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Abstract. The identification of biological parameters governing dynam-
ics of Genetic Regulatory Networks (GRN) poses a problem of com-
binatorial explosion, since the possibilities of parameter instantiation
are numerous even for small networks. In this paper, we propose to
adapt LTL model checking algorithms to infer biological parameters
from biological properties given as LTL formulas. In order to reduce
the combinatorial explosion, we represent all the dynamics with one
parametric model, so that all GRN dynamics simply result from all
eligible parameter instantiations. LTL model checking algorithms are
adapted by postponing the parameter instantiation as far as possible.
Our approach is implemented within the SPuTNIk tool.

Keywords: LTL Model Checking, Parameter Identification, Symbolic
Execution, Genetic Regulatory Network, Thomas Discrete Modeling.

1 Introduction

Gene expression is a biological process where proteins are synthesized from genes.
These proteins can regulate the synthesis of other proteins provided that their
concentrations are sufficient. A collection of regulatory inter-dependencies be-
tween genes/proteins is called a Genetic Regulatory Network (GRN). In this pa-
per we consider a discrete-state formalism, the René Thomas’ formalism [2,3,6,18,19],
according to which the amounts of proteins in a GRN are discrete abstractions of
continuous concentrations. Hence the overall evolution of protein concentration
along time, called the dynamics of the network, is captured by a discrete-state
transition system. Given a René Thomas GRN model, the main interest is in
analyzing the possible dynamics that may be associated to it. However, from
the dynamics point of view, a GRN on its own is an underspecified type of
representation: it represents the dependencies between a set of genes, but it
does not describe what effect the combination of all such dependencies has on
a given state of the network, hence on its evolution. The mapping of a GRN
model to a specific dynamic (i.e. a transition system) is achieved by considering
an instantiation of so-called biological parameters, i.e., a specification of the
combined effect that all activated regulators have on a given state of the network.



Since the number of possible instantiations of biological parameters is a double
exponential function of the GRN size (in terms of number of genes and of
interactions), the analysis of the possible dynamics associated to a GRN model
is a complex task. In this paper we consider the application of formal methods,
namely model checking [1], as a means to reason about the possible dynamics
associated to a GRN specification. In particular we tackle the following problem:
given a relevant behavior of interest, formally expressed in terms of a temporal
logic property, say ϕ, we want to be able to automatically identify the biological
parameters instances which give rise to dynamics complying with ϕ.

Related work. Model checking techniques have been widely advocated in several
works to verify whether a given discrete Thomas model fulfills some relevant
biological temporal properties. In [3] Bernot et al. expressed biological knowledge
with Computation Tree Logic (CTL) formulas [1]. To exhaustively search the
parameters’ space, the set of all possible dynamics is generated and a CTL model
checking procedure is iterated, one dynamics after the other. This approach
is implemented in the SMBioNet tool [16] and has been illustrated in [8]. In
[12], the approach has been extended to cope with the formation of complexes
from proteins which allows modelers to express relationships between biologi-
cal parameters leading to a reduced set of dynamics to be investigated. This
work prefigures the interest of using constraints on the parameters. [13,2] define
an approach based on an encoding technique to share computations between
different dynamics. Sets of dynamics are encoded by a binary vector, one bit
(or color) per dynamics, and LTL model checking algorithms [1] are extended
with Boolean operations on vectors. In [6,5], the tool GNBox uses Constraint
Logic Programming (CLP) techniques to identify parameters. GRN dynamics
and biological knowledge are described by declarative rules and constraints on
parameters, then target behaviors are expressed as some kind of finite paths
that models have to verify. [9] also uses CLP techniques to adapt CTL model
checking, but the encoding introduces a lot of fresh logical variables that hamper
to scale up the method.

Our contribution. We propose a new approach that is based on a parametric
model, called Parametric GRN (PGRN). This allows us to encompass all the
dynamics of a GRN in a unique representation, biological parameters being
processed as symbols, and to implement an efficient (on-the-fly) searching of
(a symbolic representation of) the parameter’s space. Similarly to [13], our
approach is based on LTL model checking. While in, [13], LTL model checking
algorithms are optimized for the particular case of time series, that are sequences
of states made of one expression level per gene, observed one by one, we follow
the same creed as the one advocated in [6,5]: model sets are handled through
some logical language both to avoid combinatorial explosion and to take benefit
of constraint solving techniques. A preliminary version of our approach has
been described in [14]. In the present version, algorithms combining symbolic
execution and constraint solving techniques have been reengineered and tuned
to be more efficient and cope with GRN features. Thereby, we consider the full



LTL language while [13] essentially focuses on time series and [6,5] focuses on
properties carrying on finite paths.

Paper organization. We reformulate the logical description of Thomas’ modeling
framework in section 2, and explain how we encode the set of dynamics of a GRN
with Parametric GRN in section 3. Section 4 presents our adaptation of LTL
model checking algorithms with symbolic execution techniques. In section 5, we
briefly discuss the validity of our approach with our dedicated tool SPuTNIk.
Finally, section 6 contains some concluding remarks.

2 Genetic Regulatory Networks

A Genetic Regulatory Network (GRN) is a collection of regulatory inter-depen-
dencies between genes to represent the mechanism of gene expression, i.e. the
biological process by means of which proteins are synthesized. Two kinds of
interactions exist: activation or inhibition depending on whether the protein
expressed from the source gene can enhance or reduce the expression of the
target gene. Moreover, an interaction is effective only if the concentration of the
source protein is sufficient, in other words if its level of expression is above a
given threshold. From the modeling point of view, a gene g is assimilated to the
protein it synthesizes. In particular, it inherits the protein’s level of expression,
denoted xg, which, in this context, is abstractly represented by a non-negative
integer ranging from 0 (absence of protein or very low concentration level) to a
maximal value mg. A GRN is classically represented by an interaction graph.

Definition 1 (Interaction graph). An n-order interaction graph (IG) is a
labeled directed graph Γ = (G, I) where G is a finite set of gene nodes, n= |G|
and I ⊆ G×{+,−}×N+×G is the set of interactions. Given (g1, s, t, g2)∈I, s
indicates the effect of g1 over g2 (sign ”+” for activation and ”−” for inhibition)
and t denotes the threshold of the interaction. Moreover, the following properties
hold: i) ∀(g1, g2) ∈G2, there exists at most one interaction (g1, s, t, g2) ∈ I; ii)
∀(g1, s, t, g2)∈I, t > 1⇒ ∃(g1, s′, t′, g3)∈I, t′= t− 1.

The threshold t of an interaction (g1, s, t, g2) ∈ I indicates the minimal level
that g1 needs to be at in order to affect the expression of g2. The condition on
thresholds states that for any gene g1 every intermediate threshold level must
appear on at least an interaction arc originating in g1. Since an interaction graph
may contain at most one interaction between two genes, then for an interaction
(g1, s, t, g2) ∈ I, we denote s(g1, g2) its sign, and t(g1, g2) its threshold. mg =
max{t | ∃(g, s, t, g′) ∈ I} is3 the maximal level of expression of gene g, and
G−(g)⊆G is the set of regulators of g (i.e. G−(g) = {g′′|∃(g′′, s, t, g) ∈ I}).

A dynamics of a GRN corresponds to an evolution over time of the levels of
expression of all genes, The state space describes the states that may be observed
during such a possible evolution.

3 mg is equal to 1 if there does not exist edges outgoing from g.



Definition 2 (State space of an interaction graph). For Γ = (G, I) an
interaction graph we define X =

∏
g∈GXg the state space underlying Γ , where

Xg = {0, ...,mg} is the set of possible levels of expression for gene g.

Example 1 (Interaction graph and state space). Figure 1 presents a two-genes
interaction graph Γ0 where gene α is both an activator of β and of itself (self-
activator) while β is an inhibitor of α. In particular α activates the expression of
β whenever its level of expression is at least 1, while when its level of expression is
at least 2 it activates both itself and β. The thresholds of Γ0 induce the following
sets of levels for the two genes, Xα = {0, 1, 2} and Xβ = {0, 1}, hence the state
space X={(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}.

α β

[+, 2]

[+, 1]

[−, 1]

Fig. 1: Γ0: an example of a two-genes
interaction graph.

xα

xβ

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Fig. 2: Dynamics DK induced by the
parameters mapping K

For Γ an interaction graph with state space X, we denote D = (X,→) a
generic transition system4 called dymanics of Γ . With respect to D, Γ can be
regarded as an underspecified formalism: from Γ , on its own, one cannot devise
any concrete dynamics D. To obtain a dynamics for Γ we need to describe for
each gene g the effect that any subset of its regulators ω⊆G−(g) would have on
g. This is achieved by associating biological parameters with Γ .

Definition 3 (Biological parameters). For g a gene of Γ = (G, I), the set

of biological parameters of g is Kg = {Kg(ω) | ω ⊆ 2G
−(g)} and the set of all

biological parameters of Γ is K = ∪g∈GKg.
An instantiation of biological parameters is defined by any mapping K :

K → ∪g∈GXg associating to any parameter Kg(ω) a value in Xg. Any instan-

tiation K : K → ∪g∈GXg defines a mapping K : ⊗g∈G2G
−(g) → X verifying

∀(ωg1 , . . . , ωgn) ∈ ⊗g∈G2G
−(g),K((ωg1 , . . . , ωgn)) = (K(Kg1(ωg1)), . . . ,K(Kgn(ωgn)))

(with G = {g1, . . . , gn}).

In the sequel, for simplicity purpose, an instantiation K associating the value x
to the parameter Kg(ω) will be simply given by the equality Kg(ω) = x.
The biological parameters of an IG indicate the values the genes of the GRN tend
towards when a certain n-tuple of regulators is activated. Thus to obtain the
dynamics DK corresponding to parameters K we need to know what regulators

4 A transition system (E,R) verifies that R is a binary relation on E × E.



are activated in a state x ∈ X. We say that a set of regulators ω ⊆ G−(g) of
gene g is activated in state x = (x1, . . . , xn) ∈ X, denoted (x1, . . . , xn) |= ω,

iff
(∧

g′∈ω xg′ ≥ t(g′, g) ∧
∧
g′∈G−(g)\ω xg′ < t(g′, g)

)
, that is: if and only for

every regulator g′ ∈ω the corresponding component xg′ of state x is above the
corresponding activation threshold (i.e., xg′ ≥ t(g′, g)) while no other regulator

of g does. In the remainder we denote ActR : X→ ⊗g∈G2G
−(g) the function that

maps each state x into the corresponding n-tuples of activated regulators for the
n genes of a GRN. In the remainder, for x∈X, we denote x[xg ↑] (resp. x[xg ↓])
the state resulting from x by increasing (resp. decreasing) the xg component of
one unit.

Definition 4 (dynamics induced by an instantiation of parameters).
For Γ = (G, I) an n-order IG, K : K → ∪g∈GXg a set of biological parameters
of Γ , we define DK = (X,→

K
) the dynamics (transition system) of Γ induced

by K. The transition relation →
K
⊆X×X is minimally defined as follows:

∀x=(x1, . . . xn)∈ X let x∗=(x∗1, . . . , x
∗
n)=K ◦ActR((x1, . . . , xn)):

– if x 6= x∗ then ∀i, 1≤ i≤n
• if xi<x

∗
i , then x→

K
x[xi ↑] (increment gene i)

• if xi>x
∗
i , then x→

K
x[xi ↓] (decrement gene i)

– else if x = x∗ then x→
K
x (self-loop)

Then for each state x ∈ X we determine the corresponding attractor state x∗

(by application of the parameters mapping K to the regulators activated in x
i.e., x∗ = K ◦ ActR(x)). If the attractor state x∗ is different from x then for
each different component xi 6= x∗i we add either an increment or a decrement
transition in →

K
. Conversely if x∗=x we add a self-loop in →

K
.

Example 2 (Biological parameters and Dynamics). The subsets of regulators for

the two genes of Γ0 (Figure 1) are 2G
−(α) ={{}, {α}, {β}, {α, β}}, resp. 2G

−(β) =
{{}, {α}} hence the biological parameters of Γ0 are: K = {Kα({}), Kα({α}),
Kα({β}), Kα({α, β}), Kβ({}), Kβ({α})}. According to |= the association be-
tween states of X and n-tuples of activated regulators is: (0, 0) |=({}, {}), (0, 1) |=
({β}, {}), (1, 0) |= ({}, {α}), (1, 1) |= ({β}, {α}), (2, 0) |= ({α}, {α}), (2, 1) |=
({α, β}, {α}). As an example we consider the following mapping (instantiation)
of the parameters for gene α and β into corresponding target levels: Kα({})=2,
Kα({α}) = 2, Kα({β}) = 0, Kα({α, β}) = 2, Kβ({}) = 0 and Kβ({α}) = 1
yielding the combined mapping K=Kα×Kβ = {({}, {})→ (2, 0), ({{}, {α})→
(2, 1), . . . , ({α, β}, {α}) → (2, 1)} Figure 2 shows the dynamics DK yielded by
the parameters mapping K.

A parameters mapping K for an IG Γ yields a dynamics DK . However some
mappings K may result into inconsistent dynamics. To rule out inconsistent
dynamics, mapping must comply with the following constraints.

Definition 5 (Constraints for parameters mapping). Let Γ = (G, I) be
an IG. Definition constraint: ∀g∈G,∀g′∈G−(g),∀ω⊆G−(g)\{g′}: if s(g′, g)= +



then Kg(ω)≤Kg(ω∪{g′}), if s(g′, g) = − then Kg(ω)≥Kg(ω∪{g′}). Observation
constraint: ∀g ∈G, ∀g′ ∈G−(g), there exists ω ⊆ G−(g) \ {g′}: if S(g′, g) = +
then Kg(ω)<Kg(ω∪{g′}), if s(g′, g) =− then Kg(ω)>Kg(ω∪{g′}). Min/Max
constraint: ∀g ∈ G, Kg({g′|g′ ∈ G−(g), s(g′, g) = −}) = 0 and Kg({g′|g′ ∈
G−(g), s(g′, g)=+})=mg.

The Definition constraint (or Snoussi constraint [17]) states that if the level
of expression of a gene g′ which activates (resp. inhibits) a gene g becomes
greater than its threshold, then the expression level of g cannot decrease (resp.
increase). The Observation constraint expresses how we identify regulators. If g′

is an activator (resp. inhibitor) of g, then there exists at least one dynamic state
where the increase of the level of expression of g′ leads to an increase (resp.
decrease) of the expression level of g. Finally, the Min/Max constraint states
that in a dynamic state where all the activators (resp. inhibitors) of a gene are
above the threshold and simultaneously none of the inhibitors (resp. activators)
is, then the level of expression of the attractor of the gene is maximum (resp.
minimum).

Example 3. The Constraints for IG Γ0 (Figure 1) correspond to the following
conditions: Kα({α}) = 2, Kα({β}) = 0, Kβ({}) = 0, Kβ({α}) = 1,

(
Kα({}) <

2 ∨ 0 < Kα(α, β)
)

and
(
Kα({}) > 0 ∨ 2 > Kα(α, β)

)
. Notice that amongst

the 324 possible parameter mappings5 for Γ0, only 7 are consistent with the
Constraints for Γ0.

Even if these constraints are well-founded, there are not always considered
by biologists. In the sequel, by default, they will be considered and generically
denoted as CI , but they can be relaxed on demand.

3 Modeling dynamics with Parametric GRN

In order to study all the dynamics simultaneously, we represent them all through
a single (meta)model, called Parametric GRN (PGRN), i.e. a facility of transi-
tion systems parameterized by the biological parameters.

Parametric GRN. A PGRN is a transition system associated with an interaction
graph Γ = (G, I). It involves two families of symbols: the biological parameters

K = {Kg(ω) | g ∈ G,ω ⊆ 2G
−(g)} and the state variables G = {xg|g ∈ G}. Note

that, according to the context, xg will denote either a state variable or a value
representing a concentration level.

The main idea is to encode state evolution with transitions parameterized
by parameters of K. A PGRN is composed of two states: T (transient) corre-
sponding to configurations such that at least one gene can change its current
level, and S (stable) corresponding to situations where no change is possible
for any gene. A transition of a PGRN is characterized by a guard (a condition

5 The number of possible parameters instantiation is equal to
∏
g∈G (mg + 1)2

|G−(g)|
.



over parameters K and state variables of G) and an assignment (an application
X → X expressing how states of a dynamics evolve). For example, transition

T
(xα<2∧xβ=0∧xα<Kα({})[xα↑]−−−−−−−−−−−−−−−−−−−→ T (see Fig. 3) indicates that for any (transient) state

x∈X such that xβ =0, xα<2 and xα<Kα({}) then a transition corresponding
to an increase of the level of α exists.

More precisely, for each gene g, there is a transition from T to T for each
kind of variation (increase or decrease) of xg. For ω ⊆ G−(g) a subset of reg-
ulators of g, let us introduce the predicate Pg(ω) : X → {>,⊥} defined by:
(
∧
g′∈ω xg′ ≥ t(g′, g)) ∧ (

∧
g′∈G−(g)\ω xg′ < t(g′, g)). Pg(ω) characterises the set

of states in which regulators ω are the only effective ones on g. The transition
associated to the increase of xg is conditioned by the guard Increase(g) =
∨ω⊂G−(g)(Pg(ω) ∧ xg < Kg(ω)). Similarly, the transition associated to the de-
crease of xg is conditioned by the guard Decrease(g) = ∨ω⊂G−(g)(Pg(ω)∧ xg >
Kg(ω)). Finally there is one transition from T to S when the expression level
of all genes remains stable, i.e. if any gene g satisfies the condition Stable(g) =
∧ω⊂G−(g) (Pg(ω) ∧ xg = Kg(ω)), and one last transition from S to S where the
guard is always true.

Definition 6 (PGRN). A PGRN associated to an interaction graph Γ =
(G, I) is a pair P = (QP , δP ) with QP = {T, S} the set of states and δP a
set of transitions. A transition of δP is of the form (qP , gP , aP , q

′
P ), also denoted

qP
(gP )[aP ]−−−−−→ q′P , with qP and q′P states of QP , gP a guard, i.e. a formula over

K∪G and aP an assignment, i.e. an application X → X. More precisely, δP is
the set of all following transitions:

– (T, Increase(g), xg ↑, T ) with g in G,

– (T,Decrease(g), xg ↓, T ) with g in G,

– (T,∧g∈GStable(g), id, S) where id is the identity assignment,

– (S,>, id, S) where > indicates the guard always true.

Let us remark that unfolded versions of guards can be rather long and
complex, but in the best cases they can be simplified by application of the
initial constraints CI . Nevertheless, generally, the most complex guard is the
one labeling the transition T → S since it corresponds to the conjunction of
all Stable(g) conditions. On the other hand, once in S, the guard of the only
possible transition (S → S) is simply true (>). Moreover, transitions involving
disjunctions in their guard can be split. Indeed, transition (T, gP ∨ g′P , aP , T )
can be equivalently split in (T, gP , aP , T ) and (T, g′P , aP , T ).

Example 4 (PGRN). Fig. 3 represents the PGRN associated with the interaction
graph of Fig. 1. In relation with the different possible subsets ω, one can explicit
the different guards: e.g. Increase(β) ≡ (xα < 1∧xβ < Kβ({}))∨(xα ≥ 1∧xβ <
Kβ({α}))). The Initial constraints CI (cf. Def 5) can be used to simplify the
guards: e.g. CI implies Kβ({}) = 0 and Kβ({}) = 1 and then Increase(β) ≡
(xα > 0 ∧ xβ = 0).



T S

(xα < 2 ∧ xβ = 0 ∧ xα < Kα({}))[xα ↑]
(xα > 0 ∧ xβ = 0)[xβ ↑]

(xα = 0 ∧ xβ = 1)[xβ ↓] (xα = 1 ∧ xβ = 0 ∧Kα({}) = 0) ∨ (xα = 1 ∧ xβ = 1)∨
(xα = 2 ∧ xβ = 1 ∧Kα({α, β}) < 2)[xα ↓]

(xα = 0 ∧ xβ = 0 ∧Kα({}) = 0)∨
(xα = 2 ∧ xβ = 1 ∧Kα({α, β}) = 2)[id]

>[id]

Fig. 3: PGRN associated to the interaction graph in Figure 1.

Annotated dynamics. A PGRN characterizes a set of dynamics, one for each
possible instantiation of biological parameters, that is, for any parameter map-
ping K : K → ∪g∈GXg. For gP a transition guard of a PGRN, x∈X a state of
the corresponding GRN, and K an instance of biological parameters, we denotes
JgP Kx,K the instance of gP obtained by substituting gP ’s state variables and gP ’s
biological parameters with the corresponding state value of x, and parameter
values of K. Similarly, we denote JgP Kx the resulting substitution only of gP ’s
state variables (parameters in K remain symbolic).

Definition 7 (Annotated Dynamics). Let P = (QP , δP ) be a PGRN asso-
ciated with an interaction graph Γ = (G, I), and let K : K → ∪g∈GXg. The
annotated dynamics associated to P and K is a pair DK = (QD, δD) where
the set of states QD ⊂ QP × X and the set of transitions δD ⊂ QD × QD
are mutually defined by: ∀x ∈ X, (T, x) ∈ QD and for all (qP , x) ∈ QD and
(qP , gP , aP , q

′
P ) ∈ δP s.t. JgP Kx,K is evaluated to True, then (q′P , aP (x)) ∈ QD

and ((qP , x), (q′P , aP (x))) ∈ δD.

Example 5 (Annotated Dynamics). Figure 4 presents one possible annotated
dynamics for the PGRN represented in Figure 3, with the following instantiation
of parameters: Kα({}) = 2, Kα({α}) = 2, Kα({β}) = 0, Kα({α, β}) = 2,
Kβ({}) = 0 and Kβ({α}) = 1.

(
T, (0, 0)

) (
T, (1, 0)

) (
T, (2, 0)

)
(
T, (0, 1)

) (
T, (1, 1)

) (
T, (2, 1)

) (
S, (2, 1)

)

Fig. 4: A possible annotated dynamics for the PGRN in Figure 3.

By construction, for a given instantiation K : K → ∪g∈GXg, the associated
annotated dynamics DK corresponds to the dynamics DK of the underlying IG Γ
induced by the instantiation K (cf Def 4). For a transition ((qP , x), (q′P , aP (x)))
in δD, it suffices to give up the first component and keep the second one, x →
aP (x), to retrieve a dynamics of Γ . Thus, the dynamics represented in Fig. 2
can be obtained from the annotated dynamics of Fig. 4. The first component (T



or S) is somehow a technical artifact annotating the presence of a stable state
when building sequences of consecutive states. Depending on the context, we
will assimilate DK and DK or will work with the most appropriate of the two
forms. Motivated by efficiency considerations, we will apply a specific treatment
for states x already recognized as stable, that is, annotated by S.

4 Adapting LTL model-checking to PGRN

The classical approach of LTL model-checking [15] consists in confronting a
model (e.g. a dynamics) against an LTL formula. To do so, the negation of the
LTL formula is transformed into a Büchi automaton and the product between
the automaton and the dynamics is computed. We then look for accepting paths
in the product by checking the existence of reachable cycles containing at least
an accepting state. Model checking is usually time consuming, and since the
number of dynamics is large, this method is not applicable in our case. To avoid
the combinatorial explosion, we want to check all the dynamics simultaneously,
i.e. we check directly the PGRN. To do so, we first build the Parametric Product
between the PGRN and the Büchi Automaton associated to the LTL formula ϕ.
We then use symbolic execution technics in order to search for accepting cycles.
As a result, we obtain a set of constraints C that a parameter instantiation K
must fulfill such that the associated dynamics DK verifies ϕ.

Büchi Automaton and Parametric product Biological properties on a
sequence of states can be expressed using LTL formulas built from a set of
atomic propositions using the usual logical operators in {>, ⊥, ¬, ∧, ∨} and
the temporal operators X (for neXt time), G (Globally), F (Finally) and U
(Until) [1]. Since we need to express biological knowledge on levels of expression
of genes, atomic propositions are of the form xg ./ c where xg denotes the level
of expression of a gene g, ./∈ {=, 6=, <,>,≤,≥} and c∈N. Any LTL formula ϕ
can be translated into a Büchi automaton B(ϕ).

Definition 8 (Büchi Automaton associated to an LTL formula). Let Γ
be a GRN and ϕ an LTL formula over the levels of expression of genes of Γ .
A Büchi Automaton associated to ϕ is a tuple B(ϕ) = (QB , q

0
B , AB , δB) where

QB is the set of states, q0B ∈ QB is the initial state, AB ⊆ QB is the set of
accepting states and δB is the set of transitions. A transition of δB is of the
form (qB , gB , q

′
B) with qB and q′B states of QB and gB a non temporal formula

over the levels of expressions of genes in Γ . Moreover, B(ϕ) is such that an
infinite sequence of states provided with truth values for all atomic propositions
(a path) verifies ϕ iff this path is accepted by B(ϕ), i.e. iff this path contains at
least a so-called accepting state infinitely often.

Example 6 (LTL formula and associated Büchi automaton). The existence of a
steady state (i.e. a state which is itself its only own successor) in (xα, xβ) = (2, 1)
corresponds to the LTL formula G((xα = 2 ∧ xβ = 1) → X(xα = 2 ∧ xβ = 1)).
Fig. 5 presents a Büchi Automaton associated to the negation of this formula.
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Fig. 5: B(¬ϕ) with ϕ ≡ G
(
(xα = 2 ∧ xβ = 1)⇒ X(xα = 2 ∧ xβ = 1)

)
.

Definition 9 (Parametric Product). Let P = (QP , δP ) be a PGRN and
B(¬ϕ) = (QB , q

0
B , AB , δB) a Büchi Automaton associated to the LTL formula

¬ϕ. The product Π = P ⊗ B(¬ϕ) is the tuple (QΠ , q
0
Π , AΠ , δΠ) with QΠ =

QP × QB the set of vertices, q0Π = (T, q0B) the initial vertex, AΠ = QP × AB
the set of accepting vertices, and δΠ the set of transitions. A transition of δΠ is
of the form (qΠ , gΠ , aP , q

′
Π) with qΠ = (qP , qB), q′Π = (q′P , q

′
B), gΠ = gP ∧ gB

such that (qP , gP , aP , q
′
P ) ∈ δP , (qB , gB , q

′
B) ∈ δB and gΠ is satisfiable.

Example 7. The product of the PGRN in Fig. 3 and the Büchi Automaton in
Fig. 5 is represented in Fig. 6. The product has been simplified by removing
output transitions whose guard on expression levels is not satisfiable according
to the guards and assignments of the input transitions of the same vertex; we
also remove the transitions whose guard is not satisfiable according to the guards
on parameters necessarily crossed (φ21 and φ22 here). Finally, we remove vertices
which can not be reached and those belonging to a terminal cycle without
accepting vertex.

Search for parametric accepting cycles The search for accepting cycles is
based on symbolic execution techniques which are program analysis techniques.
The key point is the substitution of actual values by symbolic variables in order
to symbolically perform computations. Each execution (or path) of the program
associates to each variable a symbolic computation together with a path condition
that expresses what are the conditions on input values to execute the given path.
Symbolic execution techniques has been extended to symbolic transition systems
[11] by unfolding transition systems as symbolic trees. As symbolic execution is
only applicable for finite paths, selection criteria are used to cut infinite paths
when considering testing. In the sequel, we will take particular care to cut infinite
paths in identifying situations of return on a node already encountered. Indeed
such situations reveal the presence of cycles.

In the symbolic execution of the parametric product Π, the parameters
Kg(ω) are handled as symbolic variables (i.e. not evaluated), and Π is unfolded
leading to the construction of several Symbolic Execution Trees (SET), one for
any x ∈ X.

Definition 10 (Symbolic Execution Tree). Let Π = (QΠ , q
0
Π , AΠ , δΠ) be a

parametric product. The Symbolic Execution Tree associated to Π and x ∈ X is a
transition system (QT , δT ) where the set of nodes QT and the set of transitions
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Fig. 6: Parametric product P ⊗ B(¬ϕ) associated to the Parametric GRN in
Figure 3 and the Büchi Automaton in Figure 5 (after simplification), with:
φ1 ≡ xα < 2 ∧ xβ = 0 ∧ xα < Kα({}) φ3 ≡ xα = 0 ∧ xβ = 1
φ21 ≡ xα = 2 ∧ xβ = 1 ∧Kα({α, β}) < 2 φ4 ≡ xα > 0 ∧ xβ = 0
φ22 ≡ xα = 1 ∧ xβ = 1 φ5 ≡ xα = 0 ∧ xβ = 0 ∧Kα({}) = 0.
φ23 ≡ xα = 1 ∧ xβ = 0 ∧Kα({}) = 0

δT ⊂ QT × QT are mutually defined by: (q0Π , x,>) ∈ QT and for all qT =
(qΠ , x, pc) ∈ QT , for all (qΠ , gΠ , aP , q

′
Π) ∈ δΠ such that pc′ = pc ∧ JgΠKx 6= ⊥,

then q′T = (q′Π , aP (x), pc′) ∈ QT and (qT , q
′
T ) ∈ δT . If qΠ ∈ AΠ , then the node

is said to be accepting.

For any node (qΠ , x, pc) ∈ QT with qΠ = (qP , qB) ∈ QP × QB , pc is the path
condition in the form of a constraint over parameters in K. It defines the set of
annotated dynamics D that can reach the state (qP , x) from the state in QP ×X
associated to the ancestor of (qΠ , x, pc). With the process described in the section
3, D itself allows the definition of the set of dynamics of the corresponding GRN
which can reach all the states associated to nodes of the node path along the
same sequence of traversed states. By construction, path conditions expressed
over parameters increase along paths of SET and reduce the number of dynamics
compatible with the path under construction.

Biological properties are expressed along infinite sequences, and thus, paths
of the product and paths of SET are also infinite. But, by disregarding path
conditions, the number of possible nodes in a SET is finite6. So, when we are
building a new node (qΠ , x, pc

′) whereas it is descendant of a node (qΠ , x, pc)
(same vertex in QΠ and same value in X), we stop the analysis of the path; these
two nodes are respectively called child node and return node. By construction,
the path condition of the child node is included in the path condition of the

6 it is bounded by the product of all combinations of levels of expression, the number
of vertices of the Büchi automaton and the number of vertices (2) of the PGRN.



return node, i.e. all parameter instantiations satisfying the child path condition
also satisfy the return path condition.

Thus, by performing a mixed symbolic and numerical execution (parameters
in K remain unchanged and state variables in X are evaluated), we can stop the
execution procedure of the product Π so that each path of the resulting SET
is finite and contains a cycle (starting at the return node and ending with the
transition leading to the child node). If there exists an accepting node between
the return node and the child node, the path condition is said accepting.

Once all finite SET are built, it remains to compute for which parameter
instantiations there exist accepting paths. For that, it suffices to consider every
accepting path conditions of the SET associated to Π. Each accepting path
condition can be satisfied by (at least) one instantiation of parameters in K, it
means that there exists a path in Π going infinitely often through the associated
cycle, and thus passing infinitely often by an accepting state. And so there exists
a path in the dynamics corresponding to this accepting path condition verifying
¬ϕ.

Thus, instantiations of parameters verifying the conjunction of the negation
of every accepting path condition of the SET associated to Π correspond to
the dynamics such that there is no path verifying ¬ϕ, in other words, all paths
verify ϕ. Note that the obtained dynamics verify ϕ along all paths; if the model
must verify ϕ only on at least one path, our approach remains adequate with a
small adaptation: to do this, we have to get the disjunction of all accepting path
conditions of the SET associated to the product P ⊗B(ϕ).

Example 8. For the Product in Figure 6, there are two solutions after computa-
tion; the corresponding values of parameters are: Kα({}) = 1 or 2, Kα({α}) = 2,
Kα({β}) = 0, Kα({α, β}) = 2, Kβ({}) = 0 and Kβ({α}) = 1. One of the
corresponding dynamics (with Kα({}) = 2) is represented in Figure 2.

Algorithm of traversal of SET. Algorithm 1, based on a Depth First Search
schema, gives an overview of how we practically compute the accepting path
conditions. We use three global variables: the parametric product Π, the list of
accepting path conditions acceptingPC, and the list nodesList of SET nodes
which have already been analyzed.

Starting with a SET node, line 2 to line 4 test and compute its successors,
as explained in the ”Symbolic Execution Trees” part of section 4. Three tests
are then performed successively. Firstly, if the path condition of the successor
node is already known, it cannot provide additional information (the pc becomes
more specific every depth call), and we stop the study of this successor (line 5).
Secondly, line 7 tests if one of the ancestors of the successor is a return node
(ancestor with the same vertex and state). If it is the case, then there is an
infinite cycle between them and, if there is an accepting node in that cycle, then
the successor node is an accepting return node, and its path condition is added
to the list accepting PCs (lines 8 to 9). Thirdly, if the successor is not a return
node, we check (line 10) if the node corresponds to a node in nodesList with
the same vertex, the same state and the same or a more general path condition.



Algorithm 1: Overview of DFS((qΠ , x, pc), ancestorsList)

Data: global Π = (QΠ , q
0
Π , AΠ , δΠ), global acceptingPC, global nodesList

ancestorsList.add((qΠ , x, pc));1

forall (qΠ , gΠ , aP , q
′
Π) ∈ δΠ do // calculation of all successors2

pc′ ← pc ∧ JgΠKx ; // pc of the new node3

if pc′ 6= ⊥ then // the transition can be crossed4

if pc′ 6⊂ acceptingPC then // pc not included in the analyzed5

accepting pc

x′ ← aP (x) ; // state of the new node6

if ∃(q′Π , x′, pc′′) ∈ ancestorsList then // an ancestor of the new7

node is a return node

if ∃(q′′′Π ∈ AΠ , x′′′, pc′′′) ∈ [(q′Π , x
′, pc′′), . . . , (q′Π , x

′, pc′)] ⊂8

ancestorsList then // a descendant of the return node is

accepting

acceptingPC.add(pc′)9

else if @(q′Π , x
′, pc′′′′) ∈ nodesList with pc′ ⊂ pc′′′′ then // no10

copy node: recall of DFS()

DFS((q′Π , x
′, pc′), ancestorsList);11

nodesList.add((q′Π , x
′, pc′));12

If it is not the case (no copy node), then the DFS function is recalled with the
successor node in argument (line 11), which is then added to nodesList (line 12).

Transient and Stable. Nodes of the tree are of the form (qΠ , x, pc) with qΠ =
(qP , qB) ∈ QP × QB . According to the value of qP (either T or S, from the
PGRN), we say that the node is either transient or stable. By construction of
the PGRN, the target vertices of all transitions outgoing from a stable vertex
are vertices of the same type, hence the appellation stable. Furthermore, the
guards of the transitions between the stable vertices are always of the form
gΠ = gP ∧ gB with gP = >, and the assignment of the transitions is aP = id
(identity assignment). Thus a specific treatment can be provided for the stable
nodes, briefly described in the sequel.

In the algorithm 1, the line 11 can be split in two calls, one for the current
function and another for the specific treatment of stable nodes (called if the
successor node is stable, called stable root in the sequel). In this case, the
second argument of the function, the list of ancestors, is an empty list since
none of the previous ancestors (all transient) can be a return node of a stable
node. According to the characteristics of the transitions between stable vertices
mentioned above, for the treatment of stable nodes there is no need to test if the
path condition is already known (line 5, already tested with the corresponding
stable root), there is no guard on parameters to symbolically verify and no
substitution of levels of expression (lines 3 to 4), and there is no update of the
state to do (line 6). Furthermore, if a node is accepting then all the explorations



of the SET from the stable root can be stopped; indeed, its path condition is
identical to all path conditions of the nodes which can be built from it.

5 Assessment

The methodology described above has been implemented in a prototype software
tool called SPuTNIk. SPuTNIk is written in Java and relies on the Z3 constraint
solver [7] to check the satisfiability of path conditions during the traversal of SET
and on the ltl2ba and LTL2BA4J libraries [10,4] to generate a Büchi Automaton
of minimal size from an LTL formula. To validate our approach with SPuTNIk,
we have considered a common biological case study: the analysis of the genetic
network that controls the life cycle of the λ phage virus [19]. The λ phage can
infect the E. coli bacterium with two different outcomes: either it integrates the
genome of the host through a process called lysogeny or it enters a lytic phase
where it kills the residing cell to reproduce itself. We based our approach on
the λ phage model studied in [13] by Klarner et al. and composed of four genes,
denoted cI, cII, cro and N, and ten interactions described Fig. 7.
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cII N
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,−

]

[2
,−

]

[2,+]

[2,−]

[2
,−
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]

[1,+]
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,+

]

Fig. 7: The interaction graph Gλ for the λ phage.

Klarner et al. describe biological properties as time series: a sequence of
specific states given in the form θ ≡ s1, ∗, s2, ∗, . . . , ∗, sn where si is the ith

observed state while ∗ denotes a possibly empty sequence of unspecified states.
Times series are equivalent to LTL formulas of the form φ ≡ s1 ∧F(s2 ∧F(· · · ∧
F(sn) . . . )) (i.e. only composed of ∧ and F operators). Moreover, the states
of time series are fully determined, each level of expression corresponds to a
single value. For example for Gλ, each state is a quadruple (xcI , xcII , xcro, xN )∈
{0, 1, 2}×{0, 1}×{0, 1, 2, 3}×{0, 1}). Given a time series θ and an interaction
graph, the goal of Klarner et al. is to find out all models which contain at least
one path matching θ (i.e. passing through the states of θ in the correct order).
Klarner et al. distinguish the following states: init ≡ [0000], lyt1 ≡ [0021], lyt2 ≡
[0020], lyt3 ≡ [0030], lys1 ≡ [2101] and lys2 ≡ [2000], belonging to time series
θ1≡ init, ∗, lyt1, ∗, lyt2, ∗, lyt3 and θ2≡ init, ∗, lys1, ∗, lys2, which correspond to



evolution towards lytic and lysogenic phases. The equivalent LTL counterparts
for θ1 and θ2 are respectively φ1 ≡ init ∧ F(lyt1 ∧ F(lyt2 ∧ F(lyt3 ∧ F(lyt2))))
and φ2 ≡ init ∧ F(lys1 ∧ F(lys2)).

In order to reproduce the same experiment than Klarner et al., we discard
the Min/Max constraint for all genes (as it is not supported in [13]), and we relax
the Observation constraint for the specific case where cI is activator of itself (as
done in [13]). We then use SPuTNIk to find out the parameter instantiations
corresponding to dynamics which are guaranteed to exhibit either a lytic or a
lysogenic phenotype in compliance with series θ1 and θ2 (i.e. all models that
contain at least one path that satisfies φ1 and at least one that satisfies φ2).

The obtained results are in accordance: amongst the 7 billions possible mod-
els, we obtain the same number (8759) of valid ones as in [13]. But unlike Klarner
et al. our method is not restricted to time series: we can consider any form of
LTL formulas and there is no need to fully specify all the levels of expression.
For example, it is known that a lytic λ phage can not become lysogenic in the
future (and conversely). This knowledge cannot be expressed with time series,
but it corresponds to the following LTL formulas: φ3 ≡ G(lys2 ⇒ ¬F(lyt3)) and
φ4 ≡ G(lyt3 ⇒ ¬F(lys2)). By adding these formulas to the previous, we reduce
the number of solutions to 2390.

6 Conclusion

In this paper we introduced a new methodology for reverse-engineering of genetic
network models, based on adaptation of classical LTL model-checking with sym-
bolic execution. In order to find dynamics consistent with biological knowledge,
we use the whole extent of LTL to express biological knowledge in terms of
constraints over time. Instead of checking each dynamics of the GRN, we propose
a method which performs checking with a novel formalism, the Parametric
GRN, a compact (symbolic) representation of all the dynamics associated to an
interaction graph within a single structure. From the Parametric GRN and LTL
formulas, our algorithm processes parameters, defining the dynamics, as symbols
in order to avoid combinatorial explosion. The solutions are in the form of a set
of constraints that the parameters must fulfill. Such analysis has been carried
out through the SPuTNIk tool, a prototype software of the proposed method.
We are working on a parallel version of SPuTNIk, based on the splitting of the
Parametric Product into strongly connected components in order to detect the
accepting cycles in each component.
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