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Abstract. We experimentally and numerically study the temporal dynamics of light

scattered by large clouds of cold atoms after the exciting laser is switched off, in the

low intensity (linear optics) regime. Radiation trapping due to multiple scattering

as well as subradiance lead to decay much slower than the single atom fluorescence

decay. These two effects have already been observed separately, but the interplay

between them remained to be understood. Here, we show that with well chosen

parameters of the driving field, the two effects can occur at the same time, but follow

different scaling behaviors. The subradiant decay is observed at late time and its

rate is independent of the detuning, while the radiation trapping decay is observed

at intermediate time and depends on the detuning through the optical depth of the

sample. Numerical simulations based on random walk process and coupled-dipole

equations support our interpretations. Our study clarifies the different interpretations

and physical mechanisms at the origin of slow temporal dynamics of light in cold atoms.

1. Introduction

Collective effects in light scattering by atomic ensembles have recently been the subject

of intense research, both theoretically and experimentally [1, 2]. Even in the most

simple situation, when the atomic system is driven by a low intensity laser (single-

photon or linear-optics regime) and when the atomic cloud has a low density, various

phenomena can occur [3, 4, 5, 6]. For example, steady-state experiments about light

diffusion [7, 8], coherent backscattering [9, 10] and the resonance line shape and shift

[11, 12, 13, 14, 15, 16, 17, 18] have been performed. Several recent experiments also

studied the temporal dynamics of the light scattered by cold atoms at the switch off of

the driving field. A decay faster than the natural decay rate Γ has been observed at

short time, a signature of superradiance [17, 19]. A decay rate much slower than Γ has

also been detected at later time, a direct observation of subradiance [20]. It has been

shown experimentally that the subradiant decay rate depends on the resonant optical

depth b0, independently of the detuning ∆ = ω − ω0 from the atomic resonance ω0,

which has been confirmed by numerical simulations [20, 21, 22].
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Interestingly, a slow decay can also be interpreted completely differently. Indeed,

near resonance, when the actual optical depth b(∆) ∝ b0/(1 + 4∆2/Γ2) is large, light

undergoes multiple scattering. This leads to a slowed transport velocity inside the

diffusive medium [23] and ultimately to a slow decay when the incident light is switched

off. This effect, called radiation trapping [24, 25, 26], has also been studied in cold

atoms [27, 28, 29, 30, 31, 32]. In particular, it has been shown that, at low enough

temperature, the dynamics depends on the detuning only through the optical depth

b(∆), because this parameter controls the distribution of the number of scattering events

that light undergoes before escaping, the average time between scattering events being

remarkably independent of the detuning [28].

Radiation suppression can be obtained by different physical mechanisms, as already

pointed out by Cummings [33] who noted that interference-based radiation suppression

is ”much more exotic and unexpected than the ordinary radiation trapping”, which can

be explained by photon rescattering. As the different scalings [b0 vs b2(∆)] show, these

two effects are not two different interpretations of the same phenomena, but are really

due to two different physical mechanisms. This difference does not appear when one

studies the eigenvalues of the effective Hamiltonian describing the atoms interacting

through the shared excitation [34, 35, 36, 37, 38], all long-lived collective atomic modes

being often called “subradiant”, although differences in the shape of the eigenmodes have

been discussed as a possible way to distinguish between modes associated to subradiance

and to radiation trapping [39].

In this article, we experimentally study these two effects, showing in particular

that, with well chosen parameters, both occur simultaneously. We find that when the

atomic sample is driven by a plane wave, as in ref. [20], subradiance is observed and

radiation trapping is not clearly visible, even on resonance, mainly because the signal

is dominated by single scattering occurring on the edges of the sample. The situation

is different with an exciting beam much smaller than the cloud, as in ref. [28], because

single scattering is strongly reduced if light is detected near the forward direction. In

this paper we show that with reduced single scattering near resonance, a slow decay due

to radiation trapping is visible at intermediate time and, at later time, an even slower

decay appears due to subradiance. Although at zero temperature and for large enough

optical depth, radiation trapping could be slower than subradiance and dominate even

at late time, the frequency redistribution due to Doppler broadening strongly reduces

the number of scattering events that light can undergo before escaping, and we find

that, at T ∼ 100 µK, subradiant decay always dominates at late time.

The paper is organized as follows. In the next section we present the experimental

setup and in the following the observation of subradiance for an excitation with a plane

wave. In section 4 we present the data acquired with a narrow driving beam, showing

the simultaneous observation of subradiance and radiation trapping. We study in detail

how the corresponding decay times scale with the parameters. In section 5 we present

numerical simulations which support our interpretations. In particular, the comparison

between the simulations based on the coupled-dipole equations and on a random walk
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model performed at T = 0 allows us to discuss the physics in an ideal case. Moreover, the

simulations based on the random walk model including the effect of the temperature,

laser spectrum and beam size are in fair agreement with our experimental data on

radiation trapping. We finally conclude in section 6.

2. Experimental setup

In the experiment, we prepare a cloud of cold rubidium-87 atoms in a magneto-

optical trap (MOT), which is loaded during 60 ms from the background vapor in the

glass chamber. For further increase of the optical depth a compressed MOT stage

follows for 30 ms, which additionally leads to a cleaner shape of the cloud (close to a

Gaussian density distribution) and a reduced temperature. We obtain an ensemble of

N ≈ 2.5× 109 atoms at a temperature T ≈ 100 µK. After switching off all MOT beams

as well as the magnetic fields, the cloud is allowed to expand ballistically for a duration

of 3 ms, during which the atoms are optically pumped to the upper hyperfine ground

state F = 2.

After this preparation stage the typical peak density is ρ0 ∼ 1011 cm−3 and the

rms size is R ≈1 mm. To weakly excite the cloud a series of 12 pulses are applied,

each of them with a duration of 10 µs and a separation of 1 ms. The probe beam is

generated by a commercial external-cavity diode laser with a linewidth of FWHM =

500 kHz [40]. The probe laser has a linear polarization and a normalized detuning to

the atomic resonance of δ = (ω − ω0) /Γ, where ω is the laser frequency, ω0 the atomic

transition frequency of the F = 2 → F ′ = 3 transition and Γ/2π = 6.07 MHz is the

natural linewidth. We ensure that we stay in the weak excitation limit by adapting the

probe intensity to the detuning δ, such that the saturation parameter

s(δ) = g
I/Isat

1 + 4δ2
(1)

remains small, with Isat = 1.6 mW/cm2 and g = 7/15 the degeneracy factor of the

transition for equipopulated Zeeman states. The dynamic range for the light detection

is mainly determined by the extinction ratio of the probe, which is achieved to a level

of 10−4 by using two acousto-optical modulators in series and being satisfactory faster

(tswitch ≈ 15 ns) than the natural lifetime of the excited state, τat = Γ−1 = 26 ns. Due

to the free expansion of the cloud during the pulse series, the optical depth changes

for every pulse. After the pulse series the MOT is turned on again and most of the

atoms are recaptured. This leads to a total cycle duration below 150 ms and allows

averaging over a large number of cycles (∼ 500 000) for each measurement. As sketched

in figure 1 the scattered light is collected via a two-inch lens under an angle of 35◦ and

collected by a hybrid photomultiplier (HPM, ref. R10467U-50 from Hamamatsu). The

signal is recorded via a multichannel scaler (MCS) with a time resolution of 1.6 ns while

averaging over the cycles.

The optical depth during the pulse series is calibrated afterwards via absorption

imaging [41]. In the following we will note b0 the optical depth of the cloud on resonance
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Figure 1. The experimental set-up consists of a cold cloud of 87Rb atoms, prepared

in a MOT. This cloud is excited with a probe beam of variable size. After a fast

switch-off the scattered light is collected under an angle of 35◦ with a hybrid photo

multiplier (HPM). The signal is recorded with a multichannel scaler (MCS). During

the free expansion of the cloud a series of 12 pulses is applied, during which the optical

depth evolves.

assuming the Clebsch-Gordan coefficient of the transition is unity, which corresponds

for a Gaussian cloud to b0 = 3N/(kR)2 with N the atom number and R the rms radius.

The actual detuning-dependent optical depth is then given by

b(δ) = g
b0

1 + 4δ2
, (2)

including the degeneracy factor g = 7/15 of the probed transition.

3. Observation of subradiance

The direct observation of subradiance for a large number of atoms N was accomplished

in [20]. We present here similar measurements to confirm the results with the upgraded

set-up [40], as well as to serve as a reference for the following measurements.

In this section, we use a driving beam which is much larger in diameter than the

atomic cloud, with a waist (1/e2 radius) w = 5.7 mm, creating a homogenous excitation

of the cloud. The saturation parameter is set to s(δ) ≈ 0.02. In figure 2(a) an example

of a data set acquired with a detuning of δ = −3.15 is shown. Four decay curves are

plotted, corresponding to different pulses and thus to different values for b0. After an

initial fast decay down to an amplitude of ∼ 10−2 relative to the steady-state level

(before switch-off), a very slow decay is well visible, with a time constant that clearly

changes with b0. To characterize this time constant, we choose to fit the experimental

decay curve by a single decaying exponential in a range defined as one decade above the

noise floor. This procedure thus corresponds to the longest visible decay time.

We performed a series of measurements for different detunings δ. The measured

time constants τsub, in unit of the single atom decay time τat, are shown in figure 2(b)

as a function of the on-resonant optical depth b0 for the different detunings. All points

collapse on a single curve, well fitted by a single line with τsub/τat ≈ 1 + 0.65 b0. This
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Figure 2. (a) Experimental decay curves for different b0, measured with a normalized

detuning of δ = −3.15. All curves are normalized to the level right at the switch off of

the probe beam. For comparison, the theoretical single atom decay τat is also shown

(dash-dotted line). The slowest decay time τsub is determined by an exponential fit

(dashed lines) at late time. (b) Measured subradiance decay times τsub/τat as a function

of the on-resonance optical depth b0. All measured points collapse on a single line,

independent of the detuning. The linear scaling of τsub with b0 is stressed by the linear

fit (solid line).

demonstrates that this longest decay time is independent of the detuning and scales

linearly with b0, in perfect agreement with the expectations for subradiance [1, 20, 21,

22].

4. Simultaneous observation of radiation trapping and subradiance

As the data of figure 2(b) show, the decay rate at long time is independent of the

detuning, even close to resonance. This fact might come surprising, since close to

resonance, the actual optical depth b(δ) is large, which induces attenuation of the driving

beam inside the sample and multiple scattering. It has been shown in previous studies

that this indeed leads to a suppression of some cooperative effects close to resonance,

i.e. the fast decaying modes of superradiance [19, 39]. Nevertheless, the slow-decaying

modes remain visible and are even enhanced on resonance [20, 39]. This raises the

question of the interpretation of these slow-decaying modes near resonance: subradiance

or radiation trapping due to multiple scattering?

4.1. Classical description of radiation trapping

To describe multiple scattering of light, the basic quantity is the mean-free path

`sc = 1/(ρσsc), where ρ is the density of scatterers and σsc their scattering cross-section.

We suppose here that the scattering diagram is isotropic, which is a good approximation

for multi-level Rb atoms, where all Zeeman-sublevels of the F = 2 ground state are

equally populated [42].
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Figure 3. Classical picture of radiation trapping. A narrow probe beam near

resonance is sent onto the atomic sample, considered as an ensemble of point-like

scatterers. Light undergoes multiple scattering events inside the vapor before escaping.

In a scattering medium of size much larger than the mean-free path (large

optical depth), light is scattered many times before escaping (figure 3). In this

case, many observables can be very well described by a diffusion equation for the

electromagnetic energy density, at the condition to perform an average over the disorder

configurations [43]. In three dimensions the spatial diffusion coefficient reads

D =
vE`sc

3
=

`2
sc

3τtr

, (3)

where vE = `sc/τtr is the energy transport velocity inside the medium and τtr the

transport time [44]. The transport time is the sum of the group delay between two

scattering events and the delay associated with the elastic scattering process, called

Wigner’s delay time τW [23, 28]:

τtr = τW +
`sc

vg

, (4)

where vg is the group velocity. For near-resonant light, a remarkable property of cold

atomic vapor is that τtr = τat, the lifetime of the excited state, independently of the

detuning [23, 28] (see Appendix A for discussion and full derivation of this property).

As a consequence, the temporal dynamics of the diffuse light is mainly governed by

the number of scattering events 〈Nsc〉 that light undergoes before escaping the atomic

cloud. This number can be evaluated from hand-waving arguments based on a diffusion

process. In 3D, the energy density spreads as 〈r2〉 = 6Dt. Then the average number of

scattering events for escaping photons is the ratio between the time spent in the system

and the scattering time τat,

〈Nsc〉 =
t

τat

=
〈r2〉

6Dτat

. (5)

The radiation can escape the system when
√
〈r2〉 ∼ R = b`sc/2. Using D = `2

sc/(3τat)

leads to 〈Nsc〉 ∼ b2/8. In the diffusive regime (large b), radiation trapping times are

thus expected to scale as b2, with a precise numerical prefactor that depends on the

geometry of the medium [28, 45].

Since radiation trapping scales as b2 and subradiance as b0, one can expect that

for large enough b, radiation trapping leads to a slower decay than subradiance and
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dominates the long-time dynamics. As we will see in section 5.2, this is indeed what

numerical simulations performed at zero temperature show.

However, frequency redistribution due to Doppler broadening breaks the b2 scaling.

Indeed, at each scattering event, light is Doppler shifted by only a small amount, but

at large optical thickness the number of scattering events becomes large and a part of

the light eventually gets out of resonance. This mechanism thus limits the number

of scattering events, and consequently the characteristic time of radiation trapping

[28, 29], which scales almost linearly with b [31]. There is however, to our knowledge, no

analytical description of radiation trapping in this regime and one has to use numerical

simulations including the frequency redistribution to describe the decay dynamics. Such

simulations will be discussed in section 5.3.

4.2. Impact of the probe beam size

Beside the time scale of radiation trapping, the relative amplitude of the slow-decaying

part of the signal is of paramount importance to be able to observe radiation trapping.

This is largely related to the relative proportion of multiply-scattered light in the

detected signal, which is itself related to the geometry of the experiment, especially

the size of the exciting beam, the cloud shape and detection direction.

We illustrate this by showing in figure 4 the proportion of photons having undergone

only one scattering event before escaping the sample in the detection direction, for

excitation with a plane wave and with a beam sufficiently smaller than the cloud. It

shows that for large optical depth, single scattering is suppressed with a very narrow

beam, as is intuitively expected, and so the detected signal is almost exclusively due

to multiply-scattered light. This is very different for an illuminating beam larger than

the cloud, like a plane wave, because a non-negligible proportion of the incoming light

will probe the edges of the atomic cloud, where the optical depth is much lower, and

slowly tends to zero with a Gaussian cloud. Therefore there is always a large proportion

of single and low-order scattering, even for very large optical depth b (defined for light

crossing the cloud along its center).

For the subradiance measurement presented in ref. [20] and in section 2, the probe

beam is much larger than the atomic cloud, which leads to a dominant contribution of

single and low-order scattering, even on resonance. The slow decay that could be due to

radiation trapping has thus a reduced relative amplitude, and subradiance dominates.

In order to study radiation trapping, it is thus necessary to use a driving beam

significantly smaller than the size of the atomic sample, as in ref. [28]. We will use in

the following a beam with a waist w = 200 µm, well below the radius of the atomic

cloud.

The strong reduction of the beam size comes along with several experimental

difficulties. First, the intensity has to remain low enough in order to keep the saturation

parameter still small, which for a narrow beam size corresponds to very low power, and

thus a reduced detected signal. Second, because of multiple scattering, the amount of



Subradiance and radiation trapping in cold atoms 8

b

si
ng

le
 s

ca
tt

er
in

g 
ra

ti
o

10
-1

10
0

10
1

10
210

-2

10
0

large beam

small beam

Figure 4. Numerical simulations for the proportion of photons having undergone only

one scattering event before escaping in the detection direction, at θ = 35◦ ± 10◦ from

the incident direction, as a function of the optical depth b, obtained from random walk

simulations. Blue circles are for an illumination with a plane wave and red diamonds for

an infinitely narrow beam centered on the Gaussian cloud. For large b single scattering

is suppressed with a very narrow beam but remains quite high with a plane wave.

scattered light near the forward direction decreases when the optical depth increases [8],

much more strongly than with a plane wave where light is transmitted near the edges. As

a consequence we were not able to acquire data with a sufficient dynamics for detunings

very close to resonance, and the dynamics of the recorded decay curves with a narrow

beam is not as good as those recorded with a plane wave (more than 4 decades in

figure 2). Nevertheless, we were able to obtain clear signatures of radiation trapping

and subradiance, as detailed in the following.

4.3. Measurements and data analysis

The experimental setup and procedure is the same as described in section 2, except the

size of the probe beam, which now has a waist of w = 200 µm. Measurements with this

narrow beam are shown in figure 5. The decay curves are averaged over 600 000 cycles

and the different values for the optical depth are again due to the free expansion of the

cloud during the pulse series. The curves are recorded for a detuning of δ = −0.9, which

is close enough to resonance to be in the multiple scattering regime (b(δ)� 1). At long

time, we clearly observe a very slow decay similar to the subradiant decay observed with

a plane wave (figure 2). However, the decay at short and intermediate time is now much

slower than in the plane wave case. The two parts of the decay curves evolve both with

the optical depth.

In order to interpret these curves and identify the physical mechanisms at the origin

of the two slow decays, we have performed systematic measurements for several b0 and

δ. We have kept the saturation parameter lower than 0.4 for all data and the lowest

count rate in steady-state was 6× 105 counts per seconds.

In order to characterize those decays by simple numbers, we have used the following
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Figure 5. Experimental decay curves for different values of b0 at a fixed detuning

δ = −0.9 and a narrow probe beam. Additionally to a very slow decay at late time,

similar to the one observed with a plane wave (figure 2), another slow decay appears

at intermediate time. This intermediate decay is also slower than the natural decay

time τat (dash-dotted line). The fit result obtained by a single exponential for the

slowest decay is shown with the dashed lines, and the level used to characterize the

intermediate decay time is shown as a horizontal magenta dashed line.

procedure. For the late-time decay we use a single exponential fit and we keep the same

fitting range as for the previous measurements with a plane wave, i.e. one decade above

the noise floor. The characterization of the intermediate decay is less straightforward

since it is clearly not a single exponential decay. We have chosen to measure the time

at which the normalized intensity reaches e−1 = 36.8% as an effective decay time. This

level seemed a good trade-off between waiting long enough such that the fastest modes

have decayed and not too long not to enter the late-time decay. A reliable determination

of this time has to take into account the non-negligible amount of detected light which

does not come from the cold atoms but from the scattering off the glass windows and

the background hot vapor, such that the 36.8% level is always defined respective to the

steady-state level of the light scattered by the cold atoms. The corresponding level is

shown in figure 5 as a dashed horizontal line.

The results of the measured decay times for several b0 and δ are shown in figure 6.

In the first row [panels (a) and (b)], we plot the effective decay time characterizing

the intermediate decay, noted τRT, and in the second row [panels (c) and (d)] we

plot the slowest decay time, noted τsub. Moreover, in order to identify the relevant

scaling parameter for each decay time, we plot them as a function of b0 [left panels (a)

and (c)] and b(δ) [right panels (b) and (d)]. One can see that b0 is not the right

parameter governing the intermediate decay (figure 6(a)) and b(δ) is not the right

parameter governing the long-time decay (figure 6(d)). The relevant scaling are those

of figures 6(b,c), highlighted by thick mirrored axes.

The measured values τRT for the intermediate decay plotted as a function of b(δ)

all collapse quite well on a single curve, showing that the optical thickness governs
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Figure 6. Systematic experimental study of the decay of the scattered light when the

atomic sample is illuminated by a narrow beam. (a) and (b) Intermediate decay time

τRT plotted as a function of b0 and b(δ). (c) and (d) Late-time decay τsub as a function

of b0 and b(δ). The relevant scalings appear in panels (b) and (c). In the latter the

subradiance trend measured with a plane wave (figure 2) is shown as a dashed line.

this decay. We therefore associate this to radiation trapping. Note that τRT does not

scale as b2, which is partly due to the Doppler-induced frequency redistribution, as

already explained, and also partly due to our empirical definition of τRT, which does

not correspond to the lifetime of the longest-lived diffusive mode. The data is in fair

agreement with the random walk simulations shown in section 5.3, which demonstrates

that classical multiple scattering is a sufficient ingredient to explain this part of the

decay curve. However we note that the scaling with b(δ) has been obtained using an

empirical frequency shift of −0.15Γ ≈ 0.9 MHz for the probe detuning, which might be

due to calibration errors or spurious magnetic fields. All data are presented with this

shifted detuning.

The measured values τsub for the slowest decay time plotted as a function of b0

are scattered around the trend of the subradiance decay measured with the plane wave

(figure 2), shown by the dashed line. We do not observe any significant systematic effect

with the detuning. The higher level of the noise floor compared to the plane wave data,

due to the reduced probe power, explains the spreading of the data, but the trend shows

unambiguously that this decay is similar to the one observed with the plane wave, and
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can thus be attributed to subradiance. As a consequence, we can conclude that with

these parameters, in particular the temperature T ≈ 100 µK, the late-time decay is

dominated by subradiance, even with a narrow exciting beam, at least up to b ∼ 35,

which is the maximum we have been able to study in our experiment.

5. Numerical simulations

In order to provide further evidence of our interpretation to distinguish radiation

trapping from subradiance, we now turn to numerical simulations. Numerical

simulations allow us to discuss the physics of subradiance and radiation trapping in

an idealized scenario, for example at zero temperature. It also allows comparing the

data to a model including a number of experimental imperfections.

5.1. Description of the models

We use two very different models in the following: coupled-dipole (CD) equations and

random walk simulations (RW).

The coupled-dipole model has been widely used in the last years in the context

of single-photon superradiance and subradiance [4, 17, 19, 20, 21, 46, 47, 48, 49, 50].

It considers N two-level atoms at random positions ri driven by an incident laser

(Rabi frequency Ω(r), detuning ∆). Restricting the Hilbert space to the subspace

spanned by the ground state of the atoms |G〉 = |g · · · g〉 and the singly-excited states

|i〉 = |g · · · ei · · · g〉 and tracing over the photon degrees of freedom, one obtains an

effective Hamiltonian describing the time evolution of the atomic wave function |ψ(t)〉,

|ψ(t)〉 = α(t)|G〉+
N∑
i=1

βi(t)|i〉 . (6)

Considering the low intensity limit, when atoms are mainly in their ground states, i.e.

α ' 1, the problem amounts to determine the amplitudes βi, which are then given by

the linear system of coupled equations

β̇i =
(
i∆− Γ

2

)
βi −

iΩi

2
+
iΓ

2

∑
i 6=j

Vijβj . (7)

These equations are the same as those describing N classical dipoles driven by an

oscillating electric field [48]. The first term on the left hand side corresponds to the

natural evolution of independent dipoles, the second one to the driving by the external

laser, the last term corresponds to the dipole-dipole interaction and is responsible for

all collective effects. In the scalar model for light, which neglects polarization effects

and near-field terms in the dipole-dipole interaction, it reads

Vij =
eik0rij

k0rij
,with rij = |ri − rj| , (8)

where k0 = ω0/c is the wavevector associated to the transition. Neglecting the near

field terms of the dipole-dipole interaction is a good approximation for dilute clouds,
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i.e. when the typical distance between atoms is much larger than the wavelength, which

is the case in the experiment. The impact of the polarization of light on subradiance,

as well as the Zeeman structure of the atoms, is still an open question and has been the

subject of several recent theoretical works [51, 52, 53] From the computed values of βi,

we can derive the intensity of the light radiated by the cloud as a function of time and

of the angle [49]. Technical details on the simulations can be found in [22].

The second model is a random-walk model, where the atoms are treated as classical

scatterers and photons as particles, neglecting wave aspects. Photons are sent one by

one by randomly drawing their initial transverse position according to the exciting

laser profile and their initial detuning according to the laser spectrum. The number of

scattering events until the photon escapes the medium, as well as its escape direction, are

computed from a stochastic algorithm based on the mean-free path [26]. By repeating

this with many photons, we can build the distribution of the number of scattering events

per photon for a given detection direction. By converting the number of scattering to

a time using the transport time τat (see Appendix A) and convoluting by the pulse

duration, we obtain a decay curve for the scattered light at the switch-off.

The advantage of the CD model is that it includes interference and cooperative

effects. One can also include temperature effects by using time dependent positions of

the atoms [21, 54]. However, computing capabilities limit its use to a few thousands of

atoms and it is thus hard to explore large optical depths without introducing spurious

high-density effects. The random walk model does not suffer from this limitation and

can be applied with the parameters of our experiment. It can also easily account

for some experimental imperfections, like the finite linewidth of the laser spectrum.

Doppler broadening can also be included “by hand” by a probabilistic frequency shift

at each scattering [54], also accounting for subtle effects like the correlation between

the frequency shift and the initial detuning and the scattering angle (see, e.g., [55]).

However, all coherent and interference effects are neglected. Therefore, comparing the

results given by the two models helps identify the relevant physics.

5.2. Comparison between the coupled-dipole and the random walk models in the ideal

case

In this section we consider motionless atoms (T = 0). In the CD equations, the driving

beam profile Ω(r) is a truncated plane wave of radius R/2, where R is the rms radius of

the atomic cloud. In the RW simulations, the excitation beam is infinitely narrow and

centered on the cloud. In the two models the driving field is perfectly monochromatic.

Examples of decay curves for different optical depths b are shown in figure 7. Solid

lines are computed from the CD equations and the dashed lines from RW simulations.

Here, the resonant optical depth is fixed, b0 = 17, and the optical depth is changed

by varying the detuning. The data for the highest b corresponds to δ = 0. The main

observation is that the two models are in good agreement for the highest optical depth,

showing that in this case, radiation trapping completely dominates the decay dynamics,
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Figure 7. Numerical simulations of the decay for a fixed b0 = 17 and different

detunings δ = {0, 0.6, 2.9} in order to vary the optical depth (legend). The solid lines

represent the calculations for the coupled-dipole model, the dashed lines show the result

for the random walk model. The two models are in agreement at high b. For large b0
and moderate b (slightly detuned excitation), radiation trapping dominates the decay

at the beginning and subradiance dominates at the end. For very large detuning and

very low b, superradiance at early times would be visible in the CD model [19].

and subradiance is not or hardly visible. As the detuning increases and the optical

depth decreases accordingly, while b0 remains large, radiation trapping becomes less

and less important. It still dominates the early decay (superradiance is not visible

above b ∼ 1 [19]) but subradiance dominates afterwards.

A systematic comparison between the two models is performed in figure 8, in which

we plot the late decay time determined by an exponential fit in the amplitude range

[10−3 10−4]. We also show the prediction of a diffusion model for multiple scattering,

τdiff =
3b2

απ2
τat , (9)

with α ≈ 5.35 for a Gaussian density distribution [28].

Figure 8 shows that the decay computed by the RW simulation tends toward the

asymptotic behavior described by the diffusion equation, which is a good approximation

for optical depth larger than b ∼ 20. More interestingly, the CD model also starts to

reach this asymptotic behavior and gives results very close to the RW model above

b ∼ 10. On the contrary, at low b (large δ), the CD model levels to a constant value for

the decay time, which corresponds to subradiance, not included in the RW model.

Similar comparisons (not shown here) for resonant excitation and different b0 show

the same behavior: the two models are in agreement above b ∼ 10 while for smaller b

subradiance is visible in the CD model.

To conclude, in this idealized scenario (narrow exciting beam, T = 0), subradiance

dominates the slow switch-off dynamics for small b and radiation trapping dominates for

large b, as expected from the scaling behaviors, respectively linear in b0 and quadratic
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Figure 8. Comparison of the late decay time in different models. The optical depth

b(δ) is changed by varying the detuning and keeping the on-resonant optical depth

constant (b0 = 17). Red circles correspond to random walk simulations, blue diamonds

to the coupled-dipole model and the dash-dotted line to the diffusion model (Eq. 9).

in b. Moreover, although the deep multiple scattering regime is hard to explore, these

results confirm that radiation trapping is well included in the CD model.

5.3. Comparison between experimental data and random walk simulations

The situation is not so simple in the experiment because of a number of effects. As

already discussed in [28, 29], the two most important effects are the temperature and

the spectrum of the incident laser. First, frequency redistribution during multiple

scattering due to Doppler broadening breaks the b2 scaling law, and can even make

it close to a linear scaling [31]. Second, the finite spectrum of the incident laser,

with possibly broad wings, can be a source of resonant photons when a moderate

detuning is chosen. By combining the two effects, spurious resonant photons could

mimic subradiance. Fortunately, these two effects can be included in random walk

simulations, which allows us to check that the slow decay due to this spurious radiation

trapping is well below the measured slow decay that we attribute to subradiance. We

have also checked that a number of other imperfections, such as a slight anisotropy of the

cloud or a small misalignment of the beam from the cloud center, are indeed negligible

with our parameters (see Appendix B).

Figure 9 shows the direct comparison between normalized experimental data and

RW simulations performed with the experimental parameters, for the same b(δ) ≈ 14

but different b0 and δ. Since the optical depths are the same, in the ideal case the

two RW simulations would give the same results. Their small difference is due to

the temperature (T = 100 µK) and laser spectrum (FWHM = 500 kHz), which have

different effects depending on b0 and δ. The experimental data, however, have a much

larger difference. They are very close to the simulations at early time, which confirms

that the measured intermediate decay is well explained by radiation trapping. On the

contrary, at long time, the experimental data are significantly above the simulations, a



Subradiance and radiation trapping in cold atoms 15

t/τat

I/
I m

ax

0 50 100 150

10
-2

10
0

200

t/τat

I/
I m

ax

0 50 100 150 200

10
-2

10
0

Experiment

RW simu.

δ=-0.65 b)a) δ=-1.15

Experiment

RW simu.

 b=14  b=14

Figure 9. Direct comparison between experimental decay and simulated decay with

a random walk model. The parameters of the simulation are the experimental ones.

The optical depth is the same in the two panels, b ≈ 14. (a) b0 = 78, δ = −0.65. (b)

b0 = 182, δ = −1.15. The beginning of the decay is in good agreement with the RW

simulation; the slower experimental decay at late time is due to subradiance.

difference which increases with b0. This is well consistent with subradiance, absent in

the RW model, which dominates at long time.

Moreover, the RW simulations allow the direct comparison with the measured

intermediate decay time reported in figure 6(b). Using the same definition for extracting

τRT from the simulated decay, we report in figure 10 the results of systematic simulations

for different b0 and δ, plotted as a function of b(δ). As previously, the simulations are

performed with the parameters of the experiment including the effects of the temperature

and laser spectrum. Therefore the decay times do not follow the quadratic behavior

expected for the ideal case of zero temperature. With these effects the decay time

increases almost linearly with the optical thickness and saturates for large optical

thickness. It shows a fair agreement with the experimental data of figure 6(b), without

any free parameter, although we observe a discrepancy for the largest optical thickness.

Indeed above b ≈ 25 the time τRT saturates faster in the experimental data than in the

simulations. This could be due to a loss process for the light during multiple scattering,

for instance inelastic scattering (Raman scattering, light-induced collisions, scattering

by the hot vapor background, etc.).

It is interesting to note that despite several experiments on radiation trapping in

cold atoms, it is still challenging to observe a clear quadratic dependence of the radiation

trapping time with the optical thickness. Indeed one needs at the same time a large cloud

(such that the exciting beam can reasonably be smaller), a large optical thickness to be

deep in the diffusive regime, and a very cold sample such that frequency redistribution

is negligible. More precisely, one needs bk0v << Γ, where v is the rms width of the

velocity distribution [28, 29, 31]. This condition comes from the Doppler shift at each

scattering event, which induces a random walk of the light frequency of step kv, thus

producing a broadening given by k0v times the square root of the number of scattering

events, i.e. b. Taking b = 50 and bk0v = 0.1Γ gives a temperature T ≈ 1 µK.
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Figure 10. Numerical decay times τRT as a function of the optical depth b(δ) for

different detunings and b0. These results have to be compared with the experimental

data reported in figure 6(b), which shows a fair agreement between radiation trapping

measurements and our random walk model.

6. Summary

In summary, we have demonstrated that with a large cold atomic cloud of 87Rb driven

by a weak laser near resonance, we can observe two different types of slow decay of the

scattered light when the laser is switched off. Moreover, with appropriate parameters,

the two slow decays appear simultaneously. At early and intermediate time, the decay is

mainly due to radiation trapping, i.e. classical multiple scattering. It is well explained

by a random walk description. At late time, subradiance creates an even slower decay.

We find that, at large enough optical depth and at zero temperature, radiation trapping

could dominate the whole decay dynamics. However, temperature-induced frequency

redistribution limits radiation trapping and in our experiment, subradiance always

dominates at late time.

Following previous independent observations of radiation trapping [28, 29] and

subradiance [20] as well as a theoretical analysis of the nature of collective long-lived

modes of the effective atomic Hamiltonian [39], these new results significantly contribute

to clarify the interplay between radiation trapping and subradiance, their dependence

with experimental parameters, and more generally the physical interpretation of the

slow decay at the switch-off. This is crucial for further use of this kind of experiments

for probing more subtle phenomena, as it has been proposed, for instance, for the

experimental observation of Anderson localization of light in cold atoms [56].
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Appendix A. Transport time of light in cold atoms

The transport time is the sum of the group delay between two scattering events and

the delay corresponding to the elastic scattering process, called Wigner’s delay time

τW [23, 28]:

τtr = τW +
`sc

vg

, (A.1)

where `sc is the mean free path and vg the group velocity.

The fundamental ingredient to compute the different terms is the atomic

polarizability,

α(ω) =
6π

k3
0

× −2(ω − ω0)/Γ + i

1 + 4(ω − ω0)2/Γ2
, (A.2)

where k0 = ω0/c is the wavevector associated to the transition. Note that the prefactor

6π/k3
0 can also be written σ0/k0 with σ0 the resonant scattering cross section. For

simplicity, we will also use the notation L(ω) for the Lorentzian function

L(ω) =
1

1 + 4(ω − ω0)2/Γ2
. (A.3)

The Wigner delay time is given by the energy derivative of the dephasing acquired

at the scattering [57, 58],

τW =
∂φ

∂ω
. (A.4)

This phase is actually the argument of the polarizability,

φ(ω) = arctan

(
−Γ/2

ω − ω0

)
, (A.5)

which gives

τW =
2

Γ
L(ω) . (A.6)

The mean free path is related to the scattering cross section, proportional to the

imaginary part of the polarizability,

`sc =
1

ρσsc

=
1

ρσ0L(ω)
. (A.7)

Finally, the group velocity is defined by

vg =
∂ω

∂k
, (A.8)

with k = nk0 and n the refractive index. It follows

1

vg

=
n

c
+ k0

∂n

∂ω
. (A.9)
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The refractive index is given by the real part of the polarizability,

n− 1 =
ρ

2
Re(α) . (A.10)

Using

Re(α) =
σ0

k0

×−2(ω − ω0)

Γ
L(ω) (A.11)

and combining equations A.7 and A.9 - A.11, we obtain

`sc

vg

=
n`sc

c
+

1

2L(ω)

∂

∂ω

(
−2(ω − ω0)

Γ
L(ω)

)
. (A.12)

At this stage we consider that the first term is negligible, which is true for sample of

reasonable size because R� c/Γ. We thus obtain

`sc

vg

= − 1

Γ

[
1 +

(ω − ω0)L′(ω)

L(ω)

]
. (A.13)

where L′(ω) is the derivative of the Lorentzian function,

L′(ω) = −8(ω − ω0)

Γ2
L(ω)2 . (A.14)

We obtain

`sc

vg

= − 1

Γ

[
1− 8(ω − ω0)2

Γ2
L(ω)

]
. (A.15)

Finally, combining equations A.6 and A.15 in equation A.1 leads to

τtr =
1

Γ

[
2L(ω)− 1 +

8(ω − ω0)2

Γ2
L(ω)

]
(A.16)

=
1

Γ

{
2L(ω)

[
1 +

4(ω − ω0)2

Γ2

]
− 1

}
(A.17)

= τat . (A.18)

Although this result is well known, writing down its derivation allows one to notice

that near resonance, the Wigner time is actually larger than the natural lifetime of the

excited state, and this is compensated by a negative group velocity. This shows that

the simple physical picture of photons bouncing between atoms with a well ordered

sequence of events, with some duration for the scattering process and some duration for

the propagation between atoms, is clearly a bad picture. Yet, it works surprisingly well

in a great number of circumstances.

Another remark is that random walk simulations are considered to neglect coherent

and wave effects, which is true for diffraction, interference or cooperativity. But, as far

as the temporal dynamics is concerned, a bit of wave physics enters with the use of

equation A.18, since it relies on wave quantities like the group velocity or the dephasing

at the scattering process. Moreover it also relies on the refractive index, which is a

coherent and collective quantity. In this respect, the random walk model corresponds

to a hybrid approach.
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Appendix B. Influence of imperfections

To evaluate which experimental imperfections influence the radiation trapping decay we

performed a systematic study by adding one effect after the other in the random walk

simulations. We also want to check that none of these imperfections is strong enough to

create spurious photons on resonance, which would mimic subradiance. We thus used

the parameters of the data taken off resonance, at δ = −1.15.

The curves are shown in figure B1, starting from the ideal case of zero temperature,

an infinitely narrow beam crossing the sample at its center, a spherical Gaussian atomic

distribution and a perfectly monochromatic light. First the finite temperature is added,

which changes the slope of the late decay. Afterward the finite beam size is added,

which does not affect the decay much since the beam is still much smaller than the

cloud. Next the finite width of the probe spectrum (FWHM = 500 kHz), including its

measured Lorentzian wings, is added, which leads to a significant change in the decay

time as well as in the relative level of the slow decay. This is due to the resonant

photons contained in the broad Lorentzian wings of the laser spectrum. Finally the

slight anisotropy in the cloud shape is added, which only leads to a minor change.

We also display the corresponding experimental data, which shows that the slow decay

at late time, attributed to subradiance, is indeed well above the simulated radiation

trapping decay.
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Figure B1. Comparison between experimental data and the random walk simulations

for a detuning of δ = −1.15 and b = 7.4. To show the impact of the different

imperfections we included them one after the other in the random walk model. In the

ideal case the temperature is zero, the probe beam is centered and infinitely small and

its spectrum is perfectly monochromatic. The main effects are the finite temperature

as well as the width of the laser spectrum.
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