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QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS

PAUL DARIO

ABSTRACT. We develop a quantitative theory of stochastic homogenization in the more general frame-
work of differential forms. Inspired by recent progress in the uniformly elliptic setting, the analysis
relies on the study of certain subadditive quantities. We establish an algebraic rate of convergence
from these quantities and deduce from this an algebraic error estimate for the homogenization of the
Dirichlet problem. Most of the ideas needed in this article comes from two distinct theory, the theory
of quantitative stochastic homogenization, and the generalization of the main results of functional
analysis and of the regularity theory of second-order elliptic equations to the setting of differential

forms.
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1. INTRODUCTION
The classical theory of stochastic homogenization focuses on the study of the second-order elliptic
equation
(1.1) V- (a(z)Vu) =0,
where a is a random, rapidly oscillating, uniformly elliptic coefficient field with law P. The basic

qualitative result roughly states that, under appropriate assumptions on P, a solution w, of (1.1) in
B(0,7), the ball of center 0 and radius r, converges as r - oo, P-a.s, to a solution u, of the equation

(1.2) V- (avu,) =0,
where a is a constant, symmetric, definite-positive matrix, in the sense that
1 2
1.3 — ur(x) -, (z)|” de — 0.
(13) 0 Ly 1@ @) dr

This second equation (1.2) is frequently called the homogenized equation. Obtaining quantitative
information, for instance rates of convergence in (1.3), drew a lot of attention in the recent years,
and there has been some notable progress, in particular by the works of Armstrong, Kuusi, Mourrat
and Smart [5, 4, 2, 3] and the works of Gloria, Neukamm and Otto [13, 14, 15, 16]. Quantitative
rates of convergence are also interesting in particular because they can provide information on the
performance of numerical algorithms for the computation of the homogenized coefficients [26].

Date: June 21, 2018.


http://arxiv.org/abs/1806.07760v1

2 P. DARIO

The purpose of this article is to develop a theory of quantitative stochastic homogenization for
the more general equation

(1.4) d(a(z)du) =0,

where u is an r-form, d is the exterior derivative and a is a random, rapidly oscillating tensor which
maps the space of r-forms into the space of (d —r)-forms, satisfying some suitable properties which
will be described below. When r = 0, u is a 0-form, that is to say a function, and the differential
equation (1.4) reduces to (1.1) and we recover the classical theory of stochastic homogenization.

When r = 1 and the underlying space is 4-dimensional, the system of equations in (1.4) has the
same structure as Mazwell’s equations (see e.g. [20, Section 1.2]), with the fundamental difference
that here we assume a(z) to be Riemannian, that is, elliptic in the sense of (2.16), while for Maxwell’s
equations the underlying geometric structure is Lorentzian. Replacing a Lorentzian geometry by
a Riemannian one, a procedure sometimes referred to as “Wick’s rotation”, is very common in
constructive quantum field theory, see e.g. [12, Section 6.1(ii)]. While the objects we study here
are minimizers of the random Lagrangian in (2.22), we believe that the techniques developped in
this paper will be equally informative for the study of the Gibbs measures associated with such
Lagrangians.

The main result of this article, Theorem 2 below, is to prove a quantitative homogenization
theorem for differential forms, i.e a quantitative version of (1.3) for differential forms. In our last
main result, stated in Theorem 3 below, we prove that homogenization commutes with the natural
duality structure of differential forms. This duality structure is behind certain exact formulas for
the homogenized matrix which are known to hold in dimension d = 2 (see for instance [18, Chapter
1]). We note that similar results were obtained independently by Serre [28] in the case of periodic
coefficients.

Note that the system (1.4), under natural assumptions on the coefficient field a, is elliptic but not
uniformly elliptic (since the operator vanishes on every closed form). To our knowledge, the results in
this paper are the first quantitative stochastic homogenization estimates for such degenerate elliptic
systems. The proof of our main results are based on an adaptation of the theory of quantitative
stochastic homogenization developed in [3].

2. NOTATIONS, ASSUMPTIONS AND STATEMENTS OF THE MAIN RESULTS

In this section, we introduce the main notation and assumptions needed in this paper as well as
a statement of the main theorems, Theorems 1 and 2.

2.1. General Notations and Definitions. We begin by recalling some definitions and recording
some properties about differential forms which will be useful in this article. We consider the space
RY for some positive integer d, equipped with the standard |-|. Denote by ei,...,e; the canonical
basis of R, A cube of R, generally denoted by O, is a set of the form

(2.1) z+ R(-1,1)%.

Given a cube O:= z + R(~1,1)%, we also denote by size(0) the size of the edges of the cube, in this
case size = R. A triadic cube of R? is a cube of the specific form

gm gm d

Z+ (——,—) ,meN,ze3mzl,
22

We use the notation, for m € N,

3m3md
Op=(-—,—] .
" ( 2’2)
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If U is a measurable subset of R?, we denote its Lebesgue measure by |U|. The normalized integral
for a function u: U — R for a measurable subset U € R? is denoted by

][Uu(x) der = ﬁflju(x) dz.

Given two sets U,V ¢ R?, we denote by dist(U, V) := infepyev | -yl

For 0 < r < d, we denote by A"(R?) the space of r-linear forms. This is a vector space of
dimension (:,l), a canonical basis is given by

dag, Ao oAdrg,, 1<9 <. <4y <d.
We will denote by
der:=dx;y A...Anday,, for I={iy,... i} c{1,...,d}.
Given U an open subset of R%, a differential form is a map
U~ A"(RY),
WYz > Y u(z)dey.
[|=r

Given € := &1eq + - + Egeq € RY, we denote by d€ := &1day + - + Egdzg e A (]Rd).

In practice, we need to assume some regularity on u, so we introduce the following spaces.

e The space of smooth differential forms on U up to the boundary, denoted by C*A" (U), i.e,

C*”AN" (U) := {u: > ur(z)dxy = VI, up e C*° (U)}
|I|=r

e The space of compactly supported smooth differential forms on U, denoted by C°A"(U),
ie,

CIPAN(U) = {u: > wp(z)dzy ¢ VI, uIeC’éx’(U)}.
|I|=r

With this definition in mind, we denote by D, (U) the space of r-currents, i.e, the space of
formal sums

Z uIdJ}]
\|=r

where the uy are distributions on ). It is equivalently defined as the topological dual of
CZA" (U).
e For 1< p< oo the set of LP differential forms on U, denoted by LPA™(U) i.e,

LPA™(U) := {uz > up(z)day : VI, ujeLp(U)}
|I|=r

equipped with the norm

lullLoar@y = Y, lurllzear @y,
[1]=r

and, for 1 < p < oo, the normalized LP-norm
1
il = 2 Flur @l = > | Jur(@)p da.

We also equip the space L2A™(U) with the scalar product (u,v); = Xir=r (ur,v1) 21y
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e For s € R, the set of H® differential forms on U, denoted by H*A"(U), i.e,

HA"(U) == {uz > ur(z)dxy = VI, ug eHS(U)}
[I|=r

equipped with the scalar product (u,v)HSAT(U) = (1= (u],’l)])HS(U).
If UcRand u: U - A"(R?), we denote the ith-partial derivative of u by du, it is understood in
the sense of currents according to the formula
o;u = Z O;urday,
[|=r

where O;u; is understood in the sense of distribution. The gradient of u, denoted by Vu :=
(O1u,...,0qu), is a vector-valued differential form. Higher derivatives, which are also vector-valued
forms, are denoted by, for [ > 1,

L, ._
V= (all e 8ilu)i1,...,il€{1,...,d} :
Given an m-form a and an r-form w, we consider the exterior product a Aw which is an (m+r)-form
and satisfies the following property
arw=(-1)"wnAa.

Ifm+r>d, weset wna=0.
We then define the exterior derivative which maps C®A" (U) to C*°A"™! (U) according to the
formula,

du=3 3 P40y ndar,
\I|=r kel 9Tk
and can then be extended to currents. In particular, if u is a differential form of degree d, then
du = 0. This operator satisfies the following properties
(2.2) dod=0and d(uAv) = (du) Av+(-1)"un (dv).

Given a form u := ¥ 7, urdzy € C7A" (U), an open set V ¢ R? and a smooth map ®: V - U, we
define the pullback v by ® to be the smooth form

V> AT(RY),

Pu=y g Y w(@(2))d (d®(x)zr) A Ad (dD(2),).
I={i1, i}
where d®(z) denotes the differential of ® evaluated at x. The pullback satisfies the following
properties, given an m-form u and an r-form v,
(2.3) ®*du =d®*u and ®* (uAv) =P un P .
Given another open set W ¢ R? and another smooth map ¥ : W — V, we have the composition rule
U (@*u) = (Po W) v.
Moreover, if we assume that ® is a smooth diffeomorphism from V to U such that ®, &' and all
their derivatives are bounded then, for s € R, ®* maps H*A"(U) into H*A"(V') and we have the
estimate
[@%ull s ar vy < Cllull g ar @y
for some C':=C(d, s, ®) < oo.
We can also define a scalar product on A" (R?) such that (dz I)|1=r is an orthonormal basis, i.e,

(2.4) ( PIRITETNDY 51(1:131) = > arfr

[|=r [|=r |[I|=r
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We will use the notation, for a € A"(R%)
ol = V(e ).
We denote by B;A"(R?) the unit ball of A”(R?), i.e,
BN (RY) = {a e A"(RY) : |o < 1}.
Moreover for each r, notice that
dim A7 (R%) = dim A" (R?) = (d).
r
There is a canonical bijection between these spaces, the Hodge star operator, denoted by *, which
sends A”(R?) to A1) (R?) and satisfies the property, for each «,3 € A"(R%)
an (xB) = (o, f)day A A dzg.
It is defined on the canonical basis by

* (dl‘“ AN /\dl‘ir) = dl‘ir+1 JARRINAN dﬂ?id

where (i1,...,7q) is an even permutation of {1,...,d}. An important property of this operator is
the following, for each o € A"(R?),
(2.5) xxa = (=1)"@ g,

We then define the integral of a d—form over a domain U. Let u=wuy  gydz1 A Adzg be a d—form
over U. Ifugy gy € LY (U), we say that u is integrable and define

(2.6) fUu::fUu{l,...7d}(x)dx.

In particular, the scalar product on L?A"(U) can be rewritten, for each «, 3 € L2A"(U),

(u,v)szUu/\(*v).

Additionally, if ® is a smooth diffeomorphism mapping V to U positively oriented, i.e if det d® > 0,
then the change of variables formula reads, for each integrable d-form wu,

(2.7) fvcp*u:fUu.

We then want to define the normal and tangential components of a form u on the boundary of
a smooth bounded domain U. To achieve this, consider U ¢ R? a smooth bounded domain of RY,
denote by v the outward normal of OU and fix u € C*®A"(R?) a smooth r-form. For each z € dU,
we define nu(z) € A" (Rd), the normal component of u(x), to be the orthogonal projection of u(x)
with respect to the scalar product (-,-) defined in (2.4) on the kernel of the mapping

A" Rd _)AT’+1 Rd ,

(2.8) dv(z) A - : (&) (B
v—>dr(z)Av.
The tangential component of u(x), denoted by tu(x), is given by the formula
(2.9) tu(x) = u(z) —nu(z).
Let now wu € C“Ad_l(U), using the previous notation there exists a smooth function v : U — R
such that, for each x € QU,
tu(x) =v(z)de] A Adel_q,

where e7,...,€e] | € R? are such that (e?,... ,e5_1,v(x)) is an orthonormal basis positively oriented
of R?. With this notation, we define the integral of v on U by the formula

(2.10) faUu = /8U v(x)dH (z),
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where H% ! is the Hausdorff measure of dimension (d - 1) on R
The two definition of integrals (2.6) and (2.10) are linked together by the Stokes’ formula: for
each smooth bounded domain U ¢ R? and each u e C*°AY1(U),

(2.11) faUu:[Udu.

We can now define §, the formal adjoint of d with respect to the scalar product (-,-);2 Ar(U)» 1€
the operator which satisfies for each (u,v) e CA™ 1 (U) x C2A™(U),

<duvv>L2AT'(U) = (u, 5U>L2A7"—1(U) :

This operator can be explicitely computed using the second equality in (2.2), the equality (2.5), and
the Stokes’ formula (2.11). Indeed we have

0= f = / d -1)1 f d
8Uu/\(w) . uA (xv) + (-1) L Un (*v)
- [a _qyr- 1+ (r=1)(d-r+1) f d ‘
/U uA*v+(-1) UU/\*(* * )
Consequently,
(2.12) §=(-1)r D+ g,

We now define the set of L? forms u such that du is also L?. This will play a crucial role in this
article. Note that this space is different from the Sobolev space H'A”(U) introduced earlier.

Definition 2.1. For each open subset U ¢ R%, and each 0 < r < d, we define the space HdlAT(U) to
be the set of forms in L2A"(U) such that du € L2A™(U), i.e,

HIN(U) = {ueL2A"(U) : E|f€L2AT+1(U),Vv€C§°AdTl(U),/U(u/\éer(—l)Tf/\v)=0}.

If u e HIA"(U), we denote by du the unique form in L2*A"™'(U) which satisfies, for every v e
CEATH(U),
(2.13) fU (uAdv+(~1)"dunv) =0,
This space is a Hilbert space equipped with the norm
HUHHdlAT(U) = (u, u)y + (du, du)y; .

In the case 7 = d, we have du = 0 for each u € L2A%(U) and HIAY(U) = L2A%(U). We also denote
by HGlLOAT’(U) the closure of C°A™(U) in HIA™(U), i.e,

1AT
HL A" (U) = Car@) )

Symmetrically, for each 0 < r < d, we define H (}AT(U ) to be the set of forms in L?A"(U) such that
Sue L2A™Y(U), i.e,

HIA™(U) = {ueL2A"(U) : EIfeL2AT1(U),VUng°Ad”l(U),fU(uAvar(—l)dTf/\fu):O}.

and in that case, we denote by du = f. In the case r = 0, we have du = 0 for each u € L*(U) and
H{A(U) = L*(U). We also denote by H(;OAT(U) the closure of C°A"(U) in HyA"(U), i.e,

1AT
HL oA (U) = Cnr(my o,

We then introduce the subspaces of closed (resp. co-closed) forms of HYA™(U) (vesp. HA™(U)).
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Definition 2.2. For each open U ¢ R? and each 0 < r < d, we say that a form u € HdlA’"(U) is closed
(resp. co-closed) if and only if du = 0 (resp. du = 0). We denote by Cj(U) the subset of closed r
forms, i.e,

Cy(U):={ue HIA™(U) : du= 0}.
We also define
Cio(U) = Ca(U) n Hy oA"(U).
Symetrically, we denote by C5(U) the subset of co-closed r forms, i.e,
C5(U):={ue HIA™(U) : du= 0}.
We also define
Cho(U) = C5(U) n HioA"™(U).

2.2. Notation related to the probability space. For a random variable X, an exponent s €
(0,+00) and a constant C' € (0,00), we write

X <0(C)

oo ()]

where X := max(X,0). The notation is clearly homogeneous:

to mean that

X <0s(C) = % <Os(1).
More generally, for 0y,01,...,0, e Rt and C4,...,C), € R}, we write
X <0p+ 6,04 (Cr) +-+ 60,05 (Cp)
to mean that there exist nonnegative random variables X1, ..., X, satisfying X; < O (C},) such that
X<bOg+601 X1+ +0,X,.

We now record an important property about this notation, the proof of which can be found in [3,
Lemma A.4].

Proposition 2.3. For each s € (0,00), there exists a constant Cs < oo such that the following holds.
Let u be a measure over an arbitrary measurable space E, let 0 : E — (0,00) be a measurable function

and (X (z))zep be a jointly measurable family of nonnegative random variables such that, for every
reE, X(x) <05 (C(x)). We have

(2.14) [ X@utar) <0, (cs /. C’(a:),u(da:)).

We then record a corollary which will be useful in Section 5.

Corollary 2.4. (i) Given positive random variables X1, ..., X, such that, for eachi e {1,... ,n},
X; <O (CZ), then

ZXZ < Os (03201)7
i=1 i=1

where Cy is the constant in Proposition 2.3.
(ii) Given a real number r > 1 and X1,...,X,, such that for eachie{1,...,n},X; <O, (C), then

no 74n+1
YortX; <O (C’SC’—) ,

where Cy is the constant in Proposition 2.3.
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2.3. Notation and assumptions related to homogenization. Given A € (0,1] and 1 < r < d,
we consider the space of measurable functions from R? to £(AT(Rd),A(d’T)(Rd)) satisfying the
symmetry assumption, for each z € R?,

(2.15) pra(e)q=qna(z)p, Vp,qeA"(R),
and the ellipticity assumption, for each z € R,
(2.16) Apl? < +(p na(e)p) < Slpl?, p e AT(RY.
We denote by €),. the collection of all such measurable functions,
(2.17) Q,:= {a(-) ca:RY> L (AT(Rd),A(d_T) (Rd)) is Lebesgue measurable
and satisfies (2.15) and (2.16)}.

We endow ), with the translation group (7y),ega, acting on €, via

(rya) () = a(z +y)

and with the family {F,.(U)} of o-algebras on €., with F,.(U) defined for each Borel subset U ¢ R?
by

F(U) = {a—algebra on {2, generated by the family of maps

a [ pral@o(o), pa X (0, seC2()),
The largest of these o-algebras is Fr(Rd), simply denoted by F,. The translation group may be
naturally extended to F, itself by defining, for A € F,,
(2.18) TyA={r,a:aecA}.

We then endow the measurable space (§2,,F,.) with a probability measure P, satisfying the two
following conditions:

e P, is invariant under Z%translations: for every z € Z%, Ae F,,

(2.19) P[r,A]l=P[A].
e PP, has a unit range dependence: for every pair of Borel subsets U,V ¢ R? with dist(U, V) > 1,
(2.20) F-(U) and F, (V) are independent.

The expectation of an F,-measurable random variable X with respect to P, is denoted by E,[X ] or
simply E[X] when there is no confusion about the value of r.

Definition 2.5. Given an integer 1 < r < d, an environment a € ), and an open subset U € RY, we
say that u € HJA""1(U) is a solution of the equation

d(adu) =0,
if for every smooth compactly supported form v e CPA"(U),

f duAadv =0.
U
We denote by A2(U) the set of solutions, i.e,

(2.21) AU = {ueHéAT(U) Ve Céx’AT(U),[Udu/\adv :0}.

When there is no confusion, we omit the subscripts r and a and only write A(U).
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2.4. Statement of the main results.

Definition 2.6. For every convex bounded domain U ¢ R? we define, for (p,q) € A"(R?) x
A ().

1
(2.22) J(U,p,q) == sup (——dv/\adv—p/\adv+dv/\q).
veA(U) JU N\ 2

The quantity J is nonnegative and satisfies a subadditivity property with respect to the domain U:
see [3, Chapter 2] or Proposition 5.1 below. In particular the mapping

n=E[J(On,p,q)]

is decreasing and nonnegative, thus it converges as n — oo. The idea is then to show that there
exists a linear mapping a € £ (AT(Rd),A(d’T)(Rd)) such that for each r-form p, J(O,,p,ap) tends
to 0 and to quantify this statement. Precisely, we prove the following result.

Theorem 1 (Quantitative homogenization). Given 1 <r < d, there exist an exponent a(d,A) >0, a
constant C(d,\) < oo and a unique linear mapping a € L (A’"(Rd),A(d_’")(Rd)), which is symmetric
and satisfies the ellipticity condition (2.16), such that for every n e N,

(2.23) sup  J(Op,p,ap) <O (C37"Y).
peB1 AT (RY)

This is the subject of Section 5. In Section 6, we study the solvability of the equation dadwu =0
on a smooth bounded domain U. The first main proposition is the following, which establishes the
well-posedness of the Dirichlet problem for differential forms.

Proposition 2.7. Let U be a bounded smooth domain of R® and 1 <r <d. Let f ¢ HéAT’_l(U), then
for any measurable map a: R% - L (AT(Rd),A(d’T) (Rd)) satisfying (2.16) and (2.15), there exists
a unique solution in f + HiOA’"_l(U) N (Cg’_ol(U))l of the equation
d(adu)=0 nU

tu=tf on U,

(2.24)

in the sense that, for each ve H ;A" 1(U),

de/\adv:O.
U

Moreover if we enlarge the space of admissible solutions to the space f + Hé OAT’I(U), we loose the
uniqueness property, but if v,w e f + Hd170A7’_1(U) are two solutions of (2.24), then

v—wng”ol.

Before stating the homogenization theorem, there are two things to note about this proposition.
First the suitable notion to replace the trace of a function when the degree of the form is not 0
is the tangential part of the form. This is the only information which is available when one has
access to the form u and its differential derivative du. It will become clear in the next section when
Propositions 3.2 and 3.3 are stated. Also note that for functions, or O-forms, the notion of trace and
tangential trace are the same.

Second, note that if v € C’g:ol(U) and u is a solution of (2.24), then u + v is also a solution
of (2.24). This problem does not appear when one works with functions (or 0-forms) because in that
case Cé)’O(U) ={0}. This explains why we need to be careful when solving (2.24).

We then deduce from the previous proposition and Theorem 1 the homogenization theorem.
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Theorem 2 (Homogenization Theorem). Let U be a bounded smooth domain of RY and 1 <r <d,
fix e € (0,1] and f e H*A""Y(U). Let u®,ue f + HiOA’"_l(U) N (C’&O(U))l respectively denote the
solutions of the Dirichlet problems

d(a(;)du€)=0 inU d(adu)=0 inU
€ and
tu"=tf on OU. tu=tf on JU.
Then there exist an exponent o := a(d,\,U) >0 and a constant C := C(d,\,U) < oo such that

Juf =l 2 prqry + A0S = du] s pr oy < O1 (C [df 1 rar 5a> :

The previous theorem is often stated, when one is dealing with functions (or 0-forms) in the case
that U is a bounded Lipschitz domain and with a boundary condition f € W2*(U) for some 6 > 0:
see for instance [3, Theorem 2.16]. This is convenient since this assumption ensures that the energy
of the solution does not concentrate in a region of small Lebesgue measure near OU. Indeed, the
global Meyers estimate gives some extra regularity on the function u,

(]{1 |Vu|2+5(:17)d/x)ﬁ <C (]([] |Vf|2+€(:n)dx)ﬁ ,

for some tiny £ > 0. On the other hand, this assumption is natural in view of the interior Meyers
estimate, which ensures that the restriction of any solution to the heterogeneous equation to a smaller
domain will possess such regularity.
Unfortunately, we were not able to prove a global Meyers-type estimate for the solutions of
d(adu)=0 inU,
tu=tf on JU.

To bypass this difficulty, we made the extra assumptions U smooth and df e H'A™(U), this implies,
by Proposition A.4 that du e H'A"(U) with the estimate

ldul grarry € ClAfl goary -
Then, via the Sobolev embedding Theorem, we obtain that du belongs to some LP, for some p :=
p(d) >2. This allows to control the L? norm of du in a boudary layer of small volume, as it used to
be done with the Meyers’ estimate.
The last section is devoted to the study of the following dual problem. If a € €2,., then for each
xR, a(z) is invertible and a~ € L(A@ ) (R?), A7 (RY)) satisfies the symmetry assumption (2.15)
and the following ellipticity condition

1 - —r
TlpP <a(@)™'pap < Apf?, vp e AT (RY).
We can thus define, for each (p,q) € A7) (R?) x A"(R?) and each m € N, the random variable

1
Jiny(Om,p,q) = sup ][ (——a_ldu/\du—a_ldu /\p+q/\du),
ue_Ai“V(l:Im) Om

1

where A™ (O,,) is the set of solution under the environment a™!, i.e,

Ainy (Ory) = {u e HIAUWTD(O,) : Yo e CXA (O,), f dunatdv = 0}.
O
In Section 7, we prove that there exist a constant C'(d,\) < oo, an exponent a(d,\) > 0 a linear
operator inva € L (A(d’r)(Rd),Ar (]Rd)) such that, for each m e N,

sup  Jiny(Op, p,invap) < O (C377%).
peB1 A=) (R4)

We also prove that inv a is linked to & according to the following theorem.
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Theorem 3 (Duality). The homogenized linear maps & and inv a satisfy
va=(a)™"

Outline of the paper. The rest of this article is organized as follows. In Section 3, we state
without proof some important properties of differential forms, in particular we give a trace theorem
for differential forms, study the solvability of the equation df = w and state the Hodge-Morrey
decomposition theorem. In Section 4, we generalize some inequalities known for functions to the
setting of differential forms, in particular the Caccioppoli inequality and the multiscale Poincaré
inequality. In Section 5, we combine all the ingredients established in the previous sections and prove
the first main theorem of this article, Theorem 1. In Section 6, we use the results from Section 5
and the regularity estimates (pointwise interior estimate and boundary H?-regularity) proved in the
Appendix A, to show the second main theorem of this article, Theorem 2. In Section 7, we study
a duality structure between r-forms and (d — r)-forms and we deduce from that some results about
the homogenized matrix in the case d =2 and r = 1. Finally Appendix A is devoted to the proof of
some regularity estimates (more specifically pointwise interior estimate and H? boundary estimate)
for the solution of the elliptic degenerate system dadu = 0, where a is a linear mapping sending r-
forms to (d-r)-forms satisfying some suitable properties of symmetry and ellipticity, more formally
explained in Section 2.

Acknowledgement. I would like to thank Scott Armstrong and Jean-Christophe Mourrat for
helpful discussions and comments.

3. SOME RESULTS PERTAINING TO FORMS

In this section, we record some properties related to the spaces HIA"(U), HA"(U) and C5(U).
Most of these results and their proofs can be found in [23] and [24].

Given U ¢ RY Lipschitz and bounded, we define the Sobolev space H?(9U) as the set of functions
of L?(0U) which satisfy

b= (f, f, PR e ) <o

It is a Hilbert space equipped with the norm
W9l g2 ovy = 19l L2 00y + [9) 200y -
Define H™Y2(dU) to be the dual of HY?(dU), i.e,
H7P(0U) = (H'2(00))
We can then extend this definition to differential forms by defining, for each 0 < r < d,
HYPA™(0U) = {u e L>A™(8U) st u= > urdzy and V1, [wr] iz ou) < oo}.

[|=r
This is also a Hilbert space, equipped with the norm,

HUHHl/QAT'(aU) = HUHLZAr(aU) + Z [UI]H1/2(3U)-
[|=r
We can also define HY/ 2A7(0U) by duality, according to the formula,
HTPA(9U) = (H'PAT (0U))

We then recall the classical Sobolev Trace Theorem for Lipschitz domains, it is a special case
of [19, Chapter VII, Theorem 1] (see also [21]). The second half of this result is a consequence of
the solvability of the Dirichlet problem for the Poisson equation in Lipschitz domains, which was
proved in [17] or [8, Theorem 10.1].
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Proposition 3.1 (Sobolev Trace Theorem). Let U be a bounded Lipschitz domain. The linear
operator C'* (U) — Lip(9U) that restricts a smooth function on U to OU has an extension to a

bounded linear mapping H*(U) — HY?(dU). That is, there exists a linear operator

Tr: HY(U) - HY?(8U),
and a constant C(d,U) < oo such that for each ue H*(U),

|Trull g2 oy < Cllul
and for each ue C* (ﬁ),
Tru=wu on OU.

Moreover this map has a bounded right-inverse

E:HY?0U) - HY(U).
In particular, the map Tr is surjective.

The trace can then be extended to differential forms by setting, for u = ¥ 7o, urdzy € HA™(U),
Tru= Y Trurde; e HY*A™(9U).
|I|=r

In the case when u does not belong to the space H'A"(U) but only belongs to the larger space
H dlA’"(U ), one still has a Sobolev trace theorem, but one can only get information about the tan-
gential component of the trace of u. The following proposition is a specific case of [24, Proposition
4.1 and Proposition 4.3] .

Proposition 3.2 ([24], Proposition 4.1 and Proposition 4.3). For each u € HéA’"_l(U), the map
HP2AE(0U) - R,
(tu7 ) :
b - [U(du/\\I/+(—1)Tu/\d\I/),

where U € HlAd_’"(U) is chosen such that TrW = 1, is well-defined, linear and bounded. The
tangential trace

.. HIN™(U) - H™Y2A"(0U),
o (b,
18 linear and continuous. Moreover this notation is consistent with the tangential component intro-

duced in (2.9). Similarly, we can define the normal trace for HYA™(U) according to the formula,
for each ve HIA™(U)

HP2AE(9U) - R,
nv,-) :
o) 1,!)—>/U(5v/\\ll+(—1)d’ru/\5\11),
where W e H'AY"(U) is chosen such that Tt W = ). The linear operator v — nv sends HIA"(U) to

HY 2AT(OU), is continuous and the notation is consistent with the normal component introduced
in (2.8).
The following property shows that, when U is Lipschitz, the space H iOAT(U ) (resp. Hg’OAT(U )

is also the space of differential forms in HJA"(U) (resp. HfA"(U)) with tangential (resp. normal)
trace equal to 0. A proof for these results can be found in [23, Lemma 2.13].

Proposition 3.3 ([23], Lemma 2.13). Let U be an open bounded Lipschitz subset of RY. For each
0 <r<d, the following results hold:

o The space of smooth differential forms C®A" (U) is dense in HYA"(U) (resp. H{A™(U)).
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e The space CA"(U) of smooth and compactly supported differential forms is dense in
{u e HIA"(U) : tu= O} and in {u e HIA"(U) : nu= 0}) In particular, we have
HiOAT(U) = {u e HIA™(U) : tu = O} and H(%’OAT(U) = {u e HIA™(U) : nu = 0} .

An interesting corollary of this proposition is that the space of solutions A(U), defined by (2.21),
can be equivalently defined by the formula

(3.1) AU) = {ue HIN(U) : Yo e By (), [ dunado= o}.

We then record one important result concerning the solvability of the equation du = f on bounded
star-shaped domains.

Proposition 3.4 ([23], Theorem 1.5 and Theorem 4.1). Let U € R be a bounded star-shapeddomain.
The following statements hold.
o For1<r<d (resp. 0<r<d-1), given f e L*A"(U), the problem
du=f in U, ou=fin U,
(3.2) { we HIA7Y Uy, TP { we HIAT (),

has a solution if and only if f satisfies df =0 (resp. §f =0). In this case, there exists
a constant C(d,U) < co and a solution u of (3.2) which belongs to H'A™"Y(U) (resp. u €
HA™Y(U)) and satisfies
lulgiar1@y < Clfl2ar@y resp. |ul griarawy < Clfl2ar@y-
o Forl1<r<d-1, given f e L2A"(U), the problem
33 du = f, ou=f in U,
(8:3) ue Hy o A1), resp: ue HyoA™H(U),
has a solution if and only if [ satisfies
df =0, of =0,
{tf:O. Tesp- {nf:O.

In this case, there exists a constant C(d,U) < oo and a solution u of (3.3) which beongs to
H'A"Y(U) (resp. ue H'A™Y(U)) and satisfies

(3.4) lulgiar@y < Clfl2ar@y resp. |ul griarawy < Clf I 2ar@y-
o Forr=d (resp. 7=0), given f e L2A"(U), the problem
du = f, ou=f in U,
we H (AL, resp- ue HE AY(U),

has a solution if and only if [ satisfies

-0 -0
[r=0 e [
Moreover there exists a solution u € H'ATY(U) (resp. we H'AY(U)) which satisfies (3.4).

The next important result of this section is the Hodge-Morrey Decomposition Theorem, but before
stating this result, we need to introduce the subspaces of exact, co-exact and harmonic forms.

Definition 3.5. For each open U ¢ R? and each 1 <7 < d, we say that a form u € HIA™(U) is exact
if and only if there exists a € H, iOA’"_l(U) such that da = u. We denote by £"(U) the subset of
exact r forms with null tangential trace, i.e,

E"(U):={ue HIA"(U) : Jove HyoA""'(U) such that da =u} c C5(U),
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the subset of co-exact r forms with null normal trace C"(U) , i.e,
C'(U):={ve HiA"(U) : 3B € H; (A" (U) such that 68 = v} < C5(U),
and the subset of r harmonic forms, i.e,
H'(U):={weL*A"(U) : dw=0and dw=0}.

We now state the Hodge decomposition Theorem. This theorem is stated for two kinds of bounded
domains, the convex domains in which case the situation is simple and the result can be deduced
from Proposition 3.4, and the smooth domains. In the latter case the proof is more complicated and
we refer to [27, Theorem 2.4.2] for the demonstration.

Proposition 3.6 (Hodge-Morrey Decomposition, Theorem 2.4.2 of [27]). Let U ¢ R? be an open,
bounded domain. We assume that this domain is either convexr or smooth, then for each 0 <r <d,

(i) the spaces E(U), C"(U) and H"(U) are closed in the L>A™(U) topology.
(ii) the following orthogonal decomposition holds

L2AT(U) = E"(U) & CT(U) & H" (V).

4. MULTISCALE POINCARE AND CACCIOPPOLI INEQUALITIES

The goal of this section is to prove some functional inequalities which will be important in the
proof of Therorem 1 in Section 6. To do so, we first deduce from the results of the previous
section the Poincaré inequality for differential forms on convex or smooth bounded domains of R%,
Proposition 4.2 and Proposition 4.1. We then state, without proof, the Gaffney-Friedrichs inequality
for convex or smooth bounded domains of R%. We deduce from these propositions the multiscale
Poincaré inequality, Proposition 4.6. We finally conclude this section by stating and proving the
Caccioppoli inequality for differential forms.

Proposition 4.1 (Poincaré). Let U be a bounded domain of RY. We assume that U is either smooth
or convex. There exists a constant C := C(U) < oo, such that for all 0 <r <d, for all ve HioAT(U)’

4.1 inf v—alrearny < Clldv|rzarirry.
(4.1) wed) [ l2ar@y < Cldv|papr )

Moreover, the contant C' has the following scaling property, for each A >0,
C(U) = xc(\ o).

Proposition 4.2 (Poincaré-Wirtinger). Let U be a bounded domain of RY. We assume that U is
either smooth or convex. There exists a constant C := C(U) < oo, such that for all v € HGllAT(U),

4.2 inf - r <Cld r+ .
(4.2) aegél,(U) v = alp2ar@y < Clldv| L2pr 1y

Moreover, the constant C' has the following scaling property, for each A >0,
C(U) = xc(\ o).

Proof of Propositions 4.1 and 4.2. First notice that both estimates are easy when r = d since in
that case C%(U) = HIAY(U). From now on, we assume 0 < r < d - 1. In the case U convex, both
inequalities (4.1) and (4.2) are a consequence of Proposition 3.4. We thus assume that U is smooth.
The proof can be split into two steps.

e In Step 1, we prove that that the space
{u e LA™ (U) : Jae HYA"(U) such that u = da}

is closed in the LA™ topology.
e In Step 2, we deduce, from Step 1 and Proposition 3.6, the estimates (4.1) and (4.2).
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Step 1. The argument relies on a decomposition of the space H"*!(U) of harmonic forms, called the
Friedrichs decomposition. By [27, Theorem 2.4.8], we have the following orthogonal decomposition,

HNU) = (%T+1(U) N H&OATH(U)) o {ue H™NU) | 3o e HYA™(U) such that u = da}.
Combining this result with Proposition 3.6 shows that
{ue L*A™N(U) : 3Jae HYA™(U) such that u = da}
=&"(U) ® {ue H™ N (U) | 3o e HYA™(U) such that u = da}

is closed for the L2A™*! topology.
Step 2. We first prove (4.1). By Proposition 3.6, we know that the space £ is closed in LA™ (U).
This yields that the range of the linear operator

N {Hé,oN(U) ~ LA™ (U),

u — du.

is closed. Thus, by [6, Corollary 2.7], there exists a constant C(d,U) < oo such that for each
Ve Hcll’OAT(U),

Jnf o -alzarwy <Cfdv].

But we have kerd = C3(U) n HiOAT(U). This completes the proof of (4.1).
The proof of (4.2) is similar, the only difference is that we use Step 1, instead of Proposition 3.6,
to obtain that

{ue L*A™N(U) : 3Jae HYA™(U) such that u = da}

is closed in the L?A™! topology.
The scaling of the constant comes from the change of variable x — Az. O

We now state the Gaffney-Friedrichs inequality. The idea behind this inequality is to measure the
global smoothness of a form u satisfying

(4.3) due L2A™N(U), éue L?A"1(U) and tu =0 on dU.

According to a result from Gaffney [10] and Friedrich [9], provided that U is smooth, the former
assumption (4.3) implies that u is H'A"(U) with the estimate

(4.4) |l grpr @y <€ (HduHLQA"“(U) +[[6ul 2 pr1 0y + HUHLQAT'(U))7
for some C':= C(d,U) < oo. Conversely, one clearly has
(1wl g2pr oy + 160l g2ar-s oy ) € CIVUl 2pr ey -
Thus one can wonder whether the former inequality (4.4) can be refined into
(4.5) [Vul g2ar (1 < C (1dulpzpre ) + 160l g2pr1 0y )
This inequality is false in general, indeed the set of harmonic forms with Dirichlet boundary condition
Hp={ue L*A"(U) : du=0, du=0and tu=0on U}

is known to be finite dimensional and of dimension 447 (U), the Betti number of the set U, cf [27,
Theorem 2.2.2]. In particular, as soon as dim H7, > 0, the inequality (4.5) cannot hold. Nevertheless

it is the only obstruction and we have the following result, which is a consequence of [27, Proposition
2.2.3).
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Proposition 4.3 (Gaffney-Friedrich inequality for smooth domains). Let U be a bounded smooth
domain of R%, then there exists a constant C := C(d,U) < oo such that if w € L2A"(U) satisfies
dw e L*A™(U), dw e L*A™ 1 (U), tw =0 on OU and w € (H,)", then we H'A"(U) and

IVwl r2ar@y € C (ldw] p2are @y + 0w 2ar-1(17)) -

One can also expect the inequality (4.5) to be true on convex domains, which are not necessarily
smooth but satisfy S"(U) = 0 for each 0 < r < d. This result is stated in the following proposition
and can be found in [25, Theorem 5.5].

Proposition 4.4 (Gaffney-Friedrichs inequality for convex domains). Let U be a convex bounded
domain of R%. Then there exists a constant C = C(d,U) < oo such that if w e L?A"(U) satisfies
dw e L>A™Y(U), dw e L2A™"Y(U) and either tw =0 or nw =0 on U, then w e H'A"(U) and

IVwl miar@y < C (I1dw] z2ara oy + (6wl z2ar1 17y ) -

These inequalities are a key ingredient in the proofs of Theorem 1 and Theorem 2. Another
important ingredient needed in the proof of Theorem 1 is the so called multiscale Poincaré inequality
stated below (Proposition 4.6). This inequality is valid for cubes and the statement and the proofs
of Theorems 1 and 2 only require to apply the following results to cubes of R?. Thus, from now on
and until the end of Section 4, we will only be dealing with cubes of R?, denoted by O, instead of
convex bounded domains. Recall that a cube of R? is a set of the form

z+R(-1,1)? with z e RY, R e R,
and a triadic cube, denoted by O,,, for m € N, is defined according to the formula
gm 3gm d
o= (505
We then define the mean value of a form on a cube according to the following proposition.

Definition 4.5. Given O a cube of R? and 0 < < d and a form « = Yirj=r ardwy € L2A7(O). We
denote by

(a)g= . (][D ar(z) d:n) dzy e A"(RY).

[I|=r
The multiscale Poincaré inequality then reads:

Proposition 4.6 (Multiscale Poincaré). Fiz m € N and, for each 0 < r < d, each n € N, n < m,
define Zmpn =3"Z 00Oy There exists a constant C(d) < oo such that, for every u e C5(U)*,

m-—1 2
lul 2@,y < Cldul 2(g,,) + € ZO 3" (IZm,nl_1 > I(du)zmnlz) :

2€Zm,n
To prove this estimate, we first need to introduce the following H~' norm for cubes.

Definition 4.7. For each cube O of R? and each w € L?A”(0), we define the following H~' norm

1

|l g-1ar oy = Sup{ﬁ (w,a)g + ae H'A™(D), size(O) ™ |(a)D| + [ Vel p2prmy < 1} .

By the Poincaré-Wirtinger inequality, there exists a constant C'(d) < oo such that,
|l g-1ar @y < Csize(O)|w] 2ar oy

The Multiscale Poincaré inequality is a consequence of this improved version of the Poincaré-
Wirtinger inequality. The particular case r = 0 of this statement can be found in [3, Lemma 1.9].
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Proposition 4.8. There exists a constant C = C(d) < oo such that for every cube O € R?, every
0<r<d and every ue HéA’"(D),

inf — ” <C|d —1Ar+ .
aglcli(D)HU ol p2ar o) ldul g-1are (o)

Before starting the proof, we need to state and prove the following lemma.
Lemma 4.9. There exists C := C(d) < oo such that for each cube O € R?, each 0 <7 < (d-1) and
each u € C5(D)* there exists a unique w € HIA™(O) n C(O)* solution of the Neumann problem
{ odw =w in O,

(4.6) ndw =0 on 00,

in the sense that, for each v e HYA™(U),

(dw,dv)g = (u,v)g.
Moreover, dw e H*A™(0O) and
(4.7) IVdw| g2 pr1(@y < CllulL2aroy-

Proof. The proof can be split in two steps, first we need to prove that there exists a function w
in HjA"(O) solution of the Neumann problem (4.6) and then that the function w satisfies dw €
H'A™1(0O) with the regularity estimate (4.7).

Step 1. To solve (4.6), denote for v € HéA"(D), by

J(v) = (dv,dv)q - (u,v)g
and look at the variationnal problem

veHlAT(iélfmCT(D)l T ().

d d

By the standard minimization techniques of the calculus of variations and the Poincaré-Wirtinger
inequality (Proposition 4.2), it is straightforward to prove that there exists a unique minimizer w of
this problem. By the first variation, w solves (4.6).

Step 2. The main ingredient of this step is the Gaffney-Friedrichs inequality (Proposition 4.4)
applied with U = O and w = dw. This form satisfies w € L?A™(0), dw = ddu = 0 € L2A™"2(0),
dw =wu e L2A"(O) and nw = 0. Thus, by the Gaffney-Friedrichs inequality, w € H'A™!(O), and for
some C':=C(0O) < oo,

IVw] p2ar+1 @y € Cllul p2a-@y-
By translation and scaling invariance, we obtain that there exists a constant C := C'(d) < oo such
that

IVw|r2ar @y < Cluf p2ar @)
This is exactly (4.7). O

We know apply Lemma 4.9 to prove Proposition 4.8.

Proof of Proposition 4.8. First notice that is is enough to prove the result when u € HéAT’(D) N

(C’g(D))l. Using the function w € H}A"(O) solution of the Neumann problem (4.6) in the cube O,
we have

1
2 -
HUHL2AT(D) - ﬁ (u,u)D

1
ol

< |l duf g1 g1 () (SiZG(D)_l |(dw)D| + ||de||L2Ar+1(D)) .

<du7 dw)l]
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By Lemma 4.9,
HvdeLZArH(D) < CHU’HL2A’(D)

To complete the proof, there remains to estimate ‘(dw)D|, to do so denote by

. (dw)u
p= i1<Z<ippi17...7,-pda:,-1 A Anday, = @]
and
R? — AP(RY),
(4.8) by 2o S piawndm, A ada,
11 <<l

such that di,, = p. Testing the equation (4.6) with « = lp, we obtain

(dw)g| = = |(p. dw)g| = = [(dl,, duw)s
| Dl ||:|| ‘ | ||:|| ‘ P |
1
- Ll
< Csize(O) |u] 2 pr(oy-
Combining the previous results completes the proof of the proposition. O

We then apply the Multiscale Poincaré inequality stated below. A proof of this inequality can be
found in [3, Proposition 1.8].

Proposition 4.10 (Multiscale Poincaré, Proposition 1.8 of [3]). Fiz m € N and, for each n € N,
such that n <m, define Z,, , = 3"Z% " 0,,. There exists a constant C(d) < oo such that, for every
f € Lz(Dm)a

1

m—1 2

||fﬂ-1<um)sc||fLz(gmﬁozs“(wm,u1 > |<f>z+un|2) .
n=0

2€Zm,n

Proof of Proposition 4.6. The result is then a consequence of Proposition 4.8 and Proposition 4.10
applied with f = du. O

We complete this section by proving a version of the Caccioppoli inequality for differential forms.
Recall the definitions of the space €, in (2.17) and, given an environment a € 2, the definition of
the space of solutions A(U) in (2.21).

Proposition 4.11 (Caccioppoli inequality). There exist a constant C := C(d,\) < oo such that, for
every 1 <r < d, every open subsets V,U c RY satisfying V ¢ U, and every u e A(U),

] <l
L2ZATL(V) S dlSt(‘/, aU) L2A"(UNV)-
Proof. Let ne C°(U) be such that
C
L1y <n<l, <——
ven<l Vi< oS
The r-form nu belongs to H ioAT(U ) from this we deduce that

d d =0
/U unad(nu) =0,
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which gives

0= [ dunad(?

y uAad(nu)
:[U(dU/\aan/\u+duAan2du)
:fU(dU/\aann/\u+dU/\an2du).

Thus, since by the ellipticity assumption (2.16) and the symmetry assumption (2.15), for each 2 € R?,
the bilinear form (p,p’) - p A a(x)p’ is a scalar product on A”(R?). In particular we can apply the
Cauchy-Schwarz inequality in the following computation.

dunan’du= [ duna(2nd
/U urandu= | uAa(2ndn Au)

SZ(/UduAa(nzdu))% (/Udn/\U/\(adn/\u))%.

Using the ellipticity condition (2.16), we obtain

ldulp2pr1 vy € Cldn Aulp2pr vy
<Y
= dist(V,oU) | EATONY)

The proof is complete. U

5. QUANTITATIVE HOMOGENIZATION

The goal of this section is to study the quantity .J defined, according to Definition 2.6, by the
formula, for (p,q) € A™(R?) x A% (R?)

J(U,p,q) :== sup (—ldv/\adfu—p/\adv+dv/\q).
veA(U) JU\ 2
Thanks to the Poincaré-Wirtinger inequality, Proposition 4.2, one can prove that there exists a
unique maximizer in A(U) N Cg_l(U)i7 denoted by v(-,U,p,q). The proof is very similar to Step 1
of the proof of Lemma 4.9 and the details are omitted.
We first record some useful properties about J, Proposition 5.1. We then establish a series of
Lemmas, Lemmas 5.2 to 5.8, before proving the main result of this section, namely Theorem 1.

We eventually deduce from Theorem 1 a corollary pertaining to the maximizer v(-, U, p,q), Proposi-
tion 5.10.

Proposition 5.1 (Basic propeties of J). Fiz a bounded Lipschitz domain U ¢ R%. For each1<r<d,
the quantity J(U,p,q) and its maximizer v(-,U,p,q) satisfy the following properties:

(1) Decomposition of the maximizer v(-,U,p,q). The map

(5.1) AT(RT) x ATT(RT) ~ A(U) nCyH(U)*,
' (p,Q) _)U('vvavq)v
is linear. Moreover, v(-,U,p,0) is, up to a closed form, equal to a solution of the Dirichlet
problem
d(adu)=0¢eU,
(5.2)
tu =tl_, on OU,

where 1, is defined by (4.8). The precise interpretation of (5.2) is:
u solves (5.2) < uel_,+ HiOA(T’_l)(U) and Yw € HiOA(T’_l)(U), /Udu Aadw = 0.
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(5.8)

(5.9)

(5.10)
(4)

(5.11)

(5.12)

(5.13)

(5.14)
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Similarly v(-,U,0,q) is a solution of the Neumann problem
d(adu) =0 in U,
{t (adu) =tg on OU.
the precise interpretation of (5.3) is:

u solves (5.3) < ue HIA"Y(U) and Yw € HGllAT*l(U),[Udu/\adw—dw/\q =0.

Decomposition of J(U, p,q). For each (p,q) € A"(R?) x A% (R?), the quantity J(U,p,q) can
be decomposed

J(Uupaq) = V(U7p) + V*(U7Q) - *(p A q)7
where p — v(U,p) and q - v*(U,q) are quadratic forms given by the formulas

v(U,p) = inf ][ du A adu
uel_p+H} (A-1(U) JU

and

1
v (U,q) = sup ][ (—gduAadu+dqu).
ueHIAT1(U) U

As a remark note that there is a star before g Ap in (5.4) because q A p is a d-form and all
the other terms are real numbers.

Upper and lower bound on v(U,p) and v*(U,q). There exists a constant C(d,\) < oo such
that for every p e A"(R?), g e AT (R?),

ZIpP < v(U,p) < ClpP

and
2ol <" (U.q) < ClgP

This implies, according to (5.4), for some C = C(d,\) < oo,
J(U.p,q) < C(pl* +1g*)

and
Hdv('7U7p7Q)H£2A7"(U) < C(|p|2 + |q|2)

Uniform convexity and C™! in p and g separately. There exists C(d,\) < oo such that for
every p1,p2 € A"(RY) and q e A% (R?),

1 , 1 1
1= pol < =J(WU,p1,q) + = (U,pa,q) - J (U,
Clp1 2 5 (U,p1 q)+2 (U,p2,9) (
For every qi,q2 € AT (R?) and p € A" (R?),
1 1 1
5|Q1 ~ g < §J(U,p,fh) + §J(Uap,Q2) - J(U,p, ) < Clq1 - qof*.

Subadditivity. Let Uy,...,U, €U be bounded Lipschitz domains that form a partition of U,
in the sense that

P1+Dp2
2

,q) < Clp1 - paf*.

q1 tq2
2

N
UiﬁUj=® if 1#j and ‘U\UUZ'=0,

i=1

then, for every (p,q) € A"(R?) x A4 (R?),

N
i=1
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(6) First variation for .J. For each (p,q) € A"(R?) x A% (RY), the function v(-,U,p,q) is char-
acterized as the unique element of A(U)n Cy Y (U)* which satisfies, for each ue A(U),

(5.15) fUdv/\adu:/U(—p/\adqudu/\q)

(7) Quadratic response For every (p,q) € A"(R?) x A% (RY) and w e A(U),

1
(5.16) 5 ldw=dv(-U.p.0) 12201

<J(U,p,q) - ]g(—%dw/\adw—p/\adw+dw/\q)
< C'|ldw=dv(-,U,p,q)| 221 -

(8) Control of the difference of the optimizers by the subadditivity. Let Ui,...,U, € U be
bounded Lipschitz domains that form a partition of U, in the sense of (5.13). Then for each

(p,q) € A"(R?) x AT (RY),
a0 3 I U00) - 0O ey <€)
i=1 i=1

Ui
U]

(J(U27p7 q) - J(U7p7q)) .

Proof. These properties are easy to check and their proofs are almost the same of those of [3, Lemma
2.2], so we omit the details. 0

We know turn to the proof of a series of lemmas, which will be then used in the proof of Theorem 1.
In the following lemma, we denote by Z,, ,, = 3"Z%n0,,. It is a finite set of cardinality 34",

Lemma 5.2. Fiz m,n €N with n <m, (p,q) € A"(R?) x A" (R?) and {¢.}sez,,,, € AT (R?). Then

(5.18) —— T

|Dm| 2€Zn,m

s( >, Iq2|2) ( > J(2+Dn,p,q)—J(Dm,p,Q)) :

2€Zn.m 2€Zn.m

/ (d?) - dvz) A qg
z+0n

Proof. We shorten the notation by setting, for each z € Z,, ,,,
V= U('7DM7p7Q)7 Vy = U('7Z+Dn7p7q)7 U,/z = U('72+DM707q,/z)'

Notice that for each z € R%, the quadratic map (p,p") = pnra(x)p is a scalar product. In particular
we can apply the Cauchy-Schwarz inequality, this reads
1

pra(z)p' < (pra(@)p)? (o ra(a)p’)? < Apllp],

by the ellipticity assumption (2.16). Keeping this in mind, we compute, using Holder’s inequality,

1 /
— A (dv -dv
|Dm| 2€Zn.m ‘/ZH:‘” o ( Z)
1
:ﬁ /Z+D dvl Aa(dv-dv,)
ml zeZn,m n
C

: m zeZZn:’m Hdv;HL2(z+Dn) H (d?} B d?)z) HL2(Z+D7L)

1

N 1
1 2 [ 2
o2 £ tliean) (o 2 104,

2€Zn,m 2€Zn.m
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by (5.10) and (5.17),

(SIS
(SIS

SC( > Iq;lz)

2€Zn,m

( > J(Z+Dn,p,q)—J(Dm,p,q)) - O

2€Zn,m
Lemma 5.3. Let m,n € N with 0 <n <m—2. Then there exists C(d,\) < oo such that, for every
(p,9) € BIA"(R?) x BiIAT" (RY),

(5.19) var [(dv(-, Opm,p,0)) g, ] < €379 var [(do(-, O, p,0)) g, |
+ CE[J(Tn,p,q) = J(Om,p,q)] -

Proof. We first fix n e N with n <m -2, ¢’ € BiAY"(R?) and apply Lemma 5.2 with ¢/ := ¢’ to get

1
(5.20) ——
O

f dv(-,0m,p,q) Aq = Y, f dv(-,z + Oy, p,q) A G
Om Zgzn,m z+0n

(SIS

50( > J(Z+Dn,p,q)_J(Dm7p7Q)) :

2€Zn,m

From this we obtain

/ dv(-,z +O,,p.9) A ¢
z+0pn

var [][ do(-,0m,p,q) A q'] < 2var
Om |Dm| 2€Zn.m

+2CE

( > J(z+Dn,p,q)—J(DmapaQ)) :

2€Zn,m

We take an enumeration {z;; : 1<i<3%1<j<3%m D} of Z, . such that for each 1< < 37
and each 1< 7,5 < 3d(m—n—1)7

Zij— Zi7j'| >2.3"
This gives in particular
diSt(Zi,j + O, 25 + Dn) > 3”,

and thus, according to the independence assumption (2.20),

Fr(zi; +0y) and F,(2; 5 + 0,) are independent.
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We can thus estimate the first term on the right side of (5.18), using the previous display and the
stationarity (2.19) to get

1
— dv(-,z+0 NG
Var[ll:‘m| Zgzzrim LJan U( 7Z n,p,q) q ]

3d 3d(m—n—1)

= 372dm yar [Z >, / do(-, zij + On,p, ) A q’]

i=1  j=1 Zi,5+0n

3d 3d(m—n—1)

-2dm+d !

<3 Zvar Z dv(:, 2z + On,p,q) A q
i=1 j=1 zi,j+0n

3d 3d(m—n—1)

< 3~2dme+d Z Z var [/ dv(-, 2 ; + Op,p,q) A q/:I
=1 j=1 #ig *Cn

< 3d(—m+l—n) var I:f d'U(', Dn7p7 Q) A q,:I
On

< Cg*d(min) Var[][ d'U(',Dn,pgq) /\q/:I :
On

Combining the previous display with (5.20) and taking the supremum over ¢’ € B; A% (R?) completes
the proof of the lemma. O

We then define:
Definition 5.4. For n € N, we define by
Tp = sup E[J(Dnvpaq) _J(Dnﬂapvq)]
(p,q)eB1AT (RY)x B Ad= (R?)
= sup  E[w(Onp)-v(Opa,p)]+ sup  E[v"(On,q) - v (Ons1,9)]
peB1 AT (R4) geB1 A4 (RE)
With this definition, one can prove:

Lemma 5.5. For each n € N, there exists a constant C(d,\) < co and an exponent [3:= F(d,\) >0
such that for every (p,q) € BiA"(R?) x B;A%" (R?),

(5.21) var [(dv(, Om,p,q))g,, ] < C Y. 3707, 4+ C379m,

n=0

Proof. Denote by C := C(d,\) < oo the constant of Lemma 5.3 and select [ :=1(d,\) € N such that

E <c3d < 1
9 3
The inequality (5.19) applied with n =m —1 yields

1 n
var[(dv(-,l:lm,p,q))umil] < gvar [(dv(-,Dm,p,q))le] +C Z T
k

=n-1

Iterating this estimate and using the bound on the L? norm of dv (5.10) gives, for some C := C(d, \) <

o0,

n-k
L Tk

var[(dv(-,Dm,p,q))Dm] <03 T +C Z 3
k=0

This completes the proof of the lemma with g = % O
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Definition 5.6. Consider U a bounded open subset of R%. Since ¢ - J(U,0,q) is quadratic and
bounded from above and below according to (5.8), there exists a linear mapping, denoted by a,
from A"(RY) to AY"(R?), satisfiying the symmetry assumption (2.15) and such that, for every
g e AT (RY),

1 __
(5.22) E[J(U,0,0)] = 5 * (B A g).
We also write a,, = 8, for short.

There are two properties to notice about this quantity. First since J satisfies the subadditivity
property (5.14), and by the stationarity assumption (2.19), the sequence (E[J(Oy,0,q)]),y is
decreasing. From this we deduce that it converges for each ¢ € A% (R?). From this, we deduce that
there exists a linear symmetric map a € £ (AT (R?), A% (R?)) such that, for each g € A4 (R?)

ELJ(O00.0)] 5+ @ ara)

which also implies
a, —ain £(A"(R?), AT (RY)).

Moreover, by (5.8), one can check that there exists a constant C'(d,\) < oo such that, for each
pe A" (R?) and each n e N,

1 _
Elpl2 <pAd,p < Clpl

Sending n — oo shows that the same estimate is true for a.
Second, one has the formula, for ¢ € A% (R?),

(5.23) a,'q=E[(dv(-,0,,0,9))g |-
To prove this formula, one has, according to the first variation (5.15), we have, for each ¢ € A% (R?),
J(0,,0,q) = ][Dn dv(-,0,,0,9) A q
Taking the expectation proves
a,'qAq=E[(dv(0,,0,0))g,] A .

To prove (5.23) it is thus sufficient to prove that ¢ - E [(dv(-, Dn,O,q))Dn] satisfies the following
symmetry property, for each ¢,q’ € A% (R?),

E[(dv(-,0,,0,9))g, | Ad' =E [(dv(-, Dmovql))mn] N
It is a consequence of the following computation
E [(dv(-, Dm(),q))un] Ag =E :][Dn dv(-,0,,0,9) A q,]
-E —][D dv(-,0,,0,¢) A adv(-, Dn,O,q/)]
-F :][Dn dv(-,0,,0,¢") A adv(-, Dn707Q):|
- —][D dv(-,0,,0,¢") A q]

-F :(dv(-, 0,,0, q'))Dn] Aq.
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We then note that, for every q € BiA%"(R?), m,n € N such that n < m, we have

(5.24) &, q - &, q
2

E[(dU(',Dm,O,q))Dm _3d(n—m) Z (dv('7Z+Dn707Q))z+Dn:|

ze3nZ4n0,,

SE[3d(n_m) 2 ”dU(',Dm,O,q) _dv('7Z+Dn707Q)||2LQAT(U):|

2€3"Z9N0
< CE[J(On,0,q) = J(Opn,0,¢)]
m—1
<C Y 7
k=n

For p e A"(R%) and m € N, we denote by l," the unique element of Cc’{’l(ljm)L such that di;" = p.
It is the projection of the function I, defined in (4.8) on C;1(O,,)*.

Lemma 5.7. There exists C' := C(d,\) < oo such that, for every m € N, (p,q) € BiA"(R?) x
BlAd_r(Rd)7
?

Proof. Fix (p,q) € BiA"(RY) x ByAY"(R?) and denote by Z,,,, := 3"Z% 0 O,,,1. We split the proof
into two steps.

Step 1. Since, by definition, both v(-,0,,41,p,¢) and lgfll are in Cg_l(Derl)L, the difference
q-p

m 47

m+1
=1
am q-p

2 m
v(, Ome,p,q) =1 ] < O3B 03CIm 3 3

L2A™ 1 (Opms1) k=0

belongs to C;™!(0,,41)*, thus we can apply the Multiscale Poincaré inequality (4.6),

2

.0 -t
U( ; m+17p7q) lamqup LzAT_l(DmH)
__ 2
(5.25) <C v, O, p. ) =8 q+ 0| ope oy
1\ 2
m 1 1 2 2
+C Z3n |Zm,n|_ Z ‘(dv(ajammﬁ—lupaq)dx_5'7_nq+p)z+|:|n‘
n=0 yEZm,n

We first bound the first term on the right-hand side

. 2 — 2 2
Hdv(-, Oms1,0,9) — amlq +pHL2AT(Dm+1) <2 —amlq +p| + 2| dv(-, Derl,p,q)H£2Ar(Dm+1) <C.
Step 2. We prove the estimate, for every 0 <n < m,

|2

n m
E |:|Zm,n|_1 Z ‘(dv(v Om+1,D, Q) - é;nlq +p)y+|:|n <C (3—n + kZ: 3k—n7_k + kZ: Tk) .
=0 =n

Y€Zm,n

By (5.17), we have, for every (p,q) € BiA"(R?) x BjA®"(R?),

- 2
|Zm,”| ! 2 Hdv('vljquapvq) _dv('vz+Dn7p7q)HL2AT(y+[|n)
Ye€Zm,n -

SC|Zm,n|71 Z (J(Z+Dn,p,Q) _J(Dmvpa(J))

2€Zm,n
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Taking expectations and using the stationarity yields

- 2
|Zm,”| 1E[ Z Hdv('vmvalapa(]) _dv('vz+Dn7p7Q)LzAT(y+Dn):|
Y€Zm,n -

<CE[J(0n,p,q) = J(Om, 0, )] < C . 7
k=n

The triangle inequality, the previous display and Lemma 5.5 then yield,

2
Zmal ™ Y E[‘(dv(-,ﬂmﬂ,p,q)dsv—5;1q+p) ]

Ye€Zm,n y+On
_ 2
<3|Zmnl ™ Y E[l(dv(-,DWl,p,q) - dv(z,y +0n,p:q)) e, ]
Ye€Zm,n
2
+31Zmal ™ 2 U(dv(wy +Onpyq)de =3, +p) 0 ]
YE€Lm,n

+3[a,, q-a,'q’

<C Y mp+C Y 3P o3P,
k=n k=0

Combining this estimate and inequality (5.25) shows

2 m 1 2
<Cl1+ 3" X2
LQAT 1(Dm+1) (nZ:E) )
where the random variable

X = |Zmal ™ Y |(d0(z,Omer,p,q) d - &g + )
YeZm,n

_lm+1
a,, q-p

(5.26)

?}( Dm+17p7 Q)

y+0n

satisfies
E[X,]<CY 7+ C Y 320 p 4 0370,
k=n k=0
By the Cauchy-Schwarz inequality,

(23"&%)2 < (i 3") (fj 3"Xn) <C3" i 3" X

n=0 n=0

Taking the expectation thus yields

m 2 m m m n m
E [( > 3"X§) <0o3™ (Z S 3+ 0 S 30tk Lo 3(1_5)n) .
n=0 n=0k=n n=0 k=0 =0

We then compute the term on the right-hand side

m m m k m
S N3 =Y Y3 <0 3k
k=n k=0n=0

n=0 k=0
and . . .
2 Z 3UAngfhy < SN 3(Angbkn, « ¢3(=8)m S ghky,
k=0 k=0n=k k=0
Combining the three previous dlsplays shows
(5.27) [

"X2 < 03 Am  03Am N 3Bk o3 Y 3k

k=0 k=0

||M3
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Moreover, since 0 < 3 < 1, we notice that for each k,m € N with k& < m, 3= < 38(k=m) " 1p particular
the third term on the right-hand side of (5.27) is smaller than the second term on the right-hand
side. Consequently, estimate (5.27) can be simplified to obtain

()

Thus estimate (5.26) becomes
?

Now that we have some control on the flatness of the maximizers of J(O,,,p,q), we can estimate
J (O, p,amp) thanks to the Caccioppoli inequality.

< C3FAm 4 03-Am i 3% 7.
k=0

_ lm+1

U('7Dm+17p7Q) amlq—p

2 m
] < C3@Am 4 03(2Am N gk,
LQAT_l(Derl) k=0

O

Lemma 5.8. There exists a constant C(d,\) < oo such that, for every meN and p € BlAT’(Rd),
E[J(Om,p, &mp)] < C37P™ + C37™ i 3% .
k=0
Proof. Fix p e BiA"(R?), by Lemma 5.7,
E [Hv(-, D1, 2> mp) | 72500 (Dmﬂ)] < C32Am 4 o32=Hm 235%.
Applying the Caccioppoli inequality, Proposition 4.11, one obtains

m
‘d’U(', Dm+17pa amp)”z%\r—l(ﬂm)] < 03*67” + O375m Z 3Bk’7'k.

(5.28) IE[ >

By (5.17), we have

37d Z E[Hdv('7um+lap75mp)_dv('7y+Dmapuémp)HizAr(yﬂjm)] SC'Tm,
y’53mdeDm+1 -

In particular, this yields
- = 2
E[|dv(, Opner, p, Emp) = dv( O, 2, Bnp) 120 )| € CFin

Combining the previous display with (5.28) gives

E I:Hdv(7 Dmapaamp)ui21\r(|:|m):| < CTm + C376m + C3iﬁm Z 3Bka
k=0

m
<0374 037 N 3Pk
k=0

By (5.16) with w =0, we deduce

E[J(Opm,p, amp)] < O3+ C379m 5™ 35k
k=0

The proof of the Lemma is complete. O

We are now able to prove Theorem 1.
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Proof of Theorem 1. First note that since, for each m € N, the mapping p - E [J(O,,,p,8,,p)] is a
positive definite quadratic form, we have

1 d d
2B Omeidne)] < sup  ELT(Om:p,8np)] € 2 E[J (O, eis Bmei)]
i=1 peB1 AT (R4) i=1
Thus if we denote by
d
Dm = Z E [J(Dmy €, amei)] )
i=1
we get from the previous remark that the estimate (2.23) is equivalent to
(5.29) D, <C37™.
The reason we consider this particular quantity is because of the bound, for some ¢ := ¢(d,\) > 0,
(5.30) D, — D1 > e

Moreover notice that using the definition of a,,,1 (5.22) and the decomposition of J (5.4), for each
p e A"(R?), the quadratic form

1__
q->E[J(Om+1,0,9)] =E[v(Oms1,p)] + * (gamlﬂq Ag-DpA q)

attains it minimum at ¢ = 8,,.1p. Consequently
d d
Dy = ZE [J(Dm+la €i, ‘r_ierlei)] < EE [J(Derb €i, 5mei)] .
i=1 i=1

Thus we can compute

+ Z (E [V*(Dm,éme,-)] -E [V*(Dm+175mei)])

>c sup  E[v'(Om,e)]-E[v" (Omns1,€i)]
pEBlAT(Rd)

+c¢ sup  E[v(On,e)]-E[v (Onst,e)]
peB1 AT (R4)

> CT-
The main ingredient in the proof of Theorem 1 is to define the alternative quantity
~ Bm Bn
D,, =32 Z 372 D,,
n=0

where (3 := 3(d,\) is the exponent which appears in Lemmas 5.7 and 5.8, and to use Lemma 5.8 to
prove the estimate

(5.31) Dy, < C37™,
for some a:= a(d,\) > 0. The estimate (5.29) follows since, for each m e N
Dy, < D,,.

The proof of (5.31) can be split in 5 steps
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Step 1. We show that there exist 6(d,\) € (0,1) and C(d,\) < oo such that, for every m € N,

(5.32) Do <0D,, +C375
By (5.30) and Dy < C, we have
D= D1 =377 3. 3% (Dy = Dpay) - €372 2375 3 3% 7, - €375
n=0 n=0

In particular, the previous estimate gives

From this and Lemma 5.8, we compute

~ ~ _Bm __gm N\ pn _Bm
Dip1 < D+ Dg3™ 2 =372 Y32 Dy + Dy3™ 2
n=0
Bm m Bn n Bm
<C377 Y 3% (3/3" +37m 35%) +C37 2
n=0 k=0
pm D pn gm
<C3 2 Y y3 2303
n=0k=0
ﬁm m m
<0372 Y Y323 03
k=0n=k
m m k m
<C3F Y 3T +037 T
k=0

Combining the two previous displays gives
~ ~ ~ Bm
D1 < C(Dyy = Dipe1) +C37 72
A rearrangement of this estimates yields (5.32).
Step 2. Tterating (5.32) gives
~ " B(m—k)
Dy <MDy +C Y 083 7.
k=0

. . _B . .
Without loss of generality, we can assume 6 > 372 (since we can make 6 closer to 1 if necessary).
With this assuption, the second term on the right-hand side can be estimated,

3 ok3 1 < opm.
k=0

Combining this with the fact that Dy = Dy < C, we obtain
D,, <Co™,

which can be rewritten, with o = —% >0,

Dy, <C37™™.
Step 3. We need to get the same estimate as (5.29) but with a instead of a,,. First notice that
by (5.29) and (5.30),
cTm € Dy = D1 € Dy, < C37%™,
Thus by (5.24), for every g € BiA%"(R?), every m e N,

e =
[ag & qf* = lim &g - &g < 3T < C Y 3T <03
o k=m k=m
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Using the ellipticity assumption (2.16), we deduce, for each p € BjA%"(R?),
|ap - &,,p|* < C37°™.

Using that J is a quadratic form according to (5.9), one obtains that there exists a constant C'(d, \) <
oo such that, for each m € N, each p,p’ € A”(R?) and each ¢,¢" € A4 (R?),

|7 (O p:q) = J (O, 0, ¢)| < CUp =PI+ lg = ' D (Il + [P + lal + |¢'])-
Consequently, for each p € B;A"(R?) and each m e N
|J(Om, p,ap) = J(Om,p, &mp)| < Clap - &pp| (1 +[ap| + [8np])
<C37Em,

Redefining o = § completes the proof of the quantitative homogenization estimate (2.23).
Step 4. We need to show that the mapping a is unique. Given two maps a,a €
L (AT(Rd),Ad’T (]Rd)) such that the estimate (2.23) is satisfied, we have, by (5.12), for each m € N,

and each p e BjA"(R?),
1_ 1 o1 _
Glap -9 <E| 3@ p.80) + 5 IO 8]
<C3™ ™,

Sending m — oo gives, for each p € BiA"(R?), ap = a’p. Consequently & = &’ and the proof of the
first part of Theorem 1 is complete.

Step 5. We can now complete the proof of Theorem 1 by upgrading the stochatic integrability.
This is a consequence of the following Lemma, the proof of which can be found in [3, Lemma 2.14].

Lemma 5.9. Suppose that U - p(U) is a (random) map from the set of bounded Lipschitz domains
to [0,+00) and satisfies, for a fized K > 0:

p(U) is F(U) - measurable

p(U) < K.
and, whenever U is the disjoint union of Uy,...,U; up to a set of zero Lebesgue measure, we have
Ui
pU) < AU
i=1

Then there exists a universal constant C < co such that, for every m,n € N,
p (Bnams1) < 2E[p(0,)] + 01 (CE3™™Y).

Applying this result to

p(U) = sup J (U, p,ap),
peBi

gives, for each m,n e N,
p(Onems1) < 2E[p(0,)] + 01 (C37™4) < €37 + 01 (C37™).
Taking n = m yields, for every n € N,
p(Oans1) < C37™ + 01 (C37Y).
By redefining « := min (%, g), we obtain, for each n e N,
p(0,) O3+ 01 (C3"Y) <O (C37).
The proof of Theorem 1 is now complete. U

Before turning to the proof of Theorem 2 in the next section, we state and prove the following
proposition, which is a consequence of Theorem 1 and gives some information about the flatness of
the minimizers.
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Proposition 5.10. There exists o := a(d,\) >0 and C := C(d,\) < oo such that for each 1 <r <d,
each (p,q) € BiA"(R?) x BiAY(R?) and each m €N,

(533) 3 Hd’U ('7 Dm7p7Q) - (5_1(] _p)Hﬂ_lAT(D) +37" ”adv ('7 Dmapv(J) - (q - ‘r_ip)”ﬂ‘lAd*T(D)
<O (C37™9).

Proof. The proof is split into 2 steps.

e Step 1. We prove that, for each ¢ € BiAY"(R?) and every m,n € N such that m >n

(5.34) gdln=m) ‘(dv (-\0m,0,q) -a'q) ‘Lo (C37°my.

+0 ‘
YE€Zn,m Y "

Similarly, for each p € B;A"(R?) and every m,n € N such that m > n

(5.35) 3 S (ado (4 Opnep, 0) — 8p) o, | < O1 (€377

YeZn,m

e Step 2. We deduce from the previous step and the multiscale Poincaré inequality, Proposi-
tion 4.10, the estimate (5.33).

Step 1. We first deal with the case m = n, in this specific case, the estimate (5.34) reads

(4o (,8,,0.9) -5%),, [ < On (€37,

To argue this, note that, by the first variation for .J,

1
J(DTL)Ov(J) = 5 (dU(', Dm707Q))Dm NG

Moreover, the map ¢ — (dv(:,0,,0,q))g is bounded by (5.10) and symmetric since, for each
q,¢ € AT (RY),

(d?) ('7 Dmuo7q,))|:|m NG = Am dv ('7 Dmuo7q,) Adv ('7 DM707Q)

= ][D dv (+,0,,,0,9) Aadv (-,Dm,O,q')

m

= (dv (,0,0,9))g, A4

A combination of the two previous ideas and Theorem 1 gives

(5.36) sup

2
(@ Con0.0 "), [[<C s [1(@0.0.0) -8 g g
qeB1 AT n

qeB1Ad-T
<O (C3™9).
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To obtain the general case m > n from the specific case m = n, we compute

2
307 37 |(dv (. Oy 0,0) - & 'q)

yEZn,m v
< C3d(n_m) 2 ‘(d’U ('7 Ui 07 q) —dv ('7 Y+ U, 0’ q))y+Dn|2
YeZn,m
) __ 2
+ ¢3dn=m) ZZ |(dv (- y+D0,0,9)-5) .
Y€EZn,m

< O3d(n=m) Z |dv (-,0,,,0,¢q) = dv (-,y + O,,0, q)HiQ(y+|:|n)
YeZn,m B

+ O 3drn=m) Z |(dv(-,y+|:|n,0,q)—§_1q)

YeZn,m

2

y+0p
< C3d(n_m) Z J(y+ Dn707Q) - J(DM707q)
YeZn,m

+ 0 3dn=m) Z |(dv(-,y+|:|n,0,q)—§_1q)

YeZn,m

2

y+0n

To deal with the first term on the right-hand side, we note that, for each y € Z,, ,,
J(y+0,,0,q) — J(Opn,0,q) < ‘J(y +0,,0,¢) —a lgA q| + ‘J(Dm,O,q) —algng
<O1(C379) + O1(C379™)
<O (C37%),
by the stationarity assumption (2.19). Using the inequality (2.14), we eventually obtain

39n=m) N T (y + 00,0,9) = J (O, 0,q) < O1(C37).
YeZn,m

To deal with the second term on the right-hand side, we have by the stationarity assumption (2.19)
and (5.36), for each y € Z,, ,,
2
(v (y+00,0,9) -3 "), [ <01 (€37,

Using the inequality (2.14), we obtain

gtn=m) $° |(dv(-,y+Dn,0,Q)—5’1q)

YeZn,m

2 —an
ol| <013y,

The proof of (5.34) is thus complete. Thus proof of (5.35) is similar, the details are left to the
reader.

Step 2. From Step 1 and (ii) of Corollary 2.4, we have

m—1 2
S gdlnmm) |(du(-,y+mn,o,q)—aflq)ymn\ <O (03(1’0‘)7“)

n=0 YeZn,m

and )
ZO gn=m) ; |(adv (-,y + Op, p,0) - 5p)y+gnl2 <O (C3(1‘“)m) .
n= Y€Ln,m

By the multiscale Poincaré inequality, Proposition 4.6, the bound on the L? norm of dv, esti-
mate (5.10), and the previous estimates, one obtains for each (p,q) € BiA"(R?) x B{ATT(R?),

|dv (. Om,p,0) - (874 _p)HgflAr(D) +[adv (-,0m,p,q) = (¢ - 8p)| g-1pa-+(my < O1 (03(170‘)’”) )



QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS 33

Dividing both sides of the previous inequality by 3™ yields (5.33) and completes the proof of Propo-
sition 5.10. O

6. HOMOGENIZATION OF THE DIRICHLET PROBLEM

The goal of this section is to study the Dirichlet problem for the equation dadu = 0 and to establish
Theorem 2. We first prove existence and uniqueness of solution for this equation.

Proposition 2.7. Let U be a bounded smooth domain of R® and 1 <r <d. Let f ¢ HéAT’_l(U), then
for any measurable map a: R% - L (AT(Rd),A(d’T) (Rd)) satisfying (2.16) and (2.15), there exists
a unique solution in f + HiOAT’l(U) N (CC’{TOI(U))l of the equation
d(adu)=0 nU
tu=tf on dU,
in the sense that, for each v € HiOAT’l(U),

[ du A adv = 0.
U
The solution satisfies the estimate, for some C := C(d,\,U) < oo,

(6.1)

lul zrar-1 @y < Cldf 2oy -

Moreover if we enlarge the space of admissible solutions to the space f + HiOAT’_l(U), we loose the
uniqueness property, but if v,w e f + Hé’OAT’l(U) are two solutions of (6.1), then

v-—we Cgbl.
Proof. The existence and uniqueness of such a solution are obtained by minimizing the quantity
J(v) :=(df +dv,df +dv)

on the space H d170AT’_1(U )N (C’CTLO)l and requires to use the Poincaré inequality, Proposition 4.1. The
techniques are standard, we thus omit the details. O

We now turn to the statement and the proof of the main theorem of this section, Theorem 2.

Theorem 2 (Homogenization Theorem). Let U be a bounded smooth domain of RY and 1 <r < d.
Fiz e € (0,1] and f e HRA"N(U) such that df e H{A™(U). Let u,ue f+ Hj A H(U) m(Cg7o(U))l
respectively denote the solutions of the Dirichlet problems

d(a(L)du€)=o inU d(@du)=0 inU
€ and
tu =tf on OU. tu=tf on OU.
Then there exist an exponent o := a(d,\,U) >0 and a constant C := C(d,\,U) < co such that

|u® = uf p2pr oy + [du” = duf g-14r ) < O1 (C [df 1 gar o Ea) :

Proof. Without loss of generality, one can assume that |U| = 1. Fix [ > 0, this parameter represents
the thickness of a boundary layer we need to remove in the argument, it will be chosen at the
end of the proof and will depend only on e. For R > 0, denote by Ug := {x € U : dist (z,0U) > R}.
For I c {1,...,d} of cardinality r and m € N, we denote by ¢, ; the unique solution in lq,, +

HY oA (00) 0 (Ch g (Om)) of
d(adu)=0 in 0O,
tu=tlg;, on 00y,
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where lq,, is defined in (4.8) satisfies dlq;, = dz;. In particular, one has

d¢m,[ =dv ('7 Dmup) .
Let m be the smallest integer such that
U ceO,,,

and define the two scale expansion, with the convention du := ¥ I|:T,(du) rdzy,
B T
(6.2) wi(@) = (@) + G(x) 3 (du) (@) bms (g)
[I|=r
where (; € C2°(U) is a smooth cutoff function satisfying, for every k € N:
(6.3) 0<G<l, ¢=1linUy, ¢=0iU\U, |VFQ|<CO(k,d,U)™.

Note that wg € f + HiOAT’l(U ). Since it is more convenient to work with an element of f +
H d170A"’1(U )N (C&O(U ))l (to have the Poincaré inequality), we further define

w® ::f+Pr0j( (wg=f)-

cg,O(U))

where Proj( )1 denotes the L?-orthogonal projection on the space (CC’{O(U))L. Note that

C’gyo(U)
we e f+ HiOAT’l(U) N (Cg’O(U))L by construction and that it satisfies
(6.4) dwg = dw® in U.

We then consider the map

, HioA"'(U) - R,

d (a (—) dwe) : T
€ v—>/dw5/\a(—)dv.
U €

and denote by

: x .
d(a(g)dwe) HoAA ) = sup{/wae/\a(g)dv:veHioA YU) st HUHH;AT(U) < 1}.

The idea of the proof is to compare u® to the function w®. The proof is split into 7 steps.
Step 1. In this step, we show that the norm HglAd_”l(U) defined in (6.5) is equivalent to the
norm

. T —
)00, g =0 020205 1)

This result is a consequence of the following property, for some C := C(d,\,U) < oo,

Vo e HGlLOAT’_l(U), Jw € HA™(U) such that dw = dv and |lwl grpr @y <€ Hv\\HéAT(U) )

(6.5)

To prove this, we mimic the proof of [23, Theorem 1.1]. Let (Oj)lngN be a finite, open covering of
U such that O; nU is a smooth star-shaped domain. Then let (¢j)lsjsN be a smooth partition of
unity such that supp¢; ¢ O; for 1 < j < N. Note that the form ¢;v belongs to HiOAT’1 (O;nU).
Thus by Proposition 3.4, there exist a function w; € HEA™? (0O; nU) satistying

”?,Uj ||H1Ar—1(oij) <C ”quU”HcllAT*l(OjﬂU) :

We then extend the forms ¢;v and w; by 0 to R?, so that Ppjv e ]llioAT’1 (]Rd) and w; € H'A™! (Rd)
satisfy
dw; = d (¢;v) in RL
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We then define

so that

N
we HAA™ 1 (U) and dw = > d(¢jv) = dv.
j=1

We also have the estimate
lwlgar1wy < Clol iarwy -

This completes the proof of Step 1.
Step 2. We show the H'A"(U) estimate

w0 e

We first compute the exterior derivative of w®, by (6.2) and (6.4),

1 e” .
Cldf] sy (ld-Q +04 (F)Jr—d/z)) if d>3,

< «
1A 1 € .
H-1A™1(U) CdeHHlAT'(U) (14 +O (—13“[/2)) if d=2.

dw® = du+¢ Y (du) rdeym. 1 ( : ) +e > d(G(du)r) A dmr (g)

|I]=r < \I]=r

-(1-)du+ Y du); (dx1+d¢m71(é)) re Y d(g(du),)%,(é),

[|=r |I|=r

From this we deduce, in the weak sense

a(a(2)aws)-a (a(g) ((1 ~@)duse 3 G0 dns (g)))

+ 3 d(¢(du)r) /\a(é) (dxf + A1 (g))

T|=r
On the other hand, since u satisfies d(adu) = 0, we see that

‘; d (¢ (du);) Aadey =d(Gadu) = -d ((1 - ¢)adu) .
I|=r

Consequently, in the weak sense

(o)) =a((o(2)-a) 0 -] o= 2 aa()a@mn ons ()

+ > d(¢G(du)r) A (a(g) (dx; +d¢m71(é)) —ﬁdxf).

[I|=r
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It follows that

[ +(E) )
€ H-1A™1(U)

< 3 10D o [ () (o1 + o (2)) - ader

[I|=r

H-LA™(U)

e)-to-on,,
-Fig; a(é)d(QQhUI)A¢mJ(é)_mAwU)
=Ty +To+ Ty

To bound the term on the right we appeal to the interior regularity estimate, Proposition A.3 and
the assumption (6.3) on (;, we have

C
(6.7) ld(Gldu)D)lwr=w) < g |4l 2ar @),
hence by Proposition 5.10,
c a
T < 13+—d/2||df||H1(U)01 (e%).
The bound for T3 is similar, by Proposition (5.10) and the Popincaré inequality, Proposition 4.1, we

have .
ona2)

c o
T5 < 13+—d/2||df||H1(U)01 (e”).

To estimate the second term 75, the idea is to apply the boundary regularity result proved in the
appendix, Proposition A.4. Since df is assumed to be in H'A™(U) and U is assumed to be smooth,
we have

€

< 01 (Cc?a) .
L2AT(U)

So by (6.7), one has

|2l ar(w) < C 1480 | 2pr 7y < C 1S lppiae oy -

This implies, via the Sobolev imbedding Theorem, that du is in L% A"(U) if d > 3 and any LPA"(U)
if d =2, with the estimate

{ ||duHLd2_*d2A7"(U) SC de”HlAT(U) 1fd23,
HduHLPAT(U) < Cp de“HlAr(U) lf d = 27

for some C := C(d,U) < oo and C, := C(p,U) < co. We now set p =4 (but any p > 2 would work).
Using this estimate and the fact that (1 —(;) is supported in U \ Uy, gives, by Holder inequality,

C|U N Uy|72 ldul, g, ) i 423,

Ty < Clduf p2pr (e, ) < { 1
CIU N Ul | dul popriy i d=2,

Combining the few previous results completes the proof of (6.6).

Step 3. We deduce from the previous step the H' estimate

1 e .
ClAf]giar ) (ZH o (m)) ifd> 3,

3

(68) H’LLE—Q,UEHH(%AT._l(U) < . o
C deHHlAT(U) (l4 + Oy (l3+—d/2)) if d=2.
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Indeed, testing (6.6) with u® —w® € Hio(U)v and using Step 1, we obtain

‘/Ud(ue—we) (x)/\a(g)dwe(x) < Hue_weHHéAr—l(U) ”d(a(é)dwe)

HalAr—l(U)
N AT
Hu w HH&A L) H a E w H-LAmi(2)
Meanwhile, testing this equation for u®, we get
/ d(u®—w%) (z) A a(z) du®(z) = 0.
U £
Combining the two previous displays with the Poincaré inequality yields,
|dus - dw€||%zAT-(U) <C fUd (v —w®)(z)na (E) d (u® —0°) ()
€
<C|u® —w® . Hd(a(;)dwe)‘
[ |1 ar ) E HA )
< C'|duf - dw® . Hd(a(;)dwe) ‘ )
H | z2ar @ 6 -

Thus
HduE - dw6 HLZAT(U) < C

da (—) dw® )
£ H—lAr—l(U)

Using the estimate (6.6) and another application of the Poincaré inequality completes the proof
of (6.8)

Step 4. Recall that at the begining of the proof, we assumed |U| = 1. We extend Definition 4.7 to
the set U by setting, for each w e L?A™(U),

[l -1 ar @y = sup {{w, @)y = @ € H'AT(U), [(@)yl + [ Vel 2arwy < 1}
Note that this norm is a bit stronger than the standard H~! norm which only requires to have test
function in HOI. In this step, we prove that for each w € Hé’OAT’l(U) N (C&O)L, we have
|lwlpzar-1 @y < [dw] g-15- 0y
To do so, let v be the unique solution in HiOAT’_l(U) n (6’570)l of the problem
odv=w in U
(6.9) { tv =0 on OU.
The existence and uniqueness of such a solution are obtained by minimizing the quantity

j(v) = (dv’d’U)U - (w’U>U

on the space H, Gll’OA"’l(U )N (Cé{’o)l and requires to use the Poincaré inequality, Proposition 4.1. The
details are left to the reader.

If v is a solution (6.9), note that ddv = 0 € L2A™(U), ddv = w € L?A"}(U) and tdw = 0 (this
last property is implied by the condition tv = 0, see for instance [24]). As a consequence, we have
by the Gaffney-Friedrich inequality, Proposition 4.3, that dv e H'A"(U), with the estimate

[dv] -0y € C (Il 2aray + 140l 2arcer )
Testing (6.9) with v and using the Poincaré inequality also shows
|dv]l 2pr @y < Clwl p2pr-1(y -

Combining the two previous displays shows

(6.10) |dv| grar oy € Cllwl p2ar1 ) -
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testing (6.9) with w then shows,

(dw,dv)y; = (w,w)y = [wlp2pr-10y-
On the other hand, by the definition of the H~! and (6.10), we have

(dw,dv)y < [[dw|| g1 pr oy [d0] 51ar 0y

< [dw| g1 pr oy lwl2ar-1 @)-

Combining the two previous displays completes the proof of Step 4.
Step 5. We prove that

CIAf | 12 nr (i €@

[2+d/2

We have that

dw® —du=d (sCl 2. (du)rém,1 (E))

[I|=r

and therefore, since w® —u e H} (A" *(U), we have

Hdw6 - duHE—lAr(U) <C HduHL“’(Ur) Z €
[|=r

()

But with the same proof as in Step 4, with ¢0,, instead of U, and Proposition 5.10, we have

ot el

then, by Proposition A.3, we have

L2AT(U)

<e¢

g <
L2AT(U)

<O, (Ce),
L2A7(c0)

Ce”®
|dw® = dw| g-1xr 17y < [df 2287 @) On (m) :

This completes the proof of (6.11).
Step 6. The conclusion. By Steps 2 an 3, we can compute

||du€ - dUHE—lAr(U) < Hdua - d.’UJ6 ”E_lA”"(U) + ”d'UJ6 - dUHE—lAr(U)

< [ldu® = dw®| 2 pr gy + [dw® - dul g-1xr 0y -
This yields
1 g® :
Cldfl garw) (ld-Q + 04 (l3+—d/2)) if d>3,

1 e .
C deHHlAT'(U) (l4 + 0y (l3+—d/2)) if d=2.

Finally, the bound for |u® —u| 2(v) is obtained from the previous inequality and Step 4. Indeed,
since u—uf e HY (A" (U)n (C’g O)L, we have

Hdua - du”ﬂ—lAr(U) <

|du® = du p2pr () < O ldu® - dul g-1pry -

Step 7. The conclusion. The estimate obtained is valid for any 0 < [ < 1, in particular we can
choose [ to be a small power of € such that lgi—d/z is still a small power of . This completes the proof
of Theorem 2. n
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7. DUALITY

The goal of this section is to study a duality property between the homogenization of r-forms and
(d —r)-forms. We note that similar results were obtained independently by Serre [28] in the case of
periodic coefficients. For each a € €, and each = € R, the operator a(z) € £ (AT(Rd),A(d’T)(Rd))
satisfies the ellipticity assumption (2.16), so it is invertible and one can define the inverse operator
(a(z))teL (A(d_’") (R%), A" (Rd)), which satisfies the symmetry assumption (2.15) and the following
ellipticity condition

1
(7.1) SIpP <a@)'pap < AP, vp e A (RY).
We denote by
Q)= {a(-) ca:R15 L (A(dfr)(Rd),Ar (Rd)) is Lebesgue measurable
and satisfies (2.15) and (7.1)}.

We equip this set with a family of sigma algebras, for each U ¢ R,

Fl(U) = {a—algebra on Q! generated by the family of maps

ae [ pm(w)q@(w),p,qu’“(Rd),¢e05°<U>}.

One also defines inv to be the mapping

a—al.

) Q, - Q&_T,,
nv:

We then define inv.[P the probability measure defined on the measured space (2,_ ., F; ) by, for
each Ae F) |

inv,P.(A) :=P, (inv71 A),
the probability space (Q2),_,,F;_,.,inv.P,) satisfies the stationarity assumption (2.19) and the inde-
pendence assumption (2.20). The idea is then to define, for each (p,q) € A7) (R?) x A"(R?) and
each m e N,

1
Jinw(Om,p,q) = sup ][ (——a’ldu/\du—a’ldu /\p+q/\du),
ueAi“V(Dm) m

where A™ (O,,) is the set of solution under the environment a™*, i.e,
Ainy (Op,) = {u e HIAWD(O,) : voe CPA™(O,,), /D dunrald = 0} ,

and this quantity satisfies the conclusions of Proposition 5.1 and Theorem 1. In particular, there
exist a constant C'(d,\) < oo, an exponent a(d,\) >0 and a linear operator

mva e £ (A (RY), A"(RY))
such that, for each m € N,

sup  E[Juy(Om,p,invap)] < C37
peB1 A7) (Rd)

The following theorem determines inv a.
Theorem 3 (Duality). The homogenized linear maps & and inv a satisfy

va=(a)".
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Proof. First we need to prove the following result, for each 0 <7 < d and each bounded m € N,
Ainy (Om) = {v e HAACWD(O,) : dv=adu with u e A(Dm)}.

We split the proof into 2 steps

e We prove that each v € HGllA(d_’"_l) (O,,) satisfying dv = adu for some u € A (O,,) belongs to
Ainy (O,n). Indeed, for each w e C°A™! (O,,), we have, by the symmetry assumption (2.15),
and (2.13),

(7.2) dvratdw= dwaalde = dw A du = 0.
Om O Om

e We prove that for each v € A,y (O,,), there exists u € A(O,,) such that dv = adu. Indeed,

if v € Ajny (O,,), then a~'dv belongs to L?A” (O,,) and satisfies
d(afld’u) =0in O,,.
Consequently a~'dv € H, éAT (O,,). We can apply Proposition 3.4, to prove that there exists
ue HYA" (O,,) such that
a 'dv = du in O,,.

There only remains to prove that u € A (O,,), it is a consequence of the following computation.
For each w e C® A1) (O,,), we have, by the symmetry assumption (2.15) and (2.13),

f du nadw = f dw A adu = f dwAdov =0.
m D’UL D’UL

Using (7.2), we have

1
Jiny (O, p,q) = sup ][ (——afldu/\du—afldu/\p+q/\du)
uEAinV(Dm) Om

= sup (—l(adv) A (adv) —at(adv) Ap+qna (adv))
U€A(|:|m) Om 2

= sup (—ldv/\adv—dv/\p+q/\adv)
veA(Oy,) 7 Bm
=J (Om,~q,-D)
=J(Om,q,p) -
Thus, by Theorem 1, for each m € N,

sup  E[Jin(Opm,ap,p)]= sup E[J(Op,p,ap)] <C3 ",
pEBlAT(Rd) p€BlAT'(Rd)

The previous inequality can be rewritten
sup  E[Jin(Om,p, & 'p)] < C37™
qeB1A(d-T) (R)

1

Since the homogenized matrix is unique, we have a " = inva. This gives the expected result. O

Remark 7.1. The previous result can be applied in the particular case d = 2,r = 1 and the standard
homogenization problem

V- (avu) =0
can be rewritten with the formalism of forms
d(xadu) =0

(we identify the space R? with the space A'(R?) canonically). Thus, we can compute the dual
problem,
d(a™ «du) =0
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which can be rewritten in the standard formalism,

(7.3) vt (atviu) =0,

where we used the notation
1Ly _ _a2f
V= ( anf)

p- [_01 (1)] |
Performing the change of variable u(z) — u(Pz), the equation (7.3) becomes
(7.4) v-((ato P)vu) =0,
where a™! o P is defined by, for each z € R,
aloP(x)=a'(Pzx).

Denote by

With this in mind, one can compute the homogenized matrix a™ o P of the problem (7.4). We obtain
according Theorem 3

(7.5) a'oP=a'.

In particular, indeed if we assume that the environment satisfies, for some positive constant k and
for each x € RY,

a(x)a(Px) = kly,
then a(x) = ka ' (Px) and (7.5) gives

Il
o1

|

which implies
a=Vkl d-

This formula is known as the Dykhne formula which was originally proved in [7].

APPENDIX A. REGULARITY ESTIMATES FOR DIFFERENTIAL FORMS

In this appendix, we record some properties about the regularity of the solutions of the constant
coefficient equation dadwu. The two main results are the pointwise interior estimate, Proposition A.3
and the H? boundary estimate, Proposition A.4. Both these results are used in the proof of The-
orem 2. Most of these proofs are an adaptation of the classical proofs of the regularity theory of
uniformly elliptic equations (cf [11]).

We first state two propositions, Proposition A.1 and Proposition A.2. We then use these two
ingredients to prove the pointwise interior estimate, Proposition A.3. We finally prove a global H?
regularity result for the solution of dadu = 0, Proposition A.4.

The following proposition is an interior version of the Gaffney-Friedrich inequality, Propositions 4.3
and 4.4. The result is weaker because it is only an interior estimate, but it does not require any
regularity for the domain U nor any assumption on the value of the form on the boundary of the
domain.

Proposition A.1 (Interior Gaffney-Friedrich inequality). There exists a constant C := C(d) < oo

such that, for every 0 < r < d, every open bounded subset V,U < R? satisfying V. ¢ U, and every
uw e L2A" (U) such that du € LA™ (U) and 6u € L2A"™1 (U), we have v € H'A" (V) with the
estimate,

1
(A1) [Vl p2arry < C(||du||L2Ar(U) +[[0u] 2 pr oy + Tse(V.00) ”uLQAT(U)) :
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Proof. The proof relies on the following observation, given a form u = ¥ 7, urdz; € C*A™(U), we
have

(dd+d6d)u= Y Ausda;.
|I|=r

Select a function 1 € C°(U) such that

1y <n<l1 |v|<L
viETE S VIS s (v, o0

We then compute

IVulionry = ¥ [, [Vl (@) do
1
SZ/ \Vurn® (z) dx
I U

=% [, (@) A G @) da
= (un, (6d + do)un);
= (d(un),d(un))y + (9(un), 6(un))y
By (2.2), we have
(d(un),d(un))y = (ndu +dn A u,ndu + dn A u)y;

IN

2 (ndu, ndu)y +2(dn A u,dn Au)y,

<

1
C (dUizAru(U) + W uiQAT(U)) :

A similar computation yields

2 1 2
(6(un),d(un))y <C (\|5UL2AT1(U) * stV 00)2 uLzAr(U)) :
Combining the three previous displays completes the proof of (A.1). O

We then use the previous interior Gaffney-Friedrich inequality to prove the following interior
H? estimate. The proof of the following proposition is an adaptation of the standard interior H?
estimate for the solutions of uniformly elliptic equations, cf [11, Theorem 8.8].

Proposition A.2 (Interior H? regularity estimate). For every open bounded subset U,V ¢ R? such
that V c U, every 1 <r <d and every u € HGllA(T’_l)(U) solution of the equation

(A.2) d(adu) =0 in U.

we have du e H'A"(V) and it satisfies the interior estimate

1

|Vdul <Ol w77 ldy| +;II I
Hezar(n) =2\ Gist(v,o0) | A O T gist(v,a0)2 AT O)

for a constant C := C(d,\) < co.

Proof. The main idea of this proof is to mimic the proof of [11, Theorem 8.8] and combine it with
the interior Gaffney-Friedrich inequality.

First note that without loss of generality, one can assume that u € C’g_l(U)L. Select an open space
V c U such that V ¢ U and select two other open spaces W, W space such that V¢ W c W c W, ¢
W, c U such that

dist(V, o)

(A.3) dist(V,0W) = dist(W, 0W7) = dist(W1,0U) = 3
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and select a cutoff function n € C°(U) such that

C
A4 1y <n<1 < — -
(A.4) v<n<ly, V| < dist(V.00)

Let h >0 be small, choose k € {1,...,d} and denote by
V= D,;h (UQDZu) ,

where DZ is the difference quotient, defined by

u(z + hey) —u(x)
. .
If h is small enough then v € HiOA’"_l(U) can be used as a test function in (A.2). We obtain

(du,adv);; = 0.
Thanks to (2.2) and the equality dDZu = DZdu, we compute
dv = D" (d(n* D)) = D" (2ndn A Dpu) + D" (n* Djtdu).
Combining the two previous displays yields
(du,aD;" (n* Dydu)),, = - (du,aD;" (2ndn A Diw)),, -
The discrete integration by parts gives
(Dpdu,a (n” Dpdu)),, = - (Dpdu,a (2ndn A D)), .
By the Cauchy-Schwarz inequality, we obtain

Dhu(x) =

N[
N[

(DZdu, a (nzDZdu))U <2 ((D,};du, a (772D,}§du)>U) ((dn A D, adn A D,@u)U) .
and consequently, by (A.1) and the ellipticity assumption (2.16)

« C
VT dist(V,0U)2
Since we assumed u € C;7'(U)*, we have du = 0 in U and in particular du € L2A""2(V). From this
we deduce that u satisfies the assumptions of Proposition A.1 and consequently v is in H'A™ (W)
and satisfies the estimate

(D,}gdu, DZdu) (D,};u, D,};u)w .

1
IVul z2ar () < C(du||L2A"(U) + W||“”L2A<r—1>w))

1
< C(du”L2AT'(U) + W uL2A(Tl)(U)) )
where we used (A.4) in the second inequality. Moreover, according to [11, Lemma 7.23], we have the
inequality
(A5) HDZUHLQ(W) < CHVUHLZAT(Wl)
for A > 0 small enough. Combining the three previous displays shows
¢ 2 1 2
v S dist(V,00)2 (duHLW(U) " dist(Wy, 00 )2 “L2A<”><U>)'

Since this inequality is true for every |h| > 0 small enough, we have, according to [11, Lemma 7.24],
due H'A™1(V) and

(Dpdu, Djidu)

C 1
2 2 2
|Vdulz2pr vy < Bist (V.00 2 (duHLZAT'(U) + WHUHLsz)(m)

and the proof is complete. O
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Proposition A.3 (Elliptic regularity). There exists a constant C := C(d,k,\) < oo such that for
every open bounded subset U € R?, every 0 <r <d, every k € N, every R >0, and every solution of
the equation

d(adu) =0 in U,
the following pointwise estimate holds

C

k

(A.6) HV duHLWAT(UR) s Rk+d/2 HduHL?A"(U)’
where we denoted by Ug := {x € U : dist(z,0U) > R}.

Proof. Select an integer k € N, a non-negative real number R > 0, and a point x € Ug. It is sufficient
to prove (A.6), to show the estimate

C
(A.7) |deu(9€)‘ < R+ HduHL2A7“(BR(m)) )

for some constant C' = C'(d, k,A) < co. We split the proof into two steps
Step 1. We prove that there exists a constant C' = C(d,\) < oo, such that for every [ € N,
du e H'A" (Bgjgi () and
01212/2
1
(A.8) [9'dul porr (5, (o) €~ 10Ul 2nr e

This inequality can be proved by induction on [. It is true for [ = 0. We can use Proposition A.2 to
go from [ to [ + 1. Assume that (A.8) holds with I. In that case we have V'du e L2A" (BR/2L(33)). It
is easy to check

d(v'du) = 0.
Thus by Proposition 3.4, there exists a form v; € H, éAT’l (B R/2! (m)) such that

v eCy! (BR/Qz(a:))L and dv; = V'du.

It is moreover a straightforward computation to check

d(ady) =0.
Consequently, we can apply Proposition A.2 to v; with U = By (x)and V =B R/21+1 (x). This gives
vitldu e HYAT (BR/QM (z)), and thus du e H*A" (BR/2I+1 (z)) with the estimate

I+1

1+1 c2 l 2l+1
HV duHLQAT(BR/QlJrl (:E)) < T ||v dUHLQAT(BR/Ql ((E))) + ? ||Ul HLQA("“—l)(BR/Zl (m)) .

By Proposition 4.1, v; satisfies the Poincaré estimate

2l
||U1 HLQA(T‘—l)(BR/Zl (z)) < CE HV UHLzA(r—l)(BRM (x)),

with C := C'(d) < co. Combining the two previous displays yields
021+1 .
< —-—
R/2l+1 (ZB)) N R Hv dUHLQAT(BR/Ql (:B))
for some C':= C'(d,A) < oo. Applying the induction hypothesis completes the proof.
Step 2. From the first step, we get that for every [ € N, vF*du ¢ L2A" (BR/QW (m)) In particular,
by the Sobolev injection, see for instance [1, Chapter 4], we have

vFdu e L°A" (BR/2k+d/2+1 (m)) with the estimate

19

C

k I
VA (b e @) © T |9 28 e

for some constant C' = C'(d, k, \) < oo. This completes the proof of (A.7). O
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We then establish the following global H? estimate for the solution of dadu = 0.

Proposition A.4 (Global H? regularity). Let U ¢ R? be a smooth bounded domain of R%. For
0<r<d, let fe HIA"1(U) satisfying df € H'A"1 (U). Let u e HiOAT’_l(U) be a solution of the
equation

A9 d(adu) =0 in U,
(A-9) tu=f on OU,
then du e H'A™(U) and we have the estimate
(A.10) ldull grar oy < If | gary -

Proof. First note that two solutions of (A.9) differ by a form of 57_01, this implies that two solutions
of (A.9) have the same exterior derivative. Thus to prove (A.10), it is enough to prove it for a
particular solution of (A.4).

The strategy of the proof is the following. We want to apply the result from the regularity theory
of strongly elliptic operators to the differential form u, see (A.24) for a definition and [22] for a
reference on the topic of strongly differential operators. Unfortunately the operator dad is not
strongly elliptic, thus the result cannot directly apply. The strategy is then to solve the problem
dad + (-1)" = déu = 0 with appropriate boundary conditions so that ddu = 0 and wu is in fact a
solution of (A.9). Contrary to dad, the operator dad + (-1)" « dd is strongly elliptic and a regularity
theory exists for these operators. Thanks to this, we are able to obtain H? boundary regularity for
the function w, this implies (A.10) by the previous remark.

The main ideas of the proof are standard and can be found in [27, Chapter 2] and [22, Chapter 4].
We recall the notation for the set of harmonic forms with Dirichlet boundary condition introduced
in Proposition 4.4,

HENU) =H"(U) n Hclw(U) ={ue L*A™YU) : du=0, du=0in U and tu =0 on oU}.

We split the proof into 5 steps

e In Step 1, we show that there exists a unique solution in u € H';*(U)* to the system

dadu + (-1)" » ddu = dadf,
(A.11) tu =0 on U,
tou =0 on OU.
e In Step 2, we show that the form u defined in Step 1 satisfies ddu = 0 and is actually a
solution of (A.9).

e Steps 3, 4 and 5 are the technical steps, we show the H? boundary regularity for the solution
of the more general problem,

dadu+ (-1)" » déu = g,
tu =0 on OU,
téu =0 on OU.

for g € L>A%"*! using the theory of strongly elliptic operators developped in [22].
e In Step 6, we combine the results of Steps 1 to 4 with g = dadf to prove (A.10).
Step 1. First, we prove that there exists a unique solution u € H’;*(U)* of the system
dadu + (-1)" « déu = dadf,
tu =0 on OU,
tou =0 on OU.
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This equation can be rewritten variationally the following way, there exists u € H' A" (U)nH; 1 (U)*
such that tu = 0 and for each v e H'A"1(U) satisfying tv = 0,

(A.12) [du/\édu+[5u/\*5v:[df/\édv.
U U U

To solve this, we look at the associated energy: for v e H'A™™! (U)m’;’-[rD_l (U)* satisfying the boundary
condition tv = 0, we define

J(v)::/dv/\ﬁdv+f5v/\*5v—/df/\§dv.
U U U

Since a satisfies the ellipticity assumption (2.16), we have

fU dv A adv + fU 6v A *0v 2 A||dv|| p2pr iy + [60] p2ar 0y -
Moreover, by the Gaffney-Friedrich inequality, Proposition 4.4, we have

LdvAﬁdv+L5vA*5vZ)\HdU”LzAr(U)+||5UHL2AT(U)

> A [ Vo p2pr-1)
This implies that the functional J is coercive on the space
{u e H'AN"H(U)n HH(U)* : tu=0on OU}.

Moreover, this functional is also uniformly convex. The standard techniques of the calculus of
variations then show that there exists a unique minimizer of J denoted by u. By the first variation,
we have for each v e H'A™1(U) nH; 1 (U)* satisfying the boundary condition tv = 0,

/du/\ﬁdv+/(5u/\*5v:[df/\édv.
U U U

Also, for each v e Hy ' (U), we have

/ du/\ﬁdv+/ ou A *x6v = f df Aadv =0.
U U U
Thus for each v e H*A"1(U) satisfying tv = 0, we have

fdu/\édv+f5u/\*5v:fdf/\5dv
U U U

and the proof of Step 1 is complete. As a remark, note that since df € H'A"(U), dadf € L?A71(U).
Thus, if we denote by ¢ := dadf e L2A"*1(U), we have

(A.13) fdu/\édv+f5u/\*5v=fg/\v,
U U U

for each v e H'A™"1(U) satisfying tv = 0.
Step 2. We show that the solution u constructed in the previous step actually satisfies
dadu =dadf in U,
tu =0 on OU.

To prove this, it is enough, by Proposition 3.3, to show that for each v e H'A""!(U) satisfying the

boundary condition tv =0,
f du A Fdo = f df A Edo.
U U

To prove this select some v € H'A""1(U) satisfying tv = 0. Denote a, the form of Cgbl(U) such that

ay = argmin v - a2y
aeCy i (U)

and set w = v — ,,. In particular, this form satisfies, for each v e CA™2(U),

(w, d/7>L2AT’1(U) = 0,



QUANTITATIVE HOMOGENIZATION OF DIFFERENTIAL FORMS 47

this implies dw = 0. Moreover it is clear that dw = dv and that tw = 0. Thus, by the Gaffney-Friedrich
inequality, w € H'A""1(U). So w can be tested in (A.12), this gives

/du/\ﬁdw:fdf/\ﬁdw
U U

and since dw = dw, the previous equality can be rewritten

fdu/\édv:fdf/\ﬁdv,
U U

which is the desired result. The proof of Step 2 is complete.
Step 3. From now on, we consider the problem

dadu + (-1)" » ddu = g,
tu =0 on OU,
téu =0 on OU.

and want to prove the boundary regularity estimate, assuming that w € H%I(U ),

HUHH2AT'—1(U) <C H9HL2A"‘1(U) ’

for some C':= C(d,\,U) < co. This is the subject of Steps 3, 4 and 5.

The first part of this step is to reduce the problem to the half-ball denoted by B* :=
{xeB(0,1) : 2, 20}. To do so, let z € U, since QU is assumed to be smooth there exists an
open set V ¢ R? such that 2 € V and a smooth positively oriented diffeomorphism @ : V — B (0,1)
such that

®(B*)=VnU and ®(0) = z.
Without loss of generality, one can further assume that for each y € {z € B(0,1) : z, =0},

d®(y) (—en) =v(y),

where v(y) € R? denotes the outward unit normal to OU at y. This extra assumption ensures that
for each v e HYA™™(U), we have

®*tv =tP"v on {xeB(0,1) : z, =0}.

In particular, if v € HYA™(U) is such that tv =0 on 9UNV, then t®*v =0 on {z € B(0,1) : x,, = 0}.

From the previous remark, the equality (A.13), the change of variable formula (2.7) and the prop-
erties of the pullback (2.3) one obtains, via a straightfroward computation, for each v e H'A™"*(B,)
such that tv =0 on {x € B(0,1) : x, =0} (the tangential component of v vanishes on the flat part
of 9B;) and v=0 on 9B, ~ {z € B(0,1) : x, =0} (v vanishes on the curved part of 0B,),

(A.14) [ dug A agdv + [ OpUup A *p0pv = [ 9o A,
B* B* B*

where we used the notation.

ugp = P u,
dg = 0*a(07")",
=0t (07)
5 = %5 (271",
ge = ®g

The goal is then to prove the following H? regularity estimate

||U<I>HH2A771(31+/2) <C (||g<I>HL2Ad—7"+1(B+) + ||u<1>HL2A7"—1(B+)) )
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where B

12 denotes the half-ball of radius %

1
BI'/2:={3:GB(0,§):3:”20}.

To prove this estimate, let n € C2° (B(0,1)) be a smooth cutoff function satisfying
]lB(O,%) <n< ]lB(O,%) and |Vn| <5.
As in the proof of the interior regularity estimate, Proposition A.2, for h >0 and k€ {1,...,d}, we
denote by DZ the difference quotient, i.e,
v(x + heg) —v(x)
. .

The idea is then to apply formula (A.14) with the function v := D];h?’lzDZUcp, for ke {l,...,d-1}.
Note that since v € H*A™1(U) and tu = 0 on U, we have ug € H'A"*(B*) and tu = 0 on
{zeB(0,1) : £, =0}. This implies that v € H'A™! (B") satisfies tv = 0 on {x € B(0,1) : x,, = 0}.
Thus applying (A.14) yields

(A.15) / due A agdv + / dpUup N *pOpU = / gp AU
Bt Bt Bt

Dv(x) =

Term 1 Term 2 Term 3

We then estimate the three terms of the previous equality.
Estimate for Term 1. We first compute

fB dug A Bpdu = fB dug A Fpd (D" Djug)
. fB Agdug A D;"d (1° Djus)
- [, Di (Fodua) A d (3 Djua)
- [, (Ba(a + he)dDjuo + (D}Ee) dus) Ad (* Dhus)

Then note that by the ellipticity assumption (2.16) and by the definition of &g, there exists two
constants ¢ := c¢(\, ®) >0 and C := C(\, ®) < oo such that

(A.16) fB* g (z + hey)dDfug A d (UQDZucp)
_ fB q(x + hey)dD}ug A (2dn A Djug + 12D} )
zc Hnlefflu@HiﬂAT(B’r) -C HndDQU¢HL2AT(B+) [ dn A DZUCI’HLQAT(B*) :

Using the inequality, for each € > 0, ab < %az + 2_1562 and [11, Lemma 7.23] as in (A.5), the previous
display can be rewritten

fB+ Ao (x + heg)dDjug A d (D) > ¢ [ndDfual 2y ey = C V80 2 pr1 (e -
Similarly, since ® is smooth, we have, for some constant C := C(d, \, ®) < oo,
.. ((DiEie) dus) Ad (#*Djuo)
> =C |dus| f2pr(p+y [d (nzDZu‘I’)HLQAT(B*)

> —C ||VUCI> ||L2A7‘71(B+) (andDZqu HL2AT(B+) + Hd?’]2 A DQUQHLZAT(BJr)) .
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As in the previous computation, and using that n < 1, we obtain, for some C := C(d,\, ®) < oo,
hs 2 nh ¢ k|12 2
fB+ ((Dras)dus) Ad(n*Dius) > 3 HUdeuéHLzAT(B+) = C|Vuo|p2pr1 ey »
where ¢ is the constant which appears in (A.16). Combining the few previous displays yields
= h 2 2
fB+ dug A dgdv > ¢ HndeU¢HL2AT(B+) - C|Vue|p2ar-1(p+) -

For a technical reason which will become clear later, we use the identity d (ndDpr) nd (de Uq>)
dn A ( kug;) to further refine

(A17) ﬁ+ dU<p A E_l@d’l) 2c Hd (nDZUQ)HiQ[\T(B*) -C HVU@H%QAr—l(BJf) )

for some constants ¢ := ¢(d,\,®) >0 and C := C(d,\,P) < oo.
Estimate for Term 2. To estimate the second term, we first need to justify that there exists a
constant C := C(d, ®) < oo such that for each w ¢ H'A"™' (B*) supported in B (0, %)

A.18 5¢Uq> AN *<1>(5<1>D7h’w - (5<1>Dhuc1> AN *<1>(5<1>w
B* k Bt k

To prove this assumption, the idea is to expand everything. Consequently we write in coordinates
up = Y|fj=r—1 Uo,1(7)dzry and w = ¥ j-,y wy(v)dr;. Using this notation, the previous integral can
be rewritten

fB+ 5c1>U<I> N *@(LDD,;hw =

<C|Vua | gipr-1(pey [Vl grpr-1 ey -

811@7[ 8Dka

(2)

(a:)qﬁ (m) dx + lower order,
B+ I,J,i,j al‘l

where the sum is over every subset I,.J of {1,...,d} of cardinality r—1 and every 4,j in {1,...,d},
and the functions (bZI’] ; are smooth and depend only on ®. The "lower order” represents the terms
of lower order, with zero or one partial derivative. These terms are easy to estimate and we have

(Alg) |10W€I' 0rder| <C H Vuge HHlAr—l(BJr) H V'IUHHlAr—l(BJr) .

We can then compute the discrete integration by parts

W w hu w
[ e 000" Ly e [ 3 L) B 0y o) d

“ 1T O “rTeg O

Oug, 1 owy i
¥ /B ¥ (x+hek)%j(x)D2¢IfJ(x)dx.

174 O

But we can factorize the first term on the right-hand side, this yields

oD!
/ Z kuch( )an( )¢ (m) da = f 5‘1)])]’;1@ A *g0pWw + lower order.
B+ 174, (9:51 B

The terms "lower order” are as in (A.19) and can be estimated in a similar way. Since the functions
QSZI’J ; are smooth and depend only on @, we can estimate the second term on the right-hand side
crudely by, for some C := C(d,®) < oo

i T e ne) G Dk )

14 O

<Clus| gipr-1ey lwl grara sy -

Combining the few previous displays shows (A.18). We then apply this estimate with w = 772Dku@,
this yields

fB+ dpUp A *pOpU = fB+ OpUp A *p0p (D,;hnzDZucp)

s [ 8uDlun nwadn (7 D) - C lus s oy 07 DE0n) e -
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Expanding the term dg (772DZU¢) and using the same ideas as in the estimate of Term 1, we obtain

/B+ 5o (Djus) A *ods (772DZU¢) > C/B+ oo (DZuCP) A *a09 (Dpug) - C |Vua H2L?AT'—1(B+)
One can put the 7 inside the derivative and further refine
/B+ S0 (Dpug) A *ade (1°Dius) > CfB+ do (nDjtus) A *ade (nDjug) - C ”vu‘l’H%?AT—l(Bﬂ :
Combining the few previous displays shows
(A.QO) ﬁ+ 5@%1) AN *@5@1) >C ‘/B+ 5q> (UDZ’LL@) AN *qp&p (UDZ’LL@) -C HVU@ ||%2A7‘71(B+)
h
= C|Vue | p2pr-1(p+) HV (772Dku‘1’)HL2AT*1(B+) :
Using the properties of 7, one can show
|v (v Diua)| <Cn*v (Diua)) +C | Vue| p2pr
kY L2A7-1(B*) = n kUP L2AT-1(B*) @l L2A-1(B+)
h
<C an (Dku<1>) HLQAT'—l(B‘F) +C HVU"D HLQAT‘l(B*')
h
<C HV (TIDkU<I>) HLQAT'—l(B‘F) +C HVU"D HLQAT‘l(B*') :
This yields the following refinement of (A.20),
(A.21) ‘/BJr dpUdp N *pO0pU > C‘/B+ 0p (UDZ’LLq)) A *50p (UDZ’LLq)) -C||Vug ||%2Ar71(B+)

= C|Vue | p2pr-1(p+ |v (nDZuq’)HLZAT*(B*) :

Estimate for Term 3. This term is the simplier to estimate, we apply the Cauchy-Schwarz in-
equality to obtain

[, 90 8 < lgolpanecrns gy [l zanrs ey

< chb HLQAd’T*l(B*) Dlghn2D£U<I> HLQAT‘l(B*')
<C Hg<I>HL2Ad*”1(B+) HV (772D£u¢)HL2A7“-1(B+) :

Using the same argument as in the previous step, we replace 7? by 7,

(A22) L+ go ANV < C ”gq)HLzAd’T*l(B*) (Hv (WDIQLU‘P)HLzArq(Bﬂ + ”vuq)HLZAT*l(B*)) .

We then show one last estimate on the small but positive terms on the right-hand side of (A.17)
and (A.21). Indeed by the Gaffney-Friedrich inequality applied to the form (@’1)* (T]DZU(}) on the
smooth domain U n 9V, we have, for some constant C' := C(d,V nU) < oo

[v (@) (1Dfus)] .,y < O ([ (27) (DR ua) + @) D) 1y, e)-

Since @ is assumed to be a smooth diffeomorphism, we have, for some C := C(d,®) < oo,
9 (D00 oy < €7 (87) (1D}uo) | (nDhun)

<C ’ \Y (@_1)* (nDZucp)

L2AT(V)

L2AT-1(V) HLQAT'_I(V)

LZArfl(v) + C H vuq> ‘|L2Ar71(v) .

Similarly, we have
[d (nDw)| sy 2 € (@71) " d (nDftus)
And by the change of variable formula, we have

[5(27)" (nDfus)|

=C Hd(fbfl)* (UDZUq))

L2A™1(V) L2A™1(V)

L2AT2(V) = ﬁ+ 5<I> (TIDZUCP) A *cI>5cI> (T]DZU(}) .
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Combining the few previous displays with the estimates for the first term (A.17), the second
term (A.21) and the third term (A.22), we eventually obtain, for some C := C(d,\,®) < oo

HV (UD2U<1>)H;AT-_1(B+) <C|Vue Hi%v-—l(\/) +C' g H%2Ad—f'+1(B+)

+C HV (UDIQLU@)HLzAH(Bﬂ (HVUqDHL2AT*1(V) + g ”LZAd*”l(BJr)) .
This implies
h 2 2
HV (nDkucb)HL2Ar—1(B+) <C|Vue HL?AH(V) +C Hg<1>HL2Ad—7“+1(B+) )
and in particular
2 2
|v (DIQLU@)HLQN-_l(B;/Q) <C[Vua|zpr1vy + Clgelz2para e -
The previous inequality is true for every h > 0 small enough. Thus, by [11, Lemma 7.24], for each
ke{l,...,d-1}, 0y Vu belongs to L*?A""}(V) and

|0k Vua HLzAT-_l(BI/z) <C|Vus| 2pr-r1(vy + Clgal p2nari ey -

for some constant C := C(d, \,®) < oco. This completes the proof of Step 3.
Step 4. From the result of Step 3, to prove that ug € H2A"™ (BI’ /2), there only remains to prove

that 9;0ue belongs to L2A™! (BIr /2). This is what is proved in this step, along with the estimate
(A.23) |9a0dua ||L2Ar71(3;/2) <Clua | grar-1vy + C lgol p2pa-ra gy

for some constant C' := C'(d,\,®) < co. By (A.14), the function ug is a solution of the following
equation
®* (dad + 9 + 0) (<I>_1)* up = go in B,
This second order differential operator can be written in the form
d d
®* (dad +d » d) (CID_l)* w= Y A;p0;0ku+ ) Aj0ju+ Au,
k=1 j=1

where the coefficients A; ;, A; and A are smooth functions from B™ to the space of matrices of size

(Tfll) X (Tfll) (or equivalently the space of endomorphisms of A" (Rd)). The idea to prove (A.23) is

to show that this operator is strongly elliptic, i.e,

d
(A.24) > (0 Aj()n) &€k 2 clnPle? Vo eUVn e RGN, ve e RY
4. k=1

To prove the strong ellipticity, it is enough, by [22, Theorem 4.6], to prove that for each w €
CeA™1 (B*) that

(A25) LJr q>* (dﬁd +0 * 5) (q)_l)* WAW 2 ¢ H'UJHHlAr—l(BJr) -C ”'UJHLZAT—I(BJr) .
This is a consequence of the following computation

[, 0" (@ad+sea) (@) waw= [ (aad+s+0)(27) wa(@)u

- [aa(@) wad(@)ws [ s(@) was(e)w

> A|d (@) w Ho(e ) w

L2AT(V) L2A™-2(V)
Since w € CA™™1 (B*), we also have (CID’I)*w e CA™1 (V) and thus by the Gaffney-Friedrich
inequality,

[a (@) w

+ H5 (@_1)* w

L2A7(V) L2A™2(V) z¢ H ((I)_l)* w‘ HIAT(V) ¢ H ((I)_l)* Yl zearqvy”
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We then note that
lwlgrarry <€ H(‘I) '

[COPIE P

for some constant C' := C'(d,®) < co. This implies (A.25). Now that we know that the operator is
strongly elliptic, we have, by [22, Lemma 4.17], that the coefficient A,,,, has a uniformly bounded
inverse. As a consequence, we have

*
wl
HIAT(BY)
and

<Cllwll papr vy

HadadU@HLzAr(BJr < HAd dad duCPHL2Ar(B+)
d
Z
j=1k=1

Using the main result of Step 3, this gives, for some constant C' := C'(d, \, ®) < oo,

[y

d
(B*) * Z; HAjajuHLQAT(B*) + HAUHLQAT'(B-f) .

| Ajk050ku) 2,

|0adaus | 2pr gy < Clus] gipr1vy + Clgal p2parapey
and the proof of Step 4 is complete.
Step 5. The main results of Steps 3 and 4 show that the function ug belongs to H?A™"! (B*) and
we have the estimate
|ue HHQAT(B*) <Cue HHlAH(B+) +C Hg<I>HL2Ad*”1(B*) )
with C := C(d, A\, ®) < co. This implies

(A.26) lwl g2 ar (very € Clul grarr ooy + € gl p2adravany -
Since QU is compact, we can cover OU with finitely many sets Vi,...,Vy as above. We sum the
resulting estimates, along with the interior estimate from Proposition A.2 applied to the function
f +u, and obtain v € H?A" (U) with the estimate

|dull g1 ar 0y < Clul grara @y + Clgl Loar1 vy »
for some C := C(d,\,U) < oo. We then simplify a little bit the right-hand side. Since we assumed
ueHyH(U)*, we have, by the Gaffney-Friedrich inequality, Proposition 4.3,

|Vul 2pr-1 0y < dullp2ar @y + 10l p2par-2 (0 -

This inequality can be further refined, thanks to [27, Proposition 2.2.3] into

|l frarr 0y < Il poar oy + 10U] p2pr-2 () -
By (A.13) and the ellipticity assumption (2.16), we have

HdU”%Mr(U) + H‘su”iQAT—?(U) <C ”g”LQAT'(U) ”uHLQAd—”“”(U) :

Combining the two previous displays with (A.26) shows

lull grzpr-10ry < Clgll 2ar-1 0y -

and the proof of Step 5 is complete.
Step 6. Applying the result of Step 5 with the specific function g = dadf, gives
|l grzpr-1 0y < €A 2 pr-1(1ry 5

and consequently

|dul g1 prr @y < ClASf | grary -
Since two solutions of (A.9) differ by a form of Cg”ol, they have the same exterior derivative. From
this remark and the previous estimate, we obtain (A.10). O
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