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Abstract. The Wnt/β-catenin signalling pathway plays an important
role in the proliferation of neural cells, and hence it is the main focus of
several research aimed at understanding neurodegenerative pathologies.
In this paper we consider a compact model of the basic mechanisms of
the Wnt/β-catenin pathway and we analyse its dynamics by application
of an expressive temporal logic formalism, namely the Hybrid Automata
Stochastic Logic. This allows us to formally characterise, and effectively
assess, sophisticated aspects of the Wnt/β-catenin pathway dynamics.
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1 Introduction

Systems Biology [11] is concerned with the development of formalisms for build-
ing “realistic” models of biological systems, i.e. models capable of reproducing
wet-lab observations. A biological model consists of a set biochemical agents
(i.e. species) whose interactions are expressed by a set of reaction equations.
This leads to either a continuous-deterministic interpretation (i.e. in terms of a
system of differential equations), or to a discrete-stochastic interpretation (i.e.
in terms of a discrete-state stochastic process).

Stochastic modelling and systems biology. Within the discrete-stochastic seman-
tics realm, which is what we consider in this work, molecular interactions are
assumed to be of stochastic nature hence biochemical reactions occur according
to probability distributions. In this case what modellers normally do is to gen-
erate one (or several) trajectory(ies) through stochastic simulation and observe
the evolution of the species (under different model’s configurations) in order to
figure out how a given aspect of the model’s dynamics is affected by the various
elements of the model (i.e. what species/reactions is responsible for a given
observed behaviour). Such an approach has two main advantages: its simplicity
and its low computational cost (the runtime for generating a single trajectory or
a normally small number of trajectories is very low even for large models). On



the other hand the main disadvantage is that it is little formal, meaning that
the modeller must draw conclusions based only on the observation of a single
(stochastic) trajectory (or of a trajectory obtained by averaging a normally small
number of trajectories).

Stochastic model checking and systems biology. Stochastic model checking [12]
(SMC) is a formal technique that allows the modeller to formally express relevant
properties in terms of a (stochastic) temporal logic and to assess them against
a given stochastic model. This is achieved through an automatic procedure
which can either provide an exact answer through exhaustive exploration of
the model’s state space (i.e. numerical model checking [2]) or an estimated
answer resulting from a finite sampling of the model’s trajectory (i.e. statistical
model checking [13]). SMC has at least two main advantages with respect to
informal approaches: first it provides the modeller with a language for capturing
relevant properties formally; second the answer it calculates (e.g. probability
that a property is satisfied by the model) are either exact (i.e. they reflect the
complete set of possible behaviours of the model) or are accurate estimates (i.e.
calculated over a a sufficiently large sample of trajectories). The effectiveness
of SMC in systems biology applications is demonstrated by an ever increasing
number of publications, e.g.[8,10,5].

β-catenin and the WNT pathway. In cellular biology signalling pathways
are basic mechanisms responsible for controlling a cell’s life-cycle. Simply speak-
ing a signalling pathway represents a cascade of biochemical reactions which is
triggered by a specific signal (i.e. type of molecules) whose presence, normally
at the cell membrane, activates the cascade leading to the “transmission” of the
signal inside the cell (i.e. cytosol and/or nucleus). In this paper we study a model
of the Wnt/β-catenin pathway, a signalling pathway known to be involved in the
pathological degeneration of neuronal cells [14].

Our contribution. In this work we present preliminary results of application
of formal analysis, based on the so-called Hybrid Automata Stochastic Logic
(HASL) statistical model checking, to a model of the Wnt/β-catenin pathway
presented in [15]. In particular we show how one can define specific HASL for-
mulae for assessing sophisticated characteristics of the Wnt/β-catenin pathway
dynamics. This includes, for example, measuring the temporal location and the
amplitude of transient peaks of nuclear β-catenin, exhibited by certain initial
conditions, or assessing its oscillatory character resulting from other conditions.
If in [15] the analysis of the Wnt/β-catenin model is simply done through plotting
of simulated trajectories, here we move analysis to a higher and more formal level
by demonstrating how, through model checking, one gains access to the analysis
of sophisticated dynamical aspects of the Wnt/β-catenin pathway.

Paper organisation. We introduce the Wnt/β-catenin mechanism in Section 2
and describe the model presented in [15] which we have used for our analysis. In



Section 3 we give a concise description of the HASL statistical model checking
formalism. In Section 4 we present the results obtained by application of HASL
model checking to the analysis of Wnt/β-catenin model. We wrap up the paper
with some conclusive remarks and future perspectives in Section 5.

2 A model of the Wnt/β-catenin pathway

Neurodegeneration is the process of progressive lost of structure/function of
neuronal cells (i.e. neurons) which is at the basis of many neurodegenerative
diseases, such as, for example, the Parkison’s disease, Alzheimer’s disease and
the Amyotrophic lateral sclerosis. Research in this field is particularly focused
on the growth of in vitro population of neural cells that may potentially be
used in replacement therapies for neurodegenerative diseases. Cultivated cells
undergo so-called proliferation, a process of successive cell divisions and potential
differentiation into neurones and glial cells.

The Wnt/β-catenin pathway is a signalling pathway known to be involved in
the proliferation/differentiation of neural cells. Specific in vitro experiments [14]
have exhibited a high activity of the Wnt/β-catenin pathway during the differ-
entiation of ReNcell VM (RVM) cells, i.e. a type of cells derived from the brain
of a fetus and that are believed to be an appropriate model for replacement
therapies in neurodegenerative pathologies. The activity of the Wnt/β-catenin
is summarised as follows: in absence of extracellular Wnt molecules (normally
at cell’s membrane), a degradation complex causes the phosphorylation and
subsequent destruction of β-catenin located in the cell’s cytosol (denoted βcyt);
on the other hand in presence of Wnt proteins, the degradation complex is
inactivated resulting in accumulation of βcyt. Furthermore from the cytosol β-
catenin undergoes a (reversible) relocation to the nucleus (denoted βnuc) wherein
it activates the expression of one component of its degradation complex, i.e. the
Axin protein. The above described mechanism is captured by a core-version of
the Wnt/β-catenin pathway model presented in [15]. This consists of the twelve
biochemical reactions illustrated by equations (1).

R1 :Wnt
k1−→ ∅ R7 : AxinP + βcyt

k7−→ AxinP

R2 :Wnt+AxinP
k2−→Wnt+Axin R8 : ∅ k8−→ βcyt

R3 :AxinP
k3−→ Axin R9 : βcyt

k9−→ ∅

R4 :Axin
k4−→ AxinP R10 : βcyt

k10−→ βnuc

R5 :AxinP
k5−→ ∅ R11 : βnuc

k11−→ βcyt

R6 :Axin
k6−→ ∅ R12 : βnuc

k12−→ Axin+ βnuc

(1)

The model consists of three basic molecular species: the Axin protein, which
can be either in normal (Axin) or phosphorylated (AxinP ) form, the Wnt
protein (Wnt) and the β-catenin which can be either located in the cytosol



(βcyt) or in the nucleus (βnuc). Equations (1) account for the following aspects:
two reversible events, i.e. the phosphorylation of Axin (reactions R4 and R3) and
the relocation of β-catenin from/to cytosol/nucleus (reactions R10 and R11); the
Wnt enhanced de-phosphorylation of Axin (reaction R2); the nuclear β-catenin
(i.e. βnuc) regulated expression of Axin (reaction R12); the phosphorylated
AxinP enhanced degradation of cytosolic β-catenin (i.e. βcyt) (reaction R7)3; the
constant (DNA regulated) expression of cytosolic β-catenin (i.e. βcyt) (reactions
R8); the degradation of all species i.e. Wnt (reactions R1), Axin in either form
(reactions R5 or R6) and βcyt (reaction R9).

In this paper we focus on the discrete-stochastic interpretation of Equa-
tions (1), hence species populations are expressed in terms of number of molecules
and reactions are of stochastic nature and are assumed to obey the mass action
law (meaning that a reaction’s rate is proportional to the current population of
the reactants, except for R8 whose rate is constant). With respect to the model
configuration we consider two basic sets A and B of parameter values respectively
taken from the sets 3 and 4 in [15], and indicated in Table 1.

initial populations (mol.) rate constants (mol. ·min−1)
par. id Set A Set B par. id Set A Set B par. id Set A Set B
nβcyt 11145 12989 k1 0.6 0.27 k6 2.4 · 10−3 4.48 · 10−3

nβnuc 4532 5282 k2 10 20 k7 3 · 10−4 2.1 · 10−4

nAxin 144 252 k3 0.03 0.03 k8 420 600
nAxinP 125 219 k4 0.03 0.03 k9 1.13 · 10−4 1.13 · 10−4

nWnt 1000 1000 k5 4.48 · 10−3 4.48 · 10−3 k10 0.0549 0.0549
k11 0.135 0.135 k12 2 · 10−4 4 · 10−4

Table 1. Parameter sets for stochastic interpretation of Wnt/β-catenin pathway model
given by equations (1)

Throughout the remainder of the paper we will analyse the Wnt/β-catenin
model by comparing the dynamics corresponding to the two parameter sets of
Table 1. Following [15], we will also consider two variants of the basic model (1).
The first variant, denoted Wnt-inject, represents a single injection of an extra
amount (i.e. 1000) ofWntmolecules in the system at a fixed delay di. The second
variant, denoted Wnt-doped, represents the presence of a doping mechanism that
kicks in at a given delay dd and then it sustainably generates a freshWnt molecule
at given frequency (assumed to be exponential distributed with parameter kd).

3 notice that βnuc dependent Axin expression and AxinP enhanced βcyt degradation
determine, de facto, a negative feedback loop between β-catenin and the Axin
protein.
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Fig. 1. GSPN model corresponding to Equations (1) of the Wnt/β-catenin pathway.

2.1 Stochastic Petri Net model of the Wnt/β-catenin pathway

The COSMOS [3] model checker which we used for analysing the Wnt/β-catenin
pathway model uses Generalised Stochastic Petri Net (GSPN) [1] as modelling
formalism. A GSPN model is a bipartite graph consisting of two classes of nodes,
places and transitions. Places (circle nodes) may contain tokens (representing
the state of the modelled system) while transitions (bar nodes) indicate how
tokens “flow” within the net (encoding the model dynamics). The state of a
GSPN consists of a marking indicating the distribution of tokens throughout
the places (i.e. how many tokens each place contains). A transition is enabled
whenever all of its input places contains a number of tokens greater than or
equal to the multiplicity of the corresponding (input) arc. An enabled transition
may fire consuming tokens (in a number indicated by the multiplicity4 of the
corresponding input arcs) from all of its input places and producing tokens
(in a number indicated by the multiplicity of the corresponding output arcs)
in all of its output places. Transitions can be either timed (denoted by thick
bars) or immediate (denoted by thin bars). Timed transitions are associated
to a probability distribution (e.g. Exponential, Uniform, Deterministic, etc).
In the context of this paper GSPN places represent biological species (and
their marking the molecular population of a species), whereas timed transitions
represent chemical reactions. For more details on GSPN we refer the reader to
the literature [1].

Figure 1 depicts the GSPN model encoding the Wnt/β-catenin chemical
equations (1). The net contains a place for each species of the Wnt/β-catenin
model and a transition for each reaction. Non filled-in transitions are exponen-
tially distributed (with marking dependent rate) with rate-constant correspond-

4 the default multiplicity of an arc is 1 if different is explicitly indicated on the arc



ing to that of either parameter set of Table 1. The sub-net enclosed in dashed
line box (top left) has been added in order to add the Wnt-inject and Wnt-dope
behaviour to the basic model. In order to study the behaviour of the Wnt-inject
(Wnt-dope) variant it suffices to add one token in the initial marking of place
Wnt_inject (Wnt_dope). Notice that the black filled-in transitions of the Wnt-
inject/Wnt-dope subnet are associated to deterministic delays.

Observing βnuc dynamics on a single stochastic trajectory. Follow-
ing [15] we first look at the dynamics of nuclear β-catenin (i.e. βnuc) as observed
along a single trajectory simulated over 24 hours (Figure 2 and Figure 3 with
the units on x axis being minutes). Figure 2 compares the behavior of βnuc for
the two parameter sets (Table 1) of the basic Wnt/β-catenin model in presence
of Wnt (initial population of Wnt set to 1000).

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 0  120  240  360  480  600  720  840  960  1080 1200 1320 1440

N
u

m
b

e
r 

o
f 

m
o

le
c
u

le
s

Time (min)

nucleus beta-catenin - Set A (Wnt-basic)

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 11000

 0  120  240  360  480  600  720  840  960  1080 1200 1320 1440

N
u

m
b

e
r 

o
f 

m
o

le
c
u

le
s

Time (min)

nucleus beta-catenin - Set B (Wnt-basic)

Fig. 2. Dynamics of βnuc along a 24 hours single trajectory of the Wnt/β-catenin
pathway model with parameter set A (left) and set B (right)

The interpretation in this case is quite straightforward: the presence of an
initial Wnt signal (i.e. of 1000 molecules) triggers a (delayed) peak in βnuc
which however quickly ends due to the steady degradation (and absence of
reintegration) of Wnt. Eventually when all Wnt has faded away βnuc noisily
converges to a certain level. Figure 3 compares the dynamics of βnuc in presence
of delayed injection (i.e. Wnt-inject model injecting 1000 Wnt molecules at
di = 450 minutes), and in presence of doping (i.e. modle Wnt-dope with doping
starting at time dd = 150 minutes). The effect of delayed injection of 1000
molecules of Wnt at time di = 450 minutes is highlighted by the presence of
the second peak (Figure 3 left). On the other hand the effect of starting a
persistent doping of Wnt at time dd = 150 minutes results in an oscillatory,
yet rather irregular, behaviour of βnuc (Figure 3 right). In Section 4 we are
going to illustrate how to take advantage of the HASL formalism for formally
capturing the relevant dynamical characteristics of the above shown trajectories.
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Fig. 3. Dynamics of βnuc along a single trajectory of the Wnt/β-catenin pathway model
with re-injection of Wnt at t = 450 minutes (left) and with doping of Wnt started at
t = 150 minutes (right) and parameter set B

3 HASL statistical model checking

The Hybrid Automata Stochastic Logic (HASL), introduced in [4], extends
Deterministic Timed Automata (DTA) logics for addressing Markov chain mod-
els [9,7], by employing Linear Hybrid Automata (LHA) as instruments for ad-
dressing a general class of stochastic processes, namely that of Discrete Event
Stochastic Processes (DESP). An HASL formula φ ≡ (A, Z) consists of two
elements: 1) A, a synchronising LHA (i.e. an LHA enriched with DESP state
and/or event indicators) and 2) Z a target expression (see grammar (2)) which
expresses the quantity to be evaluated (either a measure of probability or, more
generically, any real-valued measure).

Thus given a DESP model D and a formula φ ≡ (A, Z) the HASL model
checking procedure employs stochastic simulation to samples trajectories of the
synchronised process D×A, and then use (only) the paths selected by A (i.e.
those paths of D×A that reach an accepting location of A) for estimating the
confidence-interval of the target measure Z. Such a procedure is implemented
within the COSMOS [3] model checking framework, a tool which belongs to the
fast expanding family of statistical model checkers (e.g. [6,16,17]). For practical
reasons in HASL (and in particular within COSMOS) we employ GSPN as high-
level language for expressing a DESP. Below we give the definition of DESP and
LHA and informally describe the synchronisation process (we refer the reader
to [4] for a more formal treatment).

Definition 1 (DESP). A DESP is a tuple
D = 〈S, π0, E, Ind, enabled, delay, choice, target〉 where

– S is a (possibly infinite) set of states,
– π0 ∈ dist(S) is the initial distribution on states,
– E is a set of events,
– Ind is a set of functions from S to R called state indicators (including the

constant functions),



– enabled : S → 2E are the enabled events in each state with for all s ∈ S,
enabled(s) 6= ∅.

– delay : S × E → dist(R+) is a partial function defined for pairs (s, e) such
that s ∈ S and e ∈ enabled(s).

– choice : S × 2E × R+ → dist(E) is a partial function defined for tuples
(s, E′, d) such that E′ ⊆ enabled(s) and such that the possible outcomes of
the corresponding distribution are restricted to e ∈ E′.

– target : S×E×R+→S is a partial function describing state changes through
events defined for tuples (s, e, d) such that e∈enabled(s).

where dist(A) denotes the set of distributions whose support is A.

Dynamics of a DESP. A configuration of a DESP consists of a triple (s , τ ,
sched) with s being the current state, τ ∈ R+ the current time and sched :
E → R+ ∪ {+∞} being the function that describes the occurrence time of
each scheduled event (+∞ if an event is not yet scheduled). The evolution
(i.e simulation) of a DESP D can be informally summarised in terms of an
iterative procedure consisting of the following steps (assuming (s , τ , sched) is
the current configuration of D): 1) determine the set Em of events enabled in
state s and with minimal delay δm; 2) select the next event to occur enext∈Em
by resolving conflicts (if any) between concurrent events through probabilistic
choice according to choice(s, Em, τ); 3) determine the new configuration of the
process resulting from the occurrence of enext, this in turns consists of three
sub-steps: 3a) determine the new state resulting from occurrence of enext, i.e.
s′ = target(s, enext, δm); 3b) update the current time to account for the delay of
occurrence of enext, i.e. τ = τ+δm; 3c) update the schedule of events according to
the newly entered state s′ (this implies setting the schedule of no longer enabled
events to +∞ as well as determining the schedule of newly enabled events by
sampling through the corresponding distribution). The above procedure maps
directly on GSPN models, in which case the set of states S corresponds to the
set of possible markings of a GSPN, the events E correspond to the (timed)
transitions of a GSPN, and the remaining elements (i.e. delay, choice and target)
are determined by the semantics of GSPN (i.e. the so-called token game).

Definition 2. A synchronised Linear Hybrid Automaton is a tuple
A=〈E,L,Λ, I, F,X,flow,→〉 where:

– E is a finite alphabet of events;
– L is a finite set of locations;
– Λ : L→ Prop is a location labelling function;
– I ⊆ L is the initial locations;
– F ⊆ L is the final locations;
– X = (x1, ...xn) is a n-tuple of data variables;
– flow : L 7→ Indn associates an n-tuple of indicators with each location

(projection flowi denotes the flow of change of variable xi).
– →⊆ L×

(
(Const× 2E) ] (lConst× {]})

)
×Up×L is the set of edges of the LHA



where ] denotes the disjoint union, Const and lConst denotes the set of possible
constraints, respectively left closed constraints, associated with A (see descrip-
tion below) and Up is the set of possible updates for the variables of A.
Furthermore A fulfils the following conditions.

– c1 (initial determinism): ∀l 6= l′∈I, Λ(l)∧Λ(l′)⇔ false. This must hold
whatever the interpretation of the indicators occurring in Λ(l) and Λ(l′).

– c2 (determinism on events): ∀E1, E2 ⊆ E : E1∩E2 6= ∅, ∀l, l′, l′′ ∈ L,

if l′′ γ,E1,U−−−−→ l and l′′
γ′,E2,U

′

−−−−−→ l′ are two distinct transitions, then either
Λ(l) ∧ Λ(l′) ⇔ false or γ ∧ γ′ ⇔ false. Again this equivalence must hold
whatever the interpretation of the indicators occurring in Λ(l), Λ(l′), γ and
γ′.

– c3 (determinism on ]): ∀l, l′, l′′ ∈ L, if l′′ γ,],U−−−→ l and l′′
γ′,],U ′−−−−→ l′ are

two distinct transitions, then either Λ(l)∧Λ(l′)⇔ false or γ∧γ′ ⇔ false.
– c4 (no ]-labelled loops): For all sequences

l0
γ0,E0,U0−−−−−−→ l1

γ1,E1,U1−−−−−−→ · · · γn−1,En−1,Un−1−−−−−−−−−−−→ ln such that l0 = ln, there exists
i ≤ n such that Ei 6= ].

Synchronisation of LHA and DESP. The role of a synchronised LHA A is to
select specific trajectories of a corresponding DESP D while collecting relevant
data (maintained in the LHA variables) along the execution. For the sake of
brevity we omit the formal semantics of the product process D × A in this
paper, but we provide an intuitive description of it.

A state of the D×A process is described as a triple (s, l, ν) where s is the
current state of the DESP, l the current location of the LHA and ν : X → R
the current valuation of the LHA variables. The synchronisation starts from the
initial state (s, l, ν), where s is an initial state of the DESP (i.e. π0(s) > 0),
l is an initial location of the LHA (i.e. l ∈ I) and the LHA variables are all
initial set to zero (i.e. ν = 0)5. Notice that, by initial determinism, for every
s ∈ S there is at most one l ∈ I such that s satisfies Λ(l). From the initial state
the synchronisation process evolves through transitions where each transition
corresponds to traversal of either a synchronised or an autonomous edge of the
LHA (notice that because of the determinism constraints of the LHA edges at
most only one autonomous or synchronised edge can ever be enabled in any
location of the LHA. Furthermore if an autonomous and a synchronised edge
are concurrently enabled the autonomous transition is taken first). If in the
current location of the LHA (i.e. location l of the current state (s, l, ν) of process
D×A) there exists an enabled autonomous edge l γ,],U−−−→ l′, then that edge will be
traversed leading to a new state (s, l′, ν′) where the DESP state (s) is unchanged
whereas the new location l′ and the new variables’ valuation ν′ might differ from
l, respectively ν, as a consequence of the edge traversal. On the other hand if
an event e (corresponding to transition s e−→ s′) triggered by process D occurs in

5 Notice that because of the “initial-nondeterminism” of LHA there can be at most
one initial state for the product process.



state (s, l, ν), either an enabled synchronous edge l γ,E′,U−−−−→ l′ (with e∈E′) exists
leading to new state (s′, l′, ν′) of process D×A (from which the synchronised
process will proceed) or the system goes to a dedicated rejecting state ⊥ and
the synchronisation halts (indicating rejection of the trace).

HASL expressions. The second component of an HASL formula is an expression
related to the automaton. Such an expression, denoted Z, is based on moments
of a path random variable Y and defined by the grammar (2).

Z ::= c | E[Y ] | Z + Z | Z − Z | Z × Z | Z/Z
Y ::= c | Y + Y | Y × Y | Y/Y | last(y) | min(y) | max(y) | int(y)| avg(y)
y ::= c | x | y + y | y × y | y/y

(2)

Z represents the expectation of an arithmetic expression based on LHA data
variables and which uses path operators such as: last(y) (i.e. the last value of y
along a synchronising path), min(y) (max(y)) the minimum (maximum), value
of y along a synchronising path), int(y) (i.e. the integral over time along a path)
and avg(y) (the average value of y along a path). In recent updates the COSMOS
model checker [3] has been enriched with operators for assessing the Probability
(Cumulative) Distribution Function (PDF/CDF) of the value that an expression
Y takes at the end of a synchronising path. This requires specifying a discretised
support of Y through the following syntax: Z = PDF (Y, s, l, h) which means
that the probability of Y to take value in any sub-interval of fixed width s
corresponding to the partition of the considered [l, h] support of Y is going to
be evaluated (assuming that [l, h] is discretised in h− l/s sub-intervals).

l1

l0
ṫ : 1
ṅ : 0

ḃ : 0

],(n=N),;
A

{R2},(n<N),{n++, b=�nuc}

E\{R2},(n<N),{b=�nuc}

Fig. 4. Simple example of LHA that synchronises with the Wnt/β-catenin GSPN model
of Figure 1: the automaton selects paths containing N occurrences of reaction R2.

Example Figure 4 shows a simple example of LHA that synchronises with the
Wnt/β-catenin GSPN model of Figure 1. It uses three data variables: a clock t



(storing the simulation time), a counter n (counting the number of occurrences
of reactions R2) and a variable b which keeps track of the population of βnuc. In
the initial location l0 the clock variable t grows with constant flow ṫ=1, whereas
n and b flows is null. On occurrence of R2 the top synchronising self-loop edge
on l0 is traversed hence n is incremented whereas on occurrence of any other
reaction the bottom self-loop on l0 is traversed, hence n is not updated. On the
hand b is updated with the current value of βnuc on occurrence of any reaction.
As soon as N occurrences of R2 have been observed the autonomous edge l0 → l1
is traversed and synchronization halts (reaching of accepting location l1). Below
few examples of complete HASL formulae composed with the LHA of Figure 4.

– φ1 ≡ (A, E[last(t)]): representing the average time for observing N occur-
rences of R2.

– φ2≡(A, E[max(b)]): representing the maximum population reached by βnuc
within the first N occurrences of R2.

– φ3≡(A, PDF (last(t), 0.1, 0, 10)): representing the PDF of the delay for ob-
serving N occurrences of R2 (computed over the interval [0, 10] with a
discretisation step of 0.1)

4 Model analysis through HASL formulae

In order to analyse the dynamics of the Wnt/β-catenin model we define a number
of HASL formulae dedicated to capturing specific dynamical aspects of the GSPN
model in Figure 1.

4.1 Measuring the maximal peaks of βnuc resulting from an
unsustained Wnt signal.

Both the Wnt-basic and Wnt-inject models are designed to study the behaviour
of the Wnt/β-catenin pathway in presence of an unsustained Wnt signal: i.e.
a given amount of initial Wnt signal is present in the system but is steadily
being consumed (reaction R1) without being reintegrated (Wnt-basic) or being
reintegrated once after a delay di (Wnt-inject). The effect of a non-reintegrated
Wnt signal results is the production of a single peak of βnuc (Figure 2) whereas
a single, delayed, reintegration of 1000 Wnt molecules produces a second, shifted
peak (Figure 3 left) in the population of βnuc. We introduce some HASL formulae
for formally measuring the time location and the amplitude of such βnuc transient
peaks. Observe that the analysis of a stochastic model through observation of a
single simulated trajectory (as proposed in [15]) is in general little informative l
and even more so in this case as repeated trajectories of the wntb model exhibit
a rather large variance. In the light a more formal approach is vital to obtain a
meaningful analysis.

Automaton Apeaks. The LHA in Figure 5 is conceived for locating the maximal
and minimal peaks along an alternating trace of a given observed species, in



this case βnuc. The automaton uses a number of data variables (Table 2) and is
dependent on two configuration aspects: the setting of a parameter δ (the chosen
noise level, see below) and the partition of the event set E =E+βnuc∪E−βnuc∪
E=βnuc where E+βnut , E−βnuc and E=βnut are the events yielding respectively:
an increase of βnuc, a decrease of βnuc and having no effect on βnuc population.
Specifically, for model (1) we have: E+βnuc

={R10}, E−βnuc
={R11} and E=βnuc

=
{R1, R2, R3, R4, R5, R6, R7, R8, R9, R12}.
Apeaks consists of an initial location start, a final location end, and 4

intermediate locations (Min,Inc, Max and Dec) where the actual analysis of
the synchronised trajectory takes place. From start (on entering of which the
initial amount of βnuc is stored in x) the processing of the simulated trajectory
leads either to Min or Max depending if the an increase (decrease) of βnuc
above (below) the chosen level of noise δ is observed (i.e. Apeaks copes fine both
in the case that the observed species initially increases or decreases).

start

ṫ : 1
noisyDec

ṫ : 1

noisyInc

ṫ : 1

Min

ṫ : 1

],(
x>

� n
),{

x
:=
� n

}

E+�
n
,>,;

E=�n ,>,;

Max

ṫ : 1

E+�n ,>,{x :=�n} E=�n ,>,;

E,>,;

E,>,;

end

Apeaks

E,>,;

E��n ,>,{x :=�n}

E��n
,>,;

],(x>�n+�)^(t<T), {x :=�n,
xmax[n] :=x, tmax[n] := t, ¬Up? n++}

],(
x<

�n
),{

x
:=
�n

}

],(t=T ),;],(t=T ),;

],(t=T ),;

],(t=T ),;

],(x>�n+�),{x :=�n, Up := ?}

{x :=�n}

],(x>�n��),{x :=�n, Up := >}

],(x<�n��)^(t<T), {x :=�n,
xmin[n] :=x, tmin[n] := t, ¬Up? n++}

Fig. 5. Aβ_peaks: an LHA for locating the maximal peaks (up to noise level δ) of βn .

Once in location Min (Max) the behaviour of the automaton depends on
the type of observed event. If an event e∈E+βnuc

(e∈E−βnuc
) is observed then

location noisyInc (noisyDec) is entered indicating that βnuc has increased
(decreased) although the increase (decrease) has not (yet) exceeded δ (with
respect to the most recent detected minimum (maximum) previously stored in
x). On the other hand if while in Min (Max) an event e∈E−A (e∈E+βnuc

) is
observed, then this means that the current value of βnuc went below (above) the
previously detected minimum (maximum) hence x must be updated with the



newly found (potential) minimum (maximum) x := βnuc. Finally an occurrence
of any event e∈E=βnuc

while in Min or Max is simply ignored. From noisyInc
(noisyDec) the processing of input trace may lead back to Min (Max) if βnuc
re-decreases (re-increases) below (above) x (hence requiring an update x := βnuc)
or it may lead to Max ( Min)as soon as βnuc has increased (decreased) above
(below) the noise level (i.e. x>βnuc−δ). The autonomous edge noisyInc→Max
(noisyDec→Min) is traversed as soon as the value stored in x corresponds to
an actual minimum (maximum) along the processed βnuc trace (i.e. this is the
case when the current value of βnuc gets δ molecules far away from that stored
in x). Hence when traversing noisyInc→Max (noisyDec→Min) we are sure
that x contains a minimum (maximum) thus its value and its occurrence time are
stored in the nth element of the array xmin[n] := x (xmax[n] := x), respectively
tmin[n] := t (tmax[n] := t). The processing terminates (entering of End from
any other location) as soon as the simulation time is t = T at which point all
detected maxima and minima are stored in Apeaks data variables.

Data variables
name domain description
t R≥0 time elapsed since beginning measure
n N counter of detected local maxima/minima
up bool boolean flag indicating whether measuring started with detec-

tion of a max or min
x N (overloaded) variable storing most recent detected maxi-

mum/minimum
xmax(xmin) NN array of detected maxima (minima)
tmax(tmin) RN array of detected occurrence time of maxima (minima)

Table 2. The data variables of automata Apeaks of Figure 5 for locating the peaks of
a noisy oscillatory traces

HASL formulae for measuring the effects of unsustained Wnt signal. Based on
automaton Apeaks we define the following HASL formulae:

– φxmax≡(Apeaks, E[last(xmax[1])]): the average value of the first βnuc max-
imal peak.

– φtmax≡(Apeaks, E[last(tmax[1])]): the average value of the occurrence time
of first βnuc maximal peak.

– φPDFmax≡(Apeaks, PDF (last(tmax[1]), 1, 30, 80)): the PDF of the occur-
rence time of first βnuc maximal peak (computed over the interval [30, 80]
with a discretisation step 1)

Measuring the incidence of Wnt decay rate on βnuc peaks. The decay speed of
the Wnt signal affects the dynamics of βnuc (the temporal location and height
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Fig. 6. Average value (left) and occurrence time (right) of the first and second βnuc peak
for the Wnt-inject model in function of Wnt decay rate (highlighted points correspond
to k1 original value as in Table 1 set B).

of βnuc peaks). We performed a number of experiments aimed at addressing this
aspect, specifically we assessed φxmax and φtmax against different instances of the
Wnt/β-catenin model with delayed Wnt re-injection (i.e. the Wnt-inject model)
where each instance corresponds to a different value of k1 (the decay rate Wnt).
Figure 6 displays the results concerning the evaluation of the first and second
peak of βnuc. They indicate that both the average height (left) and the average
occurrence time (right) of the first and second peaks of βnuc decrease as the Wnt
decay rate k1 increases6. Figure 6 left also shows that the second peak of βnuc
(induced by Wnt re-injection) has, on average, a smaller amplitude than the first
one and with a roughly constant difference of about 10% less between the two
except for a k1 =0.1 for which the first and second peak’s amplitude differs of
about 5%.

Measuring the PDF of occurrence time of βnuc peaks. Figure 7 displays the
PDF of the first (left) and second (right) peak of βnuc obtained by evaluation
of φPDFmax against the Wnt-inject model (parameter set B). Both PDF curves
exhibit a slight long-tail character with the majority of points being to the right
of the maximum likely occurrence time.

5 Conclusion

We have presented a formal study of a stochastic model of the Wnt/β-catenin
pathway, a biological mechanism with a relevant role in controlling the life-cycle
of neuronal embryonal cells. This model has been previously considered [15]
however it was analysed only informally, i.e. through observation of simulated
trajectories. By means of a powerful formalism (i.e. HASL model checking) we
formally characterised and accurately assessed a number of relevant aspects
6 results computed with confidence level 99% and interval-width of 1% of the estimated
measure.
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Fig. 7. The PDF of the time of occurrence of the first βnuc peak (left) and second peak
(right) for the Wnt-inject model (with re-injection of 1000 Wnt molecules at t = 450
minutes).

of the Wnt/β-catenin dynamics. In particular in this work we have focused
on studying the effects induces on nuclear β-catenin (a basic element of the
Wnt/β-catenin pathway) by the presence of a degrading (possibly reintegrated)
Wnt signal. That included measuring of the average value and the PDF of the
occurrence time and the amplitude of the βnuc peaks resulting from a transitory
Wnt signal. We plan to evolve this preliminary study in several directions,
including the formal analysis of the effects induced by a sustained Wnt signal, as
well as the analysis of the dynamics of βnuc over a population of asynchronously
evolving cells.
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