
HAL Id: hal-01819984
https://hal.science/hal-01819984

Preprint submitted on 21 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QUANTITATIVE HOMOGENIZATION OF
DIFFERENTIAL FORMS

Paul Dario

To cite this version:
Paul Dario. QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS. 2018. �hal-
01819984�

https://hal.science/hal-01819984
https://hal.archives-ouvertes.fr


ar
X

iv
:1

80
6.

07
76

0v
1 

 [
m

at
h.

A
P]

  2
0 

Ju
n 

20
18

QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS

PAUL DARIO

Abstract. We develop a quantitative theory of stochastic homogenization in the more general frame-
work of differential forms. Inspired by recent progress in the uniformly elliptic setting, the analysis
relies on the study of certain subadditive quantities. We establish an algebraic rate of convergence
from these quantities and deduce from this an algebraic error estimate for the homogenization of the
Dirichlet problem. Most of the ideas needed in this article comes from two distinct theory, the theory
of quantitative stochastic homogenization, and the generalization of the main results of functional
analysis and of the regularity theory of second-order elliptic equations to the setting of differential
forms.
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1. Introduction

The classical theory of stochastic homogenization focuses on the study of the second-order elliptic
equation

(1.1) ∇ ⋅ (a(x)∇u) = 0,
where a is a random, rapidly oscillating, uniformly elliptic coefficient field with law P. The basic
qualitative result roughly states that, under appropriate assumptions on P, a solution ur of (1.1) in
B(0, r), the ball of center 0 and radius r, converges as r →∞, P-a.s, to a solution ur of the equation

(1.2) ∇ ⋅ (a∇ur) = 0,
where a is a constant, symmetric, definite-positive matrix, in the sense that

(1.3)
1

rd
∫
B(0,r) ∣ur(x) − ur(x)∣

2
dx Ð→

r→∞ 0.

This second equation (1.2) is frequently called the homogenized equation. Obtaining quantitative
information, for instance rates of convergence in (1.3), drew a lot of attention in the recent years,
and there has been some notable progress, in particular by the works of Armstrong, Kuusi, Mourrat
and Smart [5, 4, 2, 3] and the works of Gloria, Neukamm and Otto [13, 14, 15, 16]. Quantitative
rates of convergence are also interesting in particular because they can provide information on the
performance of numerical algorithms for the computation of the homogenized coefficients [26].

Date: June 21, 2018.

1

http://arxiv.org/abs/1806.07760v1


2 P. DARIO

The purpose of this article is to develop a theory of quantitative stochastic homogenization for
the more general equation

(1.4) d (a(x)du) = 0,
where u is an r-form, d is the exterior derivative and a is a random, rapidly oscillating tensor which
maps the space of r-forms into the space of (d − r)-forms, satisfying some suitable properties which
will be described below. When r = 0, u is a 0-form, that is to say a function, and the differential
equation (1.4) reduces to (1.1) and we recover the classical theory of stochastic homogenization.

When r = 1 and the underlying space is 4-dimensional, the system of equations in (1.4) has the
same structure as Maxwell’s equations (see e.g. [20, Section 1.2]), with the fundamental difference
that here we assume a(x) to be Riemannian, that is, elliptic in the sense of (2.16), while for Maxwell’s
equations the underlying geometric structure is Lorentzian. Replacing a Lorentzian geometry by
a Riemannian one, a procedure sometimes referred to as “Wick’s rotation”, is very common in
constructive quantum field theory, see e.g. [12, Section 6.1(ii)]. While the objects we study here
are minimizers of the random Lagrangian in (2.22), we believe that the techniques developped in
this paper will be equally informative for the study of the Gibbs measures associated with such
Lagrangians.

The main result of this article, Theorem 2 below, is to prove a quantitative homogenization
theorem for differential forms, i.e a quantitative version of (1.3) for differential forms. In our last
main result, stated in Theorem 3 below, we prove that homogenization commutes with the natural
duality structure of differential forms. This duality structure is behind certain exact formulas for
the homogenized matrix which are known to hold in dimension d = 2 (see for instance [18, Chapter
1]). We note that similar results were obtained independently by Serre [28] in the case of periodic
coefficients.

Note that the system (1.4), under natural assumptions on the coefficient field a, is elliptic but not
uniformly elliptic (since the operator vanishes on every closed form). To our knowledge, the results in
this paper are the first quantitative stochastic homogenization estimates for such degenerate elliptic
systems. The proof of our main results are based on an adaptation of the theory of quantitative
stochastic homogenization developed in [3].

2. Notations, assumptions and statements of the main results

In this section, we introduce the main notation and assumptions needed in this paper as well as
a statement of the main theorems, Theorems 1 and 2.

2.1. General Notations and Definitions. We begin by recalling some definitions and recording
some properties about differential forms which will be useful in this article. We consider the space
R
d for some positive integer d, equipped with the standard ∣ ⋅ ∣. Denote by e1, . . . , ed the canonical

basis of Rd. A cube of Rd, generally denoted by ◻, is a set of the form

(2.1) z +R(−1,1)d.
Given a cube ◻ ∶= z +R(−1,1)d, we also denote by size(◻) the size of the edges of the cube, in this
case size = R. A triadic cube of Rd is a cube of the specific form

z + (−3m
2
,
3m

2
)
d

, m ∈ N, z ∈ 3mZ
d.

We use the notation, for m ∈ N,
◻m ∶= (−3m

2
,
3m

2
)
d

.
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If U is a measurable subset of Rd, we denote its Lebesgue measure by ∣U ∣. The normalized integral
for a function u ∶ U → R for a measurable subset U ⊆ Rd is denoted by

⨏
U
u(x)dx ∶= 1

∣U ∣ ∫U u(x)dx.
Given two sets U,V ⊆ Rd, we denote by dist(U,V ) ∶= infx∈U,y∈V ∣x − y∣.

For 0 ≤ r ≤ d, we denote by Λr(Rd) the space of r-linear forms. This is a vector space of

dimension (d
r
), a canonical basis is given by

dxi1 ∧ . . . ∧ dxir , 1 ≤ i1 < . . . < ir ≤ d.
We will denote by

dxI ∶= dxi1 ∧ . . . ∧ dxir , for I = {i1, . . . , ir} ⊆ {1, . . . , d} .
Given U an open subset of Rd, a differential form is a map

u ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

U → Λr(Rd),
x→ ∑

∣I ∣=r
uI(x)dxI .

Given ξ ∶= ξ1e1 +⋯ + ξded ∈ Rd, we denote by dξ ∶= ξ1dx1 +⋯+ ξddxd ∈ Λ1 (Rd).
In practice, we need to assume some regularity on u, so we introduce the following spaces.

● The space of smooth differential forms on U up to the boundary, denoted by C∞Λr (U), i.e,

C∞Λr (U) ∶= ⎧⎪⎪⎨⎪⎪⎩u = ∑∣I ∣=ruI(x)dxI ∶ ∀I, uI ∈ C
∞ (U)

⎫⎪⎪⎬⎪⎪⎭
.

● The space of compactly supported smooth differential forms on U , denoted by C∞c Λr(U),
i.e,

C∞c Λr(U) ∶= ⎧⎪⎪⎨⎪⎪⎩u = ∑∣I ∣=ruI(x)dxI ∶ ∀I, uI ∈ C
∞
c (U)

⎫⎪⎪⎬⎪⎪⎭
.

With this definition in mind, we denote by Dr(U) the space of r-currents, i.e, the space of
formal sums

∑
∣I ∣=r

uIdxI

where the uI are distributions on Ω. It is equivalently defined as the topological dual of
C∞c Λr (U).
● For 1 ≤ p ≤∞ the set of Lp differential forms on U , denoted by LpΛr(U) i.e,

LpΛr(U) ∶= ⎧⎪⎪⎨⎪⎪⎩u = ∑∣I ∣=ruI(x)dxI ∶ ∀I, uI ∈ L
p(U)

⎫⎪⎪⎬⎪⎪⎭
equipped with the norm

∥u∥LpΛr(U) ∶= ∑
∣I ∣=r
∥uI∥LpΛr(U),

and, for 1 ≤ p <∞, the normalized Lp-norm

∥u∥p
LpΛr(U) ∶= ∑∣I ∣=r⨏U ∣uI(x)∣

p dx = 1

∣U ∣ ∑∣I ∣=r∫U ∣uI(x)∣
p dx.

We also equip the space L2Λr(U) with the scalar product ⟨u, v⟩U ∶= ∑∣I ∣=r ⟨uI , vI⟩L2(U).
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● For s ∈ R, the set of Hs differential forms on U , denoted by HsΛr(U), i.e,
HsΛr(U) ∶= ⎧⎪⎪⎨⎪⎪⎩u = ∑∣I ∣=ruI(x)dxI ∶ ∀I, uI ∈H

s(U)⎫⎪⎪⎬⎪⎪⎭
equipped with the scalar product ⟨u, v⟩HsΛr(U) ∶= ∑∣I ∣=r ⟨uI , vI⟩Hs(U).

If U ⊆ R and u ∶ U → Λr(Rd), we denote the ith-partial derivative of u by ∂iu, it is understood in
the sense of currents according to the formula

∂iu = ∑
∣I ∣=r

∂iuIdxI ,

where ∂iuI is understood in the sense of distribution. The gradient of u, denoted by ∇u ∶=(∂1u, . . . , ∂du), is a vector-valued differential form. Higher derivatives, which are also vector-valued
forms, are denoted by, for l ≥ 1,

∇lu ∶= (∂i1 . . . ∂ilu)i1,...,il∈{1,...,d} .
Given an m-form α and an r-form ω, we consider the exterior product α∧ω which is an (m+r)-form
and satisfies the following property

α ∧ ω = (−1)mr
ω ∧α.

If m + r > d, we set ω ∧α = 0.
We then define the exterior derivative which maps C∞Λr (U) to C∞Λr+1 (U) according to the

formula,

du = ∑
∣I ∣=r
∑
k∉I

∂uI

∂xk
dxk ∧ dxI ,

and can then be extended to currents. In particular, if u is a differential form of degree d, then
du = 0. This operator satisfies the following properties

(2.2) d ○ d = 0 and d(u ∧ v) = (du) ∧ v + (−1)mu ∧ (dv).
Given a form u ∶= ∑∣I ∣=r uIdxI ∈ C∞Λr (U), an open set V ⊆ Rd and a smooth map Φ ∶ V → U , we
define the pullback u by Φ to be the smooth form

Φ∗u ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
V → Λr(Rd),
x → ∑

I={i1,...,ir}
uI (Φ(x))d (dΦ(x)x1) ∧⋯ ∧ d (dΦ(x)xr) .

where dΦ(x) denotes the differential of Φ evaluated at x. The pullback satisfies the following
properties, given an m-form u and an r-form v,

(2.3) Φ∗du = dΦ∗u and Φ∗ (u ∧ v) = Φ∗u ∧Φ∗v.
Given another open set W ⊆ Rd and another smooth map Ψ ∶W → V , we have the composition rule

Ψ∗ (Φ∗u) = (Φ ○Ψ)∗ v.
Moreover, if we assume that Φ is a smooth diffeomorphism from V to U such that Φ, Φ−1 and all
their derivatives are bounded then, for s ∈ R, Φ∗ maps HsΛr(U) into HsΛr(V ) and we have the
estimate ∥Φ∗u∥HsΛr(V ) ≤ C ∥u∥HsΛr(U) ,
for some C ∶= C(d, s,Φ) <∞.

We can also define a scalar product on Λr(Rd) such that (dxI)∣I ∣=r is an orthonormal basis, i.e,

(2.4)
⎛
⎝∑∣I ∣=rαIdxI , ∑

∣I ∣=r
βIdxI

⎞
⎠ = ∑∣I ∣=rαIβI .
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We will use the notation, for α ∈ Λr(Rd)
∣α∣ = √(α,α).

We denote by B1Λ
r(Rd) the unit ball of Λr(Rd), i.e,

B1Λ
r(Rd) ∶= {α ∈ Λr(Rd) ∶ ∣α∣ ≤ 1} .

Moreover for each r, notice that

dimΛr(Rd) = dimΛ(d−r)(Rd) = (d
r
).

There is a canonical bijection between these spaces, the Hodge star operator, denoted by ⋆, which
sends Λr(Rd) to Λ(d−r)(Rd) and satisfies the property, for each α,β ∈ Λr(Rd)

α ∧ (⋆β) = (α,β)dx1 ∧⋯∧ dxd.
It is defined on the canonical basis by

⋆ (dxi1 ∧⋯ ∧ dxir) ∶= dxir+1 ∧⋯∧ dxid
where (i1, . . . , id) is an even permutation of {1, . . . , d}. An important property of this operator is
the following, for each α ∈ Λr(Rd),
(2.5) ⋆ ⋆α = (−1)r(d−r)α.
We then define the integral of a d−form over a domain U . Let u = u{1,...,d}dx1 ∧⋯∧dxd be a d−form
over U . If u{1,...,d} ∈ L1(U), we say that u is integrable and define

(2.6) ∫
U
u ∶= ∫

U
u{1,...,d}(x)dx.

In particular, the scalar product on L2Λr(U) can be rewritten, for each α,β ∈ L2Λr(U),
⟨u, v⟩U = ∫

U
u ∧ (⋆v).

Additionally, if Φ is a smooth diffeomorphism mapping V to U positively oriented, i.e if det dΦ > 0,
then the change of variables formula reads, for each integrable d-form u,

(2.7) ∫
V
Φ∗u = ∫

U
u.

We then want to define the normal and tangential components of a form u on the boundary of
a smooth bounded domain U . To achieve this, consider U ⊆ Rd a smooth bounded domain of Rd,
denote by ν the outward normal of ∂U and fix u ∈ C∞Λr(Rd) a smooth r-form. For each x ∈ ∂U ,
we define nu(x) ∈ Λr (Rd), the normal component of u(x), to be the orthogonal projection of u(x)
with respect to the scalar product (⋅, ⋅) defined in (2.4) on the kernel of the mapping

(2.8) dν(x) ∧ ⋅ ∶ ⎧⎪⎪⎨⎪⎪⎩
Λr(Rd)→ Λr+1(Rd),

v → dν(x) ∧ v.
The tangential component of u(x), denoted by tu(x), is given by the formula

(2.9) tu(x) = u(x) − nu(x).
Let now u ∈ C∞Λd−1(U), using the previous notation there exists a smooth function v ∶ ∂U → R

such that, for each x ∈ ∂U ,
tu(x) = v(x)dex1 ∧⋯∧ dexd−1,

where ex1 , . . . , e
x
d−1 ∈ Rd are such that (ex1 , . . . , exd−1, ν(x)) is an orthonormal basis positively oriented

of Rd. With this notation, we define the integral of u on ∂U by the formula

(2.10) ∫
∂U
u = ∫

∂U
v(x)dHd−1(x),
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where Hd−1 is the Hausdorff measure of dimension (d − 1) on R
d.

The two definition of integrals (2.6) and (2.10) are linked together by the Stokes’ formula: for
each smooth bounded domain U ⊆ Rd and each u ∈ C∞Λd−1(U),
(2.11) ∫

∂U
u = ∫

U
du.

We can now define δ, the formal adjoint of d with respect to the scalar product ⟨⋅, ⋅⟩L2Λr(U), i.e,
the operator which satisfies for each (u, v) ∈ C∞c Λr−1(U) ×C∞c Λr(U),

⟨du, v⟩L2Λr(U) = ⟨u, δv⟩L2Λr−1(U) .

This operator can be explicitely computed using the second equality in (2.2), the equality (2.5), and
the Stokes’ formula (2.11). Indeed we have

0 = ∫
∂U
u ∧ (⋆v) = ∫

U
du ∧ (⋆v) + (−1)r−1∫

U
u ∧ d(⋆v)

= ∫
U
du ∧ ⋆v + (−1)r−1+(r−1)(d−r+1) ∫

U
u ∧ ⋆(⋆d ⋆ v).

Consequently,

(2.12) δ = (−1)(r−1)d+1 ⋆ d ⋆ .
We now define the set of L2 forms u such that du is also L2. This will play a crucial role in this

article. Note that this space is different from the Sobolev space H1Λr(U) introduced earlier.

Definition 2.1. For each open subset U ⊆ Rd, and each 0 ≤ r < d, we define the space H1
dΛ

r(U) to
be the set of forms in L2Λr(U) such that du ∈ L2Λr+1(U), i.e,
H1

dΛ
r(U) ∶= {u ∈ L2Λr(U) ∶ ∃f ∈ L2Λr+1(U),∀v ∈ C∞c Λd−r−1(U),∫

U
(u ∧ δv + (−1)rf ∧ v) = 0} .

If u ∈ H1
dΛ

r(U), we denote by du the unique form in L2Λr+1(U) which satisfies, for every v ∈
C∞c Λd−r−1(U),
(2.13) ∫

U
(u ∧ dv + (−1)rdu ∧ v) = 0.

This space is a Hilbert space equipped with the norm

∥u∥H1

d
Λr(U) = ⟨u,u⟩U + ⟨du,du⟩U .

In the case r = d, we have du = 0 for each u ∈ L2Λd(U) and H1
dΛ

d(U) = L2Λd(U). We also denote

by H1
d,0Λ

r(U) the closure of C∞c Λr(U) in H1
dΛ

r(U), i.e,
H1

d,0Λ
r(U) ∶= C∞c Λr(U)H1

d
Λr(U)

.

Symmetrically, for each 0 < r ≤ d, we define H1
δΛ

r(U) to be the set of forms in L2Λr(U) such that
δu ∈ L2Λr−1(U), i.e,
H1

δΛ
r(U) ∶= {u ∈ L2Λr(U) ∶ ∃f ∈ L2Λr−1(U),∀v ∈ C∞c Λd−r+1(U),∫

U
(u ∧ dv + (−1)d−rf ∧ v) = 0} .

and in that case, we denote by δu = f . In the case r = 0, we have δu = 0 for each u ∈ L2(U) and
H1

δΛ
0(U) = L2(U). We also denote by H1

δ,0Λ
r(U) the closure of C∞c Λr(U) in H1

δΛ
r(U), i.e,

H1
δ,0Λ

r(U) ∶= C∞c Λr(U)H1

δ
Λr(U)

.

We then introduce the subspaces of closed (resp. co-closed) forms of H1
dΛ

r(U) (resp. H1
δΛ

r(U)).
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Definition 2.2. For each open U ⊆ Rd and each 0 ≤ r ≤ d, we say that a form u ∈H1
dΛ

r(U) is closed
(resp. co-closed) if and only if du = 0 (resp. δu = 0). We denote by Cr

d(U) the subset of closed r

forms, i.e,

Cr
d(U) ∶= {u ∈H1

dΛ
r(U) ∶ du = 0} .

We also define

Cr
d,0(U) ∶= Cr

d(U) ∩H1
d,0Λ

r(U).
Symetrically, we denote by Cr

δ (U) the subset of co-closed r forms, i.e,

Cr
δ (U) ∶= {u ∈H1

dΛ
r(U) ∶ δu = 0} .

We also define

Cr
δ,0(U) ∶= Cr

δ (U) ∩H1
δ,0Λ

r(U).
2.2. Notation related to the probability space. For a random variable X, an exponent s ∈(0,+∞) and a constant C ∈ (0,∞), we write

X ≤ Os(C)
to mean that

E [exp((X+
C
)s)] ≤ 2,

where X+ ∶=max(X,0). The notation is clearly homogeneous:

X ≤ Os(C)⇐⇒ X

C
≤ Os(1).

More generally, for θ0, θ1, . . . , θn ∈ R+ and C1, . . . ,Cn ∈ R+∗, we write

X ≤ θ0 + θ1Os (C1) +⋯+ θnOs (Cn)
to mean that there exist nonnegative random variables X1, . . . ,Xn satisfying Xi ≤ Os (Cn) such that

X ≤ θ0 + θ1X1 +⋯ + θnXn.

We now record an important property about this notation, the proof of which can be found in [3,
Lemma A.4].

Proposition 2.3. For each s ∈ (0,∞), there exists a constant Cs <∞ such that the following holds.
Let µ be a measure over an arbitrary measurable space E, let θ ∶ E → (0,∞) be a measurable function
and (X(x))x∈E be a jointly measurable family of nonnegative random variables such that, for every
x ∈ E,X(x) ≤ Os (C(x)). We have

(2.14) ∫
E
X(x)µ(dx) ≤ Os (Cs∫

E
C(x)µ(dx)) .

We then record a corollary which will be useful in Section 5.

Corollary 2.4. (i) Given positive random variables X1, . . . ,Xn such that, for each i ∈ {1, . . . , n},
Xi ≤ Os (Ci), then

n

∑
i=1

Xi ≤ Os (Cs

n

∑
i=1

Ci) ,
where Cs is the constant in Proposition 2.3.

(ii) Given a real number r > 1 and X1, . . . ,Xn such that for each i ∈ {1, . . . , n} ,Xi ≤ Os (C), then
n

∑
i=1

riXi ≤ Os (CsC
rn+1
r − 1) ,

where Cs is the constant in Proposition 2.3.
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2.3. Notation and assumptions related to homogenization. Given λ ∈ (0,1] and 1 ≤ r ≤ d,
we consider the space of measurable functions from R

d to L (Λr(Rd),Λ(d−r)(Rd)) satisfying the

symmetry assumption, for each x ∈ Rd,

(2.15) p ∧ a(x)q = q ∧ a(x)p, ∀p, q ∈ Λr(Rd),
and the ellipticity assumption, for each x ∈ Rd,

(2.16) λ∣p∣2 ≤ ⋆(p ∧ a(x)p) ≤ 1

λ
∣p∣2, ∀p ∈ Λr(Rd).

We denote by Ωr the collection of all such measurable functions,

(2.17) Ωr ∶= {a(⋅) ∶ a ∶ Rd → L(Λr(Rd),Λ(d−r) (Rd)) is Lebesgue measurable

and satisfies (2.15) and (2.16)}.
We endow Ωr with the translation group (τy)y∈Rd , acting on Ωr via

(τya) (x) ∶= a(x + y)
and with the family {Fr(U)} of σ-algebras on Ωr, with Fr(U) defined for each Borel subset U ⊆ Rd

by

Fr(U) ∶= {σ-algebra on Ωr generated by the family of maps

a → ∫
U
p ∧ a(x)qφ(x), p, q ∈ Λr(Rd), φ ∈ C∞c (U)}.

The largest of these σ-algebras is Fr(Rd), simply denoted by Fr. The translation group may be
naturally extended to Fr itself by defining, for A ∈ Fr,

(2.18) τyA ∶= {τya ∶ a ∈ A} .
We then endow the measurable space (Ωr,Fr) with a probability measure Pr satisfying the two
following conditions:

● Pr is invariant under Zd-translations: for every z ∈ Zd, A ∈ Fr,

(2.19) P [τzA] = P [A] .
● Pr has a unit range dependence: for every pair of Borel subsets U,V ⊆ Rd with dist(U,V ) ≥ 1,

(2.20) Fr(U) and Fr(V ) are independent.

The expectation of an Fr-measurable random variable X with respect to Pr is denoted by Er[X] or
simply E[X] when there is no confusion about the value of r.

Definition 2.5. Given an integer 1 ≤ r ≤ d, an environment a ∈ Ωr and an open subset U ⊆ Rd, we
say that u ∈H1

dΛ
r−1(U) is a solution of the equation

d(adu) = 0,
if for every smooth compactly supported form v ∈ C∞c Λr(U),

∫
U
du ∧ adv = 0.

We denote by Aa

r (U) the set of solutions, i.e,

(2.21) Aa

r (U) ∶= {u ∈H1
dΛ

r(U) ∶ ∀v ∈ C∞c Λr(U),∫
U
du ∧ adv = 0} .

When there is no confusion, we omit the subscripts r and a and only write A(U).



QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS 9

2.4. Statement of the main results.

Definition 2.6. For every convex bounded domain U ⊆ R
d, we define, for (p, q) ∈ Λr(Rd) ×

Λ(d−r)(Rd),
(2.22) J(U,p, q) ∶= sup

v∈A(U)⨏U (−
1

2
dv ∧ adv − p ∧ adv + dv ∧ q) .

The quantity J is nonnegative and satisfies a subadditivity property with respect to the domain U :
see [3, Chapter 2] or Proposition 5.1 below. In particular the mapping

n↦ E [J(◻n, p, q)]
is decreasing and nonnegative, thus it converges as n → ∞. The idea is then to show that there
exists a linear mapping a ∈ L (Λr(Rd),Λ(d−r)(Rd)) such that for each r-form p, J(◻n, p,ap) tends
to 0 and to quantify this statement. Precisely, we prove the following result.

Theorem 1 (Quantitative homogenization). Given 1 ≤ r ≤ d, there exist an exponent α(d,Λ) > 0, a
constant C(d,Λ) <∞ and a unique linear mapping a ∈ L (Λr(Rd),Λ(d−r)(Rd)), which is symmetric
and satisfies the ellipticity condition (2.16), such that for every n ∈ N,
(2.23) sup

p∈B1Λr(Rd)
J(◻n, p,ap) ≤ O1 (C3−nα) .

This is the subject of Section 5. In Section 6, we study the solvability of the equation dadu = 0
on a smooth bounded domain U . The first main proposition is the following, which establishes the
well-posedness of the Dirichlet problem for differential forms.

Proposition 2.7. Let U be a bounded smooth domain of Rd and 1 ≤ r ≤ d. Let f ∈H1
dΛ

r−1(U), then
for any measurable map a ∶ Rd → L (Λr(Rd),Λ(d−r) (Rd)) satisfying (2.16) and (2.15), there exists

a unique solution in f +H1
d,0Λ

r−1(U) ∩ (Cr−1
d,0 (U))⊥ of the equation

(2.24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d (adu) = 0 in U

tu = tf on ∂U,

in the sense that, for each v ∈H1
d,0Λ

r−1(U),
∫
U
du ∧ adv = 0.

Moreover if we enlarge the space of admissible solutions to the space f +H1
d,0Λ

r−1(U), we loose the

uniqueness property, but if v,w ∈ f +H1
d,0Λ

r−1(U) are two solutions of (2.24), then

v −w ∈ Cr−1
d,0 .

Before stating the homogenization theorem, there are two things to note about this proposition.
First the suitable notion to replace the trace of a function when the degree of the form is not 0
is the tangential part of the form. This is the only information which is available when one has
access to the form u and its differential derivative du. It will become clear in the next section when
Propositions 3.2 and 3.3 are stated. Also note that for functions, or 0-forms, the notion of trace and
tangential trace are the same.

Second, note that if v ∈ Cr−1
d,0 (U) and u is a solution of (2.24), then u + v is also a solution

of (2.24). This problem does not appear when one works with functions (or 0-forms) because in that
case C0

d,0(U) = {0}. This explains why we need to be careful when solving (2.24).

We then deduce from the previous proposition and Theorem 1 the homogenization theorem.
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Theorem 2 (Homogenization Theorem). Let U be a bounded smooth domain of Rd and 1 ≤ r ≤ d,
fix ε ∈ (0,1] and f ∈ H2Λr−1(U). Let uε, u ∈ f +H1

d,0Λ
r−1(U) ∩ (Cr

d,0(U))⊥ respectively denote the
solutions of the Dirichlet problems

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d(a( ⋅

ε
)duε) = 0 in U

tuε = tf on ∂U.

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d (adu) = 0 in U

tu = tf on ∂U.

Then there exist an exponent α ∶= α(d,λ,U) > 0 and a constant C ∶= C(d,λ,U) <∞ such that

∥uε − u∥L2Λr(U) + ∥duε − du∥H−1Λr(U) ≤ O1 (C ∥df∥H1Λr(U) εα) .
The previous theorem is often stated, when one is dealing with functions (or 0-forms) in the case

that U is a bounded Lipschitz domain and with a boundary condition f ∈W 1,2+δ(U) for some δ > 0:
see for instance [3, Theorem 2.16]. This is convenient since this assumption ensures that the energy
of the solution does not concentrate in a region of small Lebesgue measure near ∂U . Indeed, the
global Meyers estimate gives some extra regularity on the function u,

(⨏
U
∣∇u∣2+ε(x)dx)

1

2+ε ≤ C (⨏
U
∣∇f ∣2+ε(x)dx)

1

2+ε

,

for some tiny ε > 0. On the other hand, this assumption is natural in view of the interior Meyers
estimate, which ensures that the restriction of any solution to the heterogeneous equation to a smaller
domain will possess such regularity.

Unfortunately, we were not able to prove a global Meyers-type estimate for the solutions of

{d (adu) = 0 in U,

tu = tf on ∂U.

To bypass this difficulty, we made the extra assumptions U smooth and df ∈H1Λr(U), this implies,
by Proposition A.4 that du ∈H1Λr(U) with the estimate

∥du∥H1Λr(U) ≤ C ∥df∥H1Λr(U) .
Then, via the Sobolev embedding Theorem, we obtain that du belongs to some Lp, for some p ∶=
p(d) > 2. This allows to control the L2 norm of du in a boudary layer of small volume, as it used to
be done with the Meyers’ estimate.

The last section is devoted to the study of the following dual problem. If a ∈ Ωr, then for each
x ∈ Rd, a(x) is invertible and a−1 ∈ L(Λ(d−r)(Rd),Λr(Rd)) satisfies the symmetry assumption (2.15)
and the following ellipticity condition

1

λ
∣p∣2 ≤ a(x)−1p ∧ p ≤ λ∣p∣2, ∀p ∈ Λ(d−r)(Rd).

We can thus define, for each (p, q) ∈ Λ(d−r)(Rd) ×Λr(Rd) and each m ∈ N, the random variable

Jinv(◻m, p, q) ∶= sup
u∈Ainv(◻m)

⨏◻m

(−1
2
a−1du ∧ du − a−1du ∧ p + q ∧ du) ,

where Ainv (◻m) is the set of solution under the environment a−1, i.e,

Ainv (◻m) ∶= {u ∈H1
dΛ
(d−r−1) (◻m) ∶ ∀v ∈ C∞c Λr−1 (◻m) ,∫◻m

du ∧ a−1dv = 0} .
In Section 7, we prove that there exist a constant C(d,λ) < ∞, an exponent α(d,λ) > 0 a linear

operator inva ∈ L (Λ(d−r)(Rd),Λr(Rd)) such that, for each m ∈ N,
sup

p∈B1Λ(d−r)(Rd)
Jinv(◻m, p, inv a p) ≤ O1 (C3−mα) .

We also prove that inva is linked to a according to the following theorem.
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Theorem 3 (Duality). The homogenized linear maps a and inva satisfy

inva = (a)−1 .
Outline of the paper. The rest of this article is organized as follows. In Section 3, we state

without proof some important properties of differential forms, in particular we give a trace theorem
for differential forms, study the solvability of the equation df = u and state the Hodge-Morrey
decomposition theorem. In Section 4, we generalize some inequalities known for functions to the
setting of differential forms, in particular the Caccioppoli inequality and the multiscale Poincaré
inequality. In Section 5, we combine all the ingredients established in the previous sections and prove
the first main theorem of this article, Theorem 1. In Section 6, we use the results from Section 5
and the regularity estimates (pointwise interior estimate and boundary H2-regularity) proved in the
Appendix A, to show the second main theorem of this article, Theorem 2. In Section 7, we study
a duality structure between r-forms and (d − r)-forms and we deduce from that some results about
the homogenized matrix in the case d = 2 and r = 1. Finally Appendix A is devoted to the proof of
some regularity estimates (more specifically pointwise interior estimate and H2 boundary estimate)
for the solution of the elliptic degenerate system dadu = 0, where a is a linear mapping sending r-
forms to (d− r)-forms satisfying some suitable properties of symmetry and ellipticity, more formally
explained in Section 2.

Acknowledgement. I would like to thank Scott Armstrong and Jean-Christophe Mourrat for
helpful discussions and comments.

3. Some results pertaining to forms

In this section, we record some properties related to the spaces H1
dΛ

r(U), H1
δΛ

r(U) and Cr
d(U).

Most of these results and their proofs can be found in [23] and [24].

Given U ⊆ Rd Lipschitz and bounded, we define the Sobolev spaceH1/2(∂U) as the set of functions
of L2(∂U) which satisfy

[g]H1/2(∂U) ∶= (∫
∂U
∫
∂U

∣g(x) − g(y)∣2
∣x − y∣d+1 dHd−1(x)dHd−1(y))

1

2 <∞.
It is a Hilbert space equipped with the norm

∥g∥H1/2(∂U) ∶= ∥g∥L2(∂U) + [g]H1/2(∂U) .
Define H−1/2(∂U) to be the dual of H1/2(∂U), i.e,

H−1/2(∂U) ∶= (H1/2(∂U))∗ .
We can then extend this definition to differential forms by defining, for each 0 ≤ r ≤ d,

H1/2Λr(∂U) ∶= ⎧⎪⎪⎨⎪⎪⎩u ∈ L
2Λr(∂U) s.t u = ∑

∣I ∣=r
uIdxI and ∀I, [uI]H1/2(∂U) <∞

⎫⎪⎪⎬⎪⎪⎭ .
This is also a Hilbert space, equipped with the norm,

∥u∥H1/2Λr(∂U) ∶= ∥u∥L2Λr(∂U) + ∑
∣I ∣=r
[uI]H1/2(∂U) .

We can also define H−1/2Λr(∂U) by duality, according to the formula,

H−1/2Λr(∂U) ∶= (H1/2Λd−r(∂U))∗ .
We then recall the classical Sobolev Trace Theorem for Lipschitz domains, it is a special case

of [19, Chapter VII, Theorem 1] (see also [21]). The second half of this result is a consequence of
the solvability of the Dirichlet problem for the Poisson equation in Lipschitz domains, which was
proved in [17] or [8, Theorem 10.1].
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Proposition 3.1 (Sobolev Trace Theorem). Let U be a bounded Lipschitz domain. The linear

operator C∞ (U) → Lip(∂U) that restricts a smooth function on U to ∂U has an extension to a

bounded linear mapping H1(U) →H1/2(∂U). That is, there exists a linear operator

Tr ∶H1(U)→H1/2(∂U),
and a constant C(d,U) <∞ such that for each u ∈H1(U),

∥Tru∥H1/2(∂U) ≤ C∥u∥H1(U)
and for each u ∈ C∞ (U),

Tru = u on ∂U.

Moreover this map has a bounded right-inverse

E ∶ H1/2(∂U)→H1(U).
In particular, the map Tr is surjective.

The trace can then be extended to differential forms by setting, for u = ∑∣I ∣=r uIdxI ∈H1Λr(U),
Tru = ∑

∣I ∣=r
TruI dxI ∈H1/2Λr(∂U).

In the case when u does not belong to the space H1Λr(U) but only belongs to the larger space
H1

dΛ
r(U), one still has a Sobolev trace theorem, but one can only get information about the tan-

gential component of the trace of u. The following proposition is a specific case of [24, Proposition
4.1 and Proposition 4.3] .

Proposition 3.2 ([24], Proposition 4.1 and Proposition 4.3). For each u ∈H1
dΛ

r−1(U), the map

⟨tu, ⋅⟩ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1/2Λ(d−r)(∂U)→ R,

ψ → ∫
U
(du ∧Ψ + (−1)ru ∧ dΨ) ,

where Ψ ∈ H1Λd−r(U) is chosen such that TrΨ = ψ, is well-defined, linear and bounded. The
tangential trace

t ∶
⎧⎪⎪⎨⎪⎪⎩
H1

dΛ
r(U)→H−1/2Λr(∂U),

u → ⟨tu, ⋅⟩ .
is linear and continuous. Moreover this notation is consistent with the tangential component intro-
duced in (2.9). Similarly, we can define the normal trace for H1

δΛ
r+1(U) according to the formula,

for each v ∈H1
δΛ

r(U)
⟨nv, ⋅⟩ ∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1/2Λ(d−r)(∂U) → R,

ψ → ∫
U
(δv ∧Ψ + (−1)d−ru ∧ δΨ) ,

where Ψ ∈ H1Λd−r(U) is chosen such that TrΨ = ψ. The linear operator v → nv sends H1
δΛ

r(U) to
H−1/2Λr(∂U), is continuous and the notation is consistent with the normal component introduced
in (2.8).

The following property shows that, when U is Lipschitz, the space H1
d,0Λ

r(U) (resp. H1
δ,0Λ

r(U))
is also the space of differential forms in H1

dΛ
r(U) (resp. H1

δΛ
r(U)) with tangential (resp. normal)

trace equal to 0. A proof for these results can be found in [23, Lemma 2.13].

Proposition 3.3 ([23], Lemma 2.13). Let U be an open bounded Lipschitz subset of Rd. For each
0 ≤ r ≤ d, the following results hold:

● The space of smooth differential forms C∞Λr (U) is dense in H1
dΛ

r(U) (resp. H1
δΛ

r(U)).
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● The space C∞c Λr (U) of smooth and compactly supported differential forms is dense in{u ∈H1
dΛ

r(U) ∶ tu = 0} and in {u ∈H1
δΛ

r(U) ∶ nu = 0}). In particular, we have

H1
d,0Λ

r(U) = {u ∈H1
dΛ

r(U) ∶ tu = 0} and H1
δ,0Λ

r(U) = {u ∈H1
δΛ

r(U) ∶ nu = 0} .
An interesting corollary of this proposition is that the space of solutions A(U), defined by (2.21),

can be equivalently defined by the formula

(3.1) A(U) ∶= {u ∈H1
dΛ

r(U) ∶ ∀v ∈H1
d,0Λ

d−r(U),∫
U
du ∧ adv = 0} .

We then record one important result concerning the solvability of the equation du = f on bounded
star-shaped domains.

Proposition 3.4 ([23], Theorem 1.5 and Theorem 4.1). Let U ⊆ Rd be a bounded star-shapeddomain.
The following statements hold.

● For 1 ≤ r ≤ d (resp. 0 ≤ r ≤ d − 1), given f ∈ L2Λr(U), the problem

(3.2) { du = f in U,
u ∈H1

dΛ
r−1(U), resp. { δu = f in U,

u ∈H1
δΛ

r+1(U),
has a solution if and only if f satisfies df = 0 (resp. δf = 0). In this case, there exists
a constant C(d,U) < ∞ and a solution u of (3.2) which belongs to H1Λr−1(U) (resp. u ∈
H1Λr+1(U)) and satisfies

∥u∥H1Λr−1(U) ≤ C∥f∥L2Λr(U) resp. ∥u∥H1Λr+1(U) ≤ C∥f∥L2Λr(U).
● For 1 ≤ r ≤ d − 1, given f ∈ L2Λr(U), the problem

(3.3) { du = f,
u ∈H1

d,0Λ
r−1(U), resp. { δu = f in U,

u ∈H1
δ,0Λ

r+1(U),
has a solution if and only if f satisfies

{ df = 0,
tf = 0. resp. { δf = 0,

nf = 0.
In this case, there exists a constant C(d,U) < ∞ and a solution u of (3.3) which beongs to
H1Λr−1(U) (resp. u ∈H1Λr+1(U)) and satisfies

(3.4) ∥u∥H1Λr−1(U) ≤ C∥f∥L2Λr(U) resp. ∥u∥H1Λr+1(U) ≤ C∥f∥L2Λr(U).
● For r = d (resp. r = 0), given f ∈ L2Λr(U), the problem

{ du = f,
u ∈H1

d,0Λ
d−1(U), resp. { δu = f in U,

u ∈H1
δ,0Λ

1(U),
has a solution if and only if f satisfies

∫
U
f = 0 resp. ∫

U
⋆f = 0.

Moreover there exists a solution u ∈H1Λd−1(U) (resp. u ∈H1Λ1(U)) which satisfies (3.4).

The next important result of this section is the Hodge-Morrey Decomposition Theorem, but before
stating this result, we need to introduce the subspaces of exact, co-exact and harmonic forms.

Definition 3.5. For each open U ⊆ Rd and each 1 ≤ r ≤ d, we say that a form u ∈H1
dΛ

r(U) is exact
if and only if there exists α ∈ H1

d,0Λ
r−1(U) such that dα = u. We denote by Er(U) the subset of

exact r forms with null tangential trace, i.e,

Er(U) ∶= {u ∈H1
dΛ

r(U) ∶ ∃α ∈H1
d,0Λ

r−1(U) such that dα = u} ⊆ Cr
d(U),
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the subset of co-exact r forms with null normal trace Cr(U) , i.e,
Cr(U) ∶= {v ∈H1

dΛ
r(U) ∶ ∃β ∈H1

δ,0Λ
r+1(U) such that δβ = v} ⊆ Cr

δ (U),
and the subset of r harmonic forms, i.e,

Hr(U) ∶= {w ∈ L2Λr(U) ∶ dw = 0 and δw = 0} .
We now state the Hodge decomposition Theorem. This theorem is stated for two kinds of bounded

domains, the convex domains in which case the situation is simple and the result can be deduced
from Proposition 3.4, and the smooth domains. In the latter case the proof is more complicated and
we refer to [27, Theorem 2.4.2] for the demonstration.

Proposition 3.6 (Hodge-Morrey Decomposition, Theorem 2.4.2 of [27]). Let U ⊆ Rd be an open,
bounded domain. We assume that this domain is either convex or smooth, then for each 0 ≤ r ≤ d,

(i) the spaces Er(U), Cr(U) and Hr(U) are closed in the L2Λr(U) topology.
(ii) the following orthogonal decomposition holds

L2Λr(U) = Er(U) ⊥⊕ Cr(U) ⊥⊕Hr(U).
4. Multiscale Poincaré and Caccioppoli inequalities

The goal of this section is to prove some functional inequalities which will be important in the
proof of Therorem 1 in Section 6. To do so, we first deduce from the results of the previous
section the Poincaré inequality for differential forms on convex or smooth bounded domains of Rd,
Proposition 4.2 and Proposition 4.1. We then state, without proof, the Gaffney-Friedrichs inequality
for convex or smooth bounded domains of Rd. We deduce from these propositions the multiscale
Poincaré inequality, Proposition 4.6. We finally conclude this section by stating and proving the
Caccioppoli inequality for differential forms.

Proposition 4.1 (Poincaré). Let U be a bounded domain of Rd. We assume that U is either smooth
or convex. There exists a constant C ∶= C(U) <∞, such that for all 0 ≤ r ≤ d, for all v ∈H1

d,0Λ
r(U),

(4.1) inf
α∈Cr

d,0
(U) ∥v −α∥L2Λr(U) ≤ C∥dv∥L2Λr+1(U).

Moreover, the contant C has the following scaling property, for each λ > 0,
C(U) = λC(λ−1U).

Proposition 4.2 (Poincaré-Wirtinger). Let U be a bounded domain of Rd. We assume that U is
either smooth or convex. There exists a constant C ∶= C(U) <∞, such that for all v ∈H1

dΛ
r(U),

(4.2) inf
α∈Cr

d
(U) ∥v − α∥L2Λr(U) ≤ C∥dv∥L2Λr+1(U).

Moreover, the constant C has the following scaling property, for each λ > 0,
C(U) = λC(λ−1U).

Proof of Propositions 4.1 and 4.2. First notice that both estimates are easy when r = d since in
that case Cr

d(U) = H1
dΛ

d(U). From now on, we assume 0 ≤ r ≤ d − 1. In the case U convex, both
inequalities (4.1) and (4.2) are a consequence of Proposition 3.4. We thus assume that U is smooth.
The proof can be split into two steps.

● In Step 1, we prove that that the space

{u ∈ L2Λr+1(U) ∶ ∃α ∈H1
dΛ

r(U) such that u = dα}
is closed in the L2Λr+1 topology.
● In Step 2, we deduce, from Step 1 and Proposition 3.6, the estimates (4.1) and (4.2).



QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS 15

Step 1. The argument relies on a decomposition of the spaceHr+1(U) of harmonic forms, called the
Friedrichs decomposition. By [27, Theorem 2.4.8], we have the following orthogonal decomposition,

Hr+1(U) = (Hr+1(U) ∩H1
δ,0Λ

r+1(U)) ⊥⊕ {u ∈Hr+1(U) ∣ ∃α ∈H1
dΛ

r(U) such that u = dα} .
Combining this result with Proposition 3.6 shows that

{u ∈ L2Λr+1(U) ∶ ∃α ∈H1
dΛ

r(U) such that u = dα}
= Er(U) ⊥⊕ {u ∈Hr+1(U) ∣ ∃α ∈H1

dΛ
r(U) such that u = dα}

is closed for the L2Λr+1 topology.
Step 2. We first prove (4.1). By Proposition 3.6, we know that the space Er is closed in L2Λr+1(U).

This yields that the range of the linear operator

d ∶ {H1
d,0Λ

r(U)→ L2Λr+1(U),
u→ du.

is closed. Thus, by [6, Corollary 2.7], there exists a constant C(d,U) < ∞ such that for each
v ∈H1

d,0Λ
r(U),

inf
α∈ker d

∥v −α∥L2Λr(U) ≤ C∥dv∥.
But we have ker d = Cr

d(U) ∩H1
d,0Λ

r(U). This completes the proof of (4.1).

The proof of (4.2) is similar, the only difference is that we use Step 1, instead of Proposition 3.6,
to obtain that

{u ∈ L2Λr+1(U) ∶ ∃α ∈H1
dΛ

r(U) such that u = dα}
is closed in the L2Λr+1 topology.

The scaling of the constant comes from the change of variable x→ λx. �

We now state the Gaffney-Friedrichs inequality. The idea behind this inequality is to measure the
global smoothness of a form u satisfying

(4.3) du ∈ L2Λr+1(U), δu ∈ L2Λr−1(U) and tu = 0 on ∂U.

According to a result from Gaffney [10] and Friedrich [9], provided that U is smooth, the former
assumption (4.3) implies that u is H1Λr(U) with the estimate

(4.4) ∥u∥H1Λr(U) ≤ C (∥du∥L2Λr+1(U) + ∥δu∥L2Λr−1(U) + ∥u∥L2Λr(U)) ,
for some C ∶= C(d,U) <∞. Conversely, one clearly has

(∥du∥L2Λr+1(U) + ∥δu∥L2Λr−1(U)) ≤ C ∥∇u∥L2Λr(U) .

Thus one can wonder whether the former inequality (4.4) can be refined into

(4.5) ∥∇u∥L2Λr(U) ≤ C (∥du∥L2Λr+1(U) + ∥δu∥L2Λr−1(U)) .
This inequality is false in general, indeed the set of harmonic forms with Dirichlet boundary condition

Hr
D ∶= {u ∈ L2Λr(U) ∶ du = 0, δu = 0 and tu = 0 on ∂U}

is known to be finite dimensional and of dimension βd−r(U), the Betti number of the set U , cf [27,
Theorem 2.2.2]. In particular, as soon as dimHr

D > 0, the inequality (4.5) cannot hold. Nevertheless
it is the only obstruction and we have the following result, which is a consequence of [27, Proposition
2.2.3].
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Proposition 4.3 (Gaffney-Friedrich inequality for smooth domains). Let U be a bounded smooth
domain of R

d, then there exists a constant C ∶= C(d,U) < ∞ such that if ω ∈ L2Λr(U) satisfies
dω ∈ L2Λr+1(U), δω ∈ L2Λr−1(U), tω = 0 on ∂U and ω ∈ (Hr

D)⊥, then ω ∈H1Λr(U) and
∥∇ω∥L2Λr(U) ≤ C (∥dω∥L2Λr+1(U) + ∥δω∥L2Λr−1(U)) .

One can also expect the inequality (4.5) to be true on convex domains, which are not necessarily
smooth but satisfy βr(U) = 0 for each 0 ≤ r ≤ d. This result is stated in the following proposition
and can be found in [25, Theorem 5.5].

Proposition 4.4 (Gaffney-Friedrichs inequality for convex domains). Let U be a convex bounded
domain of Rd. Then there exists a constant C ∶= C(d,U) < ∞ such that if ω ∈ L2Λr(U) satisfies
dω ∈ L2Λr+1(U), δω ∈ L2Λr−1(U) and either tω = 0 or nω = 0 on ∂U , then ω ∈H1Λr(U) and

∥∇ω∥H1Λr(U) ≤ C (∥dω∥L2Λr+1(U) + ∥δω∥L2Λr−1(U)) .
These inequalities are a key ingredient in the proofs of Theorem 1 and Theorem 2. Another

important ingredient needed in the proof of Theorem 1 is the so called multiscale Poincaré inequality
stated below (Proposition 4.6). This inequality is valid for cubes and the statement and the proofs
of Theorems 1 and 2 only require to apply the following results to cubes of Rd. Thus, from now on
and until the end of Section 4, we will only be dealing with cubes of Rd, denoted by ◻, instead of
convex bounded domains. Recall that a cube of Rd is a set of the form

z +R(−1,1)d with z ∈ Rd,R ∈ R+
and a triadic cube, denoted by ◻m, for m ∈ N, is defined according to the formula

◻m ∶= (−3m
2
,
3m

2
)d .

We then define the mean value of a form on a cube according to the following proposition.

Definition 4.5. Given ◻ a cube of Rd and 0 ≤ r ≤ d and a form α = ∑∣I ∣=r αIdxI ∈ L2Λr(◻). We
denote by

(α)◻ ∶= ∑∣I ∣=r(⨏◻ αI(x)dx)dxI ∈ Λr(Rd).
The multiscale Poincaré inequality then reads:

Proposition 4.6 (Multiscale Poincaré). Fix m ∈ N and, for each 0 ≤ r ≤ d, each n ∈ N, n ≤ m,
define Zm,n = 3nZd ∩◻m. There exists a constant C(d) <∞ such that, for every u ∈ Cr

d(U)⊥,
∥u∥L2(◻m) ≤ C∥du∥L2(◻m) +C

m−1
∑
n=0

3n
⎛
⎝∣Zm,n∣−1 ∑

z∈Zm,n

∣(du)z+◻n ∣2⎞⎠
1

2

.

To prove this estimate, we first need to introduce the following H−1 norm for cubes.

Definition 4.7. For each cube ◻ of Rd and each ω ∈ L2Λr(◻), we define the following H−1 norm

∥ω∥H−1Λr(◻) ∶= sup{ 1

∣◻∣ ⟨ω,α⟩◻ ∶ α ∈H1Λr(◻), size(◻)−1 ∣(α)◻∣ + ∥∇α∥L2Λr(◻) ≤ 1} .
By the Poincaré-Wirtinger inequality, there exists a constant C(d) <∞ such that,

∥ω∥H−1Λr(◻) ≤ C size(◻)∥ω∥L2Λr(◻).
The Multiscale Poincaré inequality is a consequence of this improved version of the Poincaré-

Wirtinger inequality. The particular case r = 0 of this statement can be found in [3, Lemma 1.9].
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Proposition 4.8. There exists a constant C ∶= C(d) < ∞ such that for every cube ◻ ∈ Rd, every
0 ≤ r ≤ d and every u ∈H1

dΛ
r(◻),

inf
α∈Cr

d
(◻) ∥u −α∥L2Λr(◻) ≤ C∥du∥H−1Λr+1(◻).

Before starting the proof, we need to state and prove the following lemma.

Lemma 4.9. There exists C ∶= C(d) < ∞ such that for each cube ◻ ∈ Rd, each 0 ≤ r ≤ (d − 1) and
each u ∈ Cr

d(◻)⊥ there exists a unique w ∈H1
dΛ

r(◻) ∩Cr
d(◻)⊥ solution of the Neumann problem

(4.6) { δdw = u in ◻,
ndw = 0 on ∂◻,

in the sense that, for each v ∈H1
dΛ

r(U),
⟨dw,dv⟩◻ = ⟨u, v⟩◻ .

Moreover, dw ∈H1Λr+1(◻) and
(4.7) ∥∇dw∥L2Λr+1(◻) ≤ C∥u∥L2Λr(◻).
Proof. The proof can be split in two steps, first we need to prove that there exists a function w

in H1
dΛ

r(◻) solution of the Neumann problem (4.6) and then that the function w satisfies dw ∈
H1Λr+1(◻) with the regularity estimate (4.7).

Step 1. To solve (4.6), denote for v ∈H1
dΛ

r(◻), by
J (v) ∶= ⟨dv,dv⟩◻ − ⟨u, v⟩◻

and look at the variationnal problem

inf
v∈H1

d
Λr(◻)∩Cr

d
(◻)⊥J (v).

By the standard minimization techniques of the calculus of variations and the Poincaré-Wirtinger
inequality (Proposition 4.2), it is straightforward to prove that there exists a unique minimizer w of
this problem. By the first variation, w solves (4.6).

Step 2. The main ingredient of this step is the Gaffney-Friedrichs inequality (Proposition 4.4)
applied with U = ◻ and ω = dw. This form satisfies w ∈ L2Λr+1(◻), dw = ddu = 0 ∈ L2Λr+2(◻),
δw = u ∈ L2Λr(◻) and nω = 0. Thus, by the Gaffney-Friedrichs inequality, ω ∈ H1Λr+1(◻), and for
some C ∶= C(◻) <∞, ∥∇ω∥L2Λr+1(◻) ≤ C∥u∥L2Λr(◻).
By translation and scaling invariance, we obtain that there exists a constant C ∶= C(d) < ∞ such
that ∥∇ω∥L2Λr+1(◻) ≤ C∥u∥L2Λr(◻).
This is exactly (4.7). �

We know apply Lemma 4.9 to prove Proposition 4.8.

Proof of Proposition 4.8. First notice that is is enough to prove the result when u ∈ H1
dΛ

r(◻) ∩
(Cr

d(◻))⊥. Using the function w ∈ H1
dΛ

r(◻) solution of the Neumann problem (4.6) in the cube ◻,
we have

∥u∥2
L2Λr(◻) = 1

∣◻∣ ⟨u,u⟩◻
= 1

∣◻∣ ⟨du,dw⟩◻
≤ ∥du∥H−1Λr+1(◻) (size(◻)−1 ∣(dw)◻∣ + ∥∇dw∥L2Λr+1(◻)) .
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By Lemma 4.9,

∥∇dw∥L2Λr+1(◻) ≤ C∥u∥L2Λr(◻).
To complete the proof, there remains to estimate ∣(dw)◻∣, to do so denote by

p = ∑
i1<⋯<ip

pi1,⋯,ipdxi1 ∧⋯∧ dxi1 ∶= (dw)◻∣(dw)◻∣ .
and

(4.8) lp ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩
R
d → Λp(Rd),
x → ∑

i1<⋯<ip
pi1,⋯,ipxi1dxi2 ∧⋯∧ dxip ,

such that dlp = p. Testing the equation (4.6) with α = lp, we obtain

∣(dw)◻∣ = 1

∣◻∣ ∣⟨p,dw⟩◻∣ =
1

∣◻∣ ∣⟨dlp,dw⟩◻∣
= 1

∣◻∣ ∣⟨lp, u⟩◻∣
≤ C size(◻)∥u∥L2Λr(◻).

Combining the previous results completes the proof of the proposition. �

We then apply the Multiscale Poincaré inequality stated below. A proof of this inequality can be
found in [3, Proposition 1.8].

Proposition 4.10 (Multiscale Poincaré, Proposition 1.8 of [3]). Fix m ∈ N and, for each n ∈ N,
such that n ≤ m, define Zm,n = 3nZd ∩◻m. There exists a constant C(d) < ∞ such that, for every
f ∈ L2(◻m),

∥f∥H−1(◻m) ≤ C∥f∥L2(◻m) +C
m−1
∑
n=0

3n
⎛
⎝∣Zm,n∣−1 ∑

z∈Zm,n

∣(f)z+◻n ∣2⎞⎠
1

2

.

Proof of Proposition 4.6. The result is then a consequence of Proposition 4.8 and Proposition 4.10
applied with f = du. �

We complete this section by proving a version of the Caccioppoli inequality for differential forms.
Recall the definitions of the space Ωr in (2.17) and, given an environment a ∈ Ωr, the definition of
the space of solutions A(U) in (2.21).

Proposition 4.11 (Caccioppoli inequality). There exist a constant C ∶= C(d,λ) <∞ such that, for
every 1 ≤ r ≤ d, every open subsets V,U ⊆ Rd satisfying V ⊆ U , and every u ∈ A(U),

∥du∥L2Λr+1(V ) ≤ C

dist(V,∂U)∥u∥L2Λr(U∖V ).

Proof. Let η ∈ C∞c (U) be such that

1V ≤ η ≤ 1, ∣∇η∣ ≤ C

dist(V,∂U) .
The r-form ηu belongs to H1

d,0Λ
r(U) from this we deduce that

∫
U
du ∧ ad(ηu) = 0,
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which gives

0 = ∫
U
du ∧ ad(η2u)

= ∫
U
(du ∧ adη2 ∧ u + du ∧ aη2du)

= ∫
U
(du ∧ a2ηdη ∧ u + du ∧ aη2du) .

Thus, since by the ellipticity assumption (2.16) and the symmetry assumption (2.15), for each x ∈ Rd,
the bilinear form (p, p′)→ p ∧ a(x)p′ is a scalar product on Λr(Rd). In particular we can apply the
Cauchy-Schwarz inequality in the following computation.

∫
U
du ∧ aη2du = ∫

U
du ∧ a(2ηdη ∧ u)

≤ 2(∫
U
du ∧ a(η2du))

1

2 (∫
U
dη ∧ u ∧ (adη ∧ u))

1

2

.

Using the ellipticity condition (2.16), we obtain

∥du∥L2Λr+1(V ) ≤ C∥dη ∧ u∥L2Λr(U∖V )

≤ C

dist(V,∂U)∥u∥L2Λr(U∖V ).

The proof is complete. �

5. Quantitative Homogenization

The goal of this section is to study the quantity J defined, according to Definition 2.6, by the
formula, for (p, q) ∈ Λr(Rd) ×Λd−r(Rd)

J(U,p, q) ∶= sup
v∈A(U)⨏U (−

1

2
dv ∧ adv − p ∧ adv + dv ∧ q) .

Thanks to the Poincaré-Wirtinger inequality, Proposition 4.2, one can prove that there exists a
unique maximizer in A(U) ∩Cr−1

d (U)⊥, denoted by v(⋅,U, p, q). The proof is very similar to Step 1
of the proof of Lemma 4.9 and the details are omitted.

We first record some useful properties about J , Proposition 5.1. We then establish a series of
Lemmas, Lemmas 5.2 to 5.8, before proving the main result of this section, namely Theorem 1.
We eventually deduce from Theorem 1 a corollary pertaining to the maximizer v(⋅,U, p, q), Proposi-
tion 5.10.

Proposition 5.1 (Basic propeties of J). Fix a bounded Lipschitz domain U ⊆ Rd. For each 1 ≤ r ≤ d,
the quantity J(U,p, q) and its maximizer v(⋅,U, p, q) satisfy the following properties:

(1) Decomposition of the maximizer v(⋅,U, p, q). The map

(5.1)

⎧⎪⎪⎨⎪⎪⎩
Λr(Rd) ×Λd−r(Rd)→ A(U) ∩Cr−1

d (U)⊥,
(p, q)→ v(⋅,U, p, q),

is linear. Moreover, v(⋅,U, p,0) is, up to a closed form, equal to a solution of the Dirichlet
problem

(5.2) { d (adu) = 0 ∈ U,
tu = tl−p on ∂U,

where lp is defined by (4.8). The precise interpretation of (5.2) is:

u solves (5.2)⇔ u ∈ l−p +H1
d,0Λ

(r−1)(U) and ∀w ∈H1
d,0Λ

(r−1)(U),∫
U
du ∧ adw = 0.
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Similarly v(⋅,U,0, q) is a solution of the Neumann problem

(5.3) { d (adu) = 0 in U,

t (adu) = tq on ∂U.

the precise interpretation of (5.3) is:

u solves (5.3)⇔ u ∈H1
dΛ

r−1(U) and ∀w ∈H1
dΛ

r−1(U),∫
U
du ∧ adw − dw ∧ q = 0.

(2) Decomposition of J(U,p, q). For each (p, q) ∈ Λr(Rd)×Λd−r(Rd), the quantity J(U,p, q) can
be decomposed

(5.4) J(U,p, q) = ν(U,p) + ν∗(U, q) − ⋆(p ∧ q),
where p→ ν(U,p) and q → ν∗(U, q) are quadratic forms given by the formulas

(5.5) ν(U,p) = inf
u∈l−p+H1

d,0
Λr−1(U)⨏U du ∧ adu

and

(5.6) ν∗(U, q) = sup
u∈H1

d
Λr−1(U)⨏U

(−1
2
du ∧ adu + du ∧ q) .

As a remark note that there is a star before q ∧ p in (5.4) because q ∧ p is a d-form and all
the other terms are real numbers.

(3) Upper and lower bound on ν(U,p) and ν∗(U, q). There exists a constant C(d,λ) <∞ such
that for every p ∈ Λr(Rd), q ∈ Λd−r(Rd),

(5.7)
1

C
∣p∣2 ≤ ν(U,p) ≤ C ∣p∣2

and

(5.8)
1

C
∣q∣2 ≤ ν∗(U, q) ≤ C ∣q∣2.

This implies, according to (5.4), for some C ∶= C(d,λ) <∞,
(5.9) J(U,p, q) ≤ C(∣p∣2 + ∣q∣2)

and

(5.10) ∥dv(⋅,U, p, q)∥L2Λr(U) ≤ C(∣p∣2 + ∣q∣2).
(4) Uniform convexity and C1,1 in p and q separately. There exists C(d,λ) < ∞ such that for

every p1, p2 ∈ Λr(Rd) and q ∈ Λd−r(Rd),
(5.11)

1

C
∣p1 − p2∣2 ≤ 1

2
J(U,p1, q) + 1

2
J(U,p2, q) − J (U, p1 + p2

2
, q) ≤ C ∣p1 − p2∣2.

For every q1, q2 ∈ Λd−r(Rd) and p ∈ Λr(Rd),
(5.12)

1

C
∣q1 − q2∣2 ≤ 1

2
J(U,p, q1) + 1

2
J(U,p, q2) − J (U,p, q1 + q2

2
) ≤ C ∣q1 − q2∣2.

(5) Subadditivity. Let U1, . . . ,Un ⊆ U be bounded Lipschitz domains that form a partition of U ,
in the sense that

(5.13) Ui ∩Uj = ∅ if i ≠ j and ∣U ∖ N

⋃
i=1

Ui∣ = 0,
then, for every (p, q) ∈ Λr(Rd) ×Λd−r(Rd),

(5.14) J(U,p, q) ≤ N

∑
i=1

J(Ui, p, q).
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(6) First variation for J . For each (p, q) ∈ Λr(Rd) × Λd−r(Rd), the function v(⋅,U, p, q) is char-
acterized as the unique element of A(U) ∩Cr−1

d (U)⊥ which satisfies, for each u ∈A(U),
(5.15) ∫

U
dv ∧ adu = ∫

U
(−p ∧ adu + du ∧ q)

(7) Quadratic response For every (p, q) ∈ Λr(Rd) ×Λd−r(Rd) and w ∈ A(U),
(5.16)

1

C
∥dw − dv(⋅,U, p, q)∥2

L2Λr(U)

≤ J(U,p, q) −⨏
U
(−1

2
dw ∧ adw − p ∧ adw + dw ∧ q)

≤ C ∥dw − dv(⋅,U, p, q)∥2
L2Λr(U) .

(8) Control of the difference of the optimizers by the subadditivity. Let U1, . . . ,Un ⊆ U be
bounded Lipschitz domains that form a partition of U , in the sense of (5.13). Then for each(p, q) ∈ Λr(Rd) ×Λd−r(Rd),

(5.17)
n

∑
i=1

∣Ui∣∣U ∣ ∥dv(⋅,U, p, q) − dv(⋅,Ui, p, q)∥2L2Λr(Ui) ≤ C
n

∑
i=1

∣Ui∣∣U ∣ (J(Ui, p, q) − J(U,p, q)) .
Proof. These properties are easy to check and their proofs are almost the same of those of [3, Lemma
2.2], so we omit the details. �

We know turn to the proof of a series of lemmas, which will be then used in the proof of Theorem 1.
In the following lemma, we denote by Zm,n ∶= 3nZd ∩◻m. It is a finite set of cardinality 3d(m−n).

Lemma 5.2. Fix m,n ∈ N with n <m, (p, q) ∈ Λr(Rd)×Λd−r(Rd) and {q′z}z∈Zm,n ∈ Λd−r(Rd). Then

(5.18)
1

∣◻m∣ ∑z∈Zn,m

∣∫
z+◻n

(dv − dvz) ∧ q′z∣ ≤ ⎛⎝ ∑z∈Zn,m

∣q′z ∣2⎞⎠
1

2 ⎛
⎝ ∑z∈Zn,m

J(z +◻n, p, q) − J(◻m, p, q)⎞⎠
1

2

.

Proof. We shorten the notation by setting, for each z ∈ Zm,n,

v ∶= v(⋅,◻m, p, q), vz ∶= v(⋅, z +◻n, p, q), v′z ∶= v(⋅, z +◻m,0, q
′
z).

Notice that for each x ∈ Rd, the quadratic map (p, p′)→ p∧a(x)p′ is a scalar product. In particular
we can apply the Cauchy-Schwarz inequality, this reads

p ∧ a(x)p′ ≤ (p ∧ a(x)p) 12 (p′ ∧ a(x)p′) 12 ≤ Λ∣p∣∣p′∣,
by the ellipticity assumption (2.16). Keeping this in mind, we compute, using Hölder’s inequality,

1

∣◻m∣ ∑z∈Zn,m

∣∫
z+◻n

q′z ∧ (dv − dvz)∣
= 1

∣◻m∣ ∑z∈Zn,m

∣∫
z+◻n

dv′z ∧ a (dv − dvz)∣
≤ C

∣◻m∣ ∑z∈Zn,m

∥dv′z∥L2(z+◻n) ∥(dv − dvz)∥L2(z+◻n)

≤ C ⎛⎝
1

∣◻m∣ ∑z∈Zn,m

∥dv′z∥2L2(z+◻n)
⎞
⎠

1

2 ⎛
⎝

1

∣◻m∣ ∑z∈Zn,m

∥(dv − dvz)∥2L2(z+◻n)
⎞
⎠

1

2
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by (5.10) and (5.17),

≤ C ⎛⎝ ∑z∈Zn,m

∣q′z ∣2⎞⎠
1

2 ⎛
⎝ ∑z∈Zn,m

J(z +◻n, p, q) − J(◻m, p, q)⎞⎠
1

2

. �

Lemma 5.3. Let m,n ∈ N with 0 ≤ n ≤ m − 2. Then there exists C(d,λ) < ∞ such that, for every(p, q) ∈ B1Λ
r(Rd) ×B1Λ

d−r(Rd),

(5.19) var [(dv(⋅,◻m, p, q))◻m
] ≤ C3−d(m−n) var [(dv(⋅,◻n, p, q))◻n

]
+CE [J(◻n, p, q) − J(◻m, p, q)] .

Proof. We first fix n ∈ N with n ≤m − 2, q′ ∈ B1Λ
d−r(Rd) and apply Lemma 5.2 with q′z ∶= q′ to get

(5.20)
1

∣◻m∣
RRRRRRRRRRRR∫◻m

dv(⋅,◻m, p, q) ∧ q′ − ∑
z∈Zn,m

∫
z+◻n

dv(⋅, z +◻n, p, q) ∧ q′
RRRRRRRRRRRR

≤ C ⎛⎝ ∑z∈Zn,m

J(z +◻n, p, q) − J(◻m, p, q)⎞⎠
1

2

.

From this we obtain

var [⨏◻m

dv(⋅,◻m, p, q) ∧ q′] ≤ 2var
⎡⎢⎢⎢⎢⎣

1

∣◻m∣ ∑z∈Zn,m

∫
z+◻n

dv(⋅, z +◻n, p, q) ∧ q′
⎤⎥⎥⎥⎥⎦

+ 2CE

⎡⎢⎢⎢⎢⎣
⎛
⎝ ∑z∈Zn,m

J(z +◻n, p, q) − J(◻m, p, q)⎞⎠
⎤⎥⎥⎥⎥⎦
.

We take an enumeration {zi,j ∶ 1 ≤ i ≤ 3d,1 ≤ j ≤ 3d(m−n−1)} of Zm,n such that for each 1 ≤ i ≤ 3d
and each 1 ≤ j, j′ ≤ 3d(m−n−1),

∣zi,j − zi,j′ ∣ ≥ 2 ⋅ 3n.
This gives in particular

dist(zi,j +◻n, zi,j′ +◻n) ≥ 3n,
and thus, according to the independence assumption (2.20),

Fr(zi,j +◻n) and Fr(zi,j′ +◻n) are independent.
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We can thus estimate the first term on the right side of (5.18), using the previous display and the
stationarity (2.19) to get

var

⎡⎢⎢⎢⎢⎣
1

∣◻m∣ ∑z∈Zn,m

∫
z+◻n

dv(⋅, z +◻n, p, q) ∧ q′
⎤⎥⎥⎥⎥⎦

= 3−2dm var

⎡⎢⎢⎢⎢⎣
3d

∑
i=1

3d(m−n−1)

∑
j=1

∫
zi,j+◻n

dv(⋅, zi,j +◻n, p, q) ∧ q′
⎤⎥⎥⎥⎥⎦

≤ 3−2dm+d 3d

∑
i=1

var

⎡⎢⎢⎢⎢⎣
3d(m−n−1)

∑
j=1

∫
zi,j+◻n

dv(⋅, zi,j +◻n, p, q) ∧ q′
⎤⎥⎥⎥⎥⎦

≤ 3−2dm+d 3d

∑
i=1

3d(m−n−1)

∑
j=1

var [∫
zi,j+◻n

dv(⋅, zi,j +◻n, p, q) ∧ q′]
≤ 3d(−m+1−n) var [∫◻n

dv(⋅,◻n, p, q) ∧ q′]
≤ C3−d(m−n) var [⨏◻n

dv(⋅,◻n, p, q) ∧ q′] .
Combining the previous display with (5.20) and taking the supremum over q′ ∈ B1Λ

d−r(Rd) completes
the proof of the lemma. �

We then define:

Definition 5.4. For n ∈ N, we define by

τn ∶= sup
(p,q)∈B1Λr(Rd)×B1Λd−r(Rd)

E [J(◻n, p, q) − J(◻n+1, p, q)]
= sup

p∈B1Λr(Rd)
E [ν(◻n, p) − ν(◻n+1, p)] + sup

q∈B1Λd−r(Rd)
E [ν∗(◻n, q) − ν∗(◻n+1, q)]

With this definition, one can prove:

Lemma 5.5. For each n ∈ N, there exists a constant C(d,λ) <∞ and an exponent β ∶= β(d,λ) > 0
such that for every (p, q) ∈ B1Λ

r(Rd) ×B1Λ
d−r(Rd),

(5.21) var [(dv(⋅,◻m, p, q))◻m
] ≤ C m

∑
n=0

3β(n−m)τn +C3−βm.

Proof. Denote by C ∶= C(d,λ) <∞ the constant of Lemma 5.3 and select l ∶= l(d,λ) ∈ N such that

1

9
< C3−dl ≤ 1

3
.

The inequality (5.19) applied with n =m − l yields
var [(dv(⋅,◻m, p, q))◻m−l

] ≤ 1

3
var [(dv(⋅,◻m, p, q))◻m−l

] +C n

∑
k=n−l

τk.

Iterating this estimate and using the bound on the L2 norm of dv (5.10) gives, for some C ∶= C(d,λ) <
∞,

var [(dv(⋅,◻m, p, q))◻m
] ≤ C3−n

l +C n

∑
k=0

3
n−k
l τk.

This completes the proof of the lemma with β = 1
l
. �
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Definition 5.6. Consider U a bounded open subset of Rd. Since q → J(U,0, q) is quadratic and
bounded from above and below according to (5.8), there exists a linear mapping, denoted by aU ,
from Λr(Rd) to Λd−r(Rd), satisfiying the symmetry assumption (2.15) and such that, for every
q ∈ Λd−r(Rd),
(5.22) E [J(U,0, q)] = 1

2
⋆ (a−1U q ∧ q).

We also write an = a◻n for short.

There are two properties to notice about this quantity. First since J satisfies the subadditivity
property (5.14), and by the stationarity assumption (2.19), the sequence (E [J(◻n,0, q)])n∈N is

decreasing. From this we deduce that it converges for each q ∈ Λd−r(Rd). From this, we deduce that
there exists a linear symmetric map a ∈ L (Λr(Rd),Λd−r(Rd)) such that, for each q ∈ Λd−r(Rd)

E [J(◻n,0, q)] →
n→∞

1

2
⋆ (a−1q ∧ q)

which also implies

an → a in L (Λr(Rd),Λd−r(Rd)) .
Moreover, by (5.8), one can check that there exists a constant C(d,λ) < ∞ such that, for each
p ∈ Λr(Rd) and each n ∈ N,

1

C
∣p∣2 ≤ p ∧ anp ≤ C ∣p∣2.

Sending n→∞ shows that the same estimate is true for a.
Second, one has the formula, for q ∈ Λd−r(Rd),

(5.23) a−1n q = E [(dv(⋅,◻n,0, q))◻n
] .

To prove this formula, one has, according to the first variation (5.15), we have, for each q ∈ Λd−r(Rd),
J(◻n,0, q) = ⨏◻n

dv(⋅,◻n,0, q) ∧ q
Taking the expectation proves

a−1n q ∧ q = E [(dv(⋅,◻n,0, q))◻n
] ∧ q.

To prove (5.23) it is thus sufficient to prove that q → E [(dv(⋅,◻n,0, q))◻n
] satisfies the following

symmetry property, for each q, q′ ∈ Λd−r(Rd),
E [(dv(⋅,◻n,0, q))◻n

] ∧ q′ = E [(dv(⋅,◻n,0, q
′))◻n

] ∧ q.
It is a consequence of the following computation

E [(dv(⋅,◻n,0, q))◻n
] ∧ q′ = E [⨏◻n

dv(⋅,◻n,0, q) ∧ q′]
= E [⨏◻n

dv(⋅,◻n,0, q) ∧ adv(⋅,◻n,0, q
′)]

= E [⨏◻n

dv(⋅,◻n,0, q
′) ∧ adv(⋅,◻n,0, q)]

= E [⨏◻n

dv(⋅,◻n,0, q
′) ∧ q]

= E [(dv(⋅,◻n,0, q
′))◻n

] ∧ q.
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We then note that, for every q ∈ B1Λ
d−r(Rd), m,n ∈ N such that n <m, we have

∣a−1m q − a−1n q∣2(5.24)

= RRRRRRRRRRRR
E

⎡⎢⎢⎢⎢⎣
(dv(⋅,◻m,0, q))◻m

− 3d(n−m) ∑
z∈3nZd∩◻m

(dv(⋅, z +◻n,0, q))z+◻n

⎤⎥⎥⎥⎥⎦
RRRRRRRRRRRR
2

≤ E⎡⎢⎢⎢⎢⎣3
d(n−m) ∑

z∈3nZd∩◻m

∥dv(⋅,◻m,0, q) − dv(⋅, z +◻n,0, q)∥2L2Λr(U)
⎤⎥⎥⎥⎥⎦≤ CE [J(◻n,0, q) − J(◻m,0, q)]

≤ C m−1
∑
k=n

τk.

For p ∈ Λr(Rd) and m ∈ N, we denote by lmp the unique element of Cr−1
d (◻m)⊥ such that dlmp = p.

It is the projection of the function lp defined in (4.8) on Cr−1
d (◻m)⊥.

Lemma 5.7. There exists C ∶= C(d,λ) < ∞ such that, for every m ∈ N, (p, q) ∈ B1Λ
r(Rd) ×

B1Λ
d−r(Rd),

E [∥v(⋅,◻m+1, p, q) − lm+1a−1m q−p∥
2

L2Λr−1(◻m+1)
] ≤ C3(2−β)m +C3(2−β)m

m

∑
k=0

3βkτk.

Proof. Fix (p, q) ∈ B1Λ
r(Rd) ×B1Λ

d−r(Rd) and denote by Zm,n ∶= 3nZd ∩◻m+1. We split the proof
into two steps.

Step 1. Since, by definition, both v(⋅,◻m+1, p, q) and lm+1a−1m q−p are in Cr−1
d (◻m+1)⊥, the difference

belongs to Cr−1
d (◻m+1)⊥, thus we can apply the Multiscale Poincaré inequality (4.6),

∥v(⋅,◻m+1, p, q) − lm+1a−1m q−p∥
2

L2Λr−1(◻m+1)
≤ C ∥dv(⋅,◻m+1, p, q) − a−1m q + p∥2L2Λr(◻m+1)(5.25)

+C ⎛⎜⎝
m

∑
n=0

3n
⎛
⎝∣Zm,n∣−1 ∑

y∈Zm,n

∣(dv(x,◻m+1, p, q)dx − a−1m q + p)z+◻n
∣2⎞⎠

1

2⎞⎟⎠
2

.

We first bound the first term on the right-hand side

∥dv(⋅,◻m+1, p, q) − a−1m q + p∥2L2Λr(◻m+1) ≤ 2 ∣−a−1m q + p∣2 + 2 ∥dv(⋅,◻m+1, p, q)∥2L2Λr(◻m+1) ≤ C.
Step 2. We prove the estimate, for every 0 ≤ n ≤m,

E

⎡⎢⎢⎢⎢⎣
∣Zm,n∣−1 ∑

y∈Zm,n

∣(dv(⋅,◻m+1, p, q) − a−1m q + p)y+◻n
∣2
⎤⎥⎥⎥⎥⎦
≤ C (3−n + n

∑
k=0

3k−nτk +
m

∑
k=n

τk) .
By (5.17), we have, for every (p, q) ∈ B1Λ

r(Rd) ×B1Λ
d−r(Rd),

∣Zm,n∣−1 ∑
y∈Zm,n

∥dv(⋅,◻m+1, p, q) − dv(⋅, z +◻n, p, q)∥2L2Λr(y+◻n)

≤ C ∣Zm,n∣−1 ∑
z∈Zm,n

(J(z +◻n, p, q) − J(◻m, p, q)) .
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Taking expectations and using the stationarity yields

∣Zm,n∣−1E
⎡⎢⎢⎢⎢⎣ ∑y∈Zm,n

∥dv(⋅,◻m+1, p, q) − dv(⋅, z +◻n, p, q)∥2L2Λr(y+◻n)
⎤⎥⎥⎥⎥⎦

≤ CE [J(◻n, p, q) − J(◻m, p, q)] ≤ C m

∑
k=n

τk.

The triangle inequality, the previous display and Lemma 5.5 then yield,

∣Zm,n∣−1 ∑
y∈Zm,n

E [∣(dv(⋅,◻m+1, p, q)dx − a−1n q + p)y+◻n
∣2]

≤ 3∣Zm,n∣−1 ∑
y∈Zm,n

E [∣(dv(⋅,◻m+1, p, q) − dv(x, y +◻n, p, q))y+◻n
∣2]

+ 3∣Zm,n∣−1 ∑
y∈Zm,n

E [∣(dv(⋅, y +◻n, p, q)dx − a−1n q + p)y+◻n
∣2]

+ 3∣a−1m q − a−1n q∣2
≤ C m

∑
k=n

τk +C
n

∑
k=0

3β(k−n) +C3−βn.

Combining this estimate and inequality (5.25) shows

(5.26) ∥v(⋅,◻m+1, p, q) − lm+1a−1m q−p∥
2

L2Λr−1(◻m+1)
≤ C ⎛⎝1 + (

m

∑
n=0

3nX
1

2

n )
2⎞
⎠

where the random variable

Xn ∶= ∣Zm,n∣−1 ∑
y∈Zm,n

∣(dv(x,◻m+1, p, q)dx − a−1m q + p)y+◻n
∣2

satisfies

E [Xn] ≤ C m

∑
k=n

τk +C
n

∑
k=0

3β(k−n)τk +C3−βn.

By the Cauchy-Schwarz inequality,

( m

∑
n=0

3nX
1

2

n )
2 ≤ ( m

∑
n=0

3n)( m

∑
n=0

3nXn) ≤ C3m
m

∑
n=0

3nXn.

Taking the expectation thus yields

E

⎡⎢⎢⎢⎢⎣
( m

∑
n=0

3nX
1

2

n )
2⎤⎥⎥⎥⎥⎦
≤ C3m ( m

∑
n=0

m

∑
k=n

3nτk +C
m

∑
n=0

n

∑
k=0

3(1−β)n3βkτk +C
m

∑
n=0

3(1−β)n) .
We then compute the term on the right-hand side

m

∑
n=0

m

∑
k=n

3nτk = m

∑
k=0

k

∑
n=0

3nτk ≤ C m

∑
k=0

3kτk

and
m

∑
n=0

n

∑
k=0

3(1−β)n3βkτk ≤ m

∑
k=0

n

∑
n=k

3(1−β)n3βkτk ≤ C3(1−β)m
m

∑
k=0

3βkτk.

Combining the three previous displays shows

(5.27) E

⎡⎢⎢⎢⎢⎣
( m

∑
n=0

3nX
1

2

n )
2⎤⎥⎥⎥⎥⎦
≤ C3(2−β)m +C3(2−β)m

m

∑
k=0

3βkτk +C3m
m

∑
k=0

3kτk.
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Moreover, since 0 < β ≤ 1, we notice that for each k,m ∈ N with k ≤m, 3(k−m) ≤ 3β(k−m). In particular
the third term on the right-hand side of (5.27) is smaller than the second term on the right-hand
side. Consequently, estimate (5.27) can be simplified to obtain

E

⎡⎢⎢⎢⎢⎣
( m

∑
n=0

3nX
1

2

n )
2⎤⎥⎥⎥⎥⎦
≤ C3(2−β)m +C3(2−β)m

m

∑
k=0

3βkτk.

Thus estimate (5.26) becomes

E [∥v(⋅,◻m+1, p, q) − lm+1a−1m q−p∥
2

L2Λr−1(◻m+1)
] ≤ C3(2−β)m +C3(2−β)m

m

∑
k=0

3βkτk.

�

Now that we have some control on the flatness of the maximizers of J(◻m, p, q), we can estimate
J(◻m, p,amp) thanks to the Caccioppoli inequality.

Lemma 5.8. There exists a constant C(d,λ) <∞ such that, for every m ∈ N and p ∈ B1Λ
r(Rd),

E [J(◻m, p,amp)] ≤ C3−βm +C3−βm
m

∑
k=0

3βkτk.

Proof. Fix p ∈ B1Λ
r(Rd), by Lemma 5.7,

E [∥v(⋅,◻m+1, p,amp)∥2L2Λr−1(◻m+1)] ≤ C3(2−β)m +C3(2−β)m
m

∑
k=0

3βkτk.

Applying the Caccioppoli inequality, Proposition 4.11, one obtains

(5.28) E [∥dv(⋅,◻m+1, p,amp)∥2L2Λr−1(◻m)] ≤ C3−βm +C3−βm
m

∑
k=0

3βkτk.

By (5.17), we have

3−d ∑
y∈3mZd∩◻m+1

E [∥dv(⋅,◻m+1, p,amp) − dv(⋅, y +◻m, p,amp)∥2L2Λr(y+◻m)] ≤ Cτm.
In particular, this yields

E [∥dv(⋅,◻m+1, p,amp) − dv(⋅,◻m, p,amp)∥2L2Λr(◻m)] ≤ Cτm.
Combining the previous display with (5.28) gives

E [∥dv(⋅,◻m, p,amp)∥2L2Λr(◻m)] ≤ Cτm +C3−βm +C3−βm
m

∑
k=0

3βkτk

≤ C3−βm +C3−βm
m

∑
k=0

3βkτk.

By (5.16) with w = 0, we deduce

E [J(◻m, p,amp)] ≤ C3−βm +C3−βm
m

∑
k=0

3βkτk.

The proof of the Lemma is complete. �

We are now able to prove Theorem 1.
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Proof of Theorem 1. First note that since, for each m ∈ N, the mapping p → E [J(◻m, p,amp)] is a
positive definite quadratic form, we have

1

d

d

∑
i=1

E [J(◻m, ei,amei)] ≤ sup
p∈B1Λr(Rd)

E [J(◻m, p,amp)] ≤ d

∑
i=1

E [J(◻m, ei,amei)] .
Thus if we denote by

Dm = d

∑
i=1

E [J(◻m, ei,amei)] ,
we get from the previous remark that the estimate (2.23) is equivalent to

(5.29) Dm ≤ C3−αm.
The reason we consider this particular quantity is because of the bound, for some c ∶= c(d,λ) > 0,
(5.30) Dm −Dm+1 ≥ cτm.
Moreover notice that using the definition of am+1 (5.22) and the decomposition of J (5.4), for each
p ∈ Λr(Rd), the quadratic form

q → E [J(◻m+1, p, q)] = E [ν(◻m+1, p)] + ⋆(1
2
a−1m+1q ∧ q − p ∧ q)

attains it minimum at q = am+1p. Consequently
Dm+1 = d

∑
i=1

E [J(◻m+1, ei,am+1ei)] ≤ d

∑
i=1

E [J(◻m+1, ei,amei)] .
Thus we can compute

Dm −Dm+1 = d

∑
i=1

(E [J(◻m, ei,amei)] − E [J(◻m+1, ei,am+1ei)])
≥ d

∑
i=1

(E [J(◻m, ei,amei)] − E [J(◻m+1, ei,amei)])
≥ d

∑
i=1

(E [ν(◻m, ei)] − E [ν(◻m+1, ei)])
+ d

∑
i=1

(E [ν∗(◻m,amei)] −E [ν∗(◻m+1,amei)])
≥ c sup

p∈B1Λr(Rd)
E [ν∗(◻m, ei)] − E [ν∗(◻m+1, ei)]

+ c sup
p∈B1Λr(Rd)

E [ν∗(◻m, ei)] − E [ν∗(◻m+1, ei)]
≥ cτm.

The main ingredient in the proof of Theorem 1 is to define the alternative quantity

D̃m ∶= 3−βm

2

m

∑
n=0

3
βn

2 Dn,

where β ∶= β(d,λ) is the exponent which appears in Lemmas 5.7 and 5.8, and to use Lemma 5.8 to
prove the estimate

(5.31) D̃m ≤ C3−αm.
for some α ∶= α(d,λ) > 0. The estimate (5.29) follows since, for each m ∈ N

Dm ≤ D̃m.

The proof of (5.31) can be split in 5 steps
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Step 1. We show that there exist θ(d,λ) ∈ (0,1) and C(d,λ) <∞ such that, for every m ∈ N,
(5.32) D̃m+1 ≤ θD̃m +C3−

βm

2 .

By (5.30) and D0 ≤ C, we have

D̃m − D̃m+1 = 3−βm

2

m

∑
n=0

3
βn

2 (Dn −Dn+1) −C3−
βm

2 ≥ 3−βm

2

m

∑
n=0

3
βn

2 τn −C3−
βm

2 .

In particular, the previous estimate gives

D̃m+1 ≤ D̃m +C3−
βm

2

From this and Lemma 5.8, we compute

D̃m+1 ≤ D̃m +D03
−βm

2 = 3−βm

2

m

∑
n=0

3
βn

2 Dn +D03
−βm

2

≤ C3−
βm

2

m

∑
n=0

3
βn

2 (3−βn + 3−βn n

∑
k=0

3βkτk) +C3−
βm

2

≤ C3−
βm

2

m

∑
n=0

n

∑
k=0

3−
βn

2 3βkτk +C3−
βm

2

≤ C3−
βm

2

m

∑
k=0

m

∑
n=k

3−
βn

2 3βkτk +C3−
βm

2

≤ C3−
βm

2

m

∑
k=0

3
βk

2 τk +C3−
βm

2 .

Combining the two previous displays gives

D̃m+1 ≤ C (D̃m − D̃m+1) +C3−
βm

2 .

A rearrangement of this estimates yields (5.32).
Step 2. Iterating (5.32) gives

D̃m ≤ θmD0 +C
n

∑
k=0

θk3−
β(m−k)

2 .

Without loss of generality, we can assume θ > 3−β

2 (since we can make θ closer to 1 if necessary).
With this assuption, the second term on the right-hand side can be estimated,

n

∑
k=0

θk3−
β(m−k)

2 ≤ Cθm.
Combining this with the fact that D̃0 =D0 ≤ C, we obtain

D̃m ≤ Cθm,
which can be rewritten, with α = − lnθ

ln 3
> 0,

D̃m ≤ C3−αm.
Step 3. We need to get the same estimate as (5.29) but with a instead of am. First notice that

by (5.29) and (5.30),

cτm ≤Dm −Dm+1 ≤Dm ≤ C3−αm.
Thus by (5.24), for every q ∈ B1Λ

d−r(Rd), every m ∈ N,
∣a−1q − a−1m q∣2 = lim

l→∞ ∣a−1l q − a−1m q∣2 ≤
∞
∑
k=m

τk ≤ C ∞
∑
k=m

3−αk ≤ C3−αm.
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Using the ellipticity assumption (2.16), we deduce, for each p ∈ B1Λ
d−r(Rd),

∣ap − amp∣2 ≤ C3−αm.
Using that J is a quadratic form according to (5.9), one obtains that there exists a constant C(d,λ) <
∞ such that, for each m ∈ N, each p, p′ ∈ Λr(Rd) and each q, q′ ∈ Λd−r(Rd),

∣J(◻m, p, q) − J(◻m, p
′, q′)∣ ≤ C(∣p − p′∣ + ∣q − q′∣)(∣p∣ + ∣p′∣ + ∣q∣ + ∣q′∣).

Consequently, for each p ∈ B1Λ
r(Rd) and each m ∈ N

∣J(◻m, p,ap) − J(◻m, p,amp)∣ ≤ C ∣ap − amp∣ (1 + ∣ap∣ + ∣anp∣)
≤ C3−α

2
m.

Redefining α = α
2
completes the proof of the quantitative homogenization estimate (2.23).

Step 4. We need to show that the mapping a is unique. Given two maps a,a′ ∈
L (Λr(Rd),Λd−r(Rd)) such that the estimate (2.23) is satisfied, we have, by (5.12), for each m ∈ N,
and each p ∈ B1Λ

r(Rd),
1

C
∣ap − a′p∣2 ≤ E [1

2
J(◻m, p,ap) + 1

2
J(◻m, p,a

′p)]
≤ C3−αm.

Sending m → ∞ gives, for each p ∈ B1Λ
r(Rd), ap = a′p. Consequently a = a′ and the proof of the

first part of Theorem 1 is complete.
Step 5. We can now complete the proof of Theorem 1 by upgrading the stochatic integrability.

This is a consequence of the following Lemma, the proof of which can be found in [3, Lemma 2.14].

Lemma 5.9. Suppose that U → ρ(U) is a (random) map from the set of bounded Lipschitz domains
to [0,+∞) and satisfies, for a fixed K ≥ 0:

ρ(U) is F(U) −measurable

ρ(U) ≤K.
and, whenever U is the disjoint union of U1, . . . ,Uk up to a set of zero Lebesgue measure, we have

ρ(U) ≤ k

∑
i=1

∣Ui∣∣U ∣ ρ(Ui)
Then there exists a universal constant C <∞ such that, for every m,n ∈ N,

ρ (◻n+m+1) ≤ 2E [ρ (◻n)] +O1 (CK3−md) .
Applying this result to

ρ(U) ∶= sup
p∈B1

J (U,p,ap) ,
gives, for each m,n ∈ N,

ρ(◻n+m+1) ≤ 2E [ρ (◻n)] +O1 (C3−md) ≤ C3−nα +O1 (C3−md) .
Taking n =m yields, for every n ∈ N,

ρ(◻2n+1) ≤ C3−nα +O1 (C3−nd) .
By redefining α ∶=min (α

2
, d
2
), we obtain, for each n ∈ N,
ρ(◻n) ≤ C3−nα +O1 (C3−nα) ≤ O1 (C3−nα) .

The proof of Theorem 1 is now complete. �

Before turning to the proof of Theorem 2 in the next section, we state and prove the following
proposition, which is a consequence of Theorem 1 and gives some information about the flatness of
the minimizers.
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Proposition 5.10. There exists α ∶= α(d,λ) > 0 and C ∶= C(d,λ) <∞ such that for each 1 ≤ r ≤ d,
each (p, q) ∈ B1Λ

r(Rd) ×B1Λ
d−r(Rd) and each m ∈ N,

(5.33) 3−m ∥dv (⋅,◻m, p, q) − (a−1q − p)∥H−1Λr(◻) + 3−m ∥adv (⋅,◻m, p, q) − (q − ap)∥H−1Λd−r(◻)
≤ O1 (C3−mα) .

Proof. The proof is split into 2 steps.

● Step 1. We prove that, for each q ∈ B1Λ
d−r(Rd) and every m,n ∈ N such that m ≥ n

(5.34) 3d(n−m) ∑
y∈Zn,m

∣(dv (⋅,◻m,0, q) − a−1q)y+◻n
∣2 ≤ O1 (C3−αn) .

Similarly, for each p ∈ B1Λ
r(Rd) and every m,n ∈ N such that m ≥ n

(5.35) 3d(n−m) ∑
y∈Zn,m

∣(adv (⋅,◻m, p,0) − ap)y+◻n
∣2 ≤ O1 (C3−αn) .

● Step 2. We deduce from the previous step and the multiscale Poincaré inequality, Proposi-
tion 4.10, the estimate (5.33).

Step 1. We first deal with the case m = n, in this specific case, the estimate (5.34) reads

∣(dv (⋅,◻n,0, q) − a−1q)◻n
∣2 ≤ O1 (C3−αn) .

To argue this, note that, by the first variation for J ,

J(◻n,0, q) = 1

2
(dv(⋅,◻m,0, q))◻m

∧ q.

Moreover, the map q → (dv(⋅,◻m,0, q))◻m
is bounded by (5.10) and symmetric since, for each

q, q′ ∈ Λd−r(Rd),
(dv (⋅,◻m,0, q

′))◻m
∧ q = ∫◻m

dv (⋅,◻m,0, q
′) ∧ dv (⋅,◻m,0, q)

= ⨏◻m

dv (⋅,◻m,0, q) ∧ adv (⋅,◻m,0, q
′)

= (dv (⋅,◻m,0, q))◻m
∧ q′.

A combination of the two previous ideas and Theorem 1 gives

sup
q∈B1Λd−r

∣(dv (⋅,◻n,0, q) − a−1q)◻n
∣2 ≤ C sup

q∈B1Λd−r

∣J(◻n,0, q) − a−1q ∧ q∣(5.36)

≤ O1 (C3−nα) .
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To obtain the general case m ≥ n from the specific case m = n, we compute

3d(n−m) ∑
y∈Zn,m

∣(dv (⋅,◻m,0, q) − a−1q)y+◻n
∣2

≤ C3d(n−m) ∑
y∈Zn,m

∣(dv (⋅,◻m,0, q) − dv (⋅, y +◻n,0, q))y+◻n
∣2

+C3d(n−m) ∑
y∈Zn,m

∣(dv (⋅, y +◻n,0, q) − a−1q)y+◻n
∣2

≤ C3d(n−m) ∑
y∈Zn,m

∥dv (⋅,◻m,0, q) − dv (⋅, y +◻n,0, q)∥2L2(y+◻n)

+C3d(n−m) ∑
y∈Zn,m

∣(dv (⋅, y +◻n,0, q) − a−1q)y+◻n
∣2

≤ C3d(n−m) ∑
y∈Zn,m

J(y +◻n,0, q) − J(◻m,0, q)
+C3d(n−m) ∑

y∈Zn,m

∣(dv (⋅, y +◻n,0, q) − a−1q)y+◻n
∣2

To deal with the first term on the right-hand side, we note that, for each y ∈ Zm,n,

J(y +◻n,0, q) − J(◻m,0, q) ≤ ∣J(y +◻n,0, q) − a−1q ∧ q∣ + ∣J(◻m,0, q) − a−1q ∧ q∣
≤ O1(C3−αn) +O1(C3−αm)
≤ O1(C3−αn),

by the stationarity assumption (2.19). Using the inequality (2.14), we eventually obtain

3d(n−m) ∑
y∈Zn,m

J(y +◻n,0, q) − J(◻m,0, q) ≤ O1(C3−nα).
To deal with the second term on the right-hand side, we have by the stationarity assumption (2.19)
and (5.36), for each y ∈ Zm,n,

∣(dv (⋅, y +◻n,0, q) − a−1q)y+◻n
∣2 ≤ O1 (C3−αn) .

Using the inequality (2.14), we obtain

3d(n−m) ∑
y∈Zn,m

∣(dv (⋅, y +◻n,0, q) − a−1q)y+◻n
∣2 ≤ O1 (C3−αn) .

The proof of (5.34) is thus complete. Thus proof of (5.35) is similar, the details are left to the
reader.

Step 2. From Step 1 and (ii) of Corollary 2.4, we have

m−1
∑
n=0

3d(n−m) ∑
y∈Zn,m

∣(dv (⋅, y +◻n,0, q) − a−1q)y+◻n
∣2 ≤ O1 (C3(1−α)m)

and
m−1
∑
n=0

3d(n−m) ∑
y∈Zn,m

∣(adv (⋅, y +◻n, p,0) − ap)y+◻n
∣2 ≤ O1 (C3(1−α)m) .

By the multiscale Poincaré inequality, Proposition 4.6, the bound on the L2 norm of dv, esti-
mate (5.10), and the previous estimates, one obtains for each (p, q) ∈ B1Λ

r(Rd) ×B1Λ
d−r(Rd),

∥dv (⋅,◻m, p, q) − (a−1q − p)∥H−1Λr(◻) + ∥adv (⋅,◻m, p, q) − (q − ap)∥H−1Λd−r(◻) ≤ O1 (C3(1−α)m) .
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Dividing both sides of the previous inequality by 3m yields (5.33) and completes the proof of Propo-
sition 5.10. �

6. Homogenization of the Dirichlet problem

The goal of this section is to study the Dirichlet problem for the equation dadu = 0 and to establish
Theorem 2. We first prove existence and uniqueness of solution for this equation.

Proposition 2.7. Let U be a bounded smooth domain of Rd and 1 ≤ r ≤ d. Let f ∈H1
dΛ

r−1(U), then
for any measurable map a ∶ Rd → L (Λr(Rd),Λ(d−r) (Rd)) satisfying (2.16) and (2.15), there exists

a unique solution in f +H1
d,0Λ

r−1(U) ∩ (Cr−1
d,0 (U))⊥ of the equation

(6.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d (adu) = 0 in U

tu = tf on ∂U,

in the sense that, for each v ∈H1
d,0Λ

r−1(U),
∫
U
du ∧ adv = 0.

The solution satisfies the estimate, for some C ∶= C(d,λ,U) <∞,

∥u∥H1

d
Λr−1(U) ≤ C ∥df∥L2Λr(U) .

Moreover if we enlarge the space of admissible solutions to the space f +H1
d,0Λ

r−1(U), we loose the

uniqueness property, but if v,w ∈ f +H1
d,0Λ

r−1(U) are two solutions of (6.1), then

v −w ∈ Cr−1
d,0 .

Proof. The existence and uniqueness of such a solution are obtained by minimizing the quantity

J (v) ∶= ⟨df + dv,df + dv⟩U
on the space H1

d,0Λ
r−1(U)∩(Cr

d,0)⊥ and requires to use the Poincaré inequality, Proposition 4.1. The
techniques are standard, we thus omit the details. �

We now turn to the statement and the proof of the main theorem of this section, Theorem 2.

Theorem 2 (Homogenization Theorem). Let U be a bounded smooth domain of Rd and 1 ≤ r ≤ d.
Fix ε ∈ (0,1] and f ∈H1

dΛ
r−1(U) such that df ∈H1

dΛ
r(U). Let uε, u ∈ f +H1

d,0Λ
r−1(U) ∩ (Cr

d,0(U))⊥
respectively denote the solutions of the Dirichlet problems

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d(a( ⋅

ε
)duε) = 0 in U

tuε = tf on ∂U.

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d (adu) = 0 in U

tu = tf on ∂U.

Then there exist an exponent α ∶= α(d,λ,U) > 0 and a constant C ∶= C(d,λ,U) <∞ such that

∥uε − u∥L2Λr(U) + ∥duε − du∥H−1Λr(U) ≤ O1 (C ∥df∥H1Λr(U) εα) .
Proof. Without loss of generality, one can assume that ∣U ∣ = 1. Fix l > 0, this parameter represents
the thickness of a boundary layer we need to remove in the argument, it will be chosen at the
end of the proof and will depend only on ǫ. For R > 0, denote by UR ∶= {x ∈ U ∶ dist (x,∂U) > R}.
For I ⊆ {1, . . . , d} of cardinality r and m ∈ N, we denote by φm,I the unique solution in ldxI

+
H1

d,0Λ
r−1 (◻m) ∩ (Cr

d,0 (◻m))⊥ of

{d (adu) = 0 in ◻m

tu = tldxI
on ∂◻m,
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where ldxI
is defined in (4.8) satisfies dldxI

= dxI . In particular, one has

dφm,I = dv (⋅,◻m, p) .
Let m be the smallest integer such that

U ⊆ ε◻m,

and define the two scale expansion, with the convention du ∶= ∑∣I ∣=r(du)IdxI ,
(6.2) wε

0(x) ∶= u(x) + εζl(x) ∑
∣I ∣=r
(du)I(x)φm,I (x

ε
) ,

where ζl ∈ C∞c (U) is a smooth cutoff function satisfying, for every k ∈ N:
(6.3) 0 ≤ ζl ≤ 1, ζl = 1 in U2l, ζl = 0 in U ∖Ul, ∣∇kζl∣ ≤ C(k, d,U)l−k .
Note that wε

0 ∈ f + H1
d,0Λ

r−1(U). Since it is more convenient to work with an element of f +
H1

d,0Λ
r−1(U) ∩ (Cr

d,0(U))⊥ (to have the Poincaré inequality), we further define

wε ∶= f +Proj(Cr
d,0
(U))⊥ (wε

0 − f) .
where Proj(Cr

d,0
(U))⊥ denotes the L2-orthogonal projection on the space (Cr

d,0(U))⊥. Note that

wε ∈ f +H1
d,0Λ

r−1(U) ∩ (Cr
d,0(U))⊥ by construction and that it satisfies

(6.4) dwε
0 = dwε in U.

We then consider the map

d(a( ⋅
ε
)dwε) ∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1

d,0Λ
r−1(U)→ R,

v → ∫
U
dwε ∧ a(x

ε
)dv.

and denote by

(6.5) ∥d(a( ⋅
ε
)dwε)∥

H−1
d

Λr−1(U)
∶= sup{∫

U
dwε ∧ a(x

ε
)dv ∶ v ∈H1

d,0Λ
r−1(U) s.t ∥v∥H1

d
Λr(U) ≤ 1} .

The idea of the proof is to compare uε to the function wε. The proof is split into 7 steps.
Step 1. In this step, we show that the norm H−1d Λd−r+1(U) defined in (6.5) is equivalent to the

norm

∥d(a( ⋅
ε
)dwε)∥

H−1Λd−r+1(U)
∶= sup{∫

U
dwε ∧ a(x

ε
)dv ∶ v ∈H1

0Λ
r−1(U) s.t ∥v∥H1Λr(U) ≤ 1} .

This result is a consequence of the following property, for some C ∶= C(d,λ,U) <∞,

∀v ∈H1
d,0Λ

r−1(U),∃w ∈H1
0Λ

r−1(U) such that dw = dv and ∥w∥H1Λr(U) ≤ C ∥v∥H1

d
Λr(U) .

To prove this, we mimic the proof of [23, Theorem 1.1]. Let (Oj)1≤j≤N be a finite, open covering of

U such that Oj ∩ U is a smooth star-shaped domain. Then let (φj)1≤j≤N be a smooth partition of

unity such that suppφj ⊆ Oj for 1 ≤ j ≤ N . Note that the form φjv belongs to H1
d,0Λ

r−1 (Oj ∩U).
Thus by Proposition 3.4, there exist a function wj ∈H1

0Λ
r−1 (Oj ∩U) satisfying

∥wj∥H1Λr−1(Oj∩U) ≤ C ∥φjv∥H1

d
Λr−1(Oj∩U) .

We then extend the forms φjv and wj by 0 to R
d, so that φjv ∈H1

d,0Λ
r−1 (Rd) and wj ∈H1Λr−1 (Rd)

satisfy

dwj = d (φjv) in R
d.
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We then define

w ∶= N

∑
j=1

wj ,

so that

w ∈H1
0Λ

r−1 (U) and dw = N

∑
j=1

d (φjv) = dv.
We also have the estimate

∥w∥H1Λr−1(U) ≤ C ∥v∥H1

d
Λr−1(U) .

This completes the proof of Step 1.
Step 2. We show the H−1Λr(U) estimate

(6.6) ∥d(a( ⋅
ε
)dwε)∥

H−1Λr−1(U)
≤
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C ∥df∥H1Λr(U) (l 1

d−2 +O1 ( εα

l3+d/2 )) if d ≥ 3,
C ∥df∥H1Λr(U) (l 14 +O1 ( εα

l3+d/2 )) if d = 2.
We first compute the exterior derivative of wε, by (6.2) and (6.4),

dwε = du + ζl ∑
∣I ∣=r
(du)Idφm,I ( ⋅

ε
) + ε ∑

∣I ∣=r
d (ζl(du)I) ∧ φm,I ( ⋅

ε
)

= (1 − ζl)du + ∑
∣I ∣=r

ζl(du)I (dxI + dφm,I ( ⋅
ε
)) + ε ∑

∣I ∣=r
d (ζl(du)I)φm,I ( ⋅

ε
) .

From this we deduce, in the weak sense

d(a( ⋅
ε
)dwε) = d⎛⎝a(

⋅
ε
)⎛⎝(1 − ζl)du + ε ∑∣I ∣=r d (ζl(du)I)φm,I ( ⋅

ε
)⎞⎠
⎞
⎠

+ ∑
∣I ∣=r

d (ζl(du)I) ∧ a( ⋅
ε
)(dxI + dφm,I ( ⋅

ε
)) .

On the other hand, since u satisfies d(adu) = 0, we see that

∑
∣I ∣=r

d (ζl (du)I) ∧ adxI = d (ζladu) = −d ((1 − ζl)adu) .

Consequently, in the weak sense

d(a( ⋅
ε
)dwε) = d((a( ⋅

ε
) − a)(1 − ζl)du) + ε ∑

∣I ∣=r
d(a( ⋅

ε
)d (ζl(du)I) ∧ φm,I ( ⋅

ε
))

+ ∑
∣I ∣=r

d (ζl(du)I) ∧ (a( ⋅
ε
)(dxI + dφm,I ( ⋅

ε
)) − adxI) .
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It follows that

∥d(a( ⋅
ε
)dwε)∥

H−1Λr−1(U)
≤ ∑
∣I ∣=r
∥d (ζl(du)I)∥W 1,∞(U) ∥a( ⋅ε)(dxI + dφm,I ( ⋅

ε
)) − adxI∥

H−1Λr(U)

+ ∥(a( ⋅
ε
) − a) (1 − ζl)du∥

L2Λr(U)
+ ε ∑
∣I ∣=r
∥a( ⋅

ε
)d (ζl(du)I) ∧ φm,I ( ⋅

ε
)∥

L2Λr(U)
=∶ T1 + T2 + T3

To bound the term on the right we appeal to the interior regularity estimate, Proposition A.3 and
the assumption (6.3) on ζl, we have

(6.7) ∥d (ζl(du)I)∥W 1,∞(U) ≤ C

l3+d/2 ∥df∥L2Λr(U),

hence by Proposition 5.10,

T1 ≤ C

l3+d/2 ∥df∥H1(U)O1 (εα) .
The bound for T3 is similar, by Proposition (5.10) and the Popincaré inequality, Proposition 4.1, we
have

ε∥φm,I ( ⋅
ε
)∥

L2Λr(U)
≤ O1 (Cεα) .

So by (6.7), one has

T3 ≤ C

l3+d/2 ∥df∥H1(U)O1 (εα) .
To estimate the second term T2, the idea is to apply the boundary regularity result proved in the
appendix, Proposition A.4. Since df is assumed to be in H1Λr(U) and U is assumed to be smooth,
we have

∥du∥H1Λr(U) ≤ C ∥dadf∥L2Λd−r+1(U) ≤ C ∥df∥H1Λr(U) .

This implies, via the Sobolev imbedding Theorem, that du is in L
2d
d−2Λr(U) if d ≥ 3 and any LpΛr(U)

if d = 2, with the estimate

⎧⎪⎪⎨⎪⎪⎩
∥du∥

L
2d
d−2 Λr(U) ≤ C ∥df∥H1Λr(U) if d ≥ 3,

∥du∥LpΛr(U) ≤ Cp ∥df∥H1Λr(U) if d = 2,
for some C ∶= C(d,U) < ∞ and Cp ∶= C(p,U) < ∞. We now set p = 4 (but any p > 2 would work).
Using this estimate and the fact that (1 − ζl) is supported in U ∖U2l, gives, by Hölder inequality,

T2 ≤ C ∥du∥L2Λr(U∖U2r) ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩
C ∣U ∖U2l∣ 1

d−2 ∥du∥
L

2d
d−2 Λr(U) if d ≥ 3,

C ∣U ∖U2l∣ 14 ∥du∥L4Λr(U) if d = 2,
Combining the few previous results completes the proof of (6.6).

Step 3. We deduce from the previous step the H1 estimate

(6.8) ∥uε −wε∥H1

d
Λr−1(U) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C ∥df∥H1Λr(U) (l 1

d−2 +O1 ( εα

l3+d/2 )) if d ≥ 3,
C ∥df∥H1Λr(U) (l 14 +O1 ( εα

l3+d/2 )) if d = 2.
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Indeed, testing (6.6) with uε −wε ∈H1
d,0(U), and using Step 1, we obtain

∣∫
U
d (uε −wε) (x) ∧ a(x

ε
)dwε(x)∣ ≤ ∥uε −wε∥H1

d
Λr−1(U) ∥d(a( ⋅ε)dwε)∥

H−1
d

Λr−1(U)

≤ ∥uε −wε∥H1

d
Λr−1(U) ∥d(a( ⋅ε)dwε)∥

H−1Λr−1(U)
.

Meanwhile, testing this equation for uε, we get

∫
U
d (uε −wε) (x) ∧ a(x

ε
)duε(x) = 0.

Combining the two previous displays with the Poincaré inequality yields,

∥duε − dwε∥2L2Λr(U) ≤ C ∫
U
d (uε −wε) (x) ∧ a(x

ε
)d (uε − vε) (x)

≤ C ∥uε −wε∥H1

d
Λr(U) ∥d(a( ⋅ε)dwε)∥

H−1
d

Λr−1(U)

≤ C ∥duε − dwε∥L2Λr(U) ∥d(a( ⋅ε)dwε)∥
H−1Λr−1(U)

.

Thus

∥duε − dwε∥L2Λr(U) ≤ C ∥da( ⋅ε)dwε∥
H−1Λr−1(U)

.

Using the estimate (6.6) and another application of the Poincaré inequality completes the proof
of (6.8)

Step 4. Recall that at the begining of the proof, we assumed ∣U ∣ = 1. We extend Definition 4.7 to
the set U by setting, for each ω ∈ L2Λr(U),

∥ω∥H−1Λr(U) ∶= sup{⟨ω,α⟩U ∶ α ∈H1Λr(U), ∣(α)U ∣ + ∥∇α∥L2Λr(U) ≤ 1} .
Note that this norm is a bit stronger than the standard H−1 norm which only requires to have test

function in H1
0 . In this step, we prove that for each w ∈H1

d,0Λ
r−1(U) ∩ (Cr

d,0)⊥, we have

∥w∥L2Λr−1(U) ≤ ∥dw∥H−1Λr(U)
To do so, let v be the unique solution in H1

d,0Λ
r−1(U) ∩ (Cr

d,0)⊥ of the problem

(6.9) { δdv = w in U

tv = 0 on ∂U.

The existence and uniqueness of such a solution are obtained by minimizing the quantity

J (v) ∶= ⟨dv,dv⟩U − ⟨w,v⟩U
on the space H1

d,0Λ
r−1(U)∩(Cr

d,0)⊥ and requires to use the Poincaré inequality, Proposition 4.1. The
details are left to the reader.

If v is a solution (6.9), note that ddv = 0 ∈ L2Λr+1(U), δdv = w ∈ L2Λr−1(U) and tdw = 0 (this
last property is implied by the condition tv = 0, see for instance [24]). As a consequence, we have
by the Gaffney-Friedrich inequality, Proposition 4.3, that dv ∈H1Λr(U), with the estimate

∥dv∥H1Λr(U) ≤ C (∥w∥L2Λr−1(U) + ∥dv∥L2Λr(U)) .
Testing (6.9) with v and using the Poincaré inequality also shows

∥dv∥L2Λr(U) ≤ C ∥w∥L2Λr−1(U) .
Combining the two previous displays shows

(6.10) ∥dv∥H1Λr(U) ≤ C ∥w∥L2Λr−1(U) .
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testing (6.9) with w then shows,

⟨dw,dv⟩U = ⟨w,w⟩U = ∥w∥L2Λr−1(U).

On the other hand, by the definition of the H−1 and (6.10), we have

⟨dw,dv⟩U ≤ ∥dw∥H−1Λr(U)∥dv∥H1Λr(U)
≤ ∥dw∥H−1Λr(U)∥w∥L2Λr−1(U).

Combining the two previous displays completes the proof of Step 4.
Step 5. We prove that

(6.11) ∥dwε − du∥H−1Λr(U) ≤ O1 (C ∥df∥H1Λr(U) εα

l2+d/2 ) .
We have that

dwε − du = d⎛⎝εζl ∑∣I ∣=r(du)Iφm,I ( ⋅
ε
)⎞⎠

and therefore, since wε − u ∈H1
d,0Λ

r−1(U), we have

∥dwε − du∥H−1Λr(U) ≤ C ∥du∥L∞(Ur) ∑∣I ∣=r
ε∥φm,I ( ⋅

ε
)∥

L2Λr(U)
.

But with the same proof as in Step 4, with ε◻m instead of U , and Proposition 5.10, we have

ε∥φm,I ( ⋅
ε
)∥

L2Λr(U)
≤ ε∥φm,I ( ⋅

ε
)∥

L2Λr(ε◻m)
≤ O1 (Cεα) ,

then, by Proposition A.3, we have

∥dwε − dw∥H−1Λr(U) ≤ ∥df∥L2Λr(U)O1 ( Cεα
l1+d/2 ) .

This completes the proof of (6.11).
Step 6. The conclusion. By Steps 2 an 3, we can compute

∥duε − du∥H−1Λr(U) ≤ ∥duε − dwε∥H−1Λr(U) + ∥dwε − du∥H−1Λr(U)≤ ∥duε − dwε∥L2Λr(U) + ∥dwε − du∥H−1Λr(U) .

This yields

∥duε − du∥H−1Λr(U) ≤
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C ∥df∥H1Λr(U) (l 1

d−2 +O1 ( εα

l3+d/2 )) if d ≥ 3,
C ∥df∥H1Λr(U) (l 14 +O1 ( εα

l3+d/2 )) if d = 2.
Finally, the bound for ∥uε − u∥L2(U) is obtained from the previous inequality and Step 4. Indeed,

since u − uε ∈H1
d,0Λ

r−1(U) ∩ (Cr
d,0)⊥, we have

∥duε − du∥L2Λr(U) ≤ C ∥duε − du∥H−1Λr(U) .

Step 7. The conclusion. The estimate obtained is valid for any 0 < l ≤ 1, in particular we can
choose l to be a small power of ε such that εα

l3+d/2
is still a small power of ε. This completes the proof

of Theorem 2. �
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7. Duality

The goal of this section is to study a duality property between the homogenization of r-forms and(d − r)-forms. We note that similar results were obtained independently by Serre [28] in the case of

periodic coefficients. For each a ∈ Ωr and each x ∈ Rd, the operator a(x) ∈ L (Λr(Rd),Λ(d−r)(Rd))
satisfies the ellipticity assumption (2.16), so it is invertible and one can define the inverse operator

(a(x))−1 ∈ L (Λ(d−r)(Rd),Λr(Rd)), which satisfies the symmetry assumption (2.15) and the following
ellipticity condition

(7.1)
1

λ
∣p∣2 ≤ a(x)−1p ∧ p ≤ λ∣p∣2, ∀p ∈ Λ(d−r)(Rd).

We denote by

Ω′d−r ∶= {a(⋅) ∶ a ∶ Rd → L(Λ(d−r)(Rd),Λr (Rd)) is Lebesgue measurable

and satisfies (2.15) and (7.1)}.
We equip this set with a family of sigma algebras, for each U ⊆ Rd,

F ′r(U) ∶= {σ-algebra on Ω′r generated by the family of maps

a → ∫
U
p ∧ a(x)qφ(x), p, q ∈ Λr(Rd), φ ∈ C∞c (U)}.

One also defines inv to be the mapping

inv ∶
⎧⎪⎪⎨⎪⎪⎩
Ωr → Ω′d−r,
a→ a−1.

We then define inv∗P the probability measure defined on the measured space (Ω′d−r,F ′d−r) by, for
each A ∈ F ′d−r,

inv∗Pr(A) ∶= Pr (inv−1A) ,
the probability space (Ω′d−r,F ′d−r, inv∗Pr) satisfies the stationarity assumption (2.19) and the inde-

pendence assumption (2.20). The idea is then to define, for each (p, q) ∈ Λ(d−r)(Rd) × Λr(Rd) and
each m ∈ N,

Jinv(◻m, p, q) ∶= sup
u∈Ainv(◻m)

⨏◻m

(−1
2
a−1du ∧ du − a−1du ∧ p + q ∧ du) ,

where Ainv (◻m) is the set of solution under the environment a−1, i.e,

Ainv (◻m) ∶= {u ∈H1
dΛ
(d−r−1) (◻m) ∶ ∀v ∈ C∞c Λr−1 (◻m) ,∫◻m

du ∧ a−1dv = 0} ,
and this quantity satisfies the conclusions of Proposition 5.1 and Theorem 1. In particular, there
exist a constant C(d,λ) <∞, an exponent α(d,λ) > 0 and a linear operator

inva ∈ L(Λ(d−r)(Rd),Λr(Rd))
such that, for each m ∈ N,

sup
p∈B1Λ(d−r)(Rd)

E [Jinv(◻m, p, inv ap)] ≤ C3−mα.

The following theorem determines inva.

Theorem 3 (Duality). The homogenized linear maps a and inva satisfy

inva = (a)−1 .
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Proof. First we need to prove the following result, for each 0 ≤ r ≤ d and each bounded m ∈ N,
Ainv (◻m) = {v ∈H1

dΛ
(d−r−1) (◻m) ∶ dv = adu with u ∈ A (◻m)} .

We split the proof into 2 steps

● We prove that each v ∈H1
dΛ
(d−r−1) (◻m) satisfying dv = adu for some u ∈A (◻m) belongs to

Ainv (◻m). Indeed, for each w ∈ C∞c Λr−1 (◻m), we have, by the symmetry assumption (2.15),
and (2.13),

(7.2) ∫◻m

dv ∧ a−1dw = ∫◻m

dw ∧ a−1dv = ∫◻m

dw ∧ du = 0.
● We prove that for each v ∈ Ainv (◻m), there exists u ∈ A (◻m) such that dv = adu. Indeed,
if v ∈ Ainv (◻m), then a−1dv belongs to L2Λr (◻m) and satisfies

d (a−1dv) = 0 in ◻m.

Consequently a−1dv ∈H1
dΛ

r (◻m). We can apply Proposition 3.4, to prove that there exists

u ∈H1
dΛ

r (◻m) such that

a−1dv = du in ◻m.

There only remains to prove that u ∈ A (◻m), it is a consequence of the following computation.

For each w ∈ C∞c Λ(d−r−1) (◻m), we have, by the symmetry assumption (2.15) and (2.13),

∫◻m

du ∧ adw = ∫◻m

dw ∧ adu = ∫◻m

dw ∧ dv = 0.
Using (7.2), we have

Jinv(◻m, p, q) = sup
u∈Ainv(◻m)

⨏◻m

(−1
2
a−1du ∧ du − a−1du ∧ p + q ∧ du)

= sup
v∈A(◻m)

⨏◻m

(−1
2
(adv) ∧ (adv) − a−1(adv) ∧ p + q ∧ (adv))

= sup
v∈A(◻m)

⨏◻m

(−1
2
dv ∧ adv − dv ∧ p + q ∧ adv)

= J (◻m,−q,−p)
= J (◻m, q, p) .

Thus, by Theorem 1, for each m ∈ N,
sup

p∈B1Λr(Rd)
E [Jinv(◻m,ap, p)] = sup

p∈B1Λr(Rd)
E [J(◻m, p,ap)] ≤ C3−αm.

The previous inequality can be rewritten

sup
q∈B1Λ(d−r)(Rd)

E [Jinv(◻m, p,a
−1p)] ≤ C3−αm.

Since the homogenized matrix is unique, we have a−1 = inva. This gives the expected result. �

Remark 7.1. The previous result can be applied in the particular case d = 2, r = 1 and the standard
homogenization problem

∇ ⋅ (a∇u) = 0
can be rewritten with the formalism of forms

d(⋆adu) = 0
(we identify the space R

2 with the space Λ1(R2) canonically). Thus, we can compute the dual
problem,

d(a−1 ⋆ du) = 0
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which can be rewritten in the standard formalism,

(7.3) ∇⊥ ⋅ (a−1∇⊥u) = 0,
where we used the notation

∇⊥f = (−∂2f
∂1f
) .

Denote by

P = [ 0 1
−1 0

] .
Performing the change of variable u(x) → u(Px), the equation (7.3) becomes

(7.4) ∇ ⋅ ((a−1 ○P)∇u) = 0,
where a−1 ○ P is defined by, for each x ∈ Rd,

a−1 ○P (x) = a−1(Px).
With this in mind, one can compute the homogenized matrix a−1 ○ P of the problem (7.4). We obtain
according Theorem 3

(7.5) a−1 ○ P = a−1.
In particular, indeed if we assume that the environment satisfies, for some positive constant k and
for each x ∈ Rd,

a(x)a(Px) = kId,
then a(x) = ka−1(Px) and (7.5) gives

a

k
= a−1,

which implies

a =√kId.
This formula is known as the Dykhne formula which was originally proved in [7].

Appendix A. Regularity estimates for differential forms

In this appendix, we record some properties about the regularity of the solutions of the constant
coefficient equation dadu. The two main results are the pointwise interior estimate, Proposition A.3
and the H2 boundary estimate, Proposition A.4. Both these results are used in the proof of The-
orem 2. Most of these proofs are an adaptation of the classical proofs of the regularity theory of
uniformly elliptic equations (cf [11]).

We first state two propositions, Proposition A.1 and Proposition A.2. We then use these two
ingredients to prove the pointwise interior estimate, Proposition A.3. We finally prove a global H2

regularity result for the solution of dadu = 0, Proposition A.4.
The following proposition is an interior version of the Gaffney-Friedrich inequality, Propositions 4.3

and 4.4. The result is weaker because it is only an interior estimate, but it does not require any
regularity for the domain U nor any assumption on the value of the form on the boundary of the
domain.

Proposition A.1 (Interior Gaffney-Friedrich inequality). There exists a constant C ∶= C(d) < ∞
such that, for every 0 ≤ r ≤ d, every open bounded subset V,U ⊆ R

d satisfying V ⊆ U , and every
u ∈ L2Λr (U) such that du ∈ L2Λr+1 (U) and δu ∈ L2Λr−1 (U), we have u ∈ H1Λr (V ) with the
estimate,

(A.1) ∥∇u∥L2Λr(V ) ≤ C (∥du∥L2Λr(U) + ∥δu∥L2Λr(U) + 1

dist(V,∂U) ∥u∥L2Λr(U)) .
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Proof. The proof relies on the following observation, given a form u = ∑∣I ∣=r uIdxI ∈ C∞Λr(U), we
have (dδ + δd)u = ∑

∣I ∣=r
∆uIdxI .

Select a function η ∈ C∞c (U) such that

1V ≤ η ≤ 1, ∣∇η∣ ≤ C

dist(V,∂U) .
We then compute

∥∇u∥2L2Λr(V ) =∑
I
∫
V
∣∇uI ∣2 (x)dx

≤∑
I
∫
U
∣∇uIη∣2 (x)dx

=∑
I
∫
U
(uIη)(x)∆(uIη)(x)dx

= ⟨uη, (δd + dδ)uη⟩U= ⟨d(uη),d(uη)⟩U + ⟨δ(uη), δ(uη)⟩U
By (2.2), we have

⟨d(uη),d(uη)⟩U = ⟨ηdu + dη ∧ u, ηdu + dη ∧ u⟩U≤ 2 ⟨ηdu, ηdu⟩U + 2 ⟨dη ∧ u,dη ∧ u⟩U
≤ C (∥du∥2L2Λr+1(U) + 1

dist(V,∂U)2 ∥u∥2L2Λr(U)) .
A similar computation yields

⟨δ(uη), δ(uη)⟩U ≤ C (∥δu∥2L2Λr−1(U) + 1

dist(V,∂U)2 ∥u∥2L2Λr(U)) .
Combining the three previous displays completes the proof of (A.1). �

We then use the previous interior Gaffney-Friedrich inequality to prove the following interior
H2 estimate. The proof of the following proposition is an adaptation of the standard interior H2

estimate for the solutions of uniformly elliptic equations, cf [11, Theorem 8.8].

Proposition A.2 (Interior H2 regularity estimate). For every open bounded subset U,V ⊆ Rd such

that V ⊆ U , every 1 ≤ r ≤ d and every u ∈H1
dΛ
(r−1)(U) solution of the equation

(A.2) d (adu) = 0 in U.

we have du ∈H1Λr(V ) and it satisfies the interior estimate

∥∇du∥L2Λr(V ) ≤ C ( 1

dist(V,∂U)∥du∥L2Λr(U) + 1

dist(V,∂U)2 ∥u∥L2Λ(r−1)(U))
for a constant C ∶= C(d,λ) <∞.

Proof. The main idea of this proof is to mimic the proof of [11, Theorem 8.8] and combine it with
the interior Gaffney-Friedrich inequality.

First note that without loss of generality, one can assume that u ∈ Cr−1
d (U)⊥. Select an open space

V ⊆ U such that V ⊆ U and select two other open spaces W,W1 space such that V ⊆W ⊆W ⊆W1 ⊆
W1 ⊆ U such that

(A.3) dist(V,∂W ) = dist(W,∂W1) = dist(W1, ∂U) = dist(V,∂W )
3
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and select a cutoff function η ∈ C∞c (U) such that

(A.4) 1V ≤ η ≤ 1W , ∥∇η∥ ≤ C

dist(V,∂U) .
Let h > 0 be small, choose k ∈ {1, . . . , d} and denote by

v ∶=D−hk (η2Dh
ku) ,

where Dh
k is the difference quotient, defined by

Dh
ku(x) = u(x + hek) − u(x)h

.

If h is small enough then v ∈H1
d,0Λ

r−1(U) can be used as a test function in (A.2). We obtain

⟨du,adv⟩U = 0.
Thanks to (2.2) and the equality dDh

ku =Dh
kdu, we compute

dv =D−hk (d (η2Dh
ku)) =D−hk (2ηdη ∧Dh

ku) +D−hk (η2Dh
kdu) .

Combining the two previous displays yields

⟨du,aD−hk (η2Dh
kdu)⟩U = − ⟨du,aD−hk (2ηdη ∧Dh

ku)⟩U .
The discrete integration by parts gives

⟨Dh
kdu,a (η2Dh

kdu)⟩U = − ⟨Dh
kdu,a (2ηdη ∧Dh

ku)⟩U .
By the Cauchy-Schwarz inequality, we obtain

⟨Dh
kdu,a (η2Dh

kdu)⟩U ≤ 2(⟨Dh
kdu,a (η2Dh

kdu)⟩U)
1

2 (⟨dη ∧Dh
ku,adη ∧Dh

ku⟩U)
1

2 .

and consequently, by (A.1) and the ellipticity assumption (2.16)

⟨Dh
kdu,D

h
kdu⟩V ≤ C

dist(V,∂U)2 ⟨Dh
ku,D

h
ku⟩W .

Since we assumed u ∈ Cr−1
d (U)⊥, we have δu = 0 in U and in particular δu ∈ L2Λr−2(V ). From this

we deduce that u satisfies the assumptions of Proposition A.1 and consequently u is in H1Λr−1(W )
and satisfies the estimate

∥∇u∥L2Λr(W1) ≤ C (∥du∥L2Λr(U) + 1

dist(W1, ∂U)∥u∥L2Λ(r−1)(U))
≤ C (∥du∥L2Λr(U) + 1

dist(V,∂U)∥u∥L2Λ(r−1)(U)) ,
where we used (A.4) in the second inequality. Moreover, according to [11, Lemma 7.23], we have the
inequality

(A.5) ∥Dh
ku∥L2(W ) ≤ C∥∇u∥L2Λr(W1)

for h > 0 small enough. Combining the three previous displays shows

⟨Dh
kdu,D

h
kdu⟩V ≤ C

dist(V,∂U)2 (∥du∥2L2Λr(U) + 1

dist(W1, ∂U)2 ∥u∥
2
L2Λ(r−1)(U)) .

Since this inequality is true for every ∣h∣ > 0 small enough, we have, according to [11, Lemma 7.24],
du ∈H1Λr−1(V ) and

∥∇du∥2L2Λr(V ) ≤ C

dist(V,∂U)2 (∥du∥2L2Λr(U) + 1

dist(V,∂U)2 ∥u∥2L2Λ(r−1)(U))
and the proof is complete. �
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Proposition A.3 (Elliptic regularity). There exists a constant C ∶= C(d, k,λ) < ∞ such that for
every open bounded subset U ⊆ Rd, every 0 ≤ r ≤ d, every k ∈ N, every R > 0, and every solution of
the equation

d (adu) = 0 in U,

the following pointwise estimate holds

(A.6) ∥∇kdu∥
L∞Λr(UR) ≤ C

Rk+d/2 ∥du∥L2Λr(U) ,

where we denoted by UR ∶= {x ∈ U ∶ dist(x,∂U) > R}.
Proof. Select an integer k ∈ N, a non-negative real number R > 0, and a point x ∈ UR. It is sufficient
to prove (A.6), to show the estimate

(A.7) ∣∇kdu(x)∣ ≤ C

Rk+d/2 ∥du∥L2Λr(BR(x)) ,

for some constant C = C(d, k,Λ) <∞. We split the proof into two steps
Step 1. We prove that there exists a constant C = C(d,λ) < ∞, such that for every l ∈ N,

du ∈H lΛr (BR/2l(x)) and
(A.8) ∥∇ldu∥

L2Λr(B
R/2l
(x)) ≤ C

l2l
2/2

Rl
∥du∥L2Λr(BR(x)) .

This inequality can be proved by induction on l. It is true for l = 0. We can use Proposition A.2 to
go from l to l + 1. Assume that (A.8) holds with l. In that case we have ∇ldu ∈ L2Λr (BR/2l(x)). It
is easy to check

d (∇ldu) = 0.
Thus by Proposition 3.4, there exists a form vl ∈H1

dΛ
r−1 (BR/2l(x)) such that

vl ∈ Cr−1
d (BR/2l(x))⊥ and dvl = ∇ldu.

It is moreover a straightforward computation to check

d (advl) = 0.
Consequently, we can apply Proposition A.2 to vl with U = BR/2l(x) and V = BR/2l+1(x). This gives
∇l+1du ∈H1Λr (BR/2l+1(x)), and thus du ∈H l+1Λr (BR/2l+1(x)) with the estimate

∥∇l+1du∥
L2Λr(B

R/2l+1
(x)) ≤ C2l+1

R
(∥∇ldu∥

L2Λr(B
R/2l
(x))) +

2l+1
R
∥vl∥L2Λ(r−1)(B

R/2l
(x))) .

By Proposition 4.1, vl satisfies the Poincaré estimate

∥vl∥L2Λ(r−1)(B
R/2l
(x)) ≤ C 2l

R
∥∇lu∥

L2Λ(r−1)(B
R/2l
(x)),

with C ∶= C(d) <∞. Combining the two previous displays yields

∥∇l+1du∥
L2Λr(B

R/2l+1
(x)) ≤ C2l+1

R
∥∇ldu∥

L2Λr(B
R/2l
(x))

for some C ∶= C(d,Λ) <∞. Applying the induction hypothesis completes the proof.
Step 2. From the first step, we get that for every l ∈ N, ∇k+ldu ∈ L2Λr (BR/2k+l(x)). In particular,

by the Sobolev injection, see for instance [1, Chapter 4], we have

∇kdu ∈ L∞Λr (BR/2k+d/2+1(x)) with the estimate

∥∇kdu∥
L∞Λr(B

R/2k+d/2+1
(x)) ≤ C

Rk+d/2 ∥du∥L2Λr(BR(x)) ,

for some constant C = C(d, k,λ) <∞. This completes the proof of (A.7). �
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We then establish the following global H2 estimate for the solution of dadu = 0.
Proposition A.4 (Global H2 regularity). Let U ⊆ R

d be a smooth bounded domain of R
d. For

0 ≤ r ≤ d, let f ∈ H1
dΛ

r−1 (U) satisfying df ∈ H1Λr−1 (U). Let u ∈ H1
d,0Λ

r−1(U) be a solution of the
equation

(A.9) {d (adu) = 0 in U,

tu = f on ∂U,

then du ∈H1Λr(U) and we have the estimate

(A.10) ∥du∥H1Λr(U) ≤ ∥df∥H1Λr(U) .

Proof. First note that two solutions of (A.9) differ by a form of Cr−1
d,0 , this implies that two solutions

of (A.9) have the same exterior derivative. Thus to prove (A.10), it is enough to prove it for a
particular solution of (A.4).

The strategy of the proof is the following. We want to apply the result from the regularity theory
of strongly elliptic operators to the differential form u, see (A.24) for a definition and [22] for a
reference on the topic of strongly differential operators. Unfortunately the operator dad is not
strongly elliptic, thus the result cannot directly apply. The strategy is then to solve the problem
dad + (−1)r ⋆ dδu = 0 with appropriate boundary conditions so that ⋆dδu = 0 and u is in fact a
solution of (A.9). Contrary to dad, the operator dad+ (−1)r ⋆dδ is strongly elliptic and a regularity
theory exists for these operators. Thanks to this, we are able to obtain H2 boundary regularity for
the function u, this implies (A.10) by the previous remark.

The main ideas of the proof are standard and can be found in [27, Chapter 2] and [22, Chapter 4].
We recall the notation for the set of harmonic forms with Dirichlet boundary condition introduced
in Proposition 4.4,

Hr−1
D (U) ∶=Hr−1(U) ∩H1

d,0(U) ∶= {u ∈ L2Λr−1(U) ∶ du = 0, δu = 0 in U and tu = 0 on ∂U} .
We split the proof into 5 steps

● In Step 1, we show that there exists a unique solution in u ∈Hr−1
D (U)⊥ to the system

(A.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dadu + (−1)r ⋆ dδu = dadf,
tu = 0 on ∂U,

tδu = 0 on ∂U.

● In Step 2, we show that the form u defined in Step 1 satisfies dδu = 0 and is actually a
solution of (A.9).
● Steps 3, 4 and 5 are the technical steps, we show the H2 boundary regularity for the solution
of the more general problem,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dadu + (−1)r ⋆ dδu = g,
tu = 0 on ∂U,

tδu = 0 on ∂U.

for g ∈ L2Λd−r+1, using the theory of strongly elliptic operators developped in [22].
● In Step 6, we combine the results of Steps 1 to 4 with g = dadf to prove (A.10).

Step 1. First, we prove that there exists a unique solution u ∈Hr−1
D (U)⊥ of the system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dadu + (−1)r ⋆ dδu = dadf,
tu = 0 on ∂U,

tδu = 0 on ∂U.
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This equation can be rewritten variationally the following way, there exists u ∈H1Λr−1(U)∩Hr−1
D (U)⊥

such that tu = 0 and for each v ∈H1Λr−1(U) satisfying tv = 0,
(A.12) ∫

U
du ∧ adv +∫

U
δu ∧ ⋆δv = ∫

U
df ∧ adv.

To solve this, we look at the associated energy: for v ∈H1Λr−1(U)∩Hr−1
D (U)⊥ satisfying the boundary

condition tv = 0, we define

J (v) ∶= ∫
U
dv ∧ adv + ∫

U
δv ∧ ⋆δv −∫

U
df ∧ adv.

Since a satisfies the ellipticity assumption (2.16), we have

∫
U
dv ∧ adv + ∫

U
δv ∧ ⋆δv ≥ λ ∥dv∥L2Λr(U) + ∥δv∥L2Λr(U) .

Moreover, by the Gaffney-Friedrich inequality, Proposition 4.4, we have

∫
U
dv ∧ adv +∫

U
δv ∧ ⋆δv ≥ λ ∥dv∥L2Λr(U) + ∥δv∥L2Λr(U)

≥ λ ∥∇v∥L2Λr−1(U)
This implies that the functional J is coercive on the space

{u ∈H1Λr−1(U) ∩Hr−1
D (U)⊥ ∶ tu = 0 on ∂U} .

Moreover, this functional is also uniformly convex. The standard techniques of the calculus of
variations then show that there exists a unique minimizer of J denoted by u. By the first variation,
we have for each v ∈H1Λr−1(U) ∩Hr−1

D (U)⊥ satisfying the boundary condition tv = 0,
∫
U
du ∧ adv +∫

U
δu ∧ ⋆δv = ∫

U
df ∧ adv.

Also, for each v ∈Hr−1
D (U), we have

∫
U
du ∧ adv +∫

U
δu ∧ ⋆δv = ∫

U
df ∧ adv = 0.

Thus for each v ∈H1Λr−1(U) satisfying tv = 0, we have

∫
U
du ∧ adv + ∫

U
δu ∧ ⋆δv = ∫

U
df ∧ adv

and the proof of Step 1 is complete. As a remark, note that since df ∈H1Λr(U), dadf ∈ L2Λd−r+1(U).
Thus, if we denote by g ∶= dadf ∈ L2Λd−r+1(U), we have

(A.13) ∫
U
du ∧ adv + ∫

U
δu ∧ ⋆δv = ∫

U
g ∧ v,

for each v ∈H1Λr−1(U) satisfying tv = 0.
Step 2. We show that the solution u constructed in the previous step actually satisfies

{dadu = dadf in U,

tu = 0 on ∂U.

To prove this, it is enough, by Proposition 3.3, to show that for each v ∈ H1Λr−1(U) satisfying the
boundary condition tv = 0,

∫
U
du ∧ adv = ∫

U
df ∧ adv.

To prove this select some v ∈H1Λr−1(U) satisfying tv = 0. Denote αv the form of Cr−1
d,0 (U) such that

αv = argmin
α∈Cr−1

d,0
(U)
∥v −α∥L2Λr−1(U) ,

and set w = v − αv. In particular, this form satisfies, for each γ ∈ C∞c Λr−2(U),
⟨w,dγ⟩L2Λr−1(U) = 0,
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this implies δw = 0. Moreover it is clear that dw = dv and that tw = 0. Thus, by the Gaffney-Friedrich
inequality, w ∈H1Λr−1(U). So w can be tested in (A.12), this gives

∫
U
du ∧ adw = ∫

U
df ∧ adw

and since dw = dv, the previous equality can be rewritten

∫
U
du ∧ adv = ∫

U
df ∧ adv,

which is the desired result. The proof of Step 2 is complete.
Step 3. From now on, we consider the problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dadu + (−1)r ⋆ dδu = g,
tu = 0 on ∂U,

tδu = 0 on ∂U.

and want to prove the boundary regularity estimate, assuming that u ∈Hd−1
D (U)⊥,

∥u∥H2Λr−1(U) ≤ C ∥g∥L2Λr−1(U) ,

for some C ∶= C(d,λ,U) <∞. This is the subject of Steps 3, 4 and 5.
The first part of this step is to reduce the problem to the half-ball denoted by B+ ∶={x ∈ B(0,1) ∶ xn ≥ 0}. To do so, let x ∈ ∂U , since ∂U is assumed to be smooth there exists an

open set V ⊆ Rd such that x ∈ V and a smooth positively oriented diffeomorphism Φ ∶ V → B(0,1)
such that

Φ (B+) = V ∩U and Φ(0) = x.
Without loss of generality, one can further assume that for each y ∈ {x ∈ B(0,1) ∶ xn = 0},

dΦ(y) (−en) = ν(y),
where ν(y) ∈ Rd denotes the outward unit normal to ∂U at y. This extra assumption ensures that
for each v ∈H1

dΛ
r−1(U), we have

Φ∗tv = tΦ∗v on {x ∈ B(0,1) ∶ xn = 0} .
In particular, if v ∈H1

dΛ
r−1(U) is such that tv = 0 on ∂U ∩V , then tΦ∗v = 0 on {x ∈ B(0,1) ∶ xn = 0}.

From the previous remark, the equality (A.13), the change of variable formula (2.7) and the prop-
erties of the pullback (2.3) one obtains, via a straightfroward computation, for each v ∈H1Λr−1(B+)
such that tv = 0 on {x ∈ B(0,1) ∶ xn = 0} (the tangential component of v vanishes on the flat part
of ∂B+) and v = 0 on ∂B+ ∖ {x ∈ B(0,1) ∶ xn = 0} (v vanishes on the curved part of ∂B+),

(A.14) ∫
B+

duΦ ∧ aΦdv +∫
B+
δΦuΦ ∧ ⋆ΦδΦv = ∫

B+
gΦ ∧ v,

where we used the notation. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uΦ = Φ∗u,
aΦ = Φ∗a (Φ−1)∗ ,
⋆Φ = Φ∗ ⋆ (Φ−1)∗ ,
δΦ = Φ∗δ (Φ−1)∗ ,

gΦ = Φ∗g.
The goal is then to prove the following H2 regularity estimate

∥uΦ∥H2Λr−1(B+
1/2
) ≤ C (∥gΦ∥L2Λd−r+1(B+) + ∥uΦ∥L2Λr−1(B+)) ,
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where B+
1/2 denotes the half-ball of radius 1

2

B+1/2 ∶= {x ∈ B (0, 12) ∶ xn ≥ 0} .
To prove this estimate, let η ∈ C∞c (B(0,1)) be a smooth cutoff function satisfying

1B(0, 1
2
) ≤ η ≤ 1B(0, 3

4
) and ∣∇η∣ ≤ 5.

As in the proof of the interior regularity estimate, Proposition A.2, for h > 0 and k ∈ {1, . . . , d}, we
denote by Dh

k the difference quotient, i.e,

Dh
kv(x) = v(x + hek) − v(x)h

.

The idea is then to apply formula (A.14) with the function v ∶= D−hk η2Dh
kuΦ, for k ∈ {1, . . . , d − 1}.

Note that since u ∈ H1Λr−1(U) and tu = 0 on ∂U , we have uΦ ∈ H1Λr−1 (B+) and tu = 0 on{x ∈ B(0,1) ∶ xn = 0}. This implies that v ∈ H1Λr−1 (B+) satisfies tv = 0 on {x ∈ B(0,1) ∶ xn = 0}.
Thus applying (A.14) yields

(A.15) ∫
B+

duΦ ∧ aΦdv
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 1

+∫
B+
δΦuΦ ∧ ⋆ΦδΦv

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 2

= ∫
B+
gΦ ∧ v

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 3

.

We then estimate the three terms of the previous equality.
Estimate for Term 1. We first compute

∫
B+

duΦ ∧ aΦdv = ∫
B+

duΦ ∧ aΦd (D−hk η2Dh
kuΦ)

= ∫
B+

aΦduΦ ∧D−hk d (η2Dh
kuΦ)

= ∫
B+
Dh

k (aΦduΦ) ∧ d (η2Dh
kuΦ)

= ∫
B+
(aΦ(x + hek)dDh

kuΦ + (Dh
kaΦ)duΦ) ∧ d (η2Dh

kuΦ) .
Then note that by the ellipticity assumption (2.16) and by the definition of aΦ, there exists two
constants c ∶= c(λ,Φ) > 0 and C ∶= C(λ,Φ) <∞ such that

∫
B+

aΦ(x + hek)dDh
kuΦ ∧ d (η2Dh

kuΦ)(A.16)

= ∫
B+

aΦ(x + hek)dDh
kuΦ ∧ (2ηdη ∧Dh

kuΦ + η2dDh
kuΦ)

≥ c ∥ηdDh
kuΦ∥2L2Λr(B+) −C ∥ηdDh

kuΦ∥L2Λr(B+) ∥dη ∧Dh
kuΦ∥L2Λr(B+) .

Using the inequality, for each ε > 0, ab ≤ ε
2
a2 + 1

2ε
b2 and [11, Lemma 7.23] as in (A.5), the previous

display can be rewritten

∫
B+

aΦ(x + hek)dDh
kuΦ ∧ d (η2Dh

kuΦ) ≥ c ∥ηdDh
kuΦ∥2L2Λr(B+) −C ∥∇uΦ∥2L2Λr−1(B+) .

Similarly, since Φ is smooth, we have, for some constant C ∶= C(d,λ,Φ) <∞,

∫
B+
((Dh

kaΦ)duΦ) ∧ d (η2Dh
kuΦ)

≥ −C ∥duΦ∥L2Λr(B+) ∥d (η2Dh
kuΦ)∥L2Λr(B+)

≥ −C ∥∇uΦ∥L2Λr−1(B+) (∥η2dDh
kuΦ∥L2Λr(B+) + ∥dη2 ∧Dh

kuΦ∥L2Λr(B+)) .
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As in the previous computation, and using that η ≤ 1, we obtain, for some C ∶= C(d,λ,Φ) <∞,

∫
B+
((Dh

kaΦ)duΦ) ∧ d (η2Dh
kuΦ) ≥ c2 ∥ηdDh

kuΦ∥2L2Λr(B+) −C ∥∇uΦ∥2L2Λr−1(B+) ,

where c is the constant which appears in (A.16). Combining the few previous displays yields

∫
B+

duΦ ∧ aΦdv ≥ c ∥ηdDh
kuΦ∥2L2Λr(B+) −C ∥∇uΦ∥2L2Λr−1(B+) .

For a technical reason which will become clear later, we use the identity d (ηdDh
kuΦ) = ηd (dDh

kuΦ)+
dη ∧ (Dh

kuΦ) to further refine

(A.17) ∫
B+

duΦ ∧ aΦdv ≥ c ∥d (ηDh
kuΦ)∥2L2Λr(B+) −C ∥∇uΦ∥2L2Λr−1(B+) ,

for some constants c ∶= c(d,λ,Φ) > 0 and C ∶= C(d,λ,Φ) <∞.
Estimate for Term 2. To estimate the second term, we first need to justify that there exists a

constant C ∶= C(d,Φ) <∞ such that for each w ∈H1Λr−1 (B+) supported in B (0, 3
4
)

(A.18) ∣∫
B+
δΦuΦ ∧ ⋆ΦδΦD−hk w −∫

B+
δΦD

h
kuΦ ∧ ⋆ΦδΦw∣ ≤ C ∥∇uΦ∥H1Λr−1(B+) ∥∇w∥H1Λr−1(B+) .

To prove this assumption, the idea is to expand everything. Consequently we write in coordinates
uΦ = ∑∣I ∣=r−1 uΦ,I(x)dxI and w = ∑∣J ∣=r−1wJ(x)dxI . Using this notation, the previous integral can
be rewritten

∫
B+
δΦuΦ ∧ ⋆ΦδΦD−hk w = ∫

B+
∑

I,J,i,j

∂uΦ,I

∂xi
(x)∂Dh

kwJ

∂xj
(x)φi,j

I,J
(x)dx + lower order,

where the sum is over every subset I, J of {1, . . . , d} of cardinality r − 1 and every i, j in {1, . . . , d},
and the functions φi,jI,J are smooth and depend only on Φ. The ”lower order” represents the terms

of lower order, with zero or one partial derivative. These terms are easy to estimate and we have

(A.19) ∣lower order∣ ≤ C ∥∇uΦ∥H1Λr−1(B+) ∥∇w∥H1Λr−1(B+) .
We can then compute the discrete integration by parts

∫
B+
∑

I,J,i,j

∂uΦ,I

∂xi
(x)∂D−hk wJ

∂xj
(x)φi,j

I,J
(x)dx = ∫

B+
∑

I,J,i,j

∂Dh
kuΦ,I

∂xi
(x)∂wJ

∂xj
(x)φi,j

I,J
(x)dx

+ ∫
B+
∑

I,J,i,j

∂uΦ,I

∂xi
(x + hek)∂wJ

∂xj
(x)Dh

kφ
i,j
I,J
(x)dx.

But we can factorize the first term on the right-hand side, this yields

∫
B+
∑

I,J,i,j

∂Dh
kuΦ,I

∂xi
(x)∂wJ

∂xj
(x)φi,j

I,J
(x)dx = ∫

B+
δΦD

h
kuΦ ∧ ⋆ΦδΦw + lower order.

The terms ”lower order” are as in (A.19) and can be estimated in a similar way. Since the functions

φ
i,j
I,J are smooth and depend only on Φ, we can estimate the second term on the right-hand side

crudely by, for some C ∶= C(d,Φ) <∞RRRRRRRRRRR∫B+ ∑I,J,i,j
∂uΦ,I

∂xi
(x + hek)∂wJ

∂xj
(x)Dh

kφ
i,j
I,J
(x)dxRRRRRRRRRRR ≤ C ∥uΦ∥H1Λr−1(B+) ∥w∥H1Λr−1(B+) .

Combining the few previous displays shows (A.18). We then apply this estimate with w = η2Dh
kuΦ,

this yields

∫
B+
δΦuΦ ∧ ⋆ΦδΦv = ∫

B+
δΦuΦ ∧ ⋆ΦδΦ (D−hk η2Dh

kuΦ)
≥ ∫

B+
δΦD

h
kuΦ ∧ ⋆ΦδΦ (η2Dh

kuΦ) −C ∥uΦ∥H1Λr−1(B+) ∥(η2Dh
kuΦ)∥H1Λr−1(B+) .
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Expanding the term δΦ (η2Dh
kuΦ) and using the same ideas as in the estimate of Term 1, we obtain

∫
B+
δΦ (Dh

kuΦ) ∧ ⋆ΦδΦ (η2Dh
kuΦ) ≥ c∫

B+
η2δΦ (Dh

kuΦ) ∧ ⋆ΦδΦ (Dh
kuΦ) −C ∥∇uΦ∥2L2Λr−1(B+)

One can put the η inside the derivative and further refine

∫
B+
δΦ (Dh

kuΦ) ∧ ⋆ΦδΦ (η2Dh
kuΦ) ≥ c∫

B+
δΦ (ηDh

kuΦ) ∧ ⋆ΦδΦ (ηDh
kuΦ) −C ∥∇uΦ∥2L2Λr−1(B+) .

Combining the few previous displays shows

∫
B+
δΦuΦ ∧ ⋆ΦδΦv ≥ c∫

B+
δΦ (ηDh

kuΦ) ∧ ⋆ΦδΦ (ηDh
kuΦ) −C ∥∇uΦ∥2L2Λr−1(B+)(A.20)

−C ∥∇uΦ∥L2Λr−1(B+) ∥∇(η2Dh
kuΦ)∥L2Λr−1(B+) .

Using the properties of η, one can show

∥∇(η2Dh
kuΦ)∥L2Λr−1(B+) ≤ C ∥η2∇(Dh

kuΦ)∥L2Λr−1(B+) +C ∥∇uΦ∥L2Λr−1(B+)
≤ C ∥η∇(Dh

kuΦ)∥L2Λr−1(B+) +C ∥∇uΦ∥L2Λr−1(B+)
≤ C ∥∇(ηDh

kuΦ)∥L2Λr−1(B+) +C ∥∇uΦ∥L2Λr−1(B+) .
This yields the following refinement of (A.20),

∫
B+
δΦuΦ ∧ ⋆ΦδΦv ≥ c∫

B+
δΦ (ηDh

kuΦ) ∧ ⋆ΦδΦ (ηDh
kuΦ) −C ∥∇uΦ∥2L2Λr−1(B+)(A.21)

−C ∥∇uΦ∥L2Λr−1(B+) ∥∇(ηDh
kuΦ)∥L2Λr−1(B+) .

Estimate for Term 3. This term is the simplier to estimate, we apply the Cauchy-Schwarz in-
equality to obtain

∫
B+
gΦ ∧ v ≤ ∥gΦ∥L2Λd−r+1(B+) ∥v∥L2Λr−1(B+)

≤ ∥gΦ∥L2Λd−r+1(B+) ∥D−hk η2Dh
kuΦ∥L2Λr−1(B+)

≤ C ∥gΦ∥L2Λd−r+1(B+) ∥∇(η2Dh
kuΦ)∥L2Λr−1(B+) .

Using the same argument as in the previous step, we replace η2 by η,

(A.22) ∫
B+
gΦ ∧ v ≤ C ∥gΦ∥L2Λd−r+1(B+) (∥∇(ηDh

kuΦ)∥L2Λr−1(B+) + ∥∇uΦ∥L2Λr−1(B+)) .
We then show one last estimate on the small but positive terms on the right-hand side of (A.17)

and (A.21). Indeed by the Gaffney-Friedrich inequality applied to the form (Φ−1)∗ (ηDh
kuΦ) on the

smooth domain U ∩ ∂V , we have, for some constant C ∶= C(d,V ∩U) <∞
∥∇(Φ−1)∗ (ηDh

kuΦ)∥
L2Λr−1(V ) ≤ C (∥d (Φ−1)∗ (ηDh

kuΦ)∥
L2Λr(V ) + ∥δ (Φ−1)∗ (ηDh

kuΦ)∥
L2Λr−2(V )) .

Since Φ is assumed to be a smooth diffeomorphism, we have, for some C ∶= C(d,Φ) <∞,

∥∇(ηDh
kuΦ)∥L2Λr−1(B+) ≤ C ∥∇(Φ−1)∗ (ηDh

kuΦ)∥
L2Λr−1(V ) +C ∥(ηDh

kuΦ)∥L2Λr−1(V )
≤ C ∥∇(Φ−1)∗ (ηDh

kuΦ)∥
L2Λr−1(V ) +C ∥∇uΦ∥L2Λr−1(V ) .

Similarly, we have

∥d (ηDh
kuΦ)∥L2Λr−1(B+) ≥ C ∥(Φ−1)∗ d (ηDh

kuΦ)∥
L2Λr−1(V ) = C ∥d (Φ−1)∗ (ηDh

kuΦ)∥
L2Λr−1(V ) .

And by the change of variable formula, we have

∥δ (Φ−1)∗ (ηDh
kuΦ)∥2

L2Λr−2(V ) = ∫B+ δΦ (ηDh
kuΦ) ∧ ⋆ΦδΦ (ηDh

kuΦ) .
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Combining the few previous displays with the estimates for the first term (A.17), the second
term (A.21) and the third term (A.22), we eventually obtain, for some C ∶= C(d,λ,Φ) <∞

∥∇(ηDh
kuΦ)∥2L2Λr−1(B+) ≤ C ∥∇uΦ∥2L2Λr−1(V ) +C ∥gΦ∥2L2Λd−r+1(B+)

+C ∥∇(ηDh
kuΦ)∥L2Λr−1(B+) (∥∇uΦ∥L2Λr−1(V ) + ∥gΦ∥L2Λd−r+1(B+)) .

This implies ∥∇(ηDh
kuΦ)∥L2Λr−1(B+) ≤ C ∥∇uΦ∥2L2Λr−1(V ) +C ∥gΦ∥2L2Λd−r+1(B+) ,

and in particular

∥∇(Dh
kuΦ)∥L2Λr−1(B+

1/2
) ≤ C ∥∇uΦ∥2L2Λr−1(V ) +C ∥gΦ∥2L2Λd−r+1(B+) .

The previous inequality is true for every h > 0 small enough. Thus, by [11, Lemma 7.24], for each
k ∈ {1, . . . , d − 1}, ∂k∇u belongs to L2Λr−1(V ) and

∥∂k∇uΦ∥L2Λr−1(B+
1/2
) ≤ C ∥∇uΦ∥L2Λr−1(V ) +C ∥gΦ∥L2Λd−r+1(B+) .

for some constant C ∶= C(d,λ,Φ) <∞. This completes the proof of Step 3.

Step 4. From the result of Step 3, to prove that uΦ ∈H2Λr−1 (B+
1/2), there only remains to prove

that ∂d∂duΦ belongs to L2Λr−1 (B+
1/2). This is what is proved in this step, along with the estimate

(A.23) ∥∂d∂duΦ∥L2Λr−1(B+
1/2
) ≤ C ∥uΦ∥H1Λr−1(V ) +C ∥gΦ∥L2Λd−r+1(B+) ,

for some constant C ∶= C(d,λ,Φ) < ∞. By (A.14), the function uΦ is a solution of the following
equation

Φ∗ (dad + δ ⋆ δ) (Φ−1)∗ uΦ = gΦ in B+.
This second order differential operator can be written in the form

Φ∗ (dad + δ ⋆ δ) (Φ−1)∗ u = d

∑
j,k=1

Aj,k∂j∂ku +
d

∑
j=1

Aj∂ju +Au,
where the coefficients Aj,k,Aj and A are smooth functions from B+ to the space of matrices of size

( d
r−1) × ( d

r−1) (or equivalently the space of endomorphisms of Λr (Rd)). The idea to prove (A.23) is
to show that this operator is strongly elliptic, i.e,

(A.24)
d

∑
j,k=1

(η⊺Aj,k(x)η) ξjξk ≥ c∣η∣2∣ξ∣2 ∀x ∈ U,∀η ∈ R( d

r−1
),∀ξ ∈ Rd.

To prove the strong ellipticity, it is enough, by [22, Theorem 4.6], to prove that for each w ∈
C∞c Λr−1 (B+) that
(A.25) ∫

B+
Φ∗ (dad + δ ⋆ δ) (Φ−1)∗w ∧w ≥ c ∥w∥H1Λr−1(B+) −C ∥w∥L2Λr−1(B+) .

This is a consequence of the following computation

∫
B+

Φ∗ (dad + δ ⋆ δ) (Φ−1)∗w ∧w = ∫
V
(dad + δ ⋆ δ) (Φ−1)∗w ∧ (Φ−1)w

= ∫
V
ad (Φ−1)∗w ∧ d (Φ−1)w + ∫

V
δ (Φ−1)∗w ∧ δ (Φ−1)w

≥ λ∥d (Φ−1)∗w∥
L2Λr(V ) + ∥δ (Φ−1)∗w∥L2Λr−2(V )

Since w ∈ C∞c Λr−1 (B+), we also have (Φ−1)∗w ∈ C∞c Λr−1 (V ) and thus by the Gaffney-Friedrich
inequality,

∥d (Φ−1)∗w∥
L2Λr(V ) + ∥δ (Φ−1)∗w∥L2Λr−2(V ) ≥ c∥(Φ−1)∗w∥H1Λr(V ) −C ∥(Φ−1)∗w∥L2Λr(V ) .
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We then note that

∥w∥H1Λr(V ) ≤ C ∥(Φ−1)∗w∥H1Λr(B+)
and

∥(Φ−1)∗w∥
L2Λr(B+) ≤ C ∥w∥L2Λr(V )

for some constant C ∶= C(d,Φ) < ∞. This implies (A.25). Now that we know that the operator is
strongly elliptic, we have, by [22, Lemma 4.17], that the coefficient An,n has a uniformly bounded
inverse. As a consequence, we have

∥∂d∂duΦ∥L2Λr(B+) ≤ ∥Ad,d∂d,duΦ∥L2Λr(B+)

≤ d

∑
j=1

d−1
∑
k=1

∥Aj,k∂j∂ku∥L2Λr(B+) +
d

∑
j=1

∥Aj∂ju∥L2Λr(B+) + ∥Au∥L2Λr(B+) .

Using the main result of Step 3, this gives, for some constant C ∶= C(d,λ,Φ) <∞,

∥∂d∂duΦ∥L2Λr(B+) ≤ C ∥uΦ∥H1Λr−1(V ) +C ∥gΦ∥L2Λd−r+1(B+) ,
and the proof of Step 4 is complete.

Step 5. The main results of Steps 3 and 4 show that the function uΦ belongs to H2Λr−1 (B+) and
we have the estimate

∥uΦ∥H2Λr(B+) ≤ C ∥uΦ∥H1Λr−1(B+) +C ∥gΦ∥L2Λd−r+1(B+) ,
with C ∶= C(d,λ,Φ) <∞. This implies

(A.26) ∥u∥H2Λr(V ∩U) ≤ C ∥u∥H1Λr−1(V ∩U) +C ∥g∥L2Λd−r+1(V ∩U) .
Since ∂U is compact, we can cover ∂U with finitely many sets V1, . . . , VN as above. We sum the
resulting estimates, along with the interior estimate from Proposition A.2 applied to the function
f + u, and obtain u ∈H2Λr (U) with the estimate

∥du∥H1Λr(U) ≤ C ∥u∥H1Λr−1(U) +C ∥g∥L2Λr−1(U) ,
for some C ∶= C(d,λ,U) < ∞. We then simplify a little bit the right-hand side. Since we assumed
u ∈Hr−1

D (U)⊥, we have, by the Gaffney-Friedrich inequality, Proposition 4.3,

∥∇u∥L2Λr−1(U) ≤ ∥du∥L2Λr(U) + ∥δu∥L2Λr−2(U) .
This inequality can be further refined, thanks to [27, Proposition 2.2.3] into

∥u∥H1Λr−1(U) ≤ ∥du∥L2Λr(U) + ∥δu∥L2Λr−2(U) .
By (A.13) and the ellipticity assumption (2.16), we have

∥du∥2L2Λr(U) + ∥δu∥2L2Λr−2(U) ≤ C ∥g∥L2Λr(U) ∥u∥L2Λd−r+1(U) .
Combining the two previous displays with (A.26) shows

∥u∥H2Λr−1(U) ≤ C ∥g∥L2Λr−1(U) .
and the proof of Step 5 is complete.

Step 6. Applying the result of Step 5 with the specific function g = dadf , gives
∥u∥H2Λr−1(U) ≤ C ∥dadf∥L2Λr−1(U) ,

and consequently

∥du∥H1Λr−1(U) ≤ C ∥df∥H1Λr(U) .
Since two solutions of (A.9) differ by a form of Cr−1

d,0 , they have the same exterior derivative. From

this remark and the previous estimate, we obtain (A.10). �
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