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La vérification des logiciels critiques tels que les noyaux des systèmes d'exploitation est une activité longue et complexe. Celle-ci nécessite une attention particulière dès les premières phases de conception. Le choix des fonctionnalités, la stratégie d'implémentation, le modèle du matériel à gérer, les propriétés à vérifier et l'approche de vérification sont tous à prendre en compte pendant le développement du noyau. Ce papier discute de la stratégie de co-design d'un noyau de système d'exploitation et de sa preuve. L'objectif visé est d'adapter le design du noyau pour réduire la complexité de la production de sa preuve tout en préservant son utilisabilité. La propriété étudiée dans ce papier est une propriété de sécurité, exprimée en terme d'isolation mémoire. L'étude présentée met notamment en évidence l'importance de l'interface d'accès au matériel. In fine c'est cette interface qui est axiomatisée pour construire la preuve du noyau.

Introduction

La sécurité des logiciels critiques est aujourd'hui un enjeu majeur dans le monde informatique. De nouvelles attaques confirment chaque jour la nécessité d'investir plus dans les outils et les techniques qui permettent de réduire la vulnérabilité de nos systèmes. Le plus souvent il suffit d'exploiter des failles dans le système d'exploitation pour compromettre la sécurité globale d'un système. Il existe plusieurs travaux autour de la vérification formelle des systèmes d'exploitation. Cette technique est fondée sur des notations mathématiques permettant de raisonner rigoureusement sur les programmes. Une grande majorité de ces travaux consiste à prouver des propriétés sur des systèmes de taille importante ce qui rend l'étape de la maîtrise de tous les détails de ce logiciel critique assez longue et donc la vérification devient plus compliquée à établir. Prenons l'exemple du noyau seL4 [START_REF] Klein | Comprehensive formal verification of an OS microkernel[END_REF] qui est aujourd'hui considéré comme étant le micro-noyau qui a les résultats les plus satisfaisants au niveau des preuves. L'objectif principal est de vérifier le bon fonctionnement du système ainsi que quelques propriétés de sécurité. seL4 contient environ 8700 lignes de C et 600 lignes d'assembleur impliquant environ 480 000 lignes de preuve en Isabelle/HOL [START_REF] Nipkow | Isabelle/HOL : A Proof Assistant for Higher-order Logic[END_REF]. L'hyperviseur HyperV [START_REF] Leinenbach | Verifying the Microsoft Hyper-V hypervisor with VCC[END_REF] contient environ 100 Kloc de C et 5 Kloc d'assembleur dont seulement 20% a été vérifié [START_REF] Moskal | VCC : A practical system for verifying concurrent C[END_REF]. Le noyau µC/OS-II [START_REF] Xu | A practical verification framework for preemptive OS kernels[END_REF], dont le bon fonctionnement de certains modules a été formellement vérifié, contient environ 6400 de lignes de C et d'assembleur. CertiKOS [START_REF] Gu | CertiKOS : An extensible architecture for building certified concurrent OS kernels[END_REF] est un autre noyau tel que le mécanisme de concurrence a été vérifié. Il contient 6500 lignes de C et d'assembleur ainsi que 450 lignes pour spécifier le modèle abstrait du noyau. Dans ce papier nous discutons nos choix de conception et de vérification du proto-noyau Pip [START_REF] Jomaa | Proof-oriented design of a separation kernel with minimal trusted computing base[END_REF][START_REF]The Pip Development Team[END_REF] qui ont favorisé la réduction de la taille du code du noyau ainsi que le coût de la production de sa preuve. En effet, la sécurité assurée par ce noyau est fondée sur le principe de partitionnement de la mémoire et les services fournis sont écrits en Gallina, le langage de spécification de Coq [START_REF]The Coq Development Team[END_REF], et traduit automatiquement vers C en utilisant Digger [START_REF] Hym | [END_REF].

Que cherche-t-on à garantir ?

Le choix des propriétés à vérifier dépend fortement du contexte dans lequel le système sera utilisé. Il est possible par exemple de prouver que les programmes se comportent correctement. Autrement dit établir une preuve mathématique sur le comportement fonctionnel du système. En revanche, même un système qui fonctionne correctement est susceptible de contenir des bugs de sécurité ce qui rend les programmes facilement attaquables. Dans le contexte des logiciels critiques tels que les noyaux des systèmes d'exploitation, il est prioritaire de prouver des propriétés de sécurité plutôt que de se concentrer sur le bon fonctionnement. Le choix des propriétés fonctionnelles dépend fortement des détails d'implémentation du système. Donc si le système est très complexe il est nécessaire de définir et vérifier de nombreuses propriétés pour prendre en compte tous les comportements possibles prévus par ce système, ce qui risque de faire apparaître un nombre important des propriétés. En effet, la sécurité n'est pas une propriété fonctionnelle et donc elle n'est pas liée à une fonctionnalité en particulier. Ainsi, sa preuve consiste à définir formellement ce qu'est cette propriété de sécurité puis prouver qu'elle est préservée par chaque étape de l'exécution du système. La sécurité, également, est un terme assez général. Dans le contexte d'un système d'exploitation la sécurité, telle que identifiée par Rushby [START_REF] Rushby | A trusted computing base for embedded systems[END_REF][START_REF] Rushby | The design and verification of secure systems[END_REF], consiste principalement à assurer la séparation entre les entités ainsi que contrôler les communications entre elles. Une première étape dans ce processus de vérification nécessite donc de définir clairement les propriétés de sécurité visées par la preuve et d'identifier les différents composants matériels ou logiciels sur lesquels reposent ces propriétés. Dans ce contexte nous nous intéressons à la propriété d'isolation mémoire. Cette propriété permet d'assurer qu'un programme ne peut pas accéder à la mémoire d'un autre programme. Nous considérons que c'est la propriété de sécurité la plus fondamentale car elle permet de prouver d'autres propriétés telles que celles qui consistent à assurer la sécurité de la communication entre les processus. Il est important de noter que d'après notre expérience, la vérification des propriétés de sécurité nous amène également à prouver certaines propriétés sur le bon fonctionnement. Elles sont formalisées soit sous la forme de propriétés de cohérence [START_REF] Jomaa | Formal proof of dynamic memory isolation based on MMU[END_REF] ou encore définies comme propriétés sur l'évolution de l'état au sein des services noyau. En revanche nous nous sommes limités à celles qui sont nécessaires pour prouver les propriétés de sécurité. Cela permet d'identifier les propriétés fonctionnelles les plus pertinentes tout en assurant la vérification des propriétés fondamentales de sécurité.

Méthodologie de développement et choix de conception de Pip

Une méthodologie traditionnelle de développement d'un noyau et sa vérification consiste à suivre d'une manière séquentielle les étapes suivantes : Conception, implémentation et preuve. En revanche, le co-design de noyau avec sa preuve nous amène à adapter cette approche en autorisant des feedbacks entre ces étapes. Autrement dit, influencer le développement d'une étape par une autre pour réduire le coût de la preuve et assurer l'utilisabilité du système. En effet, pour faciliter à la fois la preuve et la traduction du code, l'implémentation de Pip se décompose principalement en deux couches. API de Pip La première couche est la partie du code convertible de Gallina vers C. Elle comprend l'implémentation des différents services fournis par Pip. Ces services gèrent principalement la mémoire virtuelle des partitions et les interruptions, et assurent l'isolation mémoire. Il s'agit de dix appels systèmes [START_REF] Jomaa | Proof-oriented design of a separation kernel with minimal trusted computing base[END_REF] choisis minutieusement pendant la phase de conception afin d'assurer à la fois la faisabilité de la preuve et l'utilisabilité du système. Ce choix de minimisation du TCB (Trusted Computing Base) est principalement motivé par la réduction du coût de la preuve. Cependant, la réduction de la taille du TCB n'est pas un concept inconnu. Il a été adopté par la famille des micro-noyaux [START_REF] Liedtke | On micro-kernel construction[END_REF]. Il a été montré qu'il est possible de réduire le code exécuté en mode noyau à la gestion de la mémoire virtuelle, l'ordonnancement, la communication entre les processus, le multiplexage et le changement de contexte. Le reste des modules tels que la gestions des fichiers et les périphériques peuvent s'exécuter au même niveau que les applications utilisateur sans avoir d'impact sur la sécurité. Les exonoyaux [START_REF] Engler | Exokernel : An operating system architecture for application-level resource management[END_REF] sont conçus en suivant le même principe. En effet, ces travaux ont montré qu'il est possible de réduire encore plus le nombre de fonctionnalités exécutées en mode noyau. Leur modèle de sécurité exige d'implémenter la gestion de la mémoire virtuelle, le changement de contexte et le multiplexage en mode privilégié. De façon similaire, le co-design du proto-noyau Pip avec sa preuve (i.e. influencer la conception pour faciliter la preuve) nous a menés à réduire le TCB au strict minimum en exportant tous les modules qui ne sont pas nécessaires pour la sécurité en mode utilisateur, y compris le multiplexage. La gestion de la mémoire assurée par Pip est fondée sur le modèle de partitionnement hiérarchique [START_REF] Rushby | Partitioning in avionics architectures : Requirements, mechanisms, and assurance. -Rapport technique[END_REF]. Au démarrage du système, toute la mémoire physique disponible est mappée dans la partition racine. Cette dernière, comme n'importe quelle nouvelle partition, est autorisée à créer des partitions enfants en utilisant uniquement sa propre mémoire pour construire un modèle arborescent. Chaque nouvelle partition est configurée de sorte que toutes les pages associées à cette partition sont mappées dans la partition parent (ce qu'on appelle le partage vertical). Cette structure arborescente nécessite des structures supplémentaires en plus des pages du MMU dans chaque partition afin de garder des informations sur chaque page associée à une partition. Le choix de ces structures est également motivé par la réduction du coût de la preuve et l'utilisabilité du système. En effet, une première structure que nous avons appelée shadow1 reprend la structure arborescente des pages de configuration du MMU pour y stocker d'autres informations. Cette structure est nécessaire pour assurer l'isolation mémoire. Les données stockées dans cette structure permettent au noyau de savoir si une page mappée dans une partition parent a été partagée avec une partition fille ou non. Cela évite de mapper la même page dans plusieurs enfants différents car dans ce cas l'isolation mémoire ne serait plus garantie. Deux autres structures shadow2 (qui a également la même structure arborescente du MMU) et linkedList (une liste de paires d'adresses virtuelles et physiques) ont été mises en place pour faciliter la remise des pages à la partition parent après leur récupération dans le fils. Contrairement au shadow1 ces deux dernières structures ne sont pas nécessaires pour la sécurité mais elles sont utiles pour améliorer la performance de l'exécution des appels système fournis par le noyau. À cet égard Pip gère uniquement la mémoire des partitions (y compris la configuration du MMU et les structures internes des partitions) et le changement de contexte (qui se résume simplement à un basculement du flot d'exécution soit vers la partition racine, soit vers le père de la partition qui est en train de s'exécuter ou bien vers l'un de ses fils). Tous les services du noyau sont écrits dans un style impératif grâce à une monade d'état [START_REF] Wadler | Comprehending monads[END_REF] qui permet d'introduire et gérer facilement toute sorte d'effet de bord tels que la modification de l'état du système. L'une des particularités de notre stratégie d'implémentation est qu'aucun objet de la librairie standard de Coq tels que les listes ou les arbres n'ont été utilisés dans l'implémentation des services. En effet, de point de vue preuve il est plus simple de raisonner Compas'2018 : Parallélisme/ Architecture / Système Toulouse, France, du 03 au 06 juillet 2018 sur ce type de structures abstraites, en outre, cela peut complexifier la preuve du traducteur de Gallina vers C. Ainsi, comme réponse à ce problème, toutes les structures maintenues par le noyau (listes et arbres) sont codées explicitement dans la mémoire physique. Cela exige uniquement des primitives assurant la lecture et l'écriture dans la mémoire à des adresses physiques bien définies. Cet ensemble constitue le HAL. HAL La deuxième couche contient quelques dizaines de primitives assez simples et auxquelles nous faisons confiance. Elles sont écrites directement en C et en assembleur et uniquement utilisées par le noyau pour accéder à l'état du matériel. Pour chacune de ces primitives nous avons défini une fonction en Gallina modélisant le comportement de celle-ci. Par exemple, une des primitives en HAL est simplement un accès en lecture ou en écriture à la mémoire physique. Autrement dit, c'est la partie du code qui ne peut pas être exprimée en Gallina. Concrètement, la mémoire physique est modélisée par une liste d'associations en Gallina, telle que la clé est une adresse physique et la valeur est la donnée sauvegardée à cette adresse. L'accès matériel permettant la modification de la mémoire physique en C est modélisé par la modification de la liste d'associations. L'exemple suivant correspond à une fonction interne de Pip (getFstShadow), écrite en Gallina et sa traduction mot à mot en C. Cette fonction permet de récupérer une référence vers une structure de configuration d'une partition. Elle consiste en une séquence de trois primitives HAL : getSh1idx, succ et readPhysical et retourne la référence en question. Le code Gallina (à gauche) sera ainsi automatiquement traduit dans le code C (à droite) : 

Quelle approche de vérification ?

Pour prouver des propriétés sur leurs systèmes, la majorité des travaux [START_REF] Klein | -seL4 : Formal verification of an OS kernel[END_REF][START_REF] Gu | CertiKOS : An extensible architecture for building certified concurrent OS kernels[END_REF][START_REF] Richards | Modeling and security analysis of a commercial real-time operating system kernel[END_REF][START_REF] Dam | Formal verification of information flow security for a simple ARM-based separation kernel[END_REF][START_REF] Sanán | Separation kernel verification : The xtratum case study[END_REF] utilise une approche par raffinement [START_REF] Abadi | The existence of refinement mappings[END_REF]. Cette approche consiste à développer et prouver des systèmes de manière incrémentale. Il s'agit de définir un modèle abstrait du système désiré, puis à partir de ce dernier définir graduellement son implémentation en introduisant à chaque niveau plus de détails sur les objets manipulés par ce système tels que les structures de données et les variables. La preuve de la propriété de sécurité se fait uniquement au niveau du modèle abstrait. Chaque niveau inférieur est considéré comme un raffinement des niveaux précédents et une preuve est nécessaire pour prouver la validité de chaque niveau de raffinement. Cette approche est avérée la moins coûteuse en supposant que sa preuve est plus rapide à établir en la comparant avec l'établissement de la preuve des propriétés directement sur le code. Mais cela a aussi un coût. En effet, la définition d'un modèle abstrait de ce qu'on vise à implémenter repose généralement sur une intuition de ce que fait le système [START_REF] Parnas | A rational design process : How and why to fake it[END_REF]. Donc le risque de définir un comportement abstrait qui n'existe pas au niveau de l'implémentation concrète est tout à fait Compas'2018 : Parallélisme/ Architecture / Système Toulouse, France, du 03 au 06 juillet 2018 possible. Plus précisément, nous pouvons définir des comportements qui n'existeront pas dans le vrai système. Puis pendant l'étape de vérification des raffinements il est possible de détecter cette incohérence dans un niveau plus loin voire seulement au niveau de l'implémentation finale. Dans ce cas il faut modifier toutes les spécifications intermédiaires ainsi que la preuve de la validité du raffinement. Le co-design d'un noyau et de sa preuve nécessite des échanges réguliers entre les deux équipes de développement et de vérification dans le but d'obtenir un compromis entre l'utilisabilité du logiciel conçu et la faisabilité de sa preuve. Mais, le processus de raffinement, en pratique, est généralement dirigé par l'équipe de vérification et rarement maîtrisé par les développeurs, ce qui limite la collaboration entre les deux équipes [24, p.xxiii]. Il est donc possible de faire des choix de design qui ne seront pas validés pendant la dernière phase de conception (c'est-à-dire l'implémentation finale). Le noyau Pip que nous avons développé est plus petit (à dessein) que les noyaux identifiés au début de ce papier, il contient environ 1500 lignes de code et comprend les services nécessaires pour assurer la sécurité et son utilisabilité. La réduction de la taille du code à prouver nous a menés à adapter la méthodologie de vérification. En effet, nous avons appliqué une approche différente qui est la preuve directement sur le code en s'appuyant sur les invariants [START_REF] Jomaa | Formal proof of dynamic memory isolation based on MMU[END_REF]. L'exemple suivant consiste à prouver le triplet de Hoare [START_REF] Hoare | An axiomatic basis for computer programming[END_REF] définissant l'invariant d'un appel système sys_call : {isolation & cohérence} sys_call {isolation & cohérence}. sys_call pourrait être l'un des services fournis par le noyau Pip. Notre processus de vérification consiste à prouver que les propriétés d'isolation et de cohérence sont préservées par tous les services du noyau (la formalisation des propriétés et leurs vérification ne font pas l'objet de ce papier : voir [START_REF] Jomaa | Proof-oriented design of a separation kernel with minimal trusted computing base[END_REF] pour plus de détails) et que la traduction de Gallina vers C est correcte. Il est important de noter que prouver des propriétés directement sur le code donne au prouveur la maîtrise de tous les détails d'implémentation. Suite à notre expérience, cela s'est avéré important pour faciliter le raisonnement sur certaines séquences d'instructions. Bien que, du point de vue concepteur c'est le résultat final de l'exécution d'un service noyau qui compte, l'ordre dans lequel les instructions sont exécutées peut compliquer la preuve. Dans ce contexte nous avons identifié deux règles : rapprocher le calcul d'une valeur de son utilisation et éviter les incohérences temporaires dans les structures de données d'une partition pendant l'exécution d'un service. Par exemple, considérons une fonction qui met à jour une liste chaînée, quand il s'agit d'ajouter d'un élément dans cette liste il est recommandé d'initialiser la nouvelle cellule avec la bonne valeur avant de l'associer à la liste. Cela garantit la cohérence durant l'exécution de la fonction. Ainsi, à plusieurs reprises nous avons décidé de changer l'ordre d'exécution de certaines instructions pour faciliter l'établissement de notre preuve.

Invariants lignes de preuve temps createPartition (≈ 300loc)

≈ 60000 ≈ 10 mois createPartition + addVaddr (≈ 110loc) ≈ 78000 ≈ 2 mois createPartition + addVaddr + mappedInChild (≈ 40loc) ≈ 78300 ≈ 4 heures 
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  Definition readPhysical (paddr : page) (idx : index) : LLI page := 2 perform s := get in ( * Récupère l'état * ) 3 let e := lookup paddr idx s.(memory) beqPage beqIndex in ( * Récupère l'entrée * ) 4 match e with 5 | Some (PP a) ⇒ ret a ( * Retourne la valeur si elle est de type Page * ) 6 | _ ⇒ undefined 5 ( * Sinon signale un comportement indéfini * ) 7 end.

Confiance en HAL Concrètement

  , le comportement du matériel est plus compliqué que notre modèle abstrait de HAL en Gallina. En plus de la mémoire physique, il peut être nécessaire de gérer d'autres composants internes tels que les caches ou le TLB. Nous considérons que le HAL représente une abstraction du comportement du matériel géré par le noyau. C'est une manière de formaliser l'idée que le développeur se fait du comportement du matériel tout en gardant une formalisation indépendante d'une architecture en particulier. Nous partons du principe que la vérification des propriétés de sécurité nécessite dans un premier temps d'identifier clairement le rôle du noyau et celui du matériel dans le contexte de la sécurité. Cela nous permet de découpler l'implémentation du noyau des hypothèses sur lesquelles reposent les propriétés de sécurité. Le but de nos travaux est de vérifier les propriétés du noyau, donc la manière dont le matériel effectue sa tâche devient un problème orthogonal et nécessite Compas'2018 : Parallélisme/ Architecture / Système Toulouse, France, du 03 au 06 juillet 2018 partitions nécessite des opérations d'écriture dans la mémoire physique. Le rôle du matériel ici est d'effectuer la modification, en revanche c'est le noyau qui doit fournir les valeurs. Par conséquence, le but principal de la vérification sera plutôt sur les valeurs fournies par le noyau en fonction desquelles le matériel effectue l'opération. L'exemple suivant permet de comparer l'implémentation en C d'une primitive HAL avec son modèle en Gallina. Cette primitive, readPhysical, retourne l'adresse physique sauvegardée à l'adresse passée en paramètre. Dans le contexte de getFstShadow, la valeur retournée par cette primitive correspond à une valeur dans une page de configuration d'une partition. En C, il s'agit simplement de récupérer la valeur sauvegardée dans table à la position idx. Par contre, son modèle en Coq, qui est une fonction monadique, met en place un test supplémentaire permettant de vérifier que le noyau avait déjà sauvegardé une valeur de type page (i.e. PP) à cette adresse physique sinon c'est considéré comme un comportement indéfini. Ainsi, pour prouver que cette primitive retourne bien un numéro d'une page physique, il suffit de prouver que les arguments fournis par le noyau ont les propriétés nécessaires pour satisfaire le test défini dans le modèle en Coq. Donc concrètement, nous supposons que l'implémentation de readPhysical en C est correcte mais nous prouvons que les valeurs table et idx fournies par le noyau ne produisent pas un comportement indéfini. La primitive readPhysical en C :

	uint32_t readPhysical(uint32_t table, uint32_t idx) {	1
		disable_paging(); / * En mode noyau : nous pouvons désactiver le MMU * /	2
		uint32_t dest = table | (idx * sizeof(uint32_t));	3
		uint32_t val = * (uint32_t * ) dest;	/ * Récupère l'entrée * /	4
		Definition getFstShadow part := enable_paging();	uintptr_t getFstShadow(uintptr_t part) { 5 / * Réactive le MMU * /
		perform idx := getSh1idx in return val & 0xFFFFF000;	const uint32_t idx = getSh1idx(); / * Retourne la valeur * /	6
	}	perform idxSucc := Index.succ idx in readPhysical part idxSucc.	const uint32_t idxSucc = succ(idx); return readPhysical(part, idxSucc); }	7
	Son modèle en Gallina :		

Il est important de noter qu'une primitive HAL ne correspond pas à une instruction du CPU. Elle consiste simplement en une opération élémentaire, du point de vue du modèle, permettant d'accéder à la mémoire, effectuer un calcul logique ou alors récupérer la valeur d'un paramètre lié à l'architecture.

4. une preuve complémentaire

[START_REF] Barthe | Cache-leakage resilient OS isolation in an idealized model of virtualization[END_REF][START_REF] Syeda | Reasoning about translation lookaside buffers[END_REF][START_REF] Kocher | Spectre attacks : Exploiting speculative execution[END_REF][START_REF] Lipp | Compas'2018 : Parallélisme/ Architecture / Système[END_REF]

. Par exemple, Pip contrôle l'accès des processus à la mémoire physique à travers le MMU. Donc nous prouvons que la propriété de sécurité est préservée à travers une configuration correcte des tables de MMU. Cette configuration est effectuée par le noyau en s'appuyant sur l'hypothèse que le MMU traduit correctement les adresses virtuelles en adresses physiques. De même, la configuration des structures internes des

TABLE 1 -

 1 L'organisation de la preuve Actuellement une partie importante de l'implémentation du noyau a été vérifiée. Elle concerne les services illustrés par le tableau 1. La vérification de l'appel système createPartition correspond à la preuve à laquelle nous avons consacré le plus d'effort. Cela est justifié d'une part par sa complexité (il consiste en environ 300 lignes de code), et d'autre part parce que c'était le premier service abordé par la vérification. En effet, durant le processus de sa preuve, nous avons défini la majorité des propriétés de cohérence et donc une partie importante des théorèmes sur les structures manipulées par le noyau ont été définis et prouvés.