ξ〉 − 1)(e j〈y, ξ〉 − 1)1[θ1,θ2](arg ξ)‖ξ‖−2H−2 dξ

= rH,θ′1,θ′2(x,y) .

We then set H ≡ h(x)+h(y)
2 , θ′1 ≡ max(θ1(x), θ1(y)) and θ′2 ≡ min(θ2(x), θ2(y)) in

the last equality, and by identification we get the result.

Let us explicit the normalized function involving in the definition of the LAFBF (2.7):

(2.25) Chα,δ(x)
def
=
(

22h(x)γ(h(x))Ch(x),α(x)−δ(x),α(x)+δ(x)(argx)
)1/2

,

with γ(H) defined by (2.22) and CH,θ1,θ2 defined by (2.21). Then, we have the
following corollary:

Corollary 2.16. The variance of the LAFBF is

(2.26) Var
[
Bhα,δ(x)

]
=

2vh(x),α(x)−δ(x),α(x)+δ(x)(x)

Chα,δ(x)2
= ‖x‖2h(x) ,

where the variogram v is given by (2.20).

3. Wavelet-based orientation of a Gaussian field. Our notion of orientation
of a Gaussian field, that we developed in our previous paper [39], is based on a Riesz
wavelet analysis and is an extension of the notion proposed in [48]. It is based on the
monogenic wavelet analysis. In subsection 3.1 we first present the way we construct
isotropic wavelet and give the Riesz wavelet decomposition and its coefficients, then
in subsection 3.2 we apply this wavelet decomposition to general self-similar Gaussian
field with stationary increments (H-sssi fields) and give the correlation between the
random wavelet coefficients of the field, which enables to define a notion of orientation
of the latter. Finally, in subsection 3.3 we extend this notion of orientation to every
localizable field, by assigning locally the orientation of its tangent fields which are by
construction self-similar with stationary increments.
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3.1. Wavelets. The starting point of the definition of our notion of wavelet
based orientation is the use of isotropic wavelet bases whose existence is proved in [40,
34, 50, 43, 19, 49]. For practical implementation, [48] proposes to define a wavelet
tight frame in the following way:

Proposition 3.1. Let h(λ) be a real radial frequency profile such that
• ϕ(λ) = 0, ∀λ > π.

•
∑
j∈Z
|ϕ(2jλ)|2 = 1, ∀λ.

• ∀n = 0, · · · , N, ϕ(n)(0) = 0,∀λ.

Then, the real isotropic wavelet ψ defined by its 2-D Fourier transform ψ̂(ξ) = ϕ(‖ξ‖),
generates a tight wavelet frame of L2(R2) whose basis functions ψi,k(x) = 2iψ(2ix−k)
are isotropic with vanishing moments up to order N .

The tight frame property means that any function f belonging to L2(R2) can be
expanded as

f(x) =
∑
i,k

〈f, ψi,k〉ψi,k(x) ,

and one has ‖f‖L2 =
∑
i,k |ci,k|2 where

(3.1) ci,k(f)
def
= 〈f, ψi,k〉 ,

denote the wavelet coefficients of the function f .
The Riesz-based wavelet coefficients of a given function f ∈ L2(R2) in vector tight

wavelet frame {Rψi,k} are then defined as:

(3.2) c
(R)
i,k (f) =

(
c
(1)
i,k(f)

c
(2)
i,k(f)

)
,

with c
(1)
i,k(f) = 〈f,R1ψi,k〉 and c

(2)
i,k(f) = 〈f,R2ψi,k〉.

3.2. Orientation of a H-sssi field. We now define our notion of orientation
in the case of a Gaussian field admitting stationary increments (H-sssi). It is directly
related to the concept of anisotropy, which is encoded in spectral density function f
of the random field X with harmonizable representation (1.1).

Proposition 3.2. Let H ∈ (0, 1) and X a H–self-similar Gaussian field with
stationary increments admitting a spectral density fX . Then fX is of the form

fX(ξ) = ‖ξ‖−2H−2 CX
(
ξ

‖ξ‖

)
,

where CX is an homogeneous function defined on the sphere S1 = {ξ ∈ R2, ‖ξ‖ = 1}.
The function CX is called the anisotropy function of X.

Proof. The proof was given in our previous paper [39, Proposition 6].

Let {ψi,k} be an isotropic tight wavelet frame as defined in subsection 3.1, and

{ψ(R)
i,k } the corresponding vector valued Riesz-based wavelet tight frame generated

by Rψ. Our notion of wavelet-based orientation of a self-similar Gaussian field will
be based on the following preliminary result, leading to a new formulation for the
structure tensor.
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Theorem 3.3. Let X be a H–self-similar Gaussian field admitting a spectral den-

sity fX . Then, the Riesz-based wavelet coefficients of X, c
(R)
i,k (X), in the vector wavelet

tight frame {ψ(R)
i,k }, are well-defined.

Moreover, for all i ∈ Z, the covariance matrix of the c
(R)
i,k is

(3.3) Σ(c
(R)
i,k (X)) = E

(
c
(R)
i,k (f)c

(R)
i,k (f)∗

)
,

which reads:

Σ(c
(R)
i,k (X)) = 2−2i(H+1)

[∫ +∞

0

|ϕ(r)|2
r2H+1

dr

]
J(X) ,

where for any `1, `2 ∈ {1, 2},

(3.4) [J(X)]`1,`2 =

∫
Θ∈S1

Θ`1Θ`2 CX(Θ) dΘ ,

with the notation Θ = (Θ1, Θ2).
J(X) is a non-negative definite 2×2 matrix depending only on the anisotropy function
CX and will be called the structure tensor of X.

Proof. The proof was given in our previous paper [39, Theorem 1].

Observe that our structure tensor does not depend on the chosen isotropic wavelet.
It is then an intrinsic characteristic of the Gaussian field X. It will be estimated using
the empirical moments of the monogenic wavelet coefficients of the Gaussian field X.
We now define the wavelet based orientation of X and its coherency index.

Definition 3.4. Let J(X) be the structure tensor of X and λ1, λ2 its two eigen-
values. The coherency index of X is

χ(X) =
|λ2 − λ1|
λ1 + λ2

.

An orientation ~n will be any unit eigenvector associated to the largest eigenvalue of

J(X) or equivalently of Σ(c
(R)
i,k (X)).

Example: Orientation of an elementary field
We proved that an elementary field, whose anisotropy function is given by

CX(Θ) =
1

4δ

(
1[α0−δ,α0+δ](argΘ) + 1[α0+π−δ,α0+π+δ](argΘ)

)
,

has for tensor of structure

(3.5) J(X) = Rα0diag

(
1

2
+

1

2

sin(2δ)

2δ
,

1

2
− 1

2

sin(2δ)

2δ

)
RT
α0
,

thus the orientation of the AFBF and its coherency index are well

~n = (cosα0, sinα0)T, χ(X) =
sin(2δ)

2δ
,

which tends to 1 when the cone width δ tends to zero.



14 K. POLISANO, M. CLAUSEL, L. CONDAT AND V. PERRIER

3.3. Local orientation of a localizable random field. We now extend the
notion of intrinsic orientation, that we defined for H-sssi fields in a much more general
setting, that of localizable Gaussian field. It allows us to define the wavelet-based local
orientation of any localizable Gaussian field X at almost any point x0:

Definition 3.5 (Localizable field orientations). Let X be a Gaussian field with
continuous sample paths. Assume that X is localizable at the point x0, with tangent
field Yx0 , and that Yx0 is a self-similar Gaussian field with stationary increments.
One then defines:

• The local anisotropy function Sx0 at x0 of the localizable Gaussian field X is
the anisotropy function of its tangent field Yx0 .

• The local structure tensor Jx0(X) at x0 of the localizable Gaussian field X
is the structure tensor of its tangent field Yx0 .

• A local orientation at x0 of the localizable Gaussian field X is any orientation
of its tangent field Yx0 .

In view of this definition and of Theorem 2.10, we deduce that any localisable
Gaussian field X admits a local orientation at almost every point x0 ∈ R2.

Example: Orientations of a LAFBF
The LAFBF has for orientation at point x0 the same orientation than its tangent
field at this point, which is an elementary field, so from the previous example we get
that ~n(x0) = (cosα(x0), sinα(x0))T.

We now illustrate the relevance of our new notion of orientation. To this end, we
need to describe some procedure of synthesis which is the purpose of the next section.

4. GAFBF and LAFBF synthesis. To simulate the GAFBF model, the idea
is to adopt a local strategy, based on the tangent field. This idea was exploited for
the simulation of multifractional brownian motion (MBM) in [35]. Indeed, the MBM
locally behaves as a fractional brownian motion (FBM); that is formally, the tangent
field of a MBM with Hurst function t 7→ h(t) at point t0 is a FBM with Hurst index
H0 = h(t0). Then, to simulate a trajectory of a MBM Bh(t) at the discretization
points ti = i

N , one can synthesis N FBM BHi with parameters Hi = h(ti), from the
same Gaussian entries, and assign approximately

(4.1) Bh(ti)← BHi
(
i

N

)
= Bh(

i
N )
(
i

N

)
.

The N FBM being obtained on a regular grid by Perrin’s exact simulation [36] im-
proving [13, 52, 15]. This technique has then been extended to the 2-D case, the
multifractional brownian field (MBF) being approached by a fractional brownian field
(FBF) which can be obtained as well exactly by Stein’s algorithm [46]. These pro-
cedures are illustrated in Figure 4. Then, the tangent field formulation reveals not
only to be a tool analysis but also a synthesis tool: a localizable field X admitting a
tangent field at point x0, that is from (2.12){

X(x0 + ρx)−X(x0)

ρH

}
x∈R2

d−−−→
ρ→0

{
Yx0(x)

}
x∈R2 ,

can be simulated by assigning

(4.2) X(x0)← Yx0
(x = x0) .



SIMULATION OF ORIENTED PATTERNS WITH PRESCRIBED ORIENTATION 15

x2x1

MBM Bh(x) BH , H ≡ h(x2)BH , H ≡ h(x1)

Fig. 4: Simulation of MBF by the tangent field approximation: at each pixel is
assigned the corresponding value of its tangent field which is a FBF.

We apply this method to the GAFBF model X and its tangent fields Yx0
whose

expressions are given in (2.2) and Proposition 2.11 by:

X(x) =

∫
R2

(e j〈x, ξ〉 − 1)
C(x, ξ)

‖ξ‖h(x)+1
Ŵ(dξ) ,

Yx0(x) =

∫
R2

(e j〈x, ξ〉 − 1)
C(x0, ξ)

‖ξ‖h(x0)+1
Ŵ(dξ) .

The tangent fields are h(x0)-sssi fields, thus we need a procedure simulation for H-sssi
fields we expose in the next section.

4.1. Simulation of H-sssi fields by the turning band method. A recent
fast method has been proposed in [7] to simulate AFBF including H-sssi fields, called
the turning band method.

Definition 4.1 (Anisotropic Fractional Brownian Fields).
An Anisotropic Fractional Brownian Fields (AFBF) is a Gaussian fields X, with
stationary increments and satisfying X(0) = 0 a.s, of the form

X(x) =

∫
R2

(
e j〈x, ξ〉 − 1

)
f(ξ)1/2 Ŵ(dξ) ,

where

(4.3) f(ξ) = c(arg ξ) ‖ξ‖−2h(arg ξ)−2 ,

with c and h π-periodic function defined on (−π/2, π/2] respectively to R+ and (0, 1).

Remark 4.2. The class of H-sssi fields is included in the AFBF where h ≡ H is
constant. Then the following procedure simulation of AFBF holds for H-sssi fields.

The authors of [7] showed that an AFBF can be approximated by a weighted
sum of independent Fractional Brownian Fields rotating around the origin. To this
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λi

x

Bh(Θi)
i (〈x,Θi〉)

Θi+1

Θi

Fig. 5: Turning bands method illustration.

purpose, one can rewrite the semi-variogram in polar coordinates

vX(x) =
1

2

∫
R2

∣∣∣e j〈x, ξ〉 − 1
∣∣∣2 f(ξ) dξ ,

=
1

2

∫ π
2

−π2
γ(h(θ))c(θ)

∣∣∣〈x, u(θ)
〉∣∣∣2h(θ) dθ ,(4.4)

=

∫ π
2

−π2
ṽθ(
〈
x, u(θ)

〉
) dθ ,

where we denote ṽθ(t) = γ(h(θ))c(θ)|t|2h(θ), u(θ) = (cos θ, sin θ)T and γ(H) defined
by (2.22). Ignoring the factor γ(h(θ))c(θ), one can recognize that ṽθ is the variogram
of a FBM of order h(θ), which is rotating around the origin θ = −π/2, . . . , π/2. Then,
it is natural to consider the following Gaussian field:

(4.5) XΘ,Λ(x) =

n∑
i=1

√
λiγ(h(Θi))c(Θi)B

h(Θi)
i

(〈
x, u(Θi)

〉)
,

where the n radial bands Θ = (Θi)16i6n are a discrete angles sampling on which is
projected the point x (see Figure 5), λi = Θi+1 − Θi are the band widths, and the

B
h(θi)
i are n independent FBM of order h(Θi); whose variogram is:

vΘ,Λ(x) =

n∑
i=1

λiγ(h(Θi))c(Θi)vh(Θi)

(〈
x, u(Θi)

〉)
,

which can be viewed in turn as approximation by the rectangle method of the integral
(4.4). This discrete version is a good approximation, provided maxi (Θi+1 − Θi) 6 ε
for ε sufficiently small. Theoretical guarantees based on the Kolmogorov distance are
detailed in [7]. This result shall be crucial when simulating this Gaussian model.:

(4.6) XΘ,Λ(x) =

n∑
i=1

ωiB
h(Θi)
i

(〈
x, u(Θi)

〉)
,
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Fig. 6: Simulation of an elementary field with turning band method for Hurst index
H = 0.2, accuracy δ = 10−1, approximation error ε = 3.10−2, direction α0 = 0 (on
the left) and α0 = π

6 (on the right)

where ωi =
√
λiγ(h(Θi))c(Θi) contribute to a weighted sum of the n B

h(Θi)
i indepen-

dent FBM bands as illustrated in Figure 5.

Simulation. Let us simulate XΘ,Λ on [0, 1]2 sampling on a grid r−1Z2∩ [0, 1]2 of size
r× r with r = 2k− 1, k ∈ N?, whose points are x = (k1/r, k2/r)

T with 0 6 k1, k2 6 r.

The FBM B
h(θi)
i synthesis also requires to simulate these process on a regular grid,

which is not satisfied by the argument
〈
x, u(Θi)

〉
in (4.6). To overcome this problem,

the trick is to choose Θi such that tan(Θi) = pi/qi where pi ∈ Z and qi ∈ N. Then,

by self-similarity of the B
h(θi)
i , they obtain:

{
B
h(θi)
i

(
k1
r

cosΘi +
k2
r

sinΘi

)
; 0 6 k1, k2 6 r

}
L
=

(
cosΘi
rqi

)h(θi) {
B
h(θi)
i (k1qi + k2pi) ; 0 6 k1, k2 6 r

}
,

where k1qi+k2pi are now integers. So it reduces to a regular sampling of B
h(θi)
i (k) for

integers 0 6 k 6 r(|pi|+ qi), which can be performed by a circulant matrices method
using the fast algorithm of Perrin et al. [36] on a regular grid.

Complexity. The choice of the bands orientations (Θi)16i6n is governed by the
global computational cost of the BHi , within dynamic programming [7]. The turning
band method is used here to simulate the textures of Figure 6 which are elementary
fields YH,α0−δ,α0+δ with global orientation α0 = 0 and α0 = π

6 , for δ constant (for
effects from tuning δ see Figure 2). Once the n Fractional Brownian Field BHi of
length `i are generated, with a complexity in n` log ` where ` = maxi `i, then the

algorithm for simulating Y
[n]
H,θ1,θ2

is very fast since it requires only Card{i : ωθ1,θ2i 6=
0} × r2 = O(r2) operations with r2 the number of pixels of the image.

4.2. Simulation of the GAFBF. The tangent field of the GAFBF X (2.2) at
a point x0 is a H-sssi field Yx0

(2.15), which can be simulated by the turning band
method described in subsection 4.1, with anisotropy function C(x0, ·) and constant
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x2x1

GAFBF X Yx2Yx1

Fig. 7: GAFBF simulation: for each pixel, we assign the corresponding value of its
tangent field. Here is an example with α(x1, x2) = −π2 + x1, h(x1, x2) = 0.1 + 0.5x1,
δ = 10−1.

Hurst index h(x0):

Yx0
(x) =

∫
R2

(e j〈x, ξ〉 − 1)
C(x0, ξ)

‖ξ‖h(x0)+1
Ŵ(dξ)(4.7)

≈
n∑
i=1

√
λiγ(h(x0))C(x0, Θi)B

h(x0)
i

(〈
x, u(Θi)

〉)
≡ Y [n]

x0
(x) .(4.8)

Then, for each point of the grid, we assign the corresponding value of its tangent field
at this point:

(4.9) X(x0)← Yx0
(x = x0) ≈ Y [n]

x0
(x0) .

All these fields has to be generated from the same Gaussian entries. The algorithm is
described in ... We need to generate as much FBM there are pixels, which is costly.
Its complexity is ... An example is depicted in Figure 7.

4.3. Simulation of the LAFBF. The LAFBF is a particular case of GAFBF
where the anisotropy function is a cone. We will see in this section that the LAFBF
synthesis can be realized either by the Cholesky method in subsection 4.3.1 to the
extent that we have the expression of the covariance in Proposition 2.15, either by
using a suitable coupling of the tangent field and the turning bands approximations
with a krigeage taking into account the spatial covariance structure. We focus on the
latter in subsection 4.3.2, since it provides a way to simulate the LAFBF with a better
complexity than the Cholesky one which has a high computational cost and improve
the general procedure provide in subsection 4.2. A similar strategy have been used by
[11] to simulate the MBM. The idea is to avoid having to simulate of all the tangents
fields in each of the points, but only in a few points and then to make an interpolation
for the others. More precisely, in (4.1) we do not generate all the n FBM with order
Hi = h(i/N), but only U < n FBM with order respectively H1, . . . ,HU , for example
evenly distributed Hu = u/(U + 1). Then, at each location ti = i/N we specify a set
of neighbors Vi =

{
(v, k)

}
and can predict the value by interpolation:

Bh(ti) =
∑

(v,k)∈Vi

γ
(i)
v,kB

Hv (tk) ,
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whose weights are obtained by a mean squared error criterion using the knowledge
of the covariance structure. As well, from the tangent field synthesis method (4.9),
since we know the covariance of the LAFBF, we are able to avoid the simulation of
as many tangent fields as there are pixels by the following procedure:

1. Simulate U LAFBF with orientation function α, directionality function δ and
constant Hurst function Hu, each of them obtained as for (4.9) by assigning

(4.10) BHuα,δ(x0)← Y
[n]
Hu,α(x0)−δ(x0),α(x0)+δ(x0)

(x = x0) ,

where the tangent fields are elementary fields (2.16) at each pixel. We will
show that these fields BHuα,δ can be simulated as much efficiently as a single
H-sssi field (by the turning bands method seen in subsection 4.1), due to the
fact that Hu remains constant for all the pixels of the elementary fields.

2. We finally simulate Bhα,δ where h may varies, by a kriging method which

exploit the covariance to interpolate the samples (BHuα,δ)16u6U .

We will detail separately these two steps in subsection 4.3.2 and subsection 4.3.3.

4.3.1. Cholesky method. We gave in Proposition 2.13, Proposition 2.14 and
Proposition 2.15 explicit formulas for both the covariance of the elementary fields and
the LAFBF. Therefore, applying the classical Cholesky method (see Appendix A)
enables the simulation of oriented texture with size 127×127, as illustrated in Figure 8
where H and δ are constants and α is a given orientation function. For the elementary
fields in Figure 8a and Figure 8b, we recover with the Cholesky method the same kind
of textures which have been obtained by the turning band method in Figure 6. For an
orientation function x ∈ R2 7→ α(x) which does not vary too fast, such as the one used
in Figure 8d, the resulting texture have a good quality and we get the expected local
orientations. However, when the variations of the orientation function α are steeper,
such as the one used in Figure 8d, the result is no longer completely satisfying in
so far as some bands of artifact appear. The reason is the following: for two point
x and y in R2, the random variables Bhα,δ(x) and Bhα,δ(x) are independent as soon
as the angle α(x) and α(y) are far from 2δ (the corresponding cones have disjointed
supports), then the covariance matrix Σ = LLT is largely sparse and so L too. Let
now Z be a random Gaussian vector, the product LZ involves different entries of the
latter, in a non continuously manner, which creates these bands of grayscale jumps.
The Cholesky method has a high computational cost, since it requires to fill a matrix
R of square size N = r2 by calling a covariance function for all entries, and then to
execute a Cholesky decomposition matrix whose complexity is in O(N3).

Remark 4.3. Another way is to use approximated methods based on the covari-
ance matrix, as developed in [10], to speed up the synthesis obtained by the Cholesky
method. Unfortunately, these approximations lead to bad results with poor visibles
orientations in some regions.

4.3.2. Simulation of a LAFBF with constant Hurst index H. The simu-
lation of a LAFBF with constant Hurst index H following (4.10) requires to compute

Y
[n]
H,α(x0)−δ(x0),α(x0)+δ(x0)

(x = x0) at each point x0 = (k1/r, k2/r)
T, where Y is the

tangent field of the LAFBF at this point (2.16), which is a H-sssi elementary field
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(a) α0 = 0 (b) α0 = π
6

(c) α(x) = −π
2

+ x2 (d) α(x) = −π
2

+0.2×x2

Fig. 8: Simulation of a LAFBF with Cholesky method for constant Hurst index
H = 0.2, constant accuracy δ = 2.10−2, and different orientation functions.

simulated by (4.5) as:

Y
[n]
H,α(x0)−δ(x0),α(x0)+δ(x0)

(x = x0)

=

n∑
i=1

√
(Θi+1 −Θi)γ(H)cα,δ(x0, Θi)

(
cosΘi
rqi

)H
BHi (k1qi + k2pi) ,

with cα,δ defined in (2.8) and (2.9), Θi the turning bands and BHi n independant FBM
with order H, computed only once. The advantage to have a constant Hurst index
H is that we can always use the same n FBM to compute the contributions for all
points x0. Then, in the algorithm subsection 4.3.2, the preprocessing step (instruc-
tions 1,2,3,4 in the pseudocode) does not depend on the expected local orientations,
includes the dynamic choice and sorting of discrete bands, and the simulation of the
n FBM. These steps are executed once and for all. The rest of the algorithm is of
complexity O(r2 log n). Indeed, at each point (k1, k2), a turning band Θi contributes
to BHα,δ(k1, k2) if and only if cα,δ((k1, k2), Θi) 6= 0, i.e |Θi − α(k1, k2)| 6 α. Thus,
since the array Θi is sorted, one such index i is founded using a binary search, and
then the others in its neighborhood. The anisotropy function cα,δ(x0, Θi) then play
the role of bands selector in each point x0, as illustrated in Figure 9. In order to have
a sufficient number of bands in each cone cα,δ(x0, θ), we need the number of bands n
around [−π/2, π/2] to be sufficiently large for having good approximations. Since this
step is made once for all, it is recommended to choose a small accuracy parameter ε,
from which will be generated a large number of bands.

Remark 4.4. We actually needed to consider for cα,δ(x0, ·) a regularized version
of the characteristic function, typically a Gaussian as in Figure 3, to avoid numerical
artifacts due to the rectangle method approximation (4.6). Indeed for two orientations
sufficiently spaced, the sum (4.6) involves different bands (Θi) which creates some
grayscale jumps. However for greater Hurst values, we can’t get rid of these artifacts
as we can see in Figure 10.

4.3.3. Varying Hurst index by kriging method. We now allow h(x) to vary
w.r.t. x. In this section, we will briefly describe the kriging method [29, 30, 31, 25].
It was the first spatial interpolation which took into account the spatial dependence
of the data, and so is well-suited to simulate the LAFBF. The interpolated value of a
random field Z(·) at the unsampled location s0 is calculated from a linear combination
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Algorithm 4.1 Simulation of the LAFBF

Input: r = 2k − 1, H, α0, α, ε
Output: BHα,δ LAFBF of size (r + 1)× (r + 1)

1: (pi, qi)16i6n ← DynamicBandsChoice(r, ε)
2: Compute and sort angles (Θi)16i6n : Θi ← atan2(pi, qi)
3: Compute width bands (λi)16i6n : λi ← Θi+1 −Θi
4: Generate n FBM : BHi ← circFBM(r(|pi|+ |qi|), H)
5: Initialization : X ← 0
6: for all (k1, k2) do
7: for i = 1 to n do

8: ωi ←
√

(Θi+1 −Θi)γ(H)cα,δ((k1, k2), Θi)
(

cosΘi
rqi

)H
9: BHα,δ(k1, k2)← BHα,δ(k1, k2) + ωiB

H
i (k1qi + k2pi)

10: end for
11: end for

~Vx1

α(x1)

x1

δ

(a)

~Vx2

α(x2)

x2

δ

(b)

~Vx3

α(x3)

x3

δ

(c)

Fig. 9: Graphic illustrating in each point x1,x2,x3, . . . the bands selection by the
local anisotropy function cα,δ among the n pre-computed red bands.

of the observed values Zi = Z(si) in a neighborhood V(s0), that is

Ẑ(s0) =
∑

i∈V(s0)

λiZ(si) = λTZ .

We assume to know the variance-covariance matrix Σ of Z on the neighborhood
V(s0), given by Σij = Cov(Z(si), Z(sj)) for si, sj ∈ V(s0), and the vector c0 =
Cov[Z, Z(s0) · (1, . . . , 1)T]. The aim is to find weights λi for which we have the best
linear estimation, whose results hold in the following proposition:

Proposition 4.5. The estimator Ẑ(s0) is called the BLUE (Best Linear Unbi-
ased Estimator) of Z(s0) if λ = Σ−1c0, that is

(4.11) Ẑ(s0) = cT0Σ−1Z ,

which verify these properties:

• The predicted error is non biased

E
[
Ẑ(s0)− Z(s0)

]
= 0 ,
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(a) H = 0.2 (b) H = 0.2 regularized (c) H = 0.5 (d) H = 0.2 regularized

Fig. 10: Simulation of a LAFBF with tangent field formulation combining the turning
band method, for Hurst index constant H = 0.2 (top) and H = 0.5 (bottom), with
(right) or without (left) a regularized Gaussian window, and the orientation function
α0(x, y) = −π2 + y

• The predicted error has a minimal variance

Var
[
Ẑ(s0)− Z(s0)

]
= min

λi

Var

 ∑
i∈V(s0)

λiZ(si)− Z(s0)


 .

Proof. See in Appendix B.

Let us now consider the kriging of the LAFBF B
h(x,y)
α(x,y),δ(x,y)(x, y) defined for

(x, y) ∈ [0, 1]2 with Hurst function h, orientation function α and a constant accuracy
δ. We sample the field on a grid r−1Z2∩[0, 1]2 with r = 2k−1, and we generate on this
grid, U LAFBF with Hurst index constant Hu, u = 1, ..., U : BHuα(k1,k2),δ(k1,k2)(k1, k2)

for all pixel (k1, k2) ∈ {0, ..., r}2.

To obtain an estimation of B
h(k1,k2)
α(k1,k2),δ(k1,k2)

(k1, k2), we first look for the upper and

lower bounds of h(k1, k2) : Hu 6 h(k1, k2) < Hu+1, then we do the kriging of the ran-

dom field Z(x, y, z) = B
h(z)
α(x,y),δ(x,y)(x, y) at the unsample point s0 = (k1, k2, h(k1, k2))

by considering the following neighborhood:

V(s0) =



(k1 − 1, k2 − 1, Hu) ; (k1 − 1, k2, Hu) ; (k1 − 1, k2 + 1, Hu)
(k1, k2 − 1, Hu) ; (k1, k2, Hu) ; (k1, k2 + 1, Hu)

(k1 + 1, k2 − 1, Hu) ; (k1 + 1, k2, Hu) ; (k1 + 1, k2 + 1, Hu)
(k1 − 1, k2 − 1, Hu+1) ; (k1 − 1, k2, Hu+1) ; (k1 − 1, k2 + 1, Hu+1)
(k1, k2 − 1, Hu+1) ; (k1, k2, Hu+1) ; (k1, k2 + 1, Hu+1)

(k1 + 1, k2 − 1, Hu+1) ; (k1 + 1, k2, Hu+1) ; (k1 + 1, k2 + 1, Hu+1)


Let fixed si = (xi, yi, Hi) and sj = (xj , yj , Hj) in V(s0), then the 18× 18 covari-

ance matrix is

Σij = Cov(Z(si), Z(sj)) = Cov
(
BHiα(xi,yi),δ(xi,yi), B

Hj
α(xj ,yj),δ(xj ,yj)

)
,

= rHij ,θij1 ,θ
ij
2

((xi, yi), (xj , yj)) ,

where rHij ,θij1 ,θ
ij
2

is the covariance of an elementary field with parameters:
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Oriented texture
with roughness Hu

Oriented texture
with roughness Hu+1

si = (k1, k2 − 1, Hu)

h(k1, k2)

Hu

Hu+1

s0 = (k1, k2, h(k1, k2))

Fig. 11: Representation of the neighborhood V(s0)

Hij =
h(zi) + h(zj)

2
,

θij1 = max(α(xi, yi)− δ(xi, yi), α(xj , yj)− δ(xj , yj)) ,
θij2 = max(α(xi, yi) + δ(xi, yi), α(xj , yj) + δ(xj , yj)) ,

and c0 is the vector of size 1× 18 whose components are Cov(Z(si), Z(s0)).

The prediction Ẑ(s0) is given by

Ẑ(s0) = cT0Σ−1Z ,

with Z the vector containing the 18 neighbors Z(si) of Z(s0).
We finally know the variance of the prediction error:

Var
[
Ẑ(s0)− Z(s0)

]
=
(
cT0Σ−1

)
Σ
(
Σ−1c0

)
+ σ2 − 2cT0Σ−1c0 ,

= σ2 − cT0Σ−1c0 .

Simulation. The algorithm computes the estimation Ẑ(s0) for each pixel s0 of the
image, the results are displayed in Figure 12 for a given orientation function x 7→ α(x)
and three different Hurst functions x 7→ h(x) with δ constant or not. This procedure
is quite costly because for each pixel s0 it requires to form the covariance matrix Σ of
size 18× 18 (which implies as much calls of the covariance function rH,θ1,θ2), and to
inverse this matrix. It could be improved by exploiting the GPU’s parallel computing
architecture, since we have the same procedure for each pixel and we can avoid to
compute several times the covariance between adjacent pixels.

5. Another anisotropic model : deformation of a H-sssi field. As we
have seen, LAFBF are possibly corrupted by some numerical artifacts, which can
compromise the estimation of the orientations. Another way to obtain a random field
locally oriented consists in deforming a globally oriented one such as H-sssi fields. This
other kind of model that we introduced in [39] is based on the approach developed in
Perrin’s works [33].
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Fig. 12: Simulation of a LAFBF of orientation function α(x1, x2) = −π2 + x1 with
different Hurst functions, and δ constant except for the last one where δ linearly
varying.

Definition 5.1 (Warped Anisotropic Fractional Brownian Field). Let X be a H-
sssi field X with anisotropy function CX and let Φ be a continuously differentiable
function defined from R2 to R2. The Warped Anisotropic Fractional Brownian Field
(WAFBF) is defined as the deformation of X by Φ:

(5.1) ZΦ,X(x) = X(Φ(x)), ∀x ∈ R2 .

Simulation. Let us choose for X a standard elementary field with anisotropy function

(5.2) CX(Θ) =
1

4δ

(
1[δ,δ](argΘ) + 1[π−δ,π+δ](argΘ)

)
,

and for the deformation function Φ a local rotation whose expression is:

(5.3) Φ(x) = R−α(x)x =

(
cosα(x)x1 + sinα(x)x2
− sinα(x)x1 + cosα(x)x2

)
≡
(

Φ1(x)
Φ2(x)

)
,

with α : R2 → R a C1 function defined on R2 such that, on an open set U ⊂ R2, we
have:

(5.4) ∀x0 ∈ U, ∇α(x0) ∧ x0 =
∂α

∂x1
(x0)x0,2 −

∂α

∂x2
(x0)x0,1 6= −1 ,

in order to have a non-zero determinant for the jacobian of Φ.
The elementary field X is simulated by the turning band method (see subsec-

tion 4.1) and the deformed image is then obtained by:

(5.5) ZΦ,X(x) ≈ XΘ,Λ(Φ(x)) =

n∑
i=1

√
λiγ(H)c(Θi)B

H
i (
〈
Φ(x), u(Θi)

〉
) .

Thus, the complexity is the same as for a simple elementary field and the simulation
of the WAFBF is really efficient. We give some illustrations of textures produce by
this procedure in Figure 13. We do not observe artifacts anymore, but the control of
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(a) α(x) = −π
3

(b) α(x) = −π
2

+ x1 (c) α(x) = −π
2

+ x2 (d) α(x) = −π
2

+x21−x2

Fig. 13: Simulation of the field Z(x) = X(R−α(x) ·x), where X is the standart AFBF
with α0 = 0, and with the different differentiable functions α.

the anisotropy is no longer insure, so we need to characterize the local orientations.

Local orientation characterization. Let us expose the local anisotropic properties
of such Gaussian fields we developed in [39].

Proposition 5.2. The Gaussian field ZΦ,X defined by (5.1) is localizable at any
point x0 ∈ R2, with tangent field Yx0 whose expression is:

Yx0(x) = X(DΦ(x0)x), ∀x ∈ R2 ,

where DΦ(x0) is the jacobian matrix of Φ at point x0.

Proposition 5.3. Let ZΦ,X be a WAFBF defined by (5.1) from X an elemen-
tary field whose orientation is ~n. We assume that the deformation function Φ is a
C1-diffeomorphism on an open set U ⊂ R2. Then, in each point x0 ∈ U , an approxi-
mation (up to δ) of the local orientation is

~nZ(x0) =
DΦ(x0)T~n

‖DΦ(x0)T~n‖ .

Corollary 5.4. Let ZΦ,X be a WAFBF formed by a standard elementary field X
with anisotropy function (5.2) and the deformation function (5.3) satisfying (5.4), we
have that at each point x0, ZΦ,X admits as local orientation ~n(x0) = DΦ(x0)T(1, 0)T,
that is

~n(x0) = u(α(x0)) + 〈u(α(x0))⊥,x0〉∇α(x0) .

with u(α(x0)) = (cos(α0(x0)), sin(α0(x0)).

Notice that this random field has local orientations which are not u(α(x0)), it
depends on the gradient ∇α, so this is not a practical way to control the prescribed
orientation. However, another way to construct a deformation field which leads to
the proper orientation u(α(x0)), is based on conformal mapping. More precisely, we
proved in [39] the following result:

Corollary 5.5. Let α be an harmonic function defined on R2. Then there exists

some λ such that Ψ =

(
λ
−α

)
is continuously differentiable and satisfied the Cauchy–

Riemann equation. Let Φ be any primitive of exp(Ψ) as an holomorphic function on
C. At any point x0, the local orientation of ZΦ,X is

~nZ(x0) =

(
cosα(x)
sinα(x)

)
.
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(a) (a, b, c) = (2,−1, 0) (b) (a, b, c) = (1, 0, π/2) (c) (a, b, c) = (0, 1, π/2)

Fig. 14: Simulation of the field Z(x) = X(Φ(x)), where X is the standart elementary
field and the harmonic function α(x1, x2) = ax1 + bx2 + c, with their level lines.

Let us now characterize the level lines corresponding to the vector field ~nZ(x0),
which also corresponds to the integral curve of the vector field V defined by

V : (x, y) 7→ (− sinα(x, y), cosα(x, y)) .

Let γ : t ∈ R 7→ (γ1(t), γ2(t)) be a parametrized curve on R2, then integral curve
passing through the point (x0, y0) is given by

{
dγ
dt = V (γ(t))
γ(0) = (x0, y0)

⇐⇒


dγ1
dt = − sinα(γ1(t), γ2(t))
γ1(0) = x0
dγ2
dt = cosα(γ1(t), γ2(t))
γ2(0) = y0

.

Reformulated with a one dimensional function, we are looking for f such that
γ(t) = (t, f(t)) and {

f ′(t) = −cotanα(t, f(t))
f(0) = y0

.

In the particular of harmonic functions α1(x, y) = x − π
2 and α2(x, y) = y − π

2 , one
can easily show that the parametric function searched is respectively f1(x) = ln

∣∣∣∣ 1

cosx

∣∣∣∣+ y0

f2(x) = arcsin(sin(y0)ex)
.

We superposed in Figure 14 these curves with corresponding textures simulating
the associated WAFBF.

6. Estimation of the elementary field anisotropy. In this section, we pro-
pose a method to estimate the vector orientation ~nX of an elementary field X =
YH,α0−δ,α0+δ and to characterize its statistic distribution. More precisely, from the

Riesz wavelet coefficients c
(`)
i,k(X) =

〈
X, R`ψi,k

〉
, we have determined in Theorem 3.3

the covariance of the Riesz wavelet vector c
(R)
i,k (X) = (c

(1)
i,k(X), c

(2)
i,k(X))T. The vector

orientation can be estimated using this correlation between the components of wavelet
coefficients, performing a linear regression along scales i, in order to evaluate H and
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the tensor structure J(X). Then, the unit eigenvector corresponding to the largest
eigenvalue provides an estimation of the vector orientation ~nX = (cosα0, sinα0)T.

Alternatively, one can define an unit orientation vector in the pixel k = (k1, k2)
at scale i as

~ni,k =
c
(R)
i,k (X)∣∣∣c(R)
i,k (X)

∣∣∣ =
1√

c
(1)
i,k(X)2 + c

(2)
i,k(X)2

(
c
(1)
i,k(X)

c
(2)
i,k(X)

)
=

(
cosαi,k(X)
sinαi,k(X)

)
,

with

αi,k(X) = atan

c(2)i,k(X)

c
(1)
i,k(X)

 ,

which give a local estimation of the orientation at this position and scale. So now, one
can look for the angle distribution of the random variable αi,k in order to estimate the
orientation of the elementary field X. Proposition 6.2 shows that the density function
of αi,k does not depends on the scale i, the position k, the wavelet ψ, nor the Hurst
index H. It only depends on the constant parameters α0 and δ of the anisotropy
function cα0,δ. Then, we show that the peaks density is centered on the searched
orientation α0 and the maximum likelihood provides an estimator of this orientation.

Lemma 6.1. Let be a Gaussian vector X = (X1, X2) characterized by the covari-
ance matrix Σ, which can be factorized as Σ = MMT with

M =

(
a b
c d

)
, det M > 0 .

Then, the random variable X1/X2 follows a Cauchy distribution Cz of complex pa-
rameter z = (aj + b)/(cj + d).

Proof. The variance-covariance matrix Σ, which is definite positive, can always
be factorized such a way, for example by the Cholesky decomposition. From this
decomposition, given a vector Z = (Z1, Z2) with Z1, Z2 two i.i.d N (0, 1), we have
X ∼ MZ. Besides, the variable Q = Z1/Z2 follows a standard Cauchy distribution
Cj. Recall that a Cauchy distribution Cz of complex parameter z = p+jq with q > 0,
has the probability density function x 7→ q/π((x− p)2 + q2). So, from X ∼MZ, we
obtain

X1

X2
∼ aQ+ b

cQ+ d
= r(Q) .

From a theorem of [26] and reference therein, if Q ∼ Cz then r(Q) ∼ Cr(z). Applied
for z = j and we get that X1/X2 follows a Cauchy distribution of parameter r(j), that
is the sought after result.

Proposition 6.2. Let X be an elementary field with anisotropy function

CX(Θ) =
1

4δ

(
1[−δ,δ](argΘ) + 1[π−δ,π+δ](argΘ)

)
,

and c
(R)
i,k (X) =

(
c
(1)
i,k(X), c

(2)
i,k(X)

)T
in the vector wavelet tight frame {Rψi,k}, defined

in (3.2) from an isotropic wavelet ψ̂(ξ) = ϕ(‖ξ‖).
The covariance matrix of the c

(R)
i,k (X) is known by Theorem 3.3

Σ
(
c
(R)
i,k (X)

)
= 2−2i(H+1)cψJ(X) , with cϕ =

[∫ +∞

0

|ϕ(r)|2
r2H+1

dr

]
,
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and with the tensor structure J(X) whose expression is given in (3.5) by

J(X) = Rα0diag

(
1

2
+

1

2

sin(2δ)

2δ
,

1

2
− 1

2

sin(2δ)

2δ

)
RT
α0
.

Let us define the random variable

Ωi,k(X) =
c
(1)
i,k(X)

c
(2)
i,k(X)

.

1. The probability density function of Ωi,k is

(6.1) fΩ(x;α0, δ) =
q(α0, δ)

π
[
(x− p(α0, δ))2 + q(α0, δ)2

] ,
with

p(α0, δ) =
sinc(2δ) sin(2α0)

1− sinc(2δ) cos(2α0)
, q(α0, δ) =

√
1− sinc2(2δ)

1− sinc(2δ) cos(2α0)
.

which does not depends on the scale i, the wavelet ψ, nor the Hurst index H.

2. The probability density function of αi,k = arctan
(

1
Ωi,k

)
is

fα(x;α0, δ) = (1 + cotan2x)fΩ(cotanx;α0, δ) ,

=
q(α0, δ)(1 + cotan2x)

π[(cotanx− p(α0, δ))2 + q(α0, δ)2]
.(6.2)

Proof. We apply Lemma 6.1 to the Gaussian vector c
(R)
i,k (X) and the variance-

covariance matrix Σi = 2−2i(H+1)cψJ(X) that we can factorize as Σi = MMT with

M = 2−i(H+1)c
1/2
ψ Rα0diag

(√
1

2
+

1

2
sinc(2δ),

√
1

2
− 1

2
sinc(2δ)

)
,

that is

M = 2−i(H+1)c
1/2
ψ

cosα0

√
1
2 + 1

2 sinc(2δ) − sinα0

√
1
2 − 1

2 sinc(2δ)

sinα0

√
1
2 + 1

2 sinc(2δ) cosα0

√
1
2 − 1

2 sinc(2δ)

 ,

and

det M = 2−2i(H+1) cψ
2

√
1− sinc2(2δ) > 0, for δ > 0 .

Consequently, we have that Ωi,k ∼ Cz(α,δ) with the complex parameter

z(α0, δ) =
cosα0

√
1
2 + 1

2 sinc(2δ)j− sinα0

√
1
2 − 1

2 sinc(2δ)

sinα0

√
1
2 + 1

2 sinc(2δ)j + cosα0

√
1
2 − 1

2 sinc(2δ)
= p(α0, δ) + jq(α0, δ) ,
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with

p(α0, δ) =
sinc(2δ) sin(2α0)

1− sinc(2δ) cos(2α0)
, q(α0, δ) =

√
1− sinc2(2δ)

1− sinc(2δ) cos(2α0)
.

Therefore, we deduce (6.1). To prove (6.2), we now characterize the cumulative
distribution of αi,k, since arctan(x) + arctan

(
1
x

)
= sgn(x)π2 we have

Fα(x) = P(αi,k 6 x) ,

= P(arctan (1/Ωi,k) 6 x) ,

= 1− P(Ωi,k 6 cotanx) ,

= 1− FΩ(cotanx) .

By differentiating we obtain (6.2) the probability density function of αi,k, for all
−π2 6 x 6 π

2 .

Remark 6.3. One can verify, by computing f ′α(x;α0, δ) = 0 (which comes down
to a quadratic equation), that the maximal value of fα is achieved for x = α0.

Appendix A. Cholesky method. Hereafter we recall a classic way to simulate
a Gaussian vector X = (X1, . . . , XN ) of size N such that E [Xi] = 0 for all i, is
completely determined by its covariance R of size N ×N whose coefficients are Rij =
Cov(Xi, Xj). To this end, we use the Cholesky decomposition of R i.e. R = LLT.
Note that it is possible to obtain a Cholesky decomposition of R since by definition
the covariance matrix R is symmetric and positive definite. Now take a random
vector, Z ∼ N (0, I), consisting of uncorrelated random variables with each random
variable, Zi, having zero mean and unit variance 1. Since Zi’s are uncorrelated random
variables with zero mean and unit variance, we have E

[
ZiZj

]
= δij . Hence,

E
[
ZZT

]
= I .

Set now X = LZ. Taking into account the fact that this vector is centered, we
can now explicit its covariance matrix

E
[
XXT

]
= E

[
(LZ)(LZ)T

]
= E

[
LZZTLT

]
= LE

[
ZZT

]
LT︸ ︷︷ ︸

Since expectation is a linear operator

= LILT = LLT = R

Hence, the random vector X has the desired covariance matrix, R.

Appendix B. Proof of Proposition 4.5. The predicted error has the follow-
ing variance:

Var
[
Ẑ(s0)− Z(s0)

]
= Var

[
λTZ− Z(s0)

]
,

= Var
[
λTZ

]
+ Var

[
Z(s0)

]
− 2Cov

[
λTZ, Z(s0)

]
,

= λTVar [Z]λ+ Var
[
Z(s0)

]
− 2λTCov

[
Z, Z(s0)

]
,

= λTΣλ+ σ2 − 2λTc0 ,

= J(λ)

where σ2 = Var[Z(s0)] and c0 = Cov[Z, Z(s0)], vector of size 1× n0.
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To minimize the function J(λ) we compute its gradient:

∇J(λ) = 2Σλ− 2c0 ,

which is a null vector for
λ̂ = Σ−1c0 .

Moreover the Hessian matrix is 2Σ which is semi-definite positive (since it is a
variance-covariance matrix), hence J(λ) is a convex function and the critical point

λ̂ = Σ−1c0 is a global minimum.

Thus, the prediction Ẑ(s0) of Z(s0) is given by:

Ẑ(s0) = cT0Σ−1Z .
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